Radially symmetric minimizers for a p-Ginzburg Landau type energy in \mathbb{R}^{2}

Yaniv Almog, Leonid Berlyand ${ }^{\dagger}$ Dmitry Golovaty ${ }^{\ddagger}$ and Itai Shafrir ${ }^{\S}$

Abstract

We consider the minimization of a p-Ginzburg-Landau energy functional over the class of radially symmetric functions of degree one. We prove the existence of a unique minimizer in this class, and show that its modulus is monotone increasing and concave. We also study the asymptotic limit of the minimizers as $p \rightarrow \infty$. Finally, we prove that the radially symmetric solution is locally stable for $2<p \leq 4$.

1 Introduction

Given $p>2$ consider the minimization problem of the energy functional

$$
\begin{equation*}
E_{p}(u)=\int_{\mathbb{R}^{2}}|\nabla u|^{p}+\frac{1}{2}\left(1-|u|^{2}\right)^{2} \tag{1.1}
\end{equation*}
$$

over the class of maps $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ that satisfy $E_{p}(u)<\infty$ and have a degree d "at infinity". In our previous work [1] it was shown that the notion of degree at infinity is well-defined. Hence, minimization over the homotopy class of maps with degree d is a sensible task. Moreover, in the case of degree $d=1$ we proved that a minimizer does exist. An important open question is whether any minimizer u is necessarily radially symmetric, i.e., $u=f(r) e^{i \theta}$ for some function $f(r)$ satisfying $f(0)=0$ (thanks to invariance with respect to translations we may assume that $u(0)=0$). We show in the sequel that a (unique) minimizer within the radially symmetric class $u_{p}=f_{p}(r) e^{i \theta}$ exists. We were, however, unable to determine whether u_{p} is a minimizer or not. As a preliminary step towards establishing the minimality properties of u_{p}, we study in the present paper its stability properties. One of our main results (see Theorem 2 below) establishes that u_{p} is indeed stable if $p \in(2,4]$. We conjecture that this result remains valid for any $p>2$. It should be mentioned that the analogous stability problem for $p=2$ on the disc $B_{1}(0)$ with the boundary condition $u(z)=\frac{z}{|z|}$ on $\partial B_{1}(0)$ was solved by Mironescu [9] and in a weaker

[^0]form, by Lieb and Loss [8]. Going back to the problem on \mathbb{R}^{2}, but again for $p=2$, we recall that the L^{2} - stability of the radially symmetric solution was proved by Ovchinnikov and Sigal [11] and in a more natural energy space by del Pino, Felmer and Kowalczyk [5]. However, Mironescu [10] showed a stronger result, namely, that the radially symmetric solution is the unique (up to rotations and translations) local minimizer on \mathbb{R}^{2}, that is, on every disc $B_{R}(0)$ it is minimizing for its boundary values on $\partial B_{R}(0)$. Note that for $p=2$ (in contrast with $p>2$) only the notion of local minimizer makes sense since the admissible maps have infinite energy.

The manuscript is organized as follows. In Section 2 we establish existence and uniqueness of the minimizer $u_{p}=f_{p}(r) e^{i \theta}$ in the radially symmetric class, as well as its regularity. We also show that f_{p} is increasing and concave and obtain some precise estimates for $f_{p}(r)$ for large values of r. In Section 3 we study the limit of f_{p} as p tends to infinity. We show that $\lim _{p \rightarrow \infty} f_{p}=f_{\infty}$ is the piecewise linear function given by $\frac{r}{\sqrt{2}}$ for $r<\sqrt{2}$ and is identically equal to 1 for $r \geq \sqrt{2}$. Finally, Section 4 is devoted to the study of the stability of the radially symmetric solution.

2 Radially symmetric solutions

In this section we consider some of the properties of the minimizer of

$$
\begin{equation*}
I_{p}(f)=\int_{0}^{\infty}\left\{\left[\left(f^{\prime}\right)^{2}+\frac{f^{2}}{r^{2}}\right]^{p / 2}+\frac{1}{2}\left(1-f^{2}\right)^{2}\right\} r d r \tag{2.1}
\end{equation*}
$$

for any $p>2$. Note that $I_{p}(f)=\frac{1}{2 \pi} E(u)$ where $u=f(r) e^{i \theta}$.

