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Some remarks on stronger versions of the

Boundary Problem for Banach spaces

Jan-David Hardtke

Abstract

Let X be a real Banach space. A subset B of the dual unit sphere of
X is said to be a boundary for X , if every element of X attains its
norm on some functional in B. The well-known Boundary Problem
originally posed by Godefroy in [14] asks whether a bounded subset of
X which is compact in the topology of pointwise convergence on B is
already weakly compact. This problem was recently solved by Pfitzner
in the positive (cf. [18] or [19]). In this note we collect some stronger
versions of the solution to the Boundary Problem, most of which are
restricted to special types of Banach spaces. We shall use the results
and techniques of Pfitzner, Cascales et al., Moors and others.
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1 Introduction

First we fix some notation: Throughout this paper X denotes a real Banach
space, X∗ its dual, BX its closed unit ball and SX its unit sphere. For a
subset B of X∗ we denote by σB the topology on X of pointwise convergence
on B. If A ⊆ X, then coA stands for the convex hull of A and A

τ
for the

closure of A in any topology τ on X, except for the norm closure, which we
simply denote by A. Also, we denote by exC the set of extreme points of a
convex subset C of X.

Now recall that a subset B of SX∗ is called a boundary for X, if for
every x ∈ X there is some b ∈ B such that b(x) = ‖x‖. It easily follows
from the Krein-Milman theorem that exBX∗ is always a boundary for X.
In 1980 Bourgain and Talagrand proved in [4] that a bounded subset A

of X is weakly compact if it is merely compact in the topology σE, where
E = exBX∗ . In [14] Godefroy asked whether the same statement holds
for an arbitrary boundary B, a question which has become known as the
Boundary Problem.
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Long since only partial positive answers were known, for example if X =
C(K) for some compact Hausdorff space K (cf. [5, Proposition 3]) or X =
ℓ1(I) for some set I (cf. [9, Theorem 4.9]). In [23, Theorem 1.1] the positive
answer for L1-preduals is contained. Moreover, the answer is positive if the
set A is additionally assumed to be convex (cf. [15, p.44]). It was only in
2008 that the positive answer to the Boundary Problem was found in full
generality by Pfitzner in [18]. An extended version [19] of this work is going
to appear in Inventiones Mathematicae.

An important tool in the study of the Boundary Problem is the so called
Simons’ equality:

Theorem 1.1 (Simons, cf. [22]). If B is a boundary for X, then

sup
x∗∈B

lim sup
n→∞

x∗(xn) = sup
x∗∈BX∗

lim sup
n→∞

x∗(xn) (1)

holds for every bounded sequence (xn)n∈N in X.

In particular, it follows from Theorem 1.1 that the well-known Rainwater’s
theorem for the extreme points of the dual unit ball (cf. [20]) holds true for
an arbitrary boundary:

Corollary 1.2 (Simons, cf. [21] or [22]). If B is a boundary for X, then
a bounded sequence (xn)n∈N in X is weakly convergent to x ∈ X iff it is
convergent to x under every functional in B.

Pfitzner’s proof also uses Simons’ equality, as well as a quantitative ver-
sion of Rosenthal’s ℓ1-theorem due to Behrends (cf. [3]) and an ingenious
variant of Hagler-Johnson’s construction.

Next we recall the following known characterization of weak compactness
(compare [16, p.145-149], [12, Theorem 5.5 and Exercise 5.19] as well as the
proof of [10, Theorem V.6.2]). It is a strengthening of the usual Eberlein-
Šmulian theorem.

Theorem 1.3. Let A be a bounded subset of X. Then the following asser-
tions are equivalent:

(i) A is weakly relatively compact.

(ii) For every sequence (xn)n∈N in A we have that

∞
⋂

k=1

co {xn : n ≥ k} 6= ∅.

