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Estimation of genewise variance arises from two important ap-
plications in microarray data analysis: selecting significantly differ-
entially expressed genes and validation tests for normalization of mi-
croarray data. We approach the problem by introducing a two-way
nonparametric model, which is an extension of the famous Neyman–
Scott model and is applicable beyond microarray data. The problem
itself poses interesting challenges because the number of nuisance pa-
rameters is proportional to the sample size and it is not obvious how
the variance function can be estimated when measurements are cor-
related. In such a high-dimensional nonparametric problem, we pro-
posed two novel nonparametric estimators for genewise variance func-
tion and semiparametric estimators for measurement correlation, via
solving a system of nonlinear equations. Their asymptotic normality
is established. The finite sample property is demonstrated by simula-
tion studies. The estimators also improve the power of the tests for de-
tecting statistically differentially expressed genes. The methodology
is illustrated by the data from microarray quality control (MAQC)
project.

1. Introduction. Microarray experiments are one of widely used tech-
nologies nowadays, allowing scientists to monitor thousands of gene expres-
sions simultaneously. One of the important scientific endeavors of microarray
data analysis is to detect statistically differentially expressed genes for down-
stream analysis [Cui, Hwang and Qiu (2005), Fan et al. (2004), Fan and Ren
(2006), Storey and Tibshirani (2003), Tusher, Tibshirani and Chu (2001)].
Standard t-test and F -test are frequently employed. However, due to the
cost of the experiment, it is common to see a large number of genes with
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a small number of replications. Even in customized arrays where only sev-
eral hundreds of genes expressions are measured, the number of replications
is usually limited. As a result, we are facing a high-dimensional statistical
problem with a large number of parameters and a small sample size.

Genewise variance estimation arises at the heart of microarray data anal-
ysis. To select differentially expressed genes among thousands of genes, the
t-test is frequently employed with a stringent control of type I errors. The
degree of freedom is usually small due to limited replications. The power
of the test can be significantly improved if the genewise variance can be
estimated accurately. In such a case, the t-test becomes basically a z-test.
A simple genewise variance estimator is the sample variance of replicated
data, which is not reliable due to a relatively small number of replicated
genes. They have direct impact on the sensitivity and specificity of t-test
[Cui, Hwang and Qiu (2005)]. Therefore, novel methods for estimating the
genewise variances are needed for improving the power of the standard t-test.

Another important application of genewise variance estimation arises from
testing whether systematic biases have been properly removed after applying
some normalization method, or selecting the most appropriate normalization
technique for a given array. Fan and Niu (2007) developed such validation
tests (see Section 4), which require the estimation of genewise variance. The
methods of variance estimation, like pooled variance estimator, and REML
estimator [Smyth, Michaud and Scott (2005)], are not accurate enough due
to the small number of replications.

Due to the importance of genewise variance in microarray data analy-
sis, conscientious efforts have been made to accurately estimate it. Various
methods have been proposed under different models and assumptions. It has
been widely observed that genewise variance is to a great extent related to
the intensity level. Kamb and Ramaswami (2001) proposed a crude regres-
sion estimation of variance from microarray control data. Tong and Wang
(2007) discussed a family of shrinkage estimators to improve the accuracy.

Let Rgi and Ggi , respectively, be the intensities of red (Cy3) and green
(Cy5) channels for the ith replication of the gth gene on a two-color mi-
croarray data. The log-ratios and log-intensities are computed, respectively,
as

Ygi = log2(Ggi/Rgi ) and Xgi =
1
2 log2(GgiRgi ),

i= 1, . . . , I, g = 1, . . . ,N,

where I is the number of replications for each gene and N is the number
of genes with replications. For the purpose of estimating genewise variance,
we assume that there is no systematic biases or the systematic biases have
been removed by a certain normalization method. This assumption is always
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made for selecting significantly differentially expressed genes or validation
test under the null hypothesis. Thus, we have

Ygi = αg + σgiǫgi

with αg denoting the log-ratio of gene expressions in the treatment and con-
trol samples. Here, (ǫg1, . . . , ǫgI)

T follows a multivariate normal distribution
with ǫgi ∼N(0,1) and Corr(ǫgi , ǫgj) = ρ when i 6= j. It is also assumed that
observations from different genes are independent. Such a model was used
in Smyth, Michaud and Scott (2005).

In the papers by Wang, Ma and Carroll (2009) and Carroll and Wang
(2008), nonparametric measurement-error models have been introduced to
aggregate the information of estimating the genewise variance:

Ygi = αg + σ(αg)εgi ,
(1)

corr(εgi , εgi ′) = 0, g = 1, . . . ,N, i= 1, . . . , I.

The model is intended for the analysis of the Affymetrix array (one-color
array) data in which αg represents the expected intensity level, and Ygi is
the ith replicate of observed expression level of gene g. When it is applied to
the two-color microarray data as in our setting, in which αg is the relative
expression profiles between the treatment and control, several drawbacks
emerge: (a) the model is difficult to interpret as the genewide variance is a
function of the log-ratio of expression profiles; (b) errors-in-variable methods
have a very slow rate of convergence for the nonparametric problem and the
observed intensity information Xgi is not used; (c) they are usually hard
to be implemented robustly and depend sensitively on the distribution of
σ(αg)εgi and the i.i.d. assumption on the noise; (d) in many microarray
applications, αg = 0 for most g and hence σ(αg) are the same for most
genes, which is unrealistic. Therefore, our model (2) below is complementary
to that of Wang, Ma and Carroll (2009) and Carroll and Wang (2008), with
focus on the applications to two-color microarray data.

To overcome these drawbacks in the applications to microarray data and
to utilize the observed intensity information, we assume that σgi = σ(Xgi ) for
a smooth function σ(·). This leads to the following two-way nonparametric
model:

Ygi = αg + σ(Xgi )ǫgi , g = 1, . . . ,N, i= 1, . . . , I,(2)

for estimating genewise variance. This model is clearly an extension of the
Neyman–Scott problem [Neyman and Scott (1948)], in which the genewise
variance is a constant. The Neyman–Scott problem has many applications
in astronomy. Note that the number of nuisance parameters {αg} is pro-
portional to the sample size. This imposes an important challenge to the
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nonparametric problem. It is not even clear whether the function σ(·) can
be consistently estimated.

To estimate the genewise variance in their microarray data analysis, Fan et
al. (2004) assumed a model similar to (2). But in the absence of other avail-
able techniques, they had to impose that the treatment effect {αg} is also a
smooth function of the intensity level so that they can apply nonparametric
methods to estimate genewise variance [Ruppert et al. (1997)]. However, this
assumption is not valid in most microarray applications, and the estimator
of genewise variance incurs big biases unless {αg} is sparse, a situation that
Fan et al. (2004) hoped. Fan and Niu (2007) approached this problem in
another simple way. When the noise in the replications is small, that is,

Xgi ≈ X̄g, where X̄g is the sample mean for the gth gene. Therefore, they

simply smoothed the pair {(X̄g , r̄g)}, where r̄g =
∑I

i=1(Ygi − Ȳg)
2/(I − 1).

This also leads to a biased estimator, which is denoted as ξ̂2(x). One asks
naturally whether the function σ(·) is estimable and how it can be estimated
in the general two-way nonparametric model.

We propose a novel nonparametric approach to estimate the genewise
variance. We first study a benchmark case when there is no correlation be-
tween replications, that is, ρ= 0. This corresponds to the case with indepen-
dent replications across arrays [Fan, Peng and Huang (2005), Huang, Wang
and Zhang (2005)]. It is also applicable to those dealt by the Neyman–
Scott problem. By noticing E{(Ygi − Ȳg)

2|Xgi} is a linear combination of
σ2(Xgi ), we obtain a system of linear equations. Hence, σ2(·) can be es-
timated via nonparametric regression of a proper linear combination of
{(Ygi − Ȳg)

2, i = 1, . . . , I} on {Xgi}. The asymptotic normality of the es-
timator is established. In the case that the replication correlation does not
vanish, the system of equations becomes nonlinear and cannot be analyti-
cally solved. However, we are able to derive the correlation corrected esti-
mator, based on the estimator without genewise correlation. The genewise
variance function and the correlation coefficient of repeated measurements
are simultaneously estimated by iteratively solving a nonlinear equation.
The asymptotic normality of such estimators is established.