2.1 Existence

For each $p>2$ we define the space

$$
\begin{equation*}
X_{p}=\left\{f \in W_{\mathrm{loc}}^{1, p}(0, \infty): \int_{0}^{\infty}\left(\left|f^{\prime}\right|^{2}+\frac{f^{2}}{r^{2}}\right)^{p / 2} r d r<\infty\right\} . \tag{2.2}
\end{equation*}
$$

Existence of a solution will be established by minimization of $I_{p}(f)$ over X_{p}. Note that $X_{p} \subset C_{\text {loc }}^{\alpha}[0, \infty)$, with $\alpha=1-2 / p$, since whenever $f \in X_{p}$, the function $F\left(x_{1}, x_{2}\right)=f\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)$ belongs to $W_{\text {loc }}^{1, p}\left(\mathbb{R}^{2}\right)$, and then we can apply Morrey's theorem. Furthermore, for every $f \in X_{p}$ we must have have $f(0)=0$. This follows from the continuity of f and the fact that

$$
\int_{0}^{1} \frac{|f|^{p}}{r^{p-1}}<\infty
$$

Proposition 2.1. The minimum of $I_{p}(f)$ over X_{p} is attained by a function $f_{p} \in X_{p}$ satisfying $0 \leq f_{p}(r) \leq 1, \forall r \in[0, \infty)$.

Proof. Put

$$
\begin{equation*}
m_{p}=\inf _{f \in X_{p}} I_{p}(f) . \tag{2.3}
\end{equation*}
$$

We first note that $m_{p}<\infty$ since the function $g^{*} \in X_{p}$ defined by

$$
g^{*}(r)= \begin{cases}r & r \leq 1, \\ 1 & r>1,\end{cases}
$$

verifies $I_{p}\left(g^{*}\right)<\infty$. Consider a minimizing sequence $\left\{g_{m}\right\}$ for (1.1), i.e.,

$$
\lim _{m \rightarrow \infty} I_{p}\left(g_{m}\right)=m_{p}
$$

By passing to a diagonal sequence we may assume that for any compact interval $[a, b] \subset(0, \infty)$ we have

$$
\begin{equation*}
g_{m} \rightharpoonup g \text { weakly in } W^{1, p}(a, b) . \tag{2.4}
\end{equation*}
$$

Since the convexity of the Lagrangian

$$
L(P, Z, r)=\left\{\left(P^{2}+\frac{Z^{2}}{r^{2}}\right)^{p / 2}+\frac{1}{2}\left(1-Z^{2}\right)^{2}\right\} r
$$

in the variable P implies weak lower-semi-continuity of the functional $I_{p}^{(a, b)}(f):=$ $\int_{a}^{b} L\left(f^{\prime}, f, r\right) d r$ (see [7, Theorem 1,Sec. 8.2]), we deduce from (2.4) that

$$
\begin{equation*}
I_{p}^{(a, b)}(g) \leq m_{p} . \tag{2.5}
\end{equation*}
$$

Since the interval $[a, b]$ is arbitrary, we conclude from (2.5) that $g \in X_{p}, I_{p}(g) \leq m_{p}$, so that necessarily $I_{p}(g)=m_{p}$, and g is a minimizer in (1.1). Since replacing g by

$$
\tilde{g}(r)=\min (1,|g(r)|),
$$

gives a map $\tilde{g} \in X_{p}$ such that $I_{p}(\tilde{g}) \leq I_{p}(g)$ (with strict inequality, unless $\left.|g| \leq 1\right)$ we conclude that we may assume $0 \leq g(r) \leq 1$ for all r, and the result follows for $f_{p}=g$.

The next lemma shows that f is positive on $(0, \infty)$.
Lemma 2.1. $f_{p}>0$ for all $r>0$.
Proof. We first claim that there is no interval of the form $[0, a]$, with $a>0$ such that

$$
\begin{equation*}
f \equiv 0 \text { on }[0, a] . \tag{2.6}
\end{equation*}
$$

Indeed, suppose that (2.6) holds for some a. Fix any function $g \in C^{\infty}[0, a]$ satisfying $g(0)=g(a)=0$ and $g(r)>0$ for $r \in(0, a)$. Then, for any small $\varepsilon>0$ consider the function h_{ε} defined by

$$
h_{\varepsilon}(r)= \begin{cases}\varepsilon g(r) & 0 \leq r \leq a, \\ f_{p}(r) & r>a .\end{cases}
$$