(iii) For every sequence (xn)n∈N in A there is some x ∈ X such that

x∗(x) ≤ lim sup
n→∞

x∗(xn) ∀x∗ ∈ X∗.
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In [17] Moors proved a statement stronger than the equivalence of (i)
and (ii), which also sharpens the result from [4]:

Theorem 1.4 (Moors, cf. [17]). A bounded subset A of X is weakly rela-
tively compact iff for every sequence (xn)n∈N in A we have that

∞
⋂

k=1

coσE {xn : n ≥ k} 6= ∅,

where E = exBX∗. In particular, A is weakly relatively compact if it is
merely relatively countably compact in the topology σE.

In fact, Moors gets this theorem as a corollary to the following one:

Theorem 1.5 (Moors, cf. [17]). Let A be an infinite bounded subset of X.
Then there exists a countably infinite set F ⊆ A with coσEF = coF , where
E = exBX∗. In particular, for each bounded sequence (xn)n∈N in X there
is a subsequence (xnk

)k∈N with coσE {xnk
: k ∈ N} ⊆ co {xn : n ∈ N}.

The object of this paper is to give some results related to Theorem 1.4
in the more general context of boundaries. In particular, we shall see, by a
very slight modification of the construction from [18], that a ‘non-relative’
version of 1.4 holds for any boundary B of X, see Theorem 2.18.

Since we will also deal with some quantitative versions of Theorem 1.4,
it is necessary to introduce a bit more of terminology, which stems from
[11]: Given ε ≥ 0, a bounded subset A of X is said to be ε-weakly relatively
compact (in short ε-WRC) provided that dist(x∗∗,X) ≤ ε for every element

x∗∗ ∈ A
w∗

, where w∗ refers to the weak*-topology of X∗∗. For ε = 0 this is
equivalent to the classical case of weak relative compactness.
The authors of [11] used this notion to give a quantitative version of the well
known theorem of Krein (cf. [11, Theorem 2]). In their proof they made
use of double limit techniques in the spirit of Grothendieck. More precisely,
they worked with the following definition: Let bounded subsets A of X, M
of X∗ and ε ≥ 0 be given. Then A is said to have ε-interchangeable double
limits with M if for any two sequences (xn)n∈N in A and (x∗m)m∈N in M we
have

∣

∣

∣
lim
n→∞

lim
m→∞

x∗m(xn)− lim
m→∞

lim
n→∞

x∗m(xn)
∣

∣

∣
≤ ε,

provided that all the limits involved exist. In this case we write A§ε§M .
The connection to ε-WRC sets is given by the following proposition:

Proposition 1.6 (Fabian et al., cf. [11]). Let A ⊆ X be bounded and ε ≥ 0.
Then the following hold:

(i) If A is ε-WRC, then A§2ε§BX∗ .

(ii) If A§ε§BX∗ , then A is ε-WRC.
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In case ε = 0 this is the classical Grothendieck double limit criterion. For
various other quantitative results on weak compactness we refer the inter-
ested reader to [2], [6], [7] and [11].

We are now ready to formulate and prove our results. However, it should
be added that all of them can easily be derived from already known results
and techniques.

2 Results and proofs

We begin with a quantitative version of Theorem 1.3. First we prove an
easy lemma that generalizes the equivalence of (ii) and (iii) in said theorem
(the proof is practically the same).

Lemma 2.1. Let B be a subset of BX∗ that separates the points of X and
let (xn)n∈N be a sequence in X as well as x ∈ X and ε ≥ 0. Then the
following assertions are equivalent:

(i) x ∈
⋂∞

k=1 co
σB ({xn : n ≥ k}+ εBX).

(ii) x∗(x) ≤ lim supn→∞ x∗(xn) + ε ∀x∗ ∈ BX∗ ∩ spanB.

Proof. First we assume (i). It then directly follows that

x∗(x) ∈ co ({x∗(xn) : n ≥ k}+ [−ε, ε]) ∀k ∈ N ∀x∗ ∈ BX∗ ∩ spanB.