Model (2) can be applied to the microarrays in which within-array repli-
cations are not available. In that case, we can aggregate all the microarrays
together and view them as a super array with replications [Fan, Peng and
Huang (2005), Huang, Wang and Zhang (2005)]. In other words, i in (2)
indexes arrays and ρ can be taken as 0, namely (2) is the across-array repli-
cation with ρ= 0.

The structure of this paper is as follows. In Section 2, we discuss the
estimation schemes of the genewise variance and establish the asymptotic
properties of the estimators. Simulation studies are given in Section 3 to
verify the performance of our methods in the finite sample. Applications to
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the data from Microarray Quality Control (MAQC) project are showed in
Section 4 to illustrate the proposed methodology. In Section 5, we give a
short summary. Technical proofs are relegated to the Appendix.

2. Nonparametric estimators of genewise variance.

2.1. Estimation without correlation. We first consider the specific case
where there is no correlation among the replications Yg1, . . . , YgI of the same
gene g under model (2). This is usually applicable to the across-array repli-
cation and stimulates our procedure for the more general case with the
replication correlation. In the former case, we have

E[(Ygi − Ȳg)
2|X] = (I − 1)2σ2(Xgi )/I

2 +
∑

j 6=i

σ2(Xgj)/I
2, i= 1, . . . , I.

We will discuss in Section 2.2.4 the case that I = 2. For I > 2, we have
I different equations with I unknowns σ2(Xg1), σ

2(Xg2), . . . , σ
2(XgI) for a

given gene g. Solving these I equations, we can express the unknowns in
terms of {E[(Ygi − Ȳg)

2|X]}Ii=1, estimable quantities. Let

rg = ((Yg1 − Ȳg)
2, . . . , (YgI − Ȳg)

2)T and σ
2
g = (σ2(Xg1), . . . , σ

2(XgI))
T .

Then, it can easily be shown that σ2
g =BE[rg|X], where B is the coefficient

matrix:

B= ((I2 − I)I−E)/(I − 1)(I − 2)

with I being the I × I identity matrix and E the I × I matrix with all
elements 1. Define

Zg = (Zg1, . . . ,ZgI)
T △
=Brg.

Then we have

σ2(Xgi) = E[Zgi |X].(3)

Note that the left-hand side of (3) depends only on Xgi , not other variables.
By the the double expectation formula, it follows that the variance function
σ2(·) can be expressed as the univariate regression

σ2(x) = E[Zgi |Xgi = x], i= 1, . . . , I.(4)

Using the synthetic data {(Xgi ,Zgi), g = 1, . . . ,N} for each given i, we can
apply the local linear regression technique [Fan and Gijbels (1996)] to obtain
a nonparametric estimator η̂2i (x) of σ2(·). Explicitly, for a given kernel K
and bandwidth h,

η̂2i (x) =
N∑

g=1

WN,i

(
Xgi − x

h

)
Zgi , i= 1, . . . , I,(5)
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with

WN,i(u) = h−1K(u)
SN,2 − uSN,1

SN,2SN,0 − S2
N,1

,

whereKh(u) = h−1K(u/h) and SN,l =
∑N

g=1Kh(Xgi−x)[(Xgi−x)/h]l, whose
dependence on i is suppressed. Thus, we have I estimators η̂21(x), . . . , η̂

2
I (x)

for the same genewise variance function σ2(·). Each of these I estimators
η̂2i (x) is a consistent estimator of σ2(x). To optimally aggregate those I

estimators, we need the asymptotic properties of η(x) = (η̂21(x), . . . , η̂
2
I (x))

T .
Denote

cK =

∫ ∞

−∞

u2K(u)du, dK =

∫ ∞

−∞

K2(u)du,

σ1 =E[σ(Xgi )] and σ2 =E[σ2(Xgi )].

Assume that Xgi are i.i.d. with marginal density fX(·) and εgi are i.i.d.
random variables from the standard normal distribution. In the following
result, we assume that I is fixed, but N diverges.

Theorem 1. Under the regularity conditions in the Appendix, for a fixed

point x, we have

Σ
−1/2(η− (σ2(x) + b(x) + oP (h

2))e)
D−→N(0, I),

provided that h→ 0 and Nh→∞, where e= (1,1, . . . ,1)T and

Σ= V1I+ V2(E− I)

with b(x) = h2

2 cK(σ2(x))′′,

V1 =
dK

NhfX(x)

{
2σ4(x) +

4+ 4(I − 1)(I − 3)

(I − 1)(I − 2)2
σ2σ

2(x) +
2

(I − 1)(I − 2)
σ22

}
,

V2 =
1

N

{
4

(I − 1)2
σ4(x)− 8

(I − 1)2
σ2σ

2(x) +
2(I − 3)

(I − 1)2(I − 2)
σ22

}
.

Note that V2 is one order of magnitude smaller than V1. Hence, the es-
timators η̂21(x), . . . , η̂

2
I (x) are asymptotically independently distributed as

N(σ2(x)+ b(x), V1). Their dependence is only in the second order. The best
linear combination of I estimators is

η̂2(x) = [η̂21(x) + η̂22(x) + · · ·+ η̂2I (x)]/I(6)

with the asymptotic distribution

N(σ2(x) + b(x), V1/I + (1− 1/I)V2).(7)
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See also the aggregated estimator (16) with ρ = 0, which has the same
asymptotic property as the estimator (8). See Remark 1 below for addi-
tional discussion.

Theorem 1 gives the asymptotic normality of the proposed nonparametric
estimators under the presence of a large number of nuisance parameters
{αg}Ng=1. With the newly proposed technique, we do not have to impose any
assumptions on αg such as sparsity or smoothness. This kind of local linear
estimator can be applied to most two-color microarray data, for instance,
customized arrays and Agilent arrays.

2.2. Variance estimation with correlated replications.

2.2.1. Aggregated estimator. We now consider the case with correlated
with-array replications. There is a lot of evidence that correlation among
within-array replicated genes exists [Smyth, Michaud and Scott (2005), Fan
and Niu (2007)]. Suppose that within-array replications have a common
correlation corr(Ygi , Ygj|X) = ρ when i 6= j. Observations across different
genes or arrays are independent. Then the conditional variance of (Ygi − Ȳg)
can be expressed as

var[(Ygi − Ȳg)|X]

= (I − 1)2σ2(Xgi )/I
2 +2ρ

∑

1≤j<k≤I,
j 6=i,k 6=i

σ(Xgj)σ(Xgk)/I
2(8)

+ 2(I − 1)ρ
∑

j 6=i

σ2(Xgj)/I
2 −

∑

j 6=i

σ(Xgi )σ(Xgj)/I
2.

This is a complex system of nonlinear equations and the analytic form cannot
be found. Innovative ideas are needed.

Using the same notation as that in the previous section, it can be calcu-
lated that

E[Zgi |X] = σ2(Xgi )−
2

I − 1

∑

j 6=i

ρσ(Xgi )σ(Xgj)

+
2

(I − 1)(I − 2)

∑

1≤j<k≤I,
j 6=i,k 6=i

ρσ(Xgj)σ(Xgk).