A simple computation gives

$$
I_{p}\left(h_{\varepsilon}\right)=I_{p}^{(a, \infty)}\left(f_{p}\right)+\epsilon^{p} \int_{0}^{a}\left(\left|g^{\prime}\right|^{2}+\left(\frac{g}{r}\right)^{2}\right)^{p / 2} r d r+\int_{0}^{a}\left(1-\epsilon^{2} g^{2}\right)^{2} r d r<I_{p}\left(f_{p}\right),
$$

provided ϵ is chosen small enough.
Next, we turn to the proof itself and assume by negation that $f_{p}\left(r_{0}\right)=0$ for some $r_{0}>0$. Put

$$
\delta_{0}=\max _{r \in\left[0, r_{0}\right]} f_{p}(r) .
$$

By the above claim $\delta_{0}>0$. Let $\delta \in\left(0, \delta_{0}\right)$ and consider the set $S_{\delta}=\{r>0$: $\left.f_{p}(r)<\delta\right\}$. Denote by $J=(\alpha, \beta)$ the component of S_{δ} containing r_{0}. Since $\delta<\delta_{0}$ we have $\alpha>0$. There is a $\delta_{1}>0$ such that the function

$$
H_{r}(t)=\left(\frac{t}{r}\right)^{p}+\frac{1}{2}\left(1-t^{2}\right)^{2}
$$

is decreasing on $\left[0, \delta_{1}\right]$ for every $r \geq \alpha$. We may now replace δ by $\min \left(\delta, \delta_{1}\right)$ and set

$$
\tilde{f}(r)=\left\{\begin{array}{ll}
f_{p} & r \notin J \\
\delta & r \in J
\end{array} .\right.
$$

From the monotonicity of H_{r} it follows that $I_{p}(\tilde{f})<I_{p}\left(f_{p}\right)$. A contradiction.

2.2 Uniqueness

Proposition 2.2. The non-negative minimizer for $I_{p}(f)$ is unique.
Proof. We use a convexity argument due to Benguria (see [4]) for the case of the Laplacian (see [4) and by Diaz and Saá (6] and Anane [2] for the case of the p Laplacian. More specifically, we follow the presentation of Belloni and Kawhol 33 . Assume f and g are both minimizers in (2.1). By an argument from the proof of Proposition 2.1 it follows that necessarily $f(r) \leq 1$ and $g(r) \leq 1$ for each r. Set

$$
\eta=\frac{f^{p}+g^{p}}{2} \text { and } w=\eta^{\frac{1}{p}} .
$$

Denote also

$$
s(r)=\frac{f^{p}}{f^{p}+g^{p}} .
$$

Note that

$$
w^{\prime}=\frac{1}{2} \eta^{\frac{1}{p}-1}\left(f^{p-1} f^{\prime}+g^{p-1} g^{\prime}\right) .
$$

Next we compute

$$
\begin{gathered}
\left(w^{\prime 2}+\frac{w^{2}}{r^{2}}\right)^{\frac{p}{2}}=\left|\eta^{\frac{2}{p}-2}\left(\frac{f^{p-1} f^{\prime}+g^{p-1} g^{\prime}}{2}\right)^{2}+\frac{\eta^{\frac{2}{p}}}{r^{2}}\right|^{\frac{p}{2}}=\eta\left|\left(\frac{f^{p-1} f^{\prime}+g^{p-1} g^{\prime}}{2 \eta}\right)^{2}+\frac{1}{r^{2}}\right|^{\frac{p}{2}} \\
=\eta\left|\left(\frac{s(r) f^{\prime}}{f}+\frac{(1-s(r)) g^{\prime}}{g}\right)^{2}+\frac{1}{r^{2}}\right|^{\frac{p}{2}} \\
\leq \eta\left(s(r)\left(\frac{\left|f^{\prime}\right|^{2}}{f^{2}}+\frac{1}{r^{2}}\right)^{\frac{p}{2}}+(1-s(r))\left(\frac{\left|g^{\prime}\right|^{2}}{g^{2}}+\frac{1}{r^{2}}\right)^{\frac{p}{2}}\right) \\
=\frac{\eta}{f^{p}+g^{p}}\left(f^{\prime 2}+\frac{f^{2}}{r^{2}}\right)^{\frac{p}{2}}+\frac{\eta}{f^{p}+g^{p}}\left(g^{\prime 2}+\frac{g^{2}}{r^{2}}\right)^{\frac{p}{2}}=\frac{1}{2}\left(\left(f^{\prime 2}+\frac{f^{2}}{r^{2}}\right)^{\frac{p}{2}}+\left(g^{\prime 2}+\frac{g^{2}}{r^{2}}\right)^{\frac{p}{2}}\right)
\end{gathered}
$$