Thus we also have x∗(x) ≤ supn≥k x
∗(xn) + ε for all k ∈ N and all x∗ ∈

BX∗ ∩ spanB and the assertion (ii) follows.
Now we assume that (ii) holds and take k ∈ N arbitrary. Suppose that

x 6∈ coσB ({xn : n ≥ k}+ εBX) .

Then by the separartion theorem we could find a functional x∗ ∈ (XσB
)∗ =

spanB with ‖x∗‖ = 1 and a number α ∈ R such that

x∗(y) ≤ α < x∗(x) ∀y ∈ coσB ({xn : n ≥ k}+ εBX) .

It follows that
lim sup
n→∞

x∗(xn) + ε ≤ α < x∗(x),

a contradiction which ends the proof.

Now we can give a quantitative version of the first equivalence in Theo-
rem 1.3.

Theorem 2.2. Let A ⊆ X be bounded and ε ≥ 0. If for each sequence
(xn)n∈N in A we have

∞
⋂

k=1

co ({xn : n ≥ k}+ εBX) 6= ∅, (2)

then A is 2ε-WRC. If A is ε-WRC, then (2) holds for every sequence in A.
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Proof. First we assume that (2) holds for every sequence in A. Let (xn)n∈N
and (x∗m)m∈N be sequences in A and BX∗ , respectively, such that the limits

lim
n→∞

lim
m→∞

x∗m(xn) and lim
m→∞

lim
n→∞

x∗m(xn)

exist. By assumption, we can pick an element

x ∈
∞
⋂

k=1

co ({xn : n ≥ k}+ εBX) .

From Lemma 2.1 we conclude that

lim inf
n→∞

x∗(xn)− ε ≤ x∗(x) ≤ lim sup
n→∞

x∗(xn) + ε ∀x∗ ∈ BX∗ . (3)

It follows that
∣

∣

∣
x∗m(x)− lim

n→∞
x∗m(xn)

∣

∣

∣
≤ ε ∀m ∈ N.

By passing to a subsequence we may assume that limm→∞ x∗m(x) exists.
Thus we get

∣

∣

∣
lim

m→∞
x∗m(x)− lim

m→∞
lim
n→∞

x∗m(xn)
∣

∣

∣
≤ ε. (4)

Now take a weak*-cluster point x∗ ∈ BX∗ of the sequence (x∗m)m∈N. Then

lim
m→∞

x∗m(x) = x∗(x) and lim
n→∞

lim
m→∞

x∗m(xn) = lim
n→∞

x∗(xn). (5)

By (3) we have
∣

∣

∣
x∗(x)− lim

n→∞
x∗(xn)

∣

∣

∣
≤ ε. (6)

From (4), (5) and (6) we get
∣

∣

∣
lim

m→∞
lim
n→∞

x∗m(xn)− lim
n→∞

lim
m→∞

x∗m(xn)
∣

∣

∣
≤ 2ε.

Thus we have proved A§2ε§BX∗ . Hence, by Proposition 1.6, A is 2ε-WRC.
Now assume that A is ε-WRC and take any sequence (xn)n∈N in A. Let

x∗∗ ∈ A
w∗

be a weak*-cluster point of (xn)n∈N and fix δ > 0. Since A is
ε-WRC there is some x ∈ X such that ‖x∗∗ − x‖ ≤ ε+ δ.

For every x∗ ∈ BX∗ the number x∗∗(x∗) is a cluster point of the sequence
(x∗(xn))n∈N and thus

x∗(x) ≤ ‖x− x∗∗‖ ‖x∗‖+ x∗∗(x∗) ≤ ε+ δ + lim sup
n→∞

x∗(xn).

Since δ > 0 was arbitrary, we conclude that

x∗(x) ≤ ε+ lim sup
n→∞

x∗(xn) ∀x∗ ∈ BX∗ .

Lemma 2.1 now yields

x ∈
∞
⋂

k=1

co ({xn : n ≥ k}+ εBX)

and the proof is finished.
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As an immediate corollary we get

Corollary 2.3. If A ⊆ X is bounded and ε ≥ 0 such that

∞
⋂

k=1

(co {xn : n ≥ k}+ εBX) 6= ∅

for every sequence (xn)n∈N in A, then A is 2ε-WRC.