Taking the expectation with respect to Xgj for all j 6= i, we obtain

E[Zgi |Xgi = x] = σ2(x)− 2ρσ1σ(x) + ρσ21
△
= η2(x),(9)

where σ1 =E[σ(X)].
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Here, we can directly apply the local linear approach to all aggregated
data {(Xgi ,Zgi)}I,Ni,g=1, due to the same regression function (9). Let η̂2A(·) be
the local linear estimator of η2(·), based on the aggregated data. Then

η̂2A(x) =

N∑

g=1

I∑

i=1

WN

(
Xgi − x

h

)
Zgi(10)

with

WN (u) = h−1K(u)
SNI ,2 − uSNI ,1

SNI ,0SNI ,2 − S2
NI ,1

,

where SNI ,l =
∑N

g=1

∑I
i=1Kh(Xgi −x)[(Xgi −x)/h]l. There are two solutions

to (9):

σ̂A(x,ρ)
(1),(2) = ρ̂σ̂1 ±

√
ρ̂2σ̂21 − ρ̂σ̂21 + η̂2A(x),(11)

Notice that given the sample X and Y, σ̂A(x,ρ)
(1),(2) are continuous in both

x and ρ. For ρ < 0, σ̂A(x,ρ)
(1) should be used since the standard deviation

should be nonnegative. Since σ̂A(x,ρ)
(1) > σ̂A(x,ρ)

(2) for every x and ρ, by
the continuity of the solution in ρ, we can only use the same solution when
ρ changes continuously. Then σ̂A(x,ρ)

(1) should always be used regardless
of ρ. From now on, we drop the superscript and denote

σ̂A(x) = ρσ1 +
√
ρ2σ21 − ρσ21 + η̂2A(x).(12)

This is called the aggregated estimator. Note that in (12), ρ, σ1 and σ(·) are
all unknown.

2.2.2. Estimation of correlation. To estimate ρ, we assume that there
are J independent arrays (J ≥ 2). In other words, we observed data from
(2) independently J times. In this case, the residual maximum likelihood
(REML) estimator introduced by Smyth, Michaud and Scott (2005) is as
follows:

ρ̂0 =

∑N
g=1 s

2
B,g −

∑N
g=1 s

2
W,g∑N

g=1 s
2
B,g + (I − 1)

∑N
g=1 s

2
W,g

,(13)

where s2B,g = I(J − 1)−1
∑J

j=1(Ȳgj − Ȳg)
2 with Ȳgj = I−1

∑I
i=1 Ygij and Ȳg =

J−1
∑J

j=1 Ȳgj is the between-arrays variance and s2W,g is the within-array
variance:

s2W,g =
1

J(I − 1)

J∑

j=1

I∑

i=1

(Ygij − Ȳgj)
2.
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As discussed in Smyth, Michaud and Scott (2005), the estimator ρ̂0 of ρ
is consistent when var(Ygij |X) = σg is the same for all i = 1, . . . , I and j =
1, . . . , J . However, this assumption is not valid under the model (2) and a
correction is needed. We propose the following estimator:

ρ̂=
σ2
σ21

·
∑N

g=1 s
2
B,g −

∑N
g=1 s

2
W,g∑N

g=1 s
2
B,g + (I − 1)

∑N
g=1 s

2
W,g

.(14)

The consistency of ρ̂ is given by the following theorem.

Theorem 2. Under the regularity condition in the Appendix, the esti-

mator ρ̂ of ρ is
√
N -consistent:

ρ̂− ρ=OP (N
−1/2).

With a consistent estimator of ρ, σ1, σ2 and σA(·) can be solved by the
following iterative algorithm:

Step 1. Set η̂2A(·) as an initial estimate of σ2A(·).
Step 2. With σ̂A(·), compute

σ̂1 =N−1
N∑

g=1

σ̂A(Xgi ), σ̂2 =N−1
N∑

g=1

σ̂2A(Xgi), ρ̂= ρ̂0σ̂2/σ̂
2
1 .(15)

Step 3. With σ̂1, σ̂2 and ρ̂, compute σ̂A(·) using (12).
Step 4. Repeat steps 2 and 3 until convergence.

This provides simultaneously the estimators σ̂1, σ̂2, ρ̂ and σ̂A(·). From our
numerical experience, this algorithm converges quickly after a few iterations.
When the algorithm converges, the estimator σ2A(x) is given by

σ̂A(x) = ρ̂σ̂1 +
√
ρ̂2σ̂21 − ρ̂σ̂21 + η̂2A(x).(16)

Note that the presence of multiple arrays is only used to estimate the
correlation ρ for the replications. It is not needed for estimating the genewise
variance function. In the case of the presence of J arrays, we can take the
average of the J estimates from each array.

2.2.3. Asymptotic properties. Following a similar idea as the case with-
out correlation, we can derive the asymptotic property of η̂2A(x).

Theorem 3. Under the regularity conditions in the Appendix, for a fixed

point x, we have

{V ∗}−1/2{η̂2A(x)− [η2(x) + β(x)] + oP (h
2)} D−→N(0,1),
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provided that h→ 0 and Nh→∞, with β(x) = h2

2 cK(η2(x))′′ and

V ∗ =
1

I
V ′
1 +

I − 1

I
V ′
2 ,

where

V ′
1 =

dK
NhfX(x)

{2σ4(x)− 8ρσ1σ
3(x) +C2σ

2(x) +C3σ(x) +C4},

V ′
2 =

1

N
{D0σ

4(x) +D1σ
3(x) +D2σ

2(x) +D3σ(x) +D4}

with coefficients C2, . . . ,C4,D0, . . . ,D4 defined in the Appendix.

The asymptotic normality of σ̂2A(x) can be derived from that of η̂2A(x).

More specifically, σ̂2A(x) = ϕ(η2A(x)) with ϕ(z) = (ρσ1 +
√
ρ2σ21 − ρσ21 + z)2.

The derivative of ϕ(·) with respect to z is ψ(z) = ρσ1/
√
ρ2σ21 − ρσ21 + z+1.

Then, by the delta method, we have

{V ∗}−1/2(σ̂2A(x)−ϕ(η2(x) + β(x) + oP (h
2)))

D−→N(0, ψ2(η2(x))).

Remark 1. An alternative approach when correlation exists is to apply
the same correlation correction idea to {Xgi ,Zgi}Ng=1 for every replication i,

resulting in the estimator σ̂2i (x). In this case, it can be proved that the best
linear combination of the estimator is

σ̂2(x) = [σ̂21(x) + σ̂22(x) + · · ·+ σ̂2I (x)]/I.(17)

This estimator has the same asymptotic performance as the aggregated es-
timator. However, we prefer the aggregated estimator due to the following
reasons: the equation (16) only needs to be solved once by using the algo-
rithm in Section 2.2.2, all data are treated symmetrically, and η̂2A(·) can be
estimated more stably.

2.2.4. Two replications. The aforementioned methods apply to the case
when there are more than two replications. For the case I = 2, the equations
for var[(Ygi − Ȳg)|X] collapse into one. In this case, it can be shown using
the same arguments before that

var[(Ygi − Ȳg)|Xgi = x] = 1
4σ

2(x) + 1
4σ2 − 1

2ρσ1σ(x), i= 1,2,(18)

where σ2 = E[σ2(Xgi )]. In this case, the left-hand side is always equal to
var[(Yg1 − Yg2)/2|Xgi = x].
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Let η̂2(x) be the local linear estimator of the function on the right-hand
side by smoothing {(Yg1 − Yg2)

2/4}Ng=1 on {Xg1}Ng=1 and {Xg2}Ng=1. Then
the genewise variance is a solution to the following equation:

σ̂(x) = ρ̂σ̂1 +
√
ρ̂2σ̂21 − σ̂2 +4η̂2(x).(19)

The algorithm in Section 2.2.2 can be applied directly.

3. Simulations and comparisons. In this section, we conduct simulations
to evaluate the finite sample performance of different variance estimators
ξ̂2(x), η̂2(x) and σ̂2A(x). First, the bias problem of the naive nonparametric

variance estimator ξ̂2(x) is demonstrated. It is shown that this bias issue
can be eliminated by our newly proposed methods. Then we consider the
estimators η̂2(x) and σ̂2A(x) under different configurations of the within-array
replication correlation.

3.1. Simulation design. In all the simulation examples, we set the num-
ber of genes N = 2000, each gene having I = 3 within-array replications
and J = 4 independent arrays. For the purpose of investigating the genewise
variance estimation, the data are generated from model (2). The details of
simulation scheme are summarized as follows:

αg: The expression levels of the first 250 genes are generated from the stan-
dard double exponential distribution. The rest are 0s. These expression
levels are the same over 4 arrays in each simulation, but may vary over
simulations.