Above we used the convexity of the function $t \mapsto\left(t^{2}+\frac{1}{r^{2}}\right)^{\frac{p}{2}}$. Note that equality holds in the above only if $\frac{f^{\prime}}{f}=\frac{g^{\prime}}{g}$. If such an equality holds for all r, we conclude easily that $g=c f$ for some constant c, which then must be equal to 1 . Therefore, the uniqueness claim follows from the above inequality and the convexity of the second term $\left(1-f^{2}\right)^{2}$ as a function of f^{p} for $p \geq 2$ and $0 \leq f \leq 1$.

Remark 2.1. As a matter of fact, the only minimizers of I_{p} are f_{p} and $-f_{p}$. In view of lemma 2.1 a non-negative minimizer must be strictly positive. Since $I_{p}(|f|)=$ $I_{p}(f)$, it follows that a minimizer may not change sign, and our assertion follows from the uniqueness for non-negative minimizers.

2.3 Regularity

This subsection is devoted to the study of the regularity properties of the minimizer f_{p}.
Proposition 2.3. We have $f_{p} \in C^{\infty}(0, \infty)$.
Proof. The Euler-Lagrange equation associated with (2.1) is

$$
\begin{equation*}
\frac{1}{r}\left(r\left|\nabla u_{p}\right|^{p-2} f_{p}^{\prime}\right)^{\prime}=\left|\nabla u_{p}\right|^{p-2} \frac{f_{p}}{r^{2}}-\frac{2}{p} f_{p}\left(1-f_{p}^{2}\right), \tag{2.7}
\end{equation*}
$$

where

$$
u_{p}=f_{p}(r) e^{i \theta} .
$$

A direct consequence of (2.7) is that $\left|\nabla u_{p}\right|^{p-2} f_{p}^{\prime} \in W_{\text {loc }}^{1, \frac{p}{p-2}}(0, \infty) \subset C(0, \infty)$ and we immediately obtain that $f_{p} \in C^{1}(0, \infty)$ (using that $f_{p}>0$ by Lemma 2.1). Inserting this new information into (2.7) we deuce that $f_{p} \in C^{2}(0, \infty)$. Bootstrapping gives $f_{p} \in C^{k}(0, \infty)$ for all k, as claimed.

Our next objective is to prove the differentiability of f at 0 .
Proposition 2.4. $f_{p}^{\prime}(0)=\lim _{r \rightarrow 0^{+}} \frac{f_{p}(r)}{r}$ exists and is a positive number.

Proof. We denote for convenience f for f_{p} and get from (2.7),

$$
\begin{align*}
0=f^{\prime \prime}\left(1+\frac{p-2}{\left|\nabla u_{p}\right|^{2}}\left|f^{\prime}\right|^{2}\right)+\frac{f^{\prime}}{r}\left(1-\frac{p-2}{\left|\nabla u_{p}\right|^{2}} \frac{f^{2}}{r^{2}}\right)-\frac{f}{r^{2}} & \left(1-\frac{p-2}{\left|\nabla u_{p}\right|^{2}}\left|f^{\prime}\right|^{2}\right) \\
& +\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} f\left(1-f^{2}\right), \tag{2.8}
\end{align*}
$$

or equivalently,

$$
\begin{align*}
& \frac{r f^{\prime \prime}}{f^{\prime}}=\frac{-\left(\left|f^{\prime}\right|^{2}-(p-3) \frac{f^{2}}{r^{2}}\right)+\frac{f}{r f^{\prime}}\left(\frac{f^{2}}{r^{2}}-(p-3)\left|f^{\prime}\right|^{2}\right)}{\frac{f^{2}}{r^{2}}+(p-1)\left|f^{\prime}\right|^{2}} \\
& \quad-\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} \frac{f}{r f^{\prime}} r^{2}\left(1-f^{2}\right) \cdot \frac{1}{1+(p-2) \frac{\left|f^{\prime}\right|^{2}}{\left|\nabla u_{p}\right|^{2}}} \tag{2.9}
\end{align*}
$$