Now we can also prove a quantitative version of Theorem 1.4:

Corollary 2.4. Let A ⊆ X be bounded, ε ≥ 0 and E = exBX∗. If for each
sequence (xn)n∈N in A we have that

∞
⋂

k=1

(coσE {xn : n ≥ k}+ εBX) 6= ∅,

then A is 2ε-WRC.

Proof. Let (xn)n∈N be a sequence in A. By means of Theorem 1.5 and
an easy diagonal argument we can find a subsequence (xnk

)k∈N such that
coσE {xnk

: k ≥ l} ⊆ co {xn : n ≥ l} for all l (compare [17, Corollary 0.2]).
It then follows from our assumption that

∞
⋂

l=1

(co {xn : n ≥ l}+ εBX) 6= ∅.

Hence, by Corollary 2.3, A is 2ε-WRC.

Next we observe that Moors’ Theorem 1.5 does not only work for the
extreme points of BX∗ but also for any weak*-separable boundary.

Theorem 2.5. Let B be a weak*-separable boundary for X and A a bounded
infinite subset of X. Then there is a countably infinite set F ⊆ A such that
coF = coσBF . In particular, for every bounded sequence (xn)n∈N in X there
exists a subsequence (xnk

)k∈N with coσB {xnk
: k ∈ N} ⊆ co {xn : n ∈ N}.

Proof. The proof is completely analogous to that of Theorem 1.5 given in
[17], in fact it is even simplier, so we shall only sketch it. Arguing by
contradiction, we suppose that for each countably infinite subset F of A

there is an element z ∈ coσBF \ coF .
Then we can show exactly as in [17] (using the Bishop-Phelps theorem

(cf. [13, Theorem 5.5]) and the Hahn-Banach separation theorem) that for
every sequence (xn)n∈N in A for which the set {xn : n ∈ N} is infinite, there
is an element

x ∈
∞
⋂

k=1

coσB {xn : n ≥ k} \ co {xn : n ∈ N} . (7)
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Next we fix a sequence (xn)n∈N in A whose members are distinct and
a countable weak*-dense subset {x∗m : m ∈ N} of B. By the usual diagonal
argument we may select a subsequence (again denoted by (xn)n∈N) such that
limn→∞ x∗m(xn) exists for all m.

We then choose an element x according to (7) and conclude that for each
m ∈ N we have limn→∞ x∗m(xn) = x∗m(x).

Now let x∗ ∈ B be arbitrary. Again as in [17] we will show that
limn→∞ x∗(xn) = x∗(x). Suppose that this is not the case. Then there
is an ε > 0 such that |x∗(x)− x∗(xn)| > ε for infinitely many n ∈ N. Let us
assume x∗(xn) > ε + x∗(x) for infinitely many n and arrange these indices
in an increasing sequence (nk)k∈N. By (7) we can find

z ∈
∞
⋂

l=1

coσB {xnk
: k ≥ l} \ co {xnk

: k ∈ N} .

It follows that x∗m(z) = limk→∞ x∗m(xnk
) = x∗m(x) for all m and since

{x∗m : m ∈ N} is weak*-dense in B this implies x∗(x) = x∗(z), whereas on
the other hand x∗(z) ≥ ε+ x∗(x), a contradiction.

Thus (xn)n∈N is σB-convergent to x and hence, by Corollary 1.2 it is
also weakly convergent to x, which in turn implies x ∈ co {xn : n ∈ N},
contradicting the choice of x.

Note that the assumption of weak*-separability of B is fulfilled, in par-
ticular, if X is separable, for then the weak*-topology on BX∗ is metrizable.
As an immediate corollary we get 2.4 for weak*-separable boundaries.

Corollary 2.6. Let B be a boundary for X and A a bounded subset of X
as well as ε ≥ 0. If B is weak*-separable (in particular, if X is separable)
and for each sequence (xn)n∈N in A we have

∞
⋂

k=1

(coσB {xn : n ≥ k}+ εBX) 6= ∅,

then A is 2ε-WRC.