X : The intensity is generated from a mixture distribution: with probability
0.7 from the distribution 0.0004(x − 6)3I(6< x < 16) and 0.3 from the
uniform distribution over [6,16].

ε: εgi is generated from the standard normal distribution.
σ2(·): The genewise variance function is taken as

σ2(x) = 0.15 + 0.015(12− x)2I{x < 12}.
The parameters are taken from Fan, Peng and Huang (2005). The kernel
function is selected as 70

81 (1− |x|3)3I(|x| ≤ 1). In addition, we fix the band-
width h= 1 for all the numerical analysis.

For every setting, we repeat the whole simulation process for T times and
evaluate the estimates of σ2(·) over K = 101 grid points {xk}Kk=1 on the
interval [6,16]. For the kth grid point, we define

Bk = σ̄2(xk)− σ2(xk) with σ̄2(xk) = T−1
T∑

t=1

σ̂2t (xk),

Sk = T−1
T∑

t=1

[σ̂2t (xk)− σ̄2(xk)]
2,
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and MSEk =B2
k + Sk. Let f(·) be the density function of intensity X . Let

Bias2 =

K∑

k=1

B2
kf(xk)

/ K∑

k=1

f(xk), VAR=

K∑

k=1

Skf(xk)
/ K∑

k=1

f(xk)

and

MISE =
K∑

k=1

MSEkf(xk)
/ K∑

k=1

f(xk)

be the integrated squared bias (Bias2), the integrated variance (VAR), and
the integrated mean squared error (MISE) of the estimate σ̂2(·), respectively.
For the tth simulation experiment, we define

ISEt =

K∑

k=1

(σ̂2t (xk)− σ2(xk))
2f(xk)

/ K∑

k=1

f(xk)

be the integrated squared error for the tth simulation.

3.2. The bias of naive nonparametric estimator. A naive approach is to
regard αg in (2) as a smooth function of Xgi , namely, αg = α(Xgi ). The
function α(·) can be estimated by a local linear regression estimator, result-
ing in an estimated function α̂(·). The squared residuals {r2gi}Ng=1 is then

further smoothed on {Xgi}Ng=1 to obtain an estimate ξ̂2(x) of the variance

function σ2(·), where rgi = Ŷgi − α̂(Xgi ) [Ruppert et al. (1997)].
To provide a comprehensive view of the performances of the naive and

the new estimators, we first compare the performances of ξ̂2(x) and η̂2(x)
under the smoothness assumption of the gene effect αg. Data from the naive
nonparametric regression model is also generated with

α(x) = exp

(
− 1

1− (x− 13)2

)
I{12< x< 14}.

This allows us to understand the loss of efficiency when αg is continuous
in Xgi . This usually does not occur for microarray data, but can appear in
other applications. Note that α(·) is zero in most of the region and thus is
reasonably sparse. Here, the number of simulations is taken to be T = 100.
The data is generated with the assumption that ρ = 0, in which case the
variance estimators η̂2(x) and σ̂2A(x) have the same performance (see also
Table 2 below). Thus, we only report the performance of η̂2(x).

In Table 1, we report the mean integrated squared bias (Bias2), the mean
integrated variance (VAR), and the mean integrated squared error (MISE)

of ξ̂2(x) and η̂2(x) with and without the smoothness assumption on the
gene effect αg. From the left panel of Table 1, we can see that when the
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Table 1

Mean integrated squared bias (Bias2), mean integrated variance (VAR), mean integrated
squared error (MISE) over 100 simulations for variance estimators ξ̂2(x) and η̂2(x). Two
different gene effect functions α(·) are implemented. All quantities are multiplied by 1000

Smooth gene effect Nonsmooth gene effect

Bias2 VAR MISE Bias2 VAR MISE

ξ̂2(x) 0.01 0.14 0.15 16.00 1.47 17.47
η̂2(x) 0.57 0.24 0.80 0.00 0.22 0.23

Table 2

Mean integrated squared bias (Bias2), mean integrated variance (VAR), mean integrated
squared error (MISE) over 1000 simulations for different variance estimators η̂2(x) and
σ̂2
O(x). Seven different correlation schemes are simulated: ρ=−0.4, ρ=−0.2, ρ= 0,

ρ= 0.2, ρ= 0.4, ρ= 0.6 and ρ= 0.8. All quantities are multiplied by 1000

ρ

−0.4 −0.2 0 0.2 0.4 0.6 0.8

Bias2 η̂2(x) 5.93 1.48 0.00 1.48 5.91 13.31 23.67

σ̂2
A(x) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

σ̂2
O(x) 0.00 0.00 0.00 0.00 0.00 0.00 0.01

VAR η̂2(x) 0.44 0.33 0.24 0.16 0.10 0.05 0.02

σ̂2
A(x) 0.27 0.25 0.24 0.22 0.20 0.19 0.20

σ̂2
O(x) 0.27 0.25 0.24 0.22 0.20 0.18 0.23

MISE η̂2(x) 6.37 1.81 0.24 1.64 6.01 13.37 23.69

σ̂2
A(x) 0.27 0.25 0.24 0.22 0.21 0.19 0.20

σ̂2
O(x) 0.27 0.25 0.24 0.22 0.20 0.18 0.24

smoothness assumption is valid, the estimator ξ̂2(x) outperforms η̂2(x). The
reason is that the mean function α(Xgi ) depends on the replication and is
not a constant. Therefore, model (2) fails and η̂2(x) is biased. One should
compare the results with those on the second row of the right panel where the
model is right for η̂2(x). In this case, η̂2(x) performsmuch better. Its variance
is about 3/2 as large as the variance in the case that mean is generated from
a smooth function α(Xgi ). This is expected. In the latter case, to eliminate
αg, the degree of freedom reduces from I = 3 to 2, whereas in the former
case, α(Xgi ) can be estimated without losing the degree of freedom, namely
the number of replications is still 3. The ratio 3/2 is reflected in Table 1.
However, when the smoothness assumption does not hold, there is serious
bias in the estimator ξ̂2(x), even though that αg is still reasonably sparse.
The bias is an order of magnitude larger than those in the other situations.
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To see how variance estimators behave, we plot typical estimators ξ̂2(x)
and η̂2(x) with median ISE value among 100 simulations in Figure 1. The
solid line is the true variance function while the dotted and dashed lines rep-
resent ξ̂2(x) and η̂2(x), respectively. On the left panel of Figure 1, we can

see that estimator ξ̂2(x) outperforms the estimator η̂2(x) when the smooth-
ness assumption is valid. The region where the biases occur has already
been explained above. However, ξ̂2(x) will generate substantial bias when
the nonparametric regression model does not hold, and at the same time,
our nonparametric estimator η̂2(x) corrects the bias very well.

3.3. Performance of new estimators. In this example, we consider the
setting in Section 3.1 that the smoothness assumption of the gene effect αg

is not valid. For comparison purpose only, we add an oracle estimator σ̂2O(x)
in which we assume that σ1, σ2 and ρ are all known. We now evaluate the

performance of the estimators η̂2(x), σ̂2A(x) and σ̂
2
O(x) when the correlation

between within-array replications varies. To be more specific, seven different
correlation settings are considered: ρ=−0.4,−0.2,0, 0.2, 0.4, 0.6, 0.8, with
ρ = 0 representing across-array replications. In this case, we increase the
number of simulations to T = 1000. Again, we report Bias2, VAR and MISE
of the three estimators for each correlation setting in Table 2. When ρ= 0,
all the three estimators give the same bias and variance. This is consistent
with our theory. We can see clearly from the table that, when ρ 6= 0, the
estimator σ̂2A(x) produces much smaller biases than η̂2(x). In fact, when |ρ|
as small as 0.2, the bias of η̂2(x) already dominates the variance.

It is worth noticing that the performance of σ̂2O(x) and σ̂
2
A(x) are almost

always the same, which indicates that our algorithm for estimating ρ, σ1

Fig. 1. Variance estimators ξ̂2(x) and η̂2(x) with median performance when different
gene effect function α(·) are implemented. Left panel: smooth α(·) function. Right panel:
nonsmooth α(·) function.
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and σ2 is very accurate. To see this more clearly, the squared bias, variance
and MSE of the estimator ρ, σ1 and σ2 in σ̂2A(x) under the seven correlation
settings are reported in Table 3. Here, the true value of σ1 and σ2 is 0.4217
and 0.1857. For example, when ρ = 0.8, the bias of ρ̂ is less than 0.002
for σ̂2A(x), which is acceptable because the convergence threshold in the
algorithm is set to be 0.001.

In Figure 2, we render the estimates η̂2(x) and σ̂2A(x) with the median
ISE under four different correlation settings: ρ = −0.4, ρ = 0, ρ = 0.6 and
ρ = 0.8. We omit the other correlation schemes since they all have similar
performance. The solid lines represent the true variance function. The dotted
lines and dashed lines are for η̂2(x) and σ̂2A(x), respectively. For the case ρ=
0, the two estimators are indistinguishable. When ρ < 0, η̂2(x) overestimates
the genewise variance function, whereas when ρ > 0, it underestimates the
genewise variance function.

4. Application to human total RNA samples using Agilent arrays. Our
real data example comes from Microarray Quality Control (MAQC) project
[Patterson et al. (2006)]. The main purpose of the original paper is on com-
parison of reproducibility, sensitivity and specificity of microarray measure-
ments across different platforms (i.e., one-color and two-color) and testing
sites. The MAQC project use two RNA samples, Stratagene Universal Hu-
man Reference total RNA and Ambion Human Brain Reference total RNA.
The two RNA samples have been assayed on three kinds of arrays: Agilent,
CapitalBio and TeleChem. The data were collected at five sites. Our study
focuses only on the Agilent arrays. At each site, 10 two-color Agilent mi-
croarrays are assayed with 5 of them dye swapped, totaling 30 microarrays.

Table 3

Squared bias, variance and MSE of ρ̂, σ̂1 and σ̂2 in the estimate σ̂2
A(x).

All quantities are multiplied by 106

ρ

σ̂2

A(x) −0.4 −0.2 0 0.2 0.4 0.6 0.8

ρ̂ Bias2 0.07 0.04 0.01 0.00 0.00 0.00 3.90
VAR 7.90 16.91 28.65 36.17 35.68 27.21 20.44
MSE 7.97 16.95 28.66 36.17 35.68 27.21 24.35

σ̂1 Bias2 0.24 0.23 0.19 0.14 0.11 0.05 2.47
VAR 11.65 11.52 11.79 12.46 13.64 15.55 18.66
MSE 11.89 11.75 11.99 12.60 13.75 15.59 21.12

σ̂2 Bias2 0.14 0.14 0.12 0.09 0.08 0.05 0.67
VAR 10.34 10.17 10.45 11.12 12.24 13.96 16.16
MSE 10.47 10.31 10.57 11.20 12.32 14.00 16.83
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Fig. 2. Median performance of variance estimators η̂2(x), σ̂2(x) and σ̂2
A(x) when

ρ=−0.4, 0, 0.6 and 0.8.

4.1. Validation test. In the first application, we revisit the validation test

as considered in Fan and Niu (2007). For the purpose of the validation tests,

we use gProcessedSignal and rProcessedSignal values from Agilent Feature

Extraction software as input. We follow the preprocessing scheme described

in Patterson et al. (2006) and get 22,144 genes from a total of 41,675 noncon-

trol genes. Among those, 19 genes with each having 10 replications are used

for validation tests. Under the null hypothesis of no experimental biases, a

reasonable model is

Ygi = αg + εgi , εgi ∼N(0, σ2g), i= 1, . . . , I, g = 1, . . . ,G.(20)

We use the notation G to denote the number of genes that have I replica-

tions. For our data, G= 19 and I = 10. Note that G can be different from

N , the total number of different genes. The validation test statistics in Fan
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and Niu (2007) include weighted statistics

T1 =

G∑

g=1

{
I∑

i=1

(Ygi − Ȳg)
2
/
σ2g

}
, T2 =

G∑

g=1

{
I∑

i=1

|Ygi − Ȳg|
/
σg

}
,

and unweighted test statistics

T3 =

{
G∑

g=1

I∑

i=1

(Ygi − Ȳg)
2 − (I − 1)

G∑

g=1

σ2g

}{
2(I − 1)

G∑

g=1

σ4g

}−1/2

,

T4 =

{
G∑

g=1

I∑

i=1

|Ygi − Ȳg| − λI

G∑

g=1

σg

}/{
κI

(
G∑

g=1

σ2g

)1/2}
,

where λI =
√

2I(I − 1)/π and κ2I = var(
∑I

i=1|εgi − ε̄g|/σg). Under the null
hypothesis, the test statistic T1 is χ2 distributed with degree of freedom
(I − 1)G and T2, T3 and T4 are all asymptotically normally distributed. As
a result, the corresponding p-values can be easily computed.

Here, we apply the same statistics T1, T2, T3 and T4 but we replace the
pooled sample variance estimator by the aggregated local linear estimator

σ̂2g =

I∑

i=1

σ̂2A(Xgi )f̂(Xgi )
/ I∑

i=1

f̂(Xgi ),

where f̂ is the estimated density function of Xgi . The difference between the
new variance estimator and the simple pooled variance estimator is that we
consider the genewise variance as a nonparametric function of the intensity
level. The latter estimator may drag small variances of certain arrays to
much higher levels by averaging, resulting in a larger estimated genewise
variance and smaller test statistics or bigger p-values.

In the analysis here, we first consider all thirty arrays. The estimated
correlation among replicated genes is ρ̂ = 0.69. The p-values based on the
newly estimated genewise variance are depicted in Table 4. As explained in
Fan and Niu (2007), T4 is the most stable test among the four. It turns out
that none of the arrays needs further normalization, which is the same as
Fan and Niu (2007). Furthermore, we separate the analysis into two groups:
the first group using 15 arrays without dye-swap, which has the estimated
correlation ρ̂= 0.66, and the second group using 15 arrays with dye-swap,
resulting in an estimated correlation ρ̂= 0.34. The p-values are summarized
in Table 5. Results show that array AGL-2-D3 and array AGL-2-D5 need
further normalization if 5% significance level applies. The difference is due
to decreased estimated ρ for the dye swap arrays and p-values are sensitive
to the genewise variance. We also did analysis by separating data into 6
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Table 4

Comparison of p-values for T1, . . . , T4 for MAQC project data
considering all 30 arrays together

p-values

Slide name T1 T2 T3 T4

AGL-1-C1 1.0000 1.0000 1.0000 1.0000
AGL-1-C2 1.0000 1.0000 1.0000 1.0000
AGL-1-C3 1.0000 1.0000 1.0000 1.0000
AGL-1-C4 1.0000 1.0000 1.0000 1.0000
AGL-1-C5 1.0000 1.0000 1.0000 1.0000
AGL-1-D1 1.0000 1.0000 1.0000 1.0000
AGL-1-D2 1.0000 1.0000 1.0000 1.0000
AGL-1-D3 1.0000 1.0000 1.0000 1.0000
AGL-1-D4 1.0000 1.0000 1.0000 1.0000
AGL-1-D5 1.0000 1.0000 1.0000 1.0000
AGL-2-C1 1.0000 1.0000 1.0000 1.0000
AGL-2-C2 1.0000 1.0000 1.0000 1.0000
AGL-2-C3 1.0000 1.0000 1.0000 1.0000
AGL-2-C4 1.0000 1.0000 1.0000 1.0000
AGL-2-C5 1.0000 1.0000 1.0000 1.0000
AGL-2-D1 1.0000 0.9999 0.9996 0.9999
AGL-2-D2 0.8387 0.9011 0.8953 0.9182
AGL-2-D3 0.3525 0.1824 0.3902 0.1905
AGL-2-D4 1.0000 1.0000 1.0000 1.0000
AGL-2-D5 0.8820 0.8070 0.8848 0.7952
AGL-3-C1 1.0000 1.0000 1.0000 1.0000
AGL-3-C2 1.0000 1.0000 1.0000 1.0000
AGL-3-C3 1.0000 1.0000 1.0000 1.0000
AGL-3-C4 1.0000 1.0000 1.0000 1.0000
AGL-3-C5 1.0000 1.0000 1.0000 1.0000
AGL-3-D1 1.0000 1.0000 1.0000 1.0000
AGL-3-D2 1.0000 1.0000 1.0000 1.0000
AGL-3-D3 1.0000 1.0000 1.0000 1.0000
AGL-3-D4 1.0000 1.0000 1.0000 1.0000
AGL-3-D5 1.0000 1.0000 1.0000 1.0000

groups: with and without dye swap, and three sites of experiments. Due to
the small sample size, the six estimates of ρ range from 0.08 to 0.74, and we
also find that array AGL-2-D3 needs further normalization.