Proof. Exactly as the proof of Corollary 2.4.

Let us now consider the case of C(K)-spaces, where K is a compact
Hausdorff space. In [5] Cascales and Godefroy gave a solution to the Bound-
ary Problem for this class of spaces. In fact, they proved a stronger result,
namely that the space (C(K), σB) is angelic1 for every boundary B. They
used the following lemma:

1See [5] or [12] for the definition and background.
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Lemma 2.7 (Cascales-Godefroy, cf. [5]). Let K be a compact Hausdorff
space and B a boundary for C(K), as well as x ∈ K and (fn)n∈N any
sequence in C(K). Then there exists µ ∈ B with µ(fn) = fn(x) for all
n ∈ N.

From this lemma we can easily deduce the following one, which is a slight
variation of [5, Proposition 2 (i)].

Lemma 2.8. If K is a compact Hausdorff space, B a boundary for C(K)
and (fn)n∈N a sequence in C(K), then

coσB {fn : n ∈ N} ⊆ coτp {fn : n ∈ N} ,

where τp denotes the topology of pointwise convergence.

Proof. Let f ∈ coσB {fn : n ∈ N}, ε > 0 and x1, . . . , xm ∈ K be arbitrary.
By Lemma 2.7 we can find functionals µ1, . . . , µm ∈ B such that µi(fn−f) =
fn(xi)− f(xi) for all n ∈ N and all i = 1, . . . ,m.

Now choose a function g ∈ co {fn : n ∈ N} with |µi(g − f)| ≤ ε for all
i = 1, . . . ,m. It then easily follows that |f(xi)− g(xi)| ≤ ε for i = 1, . . . ,m
and we are done.

As a consequence we find that the statement of Corollary 2.6 holds true
for every boundary B of C(K).

Corollary 2.9. Let K be a compact Hausdorff space and B a boundary for
C(K). If ε ≥ 0 and A ⊆ C(K) is bounded such that for each sequence
(fn)n∈N in A we have

∞
⋂

k=1

(

coσB {fn : n ≥ k}+ εBC(K)

)

6= ∅,

then A is 2ε-WRC.

Proof. As is well known, E = exBC(K)∗ = {αδx : x ∈ K, |α| = 1}, where δx
denotes the Dirac measure with respect to the point x. Hence the point-
wise convergence topology τp coincides with the topology σE and thus the
statement immediately follows from Lemma 2.8 and Corollary 2.4.

Using the same ideas as in [5] the authors of [9] proved that the space
(ℓ1(I), σB) is angelic for every boundary B of ℓ1(I), where I is an arbitrary
index set. The proof is based on the following lemma, analogous to 2.7.
Recall that exBℓ∞(I) = {−1; 1}I .

Lemma 2.10 (Cascales-Shvydkoy, cf. [9]). Let I be a set and B a boundary
for ℓ1(I). Then for every sequence (fn)n∈N in ℓ1(I) and every g ∈ {−1; 1}I

there is some b ∈ B such that b(fn) = g(fn) for all n ∈ N.
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From this lemma we can deduce exactly as in the case of C(K) the
following results.

Lemma 2.11. Let I be a set, B a boundary for ℓ1(I) and (fn)n∈N a sequence
in ℓ1(I). Then we have

coσB {fn : n ∈ N} ⊆ coσE {fn : n ∈ N} ,

where E = exBℓ∞(I).

Corollary 2.12. Let I be a set and B a boundary for ℓ1(I). If A ⊆ ℓ1(I)
is bounded and ε ≥ 0 such that for every sequence (fn)n∈N in A we have

∞
⋂

k=1

(

coσB {fn : n ≥ k}+ εBℓ1(I)

)

6= ∅,

then A is 2ε-WRC.