4.2. Gene selection. To detect the differentially expressed genes, we fol-
low the filter instruction and get 19,802 genes out of 41,000 unique noncon-
trol genes as in Patterson et al. (2006), that is, I = 1. The dye swap result
was averaged before doing the one-sample t-test. Thus, at each site, we have
five microarrays.
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Table 5

Comparison of p-values for T1, . . . , T4 for MAQC project data
considering the arrays with and without dye-swap separately

p-values

Slide name T1 T2 T3 T4

AGL-1-C1 1.0000 1.0000 1.0000 1.0000
AGL-1-C2 1.0000 1.0000 1.0000 1.0000
AGL-1-C3 1.0000 1.0000 0.9999 1.0000
AGL-1-C4 1.0000 1.0000 1.0000 1.0000
AGL-1-C5 1.0000 1.0000 0.9999 1.0000
AGL-1-D1 1.0000 1.0000 1.0000 1.0000
AGL-1-D2 1.0000 1.0000 1.0000 1.0000
AGL-1-D3 1.0000 1.0000 1.0000 1.0000
AGL-1-D4 1.0000 1.0000 1.0000 1.0000
AGL-1-D5 1.0000 1.0000 1.0000 1.0000
AGL-2-C1 1.0000 1.0000 0.9943 1.0000
AGL-2-C2 1.0000 1.0000 1.0000 1.0000
AGL-2-C3 1.0000 1.0000 1.0000 1.0000
AGL-2-C4 0.0152 0.9493 0.3931 0.9136
AGL-2-C5 1.0000 1.0000 0.8060 1.0000
AGL-2-D1 0.7806 0.8074 0.6622 0.6584
AGL-2-D2 0.2170 0.2984 0.1651 0.2217
AGL-2-D3 0.0002 0.0000 0.0001 0.0000

AGL-2-D4 1.0000 1.0000 1.0000 1.0000
AGL-2-D5 0.1236 0.0662 0.0669 0.0300

AGL-3-C1 1.0000 1.0000 0.9996 1.0000
AGL-3-C2 1.0000 1.0000 0.9988 1.0000
AGL-3-C3 1.0000 1.0000 0.9977 1.0000
AGL-3-C4 1.0000 1.0000 1.0000 1.0000
AGL-3-C5 1.0000 1.0000 0.9999 1.0000
AGL-3-D1 1.0000 1.0000 1.0000 1.0000
AGL-3-D2 1.0000 1.0000 1.0000 1.0000
AGL-3-D3 1.0000 1.0000 1.0000 1.0000
AGL-3-D4 1.0000 1.0000 1.0000 1.0000
AGL-3-D5 1.0000 1.0000 1.0000 1.0000

For each site, significant genes are selected based on these 5 dye-swaped
average arrays. For all N = 19,802 genes, there are no within-array replica-
tions. However, model (2) is still reasonable, in which i indexes the array.
Hence, the “within-array correlation” becomes “between-array correlation”
and is reasonably assumed as ρ= 0.

In our nonparametric estimation for the variance function, all the 19,802
genes are used to estimate the variance function, which gives us enough
reason to believe that the estimator σ̂2A(x) is close to the inherent true
variance function σ2(x).
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We applied both the t-test and z-test to each gene to see if the logarithm
of the expression ratio is zero, using the five arrays collected at each lo-
cation. The number of differentially expressed genes detected by using the
two different tests under three Fold Changes (FC) and four significant levels
are given in Table 6. Large numbers of genes are identified as differentially
expressed, which is expected when comparing a brain sample and a tissue
pool sample [Patterson et al. (2006)]. We can see clearly that the z-test as-
sociated with our new variance estimator σ̂2A(x) leads to more differentially
expressed genes. For example, at site 1, using α = 0.001, among the fold
changes at least 2, t-test picks 8231 genes whereas z-test selects 8875 genes.
This gives an empirical power increase of (8875 − 8231)/19,802 ≈ 3.25% in
the group with observed fold change at least 2.

To verify the accuracy of our variance estimation in the z-test, we compare
the empirical power increase with the expected theoretical power increase.
The expected theoretical power increase is computed as

ave{Pz(µg/σg)−Ptn−1(µg/σg)},(21)

taking the average of power increases across all µg 6= 0. However, in the ab-
sence of the availability, we replace µg by its estimate, which is the sample
average of n= 5 observed log-expression ratios. Table 7 depicts the results
at three different sites, in which the columns “Theo” refer to the expected
theoretical power increase defined by (21), with µg replaced by Ȳg and σg re-
placed by its estimate from the genewise variance function, and the columns
“Emp” refer to the empirical power increase.

There are two things worth noticing here. First, for expected theoretical
power increase, we use the sample mean Ȳg = µg+ ǭg instead of the real gene
effect µg, which is not observable, so it inevitably involves the error term ǭg.

Table 6

Comparison of the number of significantly differentially expressed genes

p < 0.05 p < 0.01 p < 0.005 p < 0.001

t-test z-test t-test z-test t-test z-test t-test z-test

Agilent 1 FC> 1.5 12692 12802 12464 12752 12313 12722 11744 12646
FC> 2 8802 8879 8654 8872 8556 8869 8231 8858
FC> 4 3493 3493 3431 3493 3376 3493 3231 3493

Agilent 2 FC> 1.5 12282 12678 11217 12587 10502 12536 8270 12421
FC> 2 8644 8877 7908 8875 7452 8861 6125 8828
FC> 4 3600 3649 3188 3649 2964 3649 2422 3649

Agilent 3 FC> 1.5 12502 12692 11994 12576 11694 12519 10788 12374
FC> 2 8689 8832 8344 8810 8150 8800 7591 8762
FC> 4 3585 3603 3378 3602 3278 3602 2985 3600
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Table 7

Comparison of expected theoretical and empirical power difference (in percentage)

α= 0.05 α= 0.01 α= 0.005 α= 0.001

Theo Emp Theo Emp Theo Emp Theo Emp

Agilent 1 2.52 0.61 6.08 3.75 8.06 5.59 13.66 11.74
Agilent 2 4.03 7.56 10.11 17.61 13.61 22.86 23.75 37.63
Agilent 3 3.02 2.56 7.14 7.39 9.42 10.19 15.94 18.18

Average 3.19 3.58 7.78 9.58 10.36 12.88 17.79 22.51

Second, the power functions Pz(µ) and Pt(µ) depend sensitively on µ and the
tails of the assumed distribution. Despite of these, the expected theoretical
and empirical power increases are in the same bulk and the averages are very
close. This provides good evidence that our genewise variance estimation has
an acceptable accuracy.

We also apply SIMEX and permutation SIMEX methods in Carroll and
Wang (2008) to the MAQC data, to illustrate its utility. As mentioned in the
Introduction, their model is not really intended for the analysis of two-color
microarray data. Should we only use the information on log-ratios (Y ), the
model is very hard to interpret. In addition, one might question why the
information on X (observed intensity levels) is not used at all. Nevertheless,
we apply the SIMEX methods of Carroll and Wang (2008) to only the log-
ratios Y in the two-color data and produce similar tables to the Tables 6
and 7.

From the results, we have the following understandings. First, all the num-
bers for z-test in Tables 8 and 9 at all significance levels are approximately
the same. In fact, the p-values are very small so that numbers at different
significance levels are about the same. That indicates that both SIMEX and
permutation SIMEX method are tending to estimate genewise variance very
small, making the test statistics large for all the time. On the other hand,
our method estimates the genewise variance moderately so that the num-
bers are not exactly the same for different significance levels. Second, in the
implementation, we found that the SIMEX and permutation SIMEX is com-
putationally expensive (more than one hour) while our method only takes
a few minutes. Third, from Tables 10 and 11 we can see that the expected
theoretical power increase and the empirical ones are reasonably close, which
are in lines with our method.

5. Summary. The estimation of genewise variance function is motivated
by the downstream analysis of microarray data such as validation test and
selecting statistically differentially expressed genes. The methodology pro-
posed here is novel by using across-array and within-array replications. It
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Table 8

Comparison of the number of significantly differentially expressed genes using SIMEX
method

p < 0.05 p < 0.01 p < 0.005 p < 0.001

t-test z-test t-test z-test t-test z-test t-test z-test

Agilent 1 FC> 1.5 12692 12820 12464 12820 12313 12820 11744 12820
FC> 2 8802 8879 8654 8879 8556 8879 8231 8879
FC> 4 3493 3493 3431 3493 3376 3493 3231 3493

Agilent 2 FC> 1.5 12282 12721 11217 12721 10502 12721 8270 12721
FC> 2 8644 8878 7908 8878 7452 8878 6125 8878
FC> 4 3600 3649 3188 3649 2964 3649 2422 3649

Agilent 3 FC> 1.5 12502 12760 11994 12760 11694 12760 10788 12760
FC> 2 8689 8836 8344 8836 8150 8836 7591 8836
FC> 4 3585 3603 3378 3603 3278 3603 2985 3603

Table 9

Comparison of the number of significantly differentially expressed genes using
permutation SIMEX

p < 0.05 p < 0.01 p < 0.005 p < 0.001

t-test z-test t-test z-test t-test z-test t-test z-test

Agilent 1 FC> 1.5 12692 12820 12464 12820 12313 12820 11744 12820
FC> 2 8802 8879 8654 8879 8556 8879 8231 8879
FC> 4 3493 3493 3431 3493 3376 3493 3231 3493

Agilent 2 FC> 1.5 12282 12721 11217 12721 10502 12721 8270 12721
FC> 2 8644 8878 7908 8878 7452 8878 6125 8878
FC> 4 3600 3649 3188 3649 2964 3649 2422 3649

Agilent 3 FC> 1.5 12502 12760 11994 12760 11694 12760 10788 12760
FC> 2 8689 8836 8344 8836 8150 8836 7591 8836
FC> 4 3585 3603 3378 3603 3278 3603 2985 3603

Table 10

Comparison of expected theoretical and empirical power difference using SIMEX method
(in percentage)

α= 0.05 α= 0.01 α= 0.005 α= 0.001

Theo Emp Theo Emp Theo Emp Theo Emp

Agilent 1 2.43 2.06 7.17 5.42 10.30 7.34 20.71 13.44
Agilent 2 7.16 3.41 19.20 12.06 26.17 16.90 43.46 30.42
Agilent 3 4.18 2.88 11.71 7.38 16.45 9.89 31.38 17.57

Average 4.59 2.78 12.69 8.29 17.64 11.38 31.85 20.48



GENEWISE VARIANCE ESTIMATION 23

Table 11

Comparison of expected theoretical and empirical power difference using permutation
SIMEX method (in percentage)

α= 0.05 α= 0.01 α= 0.005 α= 0.001

Theo Emp Theo Emp Theo Emp Theo Emp

Agilent 1 1.89 2.86 5.66 6.43 8.19 8.59 16.75 15.07
Agilent 2 4.84 7.37 13.44 17.22 18.97 22.50 36.90 37.26
Agilent 3 2.89 4.91 8.34 10.13 11.87 13.11 23.44 21.31

Average 3.20 5.05 9.15 11.26 13.01 14.74 25.70 24.55

does not require any specific assumptions on αg such as sparsity or smooth-
ness, and hence reduces the bias of the conventional nonparametric estima-
tors. Although the number of nuisance parameters is proportional to the
sample size, we can estimate the main interest (variance function) consis-
tently. By increasing the degree of freedom largely, both the validation tests
and z-test using our variance estimators are more powerful in identifying
arrays that need to be normalized further and more capable of selecting
differentially expressed genes.

Our proposed methodology has a wide range of applications. In addition
to the microarray data analysis with within-array replications, it can be also
applied to the case without within-array replications, as long as the model
(2) is reasonable. Our two-way nonparametric model is a natural extension
of the Neyman–Scott problem. Therefore, it is applicable to all the problems
where the Neyman–Scott problem is applicable.

There are possible extensions. For example, the SIMEX idea can be ap-
plied on our model in order to take into account the measurement error.
We can also make adaptations to our methods when we have a prior cor-
relation structure among replications other than the identical correlation
assumption.

APPENDIX

The following regularity conditions are imposed for the technical proofs:

1. The regression function σ2(x) has a bounded and continuous second
derivative.

2. The kernel function K is a bounded symmetric density function with a
bounded support.

3. h→ 0,Nh→∞.
4. E[σ8(X)] exists and the marginal density fX(·) is continuous.

We need the following conditional variance–covariance matrix of the ran-
dom vector Zg in our asymptotic study.
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Lemma 1. Let Ω be the variance–covariance matrix of Zg conditioning

on all data X. Then, respectively, the diagonal and off-diagonal elements are

Ωii = 2σ4(Xgi ) +
2

(I − 1)2(I − 2)2

∑

k 6=l

σ2(Xgk)σ
2(Xgl)

(22)

+
4(I − 3)

(I − 1)(I − 2)2
σ2(Xgi )

∑

j 6=i

σ2(Xgj), i= 1, . . . , I,

Ωij =
4

(I − 1)2
σ2(Xgi )σ

2(Xgj)

+
2

(I − 1)2(I − 2)2

∑

k 6=l
k,l 6=i,j

σ2(Xgk)σ
2(Xgl)

(23)

− 4

(I − 1)2(I − 2)

∑

k 6=i,j

σ2(Xgk)(σ
2(Xgi) + σ2(Xgj)),

i, j = 1, . . . , I, i 6= j.

Proof. Let A be the variance–covariance matrix of rg conditioning on
all data X. By direct computation, the diagonal elements are given by

Aii = var[(Ygi − Ȳg)
2|X]

=
2(I − 1)4

I4
σ4(Xgi ) +

4(I − 1)2

I4

∑

k 6=i

σ2(Xgi )σ
2(Xgk) +

2

I4

∑

k 6=i

σ4(Xgk)(24)

+
4

I4

∑

l,k 6=i,l<k

σ2(Xgl)σ
2(Xgk), i= 1, . . . , I,

and the off-diagonal elements are given by

Aij = cov{[(Ygi − Ȳg)
2, (Ygj − Ȳg)

2]|X}

=
2(I − 1)2

I4
[σ4(Xgi ) + σ4(Xgj)] +

4(I − 1)2

I4
σ2(Xgi )σ

2(Xgj)

(25)

− 4(I − 1)

I4

∑

k 6=i,j

σ2(Xgk)(σ
2(Xgi) + σ2(Xgj))

+
4

I4

∑

k,l 6=i,j;l<k

σ2(Xgl)σ
2(Xgk) +

2

I4

∑

k 6=i,j

σ4(Xgk).

Using Ω=BAB
T , we can obtain the result by direct computation. �
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The proofs for Theorems 1 and 3 follow a similar idea. Since Theorem 1
does not involve a lot of coefficients, we will show the proof of Theorem 1
and explain the difference in the proof of Theorem 3.

Proof of Theorem 1. First of all, the bias of η2i (x) comes from the
local linear approximation. Since {(Xgi ,Zgi)}Ng=1 is an i.i.d. sequence, by (4)
and the result in Fan and Gijbels (1996), it follows that

E{η2i (x)|X}= σ2(x) + b(x) + oP (h
2).

Similarly, the asymptotic variance of η2i (x) also follows from Fan and Gijbels
(1996).