Next we turn to spaces not containing isomorphic copies of ℓ1. It is
known that for such spaces one has coγB = BX∗ for every boundary B of
X, where we denote by γ the topology on X∗ of uniform convergence on
bounded countable subsets of X (cf. [8, Theorem 5.4]).

We will also need two easy lemmas.

Lemma 2.13. Let A ⊆ X and S ⊆ X∗ be bounded as well as ε ≥ 0 such
that A§ε§S. Then we also have A§ε§S

γ
.

Proof. Let (xn)n∈N and (x∗m)m∈N be sequences in A and S
γ
, respectively,

such that the limits

lim
n→∞

lim
m→∞

x∗m(xn) and lim
m→∞

lim
n→∞

x∗m(xn)

exist. For each m ∈ N we can pick a functional x̃∗m ∈ S with

|x∗m(xn)− x̃∗m(xn)| ≤
1

m
∀n ∈ N.

By the usual diagonal argument, choose a subsequence (xnk
)k∈N such that

limk→∞ x̃∗m(xnk
) exists for all m. It then easily follows that

lim
m→∞

lim
n→∞

x∗m(xn) = lim
m→∞

lim
k→∞

x̃∗m(xnk
) and

lim
n→∞

lim
m→∞

x∗m(xn) = lim
k→∞

lim
m→∞

x̃∗m(xnk
).

Since A§ε§S, we conclude that
∣

∣

∣
lim
n→∞

lim
m→∞

x∗m(xn)− lim
m→∞

lim
n→∞

x∗m(xn)
∣

∣

∣
≤ ε,

finishing the proof.
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Lemma 2.14. Let (xn)n∈N be a bounded sequence in X and B ⊆ BX∗ such
coγB = BX∗. Then

coσB {xn : n ∈ N} = co {xn : n ∈ N} .

Proof. Take x ∈ coσB {xn : n ∈ N} and let ε > 0 and x∗1, . . . , x
∗
k ∈ BX∗

be arbitrary. By assumption, we can find x̃∗1, . . . , x̃
∗
k ∈ coB such that for

i = 1, . . . , k we have

|x̃∗i (xn)− x∗i (xn)| ≤ ε ∀n ∈ N and |x̃∗i (x)− x∗i (x)| ≤ ε.

It follows that

|x̃∗i (y)− x∗i (y)| ≤ ε ∀y ∈ co ({xn : n ∈ N} ∪ {x}) ∀i = 1, . . . , k.

Now take some element y ∈ coσB {xn : n ∈ N} with |x̃∗i (y)− x̃∗i (x)| ≤ ε for
all i = 1, . . . , k.
Employing the triangle inequality we can deduce |x∗i (x)− x∗i (y)| ≤ 3ε, which
ends the proof.

As an immediate consequence of Lemma 2.14, Corollary 2.3 and the
aforementioned result [8, Theorem 5.4] we get the following corollary.

Corollary 2.15. Suppose ℓ1 6⊆ X and let B be a boundary for X. If A ⊆ X

is bounded and ε ≥ 0 such that for each sequence (xn)n∈N in A we have

∞
⋂

k=1

(coσB {xn : n ≥ k}+ εBX) 6= ∅,

then A is 2ε-WRC.

We can further get a kind of ‘boundary double limit criterion’.

Proposition 2.16. Let B be a boundary for X as well as ε ≥ 0 and A ⊆ X

be bounded such that A§ε§B. Then A is 2ε-WRC. If ℓ1 6⊆ X, then A is even
ε-WRC.

Proof. From [7, Theorem 3.3] it follows that we also have A§ε§ coB. Since
B is a boundary for X the Hahn-Banach separation theorem implies BX∗ =
cow

∗

B. Therefore it follows from [2, Lemma 3] that A§2ε§BX∗ . Thus by (ii)
of Proposition 1.6 A is 2ε-WRC.

Moreover, if ℓ1 6⊆ X then we even have BX∗ = coγB by the already cited
[8, Theorem 5.4]. Hence A§ε§BX∗ by Lemma 2.13, thus A is ε-WRC.

Our final aim in this note is to prove a ‘non-relative’ version of Theorem
1.4 for arbitrary boundaries. To do so, we will use the techniques of Pfitzner
from [18]. More precisely, we can get the following slight generalization
of [18, Theorem 5]. Recall that an ℓ1-sequence in X is simply a sequence
equivalent to the canonical basis of ℓ1.

10



Theorem 2.17. Let B be a boundary for X. If A ⊆ X is bounded and for
every sequence (xn)n∈N in A we have

A ∩
∞
⋂

k=1

coσB {xn : n ≥ k} 6= ∅, (8)

then A does not contain an ℓ1-sequence.

Proof. The proof is completely analogous to that of [18, Theorem 5], there-
fore we will only give a very brief sketch. We use the notation and definitions
from [18]. Arguing by contradiction, we assume that there is an ℓ1-sequence
(xn)n∈N in A. By [18, Lemma 2] we may assume that (xn)n∈N is εJ -stable
and δ-stable. We take a sequence (αk)k∈N of positive numbers decreasing to
zero. By [18, Lemma 4] we can find ε ≥ εJ(xn) > 0, a sequence (bk)k∈N in
B and a tree (Ωσ)σ∈S such that for each k ∈ N and every σ, σ′ ∈ Sk with
σk = 0 and σ′

k = 1 we have

bk(xn − xn′) ≥ 2ε(1 − αk) ∀n ∈ Ωσ, n
′ ∈ Ωσ′ .

It follows that the same inequality holds for every x ∈ coσB {xn : n ∈ Ωσ}
and x′ ∈ coσB {xn′ : n′ ∈ Ωσ′}.
Now using our hypothesis we can proceed completely analogous to the proof
of the second part of [18, Lemma 4] to find a sequence (ym)m∈N in A ∩
⋂∞

k=1 co
σB {xn : n ≥ k} such that

bk(ym − ym′) ≥ 2ε(1 − αk) ∀m ≤ k < m′.

Next we take an element

y ∈ A ∩
∞
⋂

k=1

coσB {ym : m ≥ k} .

As in the proof of [18, Theorem 5] we put

x =

∞
∑

m=1

2−m(ym − y)

and proceed again exactly as in [18] to show that ‖ym − y‖ ≤ 2ε for all m
and ‖x‖ = 2ε. Finally, taking a functional b ∈ B with b(x) = ‖x‖ we obtain
b(y) = 2ε+ b(y) and with this contradiction the proof is finished.
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Now we can get the final result.

Theorem 2.18. Let B be a boundary for X and A ⊆ X be bounded. Then
the following assertions are equivalent:

(i) A is countably compact in the topology σB.

(ii) For every sequence (xn)n∈N in A we have

A ∩
∞
⋂

k=1

coσB {xn : n ≥ k} 6= ∅.

(iii) For every sequence (xn)n∈N in A there is some x ∈ A with

x∗(x) ≤ lim sup
n→∞

x∗(xn) ∀x∗ ∈ spanB.

(iv) A is weakly compact.

Proof. The implications (i) ⇒ (ii) and (iv) ⇒ (i) are clear and the equi-
valence of (ii) and (iii) follows from Lemma 2.1. It only remains to prove
(ii) ⇒ (iv).

Let us assume that (ii) holds and take an arbitrary sequence (xn)n∈N
in A. By Theorem 2.17 no subsequence of (xn)n∈N is an ℓ1-sequence and
thus Rosenthal’s theorem (cf. [3] or [1, Theorem 10.2.1]) applies to yield a
subsequence (xnk

)k∈N which is weakly Cauchy. Now choose an element

x ∈ A ∩
∞
⋂

l=1

coσB {xnk
: k ≥ l} .

It easily follows that limk→∞ b(xnk
) = b(x) for all b ∈ B. By Corollary 1.2

(xnk
)k∈N is weakly convergent to x.

Thus we have shown that A is weakly sequentially compact. Hence it is also
weakly compact, by the Eberlein-Šmulian theorem.
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