We now prove the off-diagonal elements in matrix var[η|X]

cov[(η̂2i (x), η̂
2
j (x))|X] = V2 + oP (1/N).(26)

Recalling that η̂2i (x) =
∑N

g=1WN,i((Xgi − x)/h)Zgi , we have

cov[(η̂2i (x), η̂
2
j (x))|X] =

N∑

g=1

WN,i

(
Xgi − x

h

)
WN,j

(
Xgj − x

h

)
cov[(Zgi ,Zgj)|X].

The equality follows by the fact that cov[(Zgi ,Zg′j)|X] = 0 when g 6= g′.
Recall Ωij = cov[(Zgi ,Zgj)|X] and define RN,g =N ·WN,j((Xgj − x)/h)Ωij .
Thus,

N · cov[(η̂2i (x), η̂2j (x))|X] =
N∑

g=1

WN,i

(
Xgi − x

h

)
RN,g.(27)

The right-hand side of (27) can be seen as local linear smoother of the syn-
thetic data {(Xgi ,RN,g)}Ng=1. Although RN,g involves N at the first glance,
its conditional expectation E[RN,g|Xgi = x] and conditional variance
var[RN,g|Xgi = x] do not grow with N . Since {(Xgi ,RN,g)}Ng=1 is an i.i.d.
sequence, by the results in Fan and Gijbels (1996), we obtain

N · cov[(η̂2i (x), η̂2j (x))|X] = E[RN,g|Xgi = x] + oP (1).

To calculate E[RN,g|Xgi = x], we apply the approximationWN,i(u) =K(u)(1+
oP (1))/(NhfX (x)) in the example of Fan and Gijbels [(1996), page 64] and
have the following arguments

E[RN,g|Xgi = x]

= E

[
N · 1

NhfX(x)
hKh(Xgj − x)Ωij |Xgi = x

]
(1 + oP (1))

= (fX(x))−1

∫
K(u)Ωij |Xgi=x(x+ hu, s)fX(x+ hu)duds+ oP (1)

=NV2 + oP (1),
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where s represents all the integrating variables corresponding toXg1, . . . ,XgI

except Xgi and Xgj . That justifies (26).
To prove the multivariate asymptotic normality

Σ
−1/2(η − (σ2(x) + b(x) + oP (h

2))e)
D−→N(0, II),(28)

we employ Cramér–Wold device: for any unit vector a= (a1, . . . , aI)
T in R

I ,

F ∗ △
= {aTΣa}−1/2

{
I∑

i=1

ai

N∑

g=1

WN,i

(
Xgi − x

h

)
(Zgi − σ2(Zgi ))

}
D−→N(0,1).

Denote by Qg,i =WN,i((Xgi − x)/h)(Zgi − σ2(Xgi )) and Q̃g =
∑I

i=1 aiQg,i.

Note that the sequence {Q̃g}Ng=1 is i.i.d. distributed. To show the asymptotic
normality of F ∗, it is sufficient to check Lyapunov’s condition:

lim
N→∞

∑N
g=1E[|Q̃g|4|X]

(
∑N

g=1E[|Q̃g|2|X])2
= 0.

To facilitate the presentation, we first note that sequences {Qg,i}Ng=1 are i.i.d.

and satisfy Lyapunov’s condition for each fixed i. Denote δ2N,i =
∑N

g=1E[|Qg,i|2|X]. And recall that δ2N,i = var[η̂2i (x)|X] = OP ((Nh)
−1). Let

c∗ be a generic constant which may vary from one line to another. We have
the following approximation:

N∑

g=1

E[|Qg,i|4|X] = c∗N−3E{K4
h(Xgi − x)[(Zgi − σ2(Xgi ))

4|X]}(1 + oP (1))

=OP ((Nh)
−3).

Therefore,
∑N

g=1E[|Qg,i|4|X] = o(δ4N,i). By the marginal Lyapunov condi-
tions, we have the following inequality:

N∑

g=1

E[Q̃4
g|X]≤ c∗

I∑

i=1

N∑

g=1

E[|Qg,i|4|X] = c∗I · oP ((Nh)−2) = oP ((Nh)
−2).

For the denominator, we have the following arguments:

N∑

g=1

E[|Q̃g|2|X] =
∑

i

a2i

N∑

g=1

E[Q2
g,i|X] +

∑

i 6=j

aiaj

N∑

g=1

E[Qg,iQg,j|X]

=
∑

i

a2i var[η̂
2
i (x)|X] +

∑

i 6=j

aiaj cov[(η̂
2
i (x), η̂

2
j (x))|X]

∗
=OP ((Nh)

−1) +OP (N
−1)

=OP ((Nh)
−1).
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Note that the second to last equality holds by the asymptotic conditional
variance–covariance matrix Σ. Therefore Lyapunov’s condition is justified.
That completes the proof. �

Proof of Theorem 2. First of all, for each given g,

Es2B,g = I var(Ȳgj) = σ2 + ρ(I − 1)σ21 .

Note that by (8), we have

E(Ygij − Ȳgj)
2 = I−2[I(I − 1)σ2 + ρ(I − 1)(I − 2)σ21 − 2(I − 1)2ρσ21 ]

= I−1(I − 1)(σ2 − ρσ21).

Thus, for all g, we have

Es2W,g = σ2 − ρσ21.

Since {s2B,g} and {s2W,g} are i.i.d. sequences across the N genes, by the
central limit theorem, we have

1

N

N∑

g=1

s2B,g = σ2 + ρ(I − 1)σ21 +OP (N
−1/2),

1

N

N∑

g=1

s2W,g = σ2 − ρσ21 +OP (N
−1/2).

Therefore,

ρ̂0 =
σ2 + ρ(I − 1)σ21 − σ2 + ρσ21 +OP (N

−1/2)

σ2 + ρ(I − 1)σ21 + (I − 1)(σ2 − ρσ21) +OP (N−1/2)

= ρσ21/σ2 +OP (N
−1/2). �

Proof of Theorem 3. Note that

var[η̂2A(x)|X] =

N∑

g=1

I∑

i=1

W 2
N

(
Xgi − x

h

)
var[Zgi |X]

+

N∑

g=1

I∑

i 6=j

WN

(
Xgi − x

h

)
WN

(
Xgj − x

h

)
cov[(Zgi ,Zgj)|X].

Following similar steps in the proof of Theorem 1, one can verify var[η̂2A(x)|
X] = V ′

1/I+(1−1/I)V ′
2 +oP ((Nh)

−1), where the coefficients C2, . . . ,C4,D0,
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. . . ,D4 are as follows:

C2 =
4(1 + ρ2)σ2 + [4ρ(I − 2) + 4ρ2(2I − 3)]σ21

I − 1
,

C3 =−8ρ2(I − 3)σ31 +8(ρ2 + ρ)σ1σ2
I − 1

,

C4 =
2

(I − 1)(I − 2)
{(1 + ρ2)σ22 + 2(ρ2 + ρ)(I − 3)σ21σ2

+ (I − 3)(I − 4)ρ2σ41},

D0 = 2

(
ρ2 − 4ρ

I − 1
+

2(1 + ρ2)

(I − 1)2

)
,

D1 =
8

(I − 1)2
{(2I − 4)ρ− (I2 − 4I + 5)ρ2}σ1,

D2 =
4

(I − 1)2(I − 2)
{(I − 3)2ρ2 + ((I − 2)2 +1)ρ− 2(I − 2)}σ2

+
4(I − 3)

(I − 1)2(I − 2)
{(3(I − 2)(I − 3) + 2)ρ2 − 2(I − 2)ρ}σ21 ,

D3 =− 8(I − 3)2

(I − 1)2(I − 2)
{(ρ2 + ρ)σ1σ2 + (I − 4)ρ2σ31},

D4 =
4

(I − 1)2(I − 2)2

×
{
(1 + ρ2)

(
I − 2
2

)
σ22

+ 6(ρ2 + ρ)

(
I − 2
3

)
σ21σ2 +12ρ2

(
I − 2
4

)
σ41

}
.
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