Put

$$
\begin{equation*}
h=\frac{r f^{\prime}}{f} . \tag{2.10}
\end{equation*}
$$

We divide the rest of the proof into several steps.
Step 1: $-\frac{1}{p-1}<h(r)<1$ for all $r>0$.
We can rewrite (2.9) as

$$
\begin{equation*}
r \frac{f^{\prime \prime}}{f^{\prime}}=\frac{-h^{2}+(p-3)+h^{-1}-(p-3) h}{1+(p-1) h^{2}}-\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} \frac{r^{2}}{h}\left(1-f^{2}\right) \frac{1+h^{2}}{1+(p-1) h^{2}} . \tag{2.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
h^{\prime}=\frac{f^{\prime \prime} h}{f^{\prime}}+\frac{h}{r}(1-h), \tag{2.12}
\end{equation*}
$$

substituting (2.11) into (2.12) yields

$$
\begin{gather*}
h^{\prime}=\left(\frac{1-h}{r}\right) \cdot\left(\frac{1+(p-2) h+h^{2}}{1+(p-1) h^{2}}+h\right)-\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} r\left(1-f^{2}\right) \frac{1+h^{2}}{1+(p-1) h^{2}} \\
\quad=\frac{1+h^{2}}{1+(p-1) h^{2}}\left[\frac{(1-h)[1+(p-1) h]}{r}-\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} r\left(1-f^{2}\right)\right] . \tag{2.13}
\end{gather*}
$$

By (2.13) we have

$$
\begin{equation*}
h^{\prime} \leq \frac{1}{r} F_{p}(h), \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{p}(h)=\frac{\left(1+h^{2}\right)(1-h)[1+(p-1) h]}{1+(p-1) h^{2}} \tag{2.15}
\end{equation*}
$$

We now prove that $h(r)<1$ for all $r>0$. Suppose to the contrary that there exists $r_{0}>0$ for which $h\left(r_{0}\right) \geq 1$. Then, (2.14) yields $h^{\prime}(r)<0$ and $h(r)>1$ for all $r<r_{0}$. Therefore, by (2.15) also $F_{p}(h)<0$ for $r<r_{0}$. Integrating (2.14) gives

$$
\begin{equation*}
\int_{h\left(r_{0}\right)}^{h(r)} \frac{d h}{-F_{p}(h)} \geq \ln \frac{r_{0}}{r}, \quad \forall r<r_{0} . \tag{2.16}
\end{equation*}
$$

Since $\int_{h\left(r_{0}\right)}^{\infty} \frac{d h}{-F_{p}(h)}<\infty$, (2.16) leads to a contradiction for $r>0$ small enough.
Finally, we show that $h(r)>-\frac{1}{p-1}$ on $(0, \infty)$. Suppose to the contrary that $h\left(r_{0}\right) \leq-\frac{1}{p-1}$ for some r_{0}. Then, from (2.14) and (2.15) it follows that

$$
h(r) \leq-\frac{1}{p-1} \text { and } h^{\prime}(r)<0, \quad \forall r \geq r_{0} .
$$

Therefore, also $f_{p}^{\prime}(r)<0$ for all $r \geq r_{0}$, violating $I_{p}\left(f_{p}\right)<\infty$. Step 1 is established. Step 2: $\frac{f_{p}(r)}{r}$ is strictly decreasing on $(0, \infty)$.
From Step 1 we get that

$$
\begin{equation*}
\left(\frac{f}{r}\right)^{\prime}=\frac{f}{r^{2}}(h-1)<0, \forall r>0, \tag{2.17}
\end{equation*}
$$

and the conclusion follows.
Step 3: $\lim _{r \rightarrow 0^{+}} h(r)=1$.
Fix any $r_{0}>0$. By Step 2 we have,

$$
\left|\nabla u_{p}\right|(r) \geq \frac{f(r)}{r}>\frac{f\left(r_{0}\right)}{r_{0}}, \quad \forall r<r_{0}
$$

Consequently, we have by (2.13),

$$
\begin{equation*}
h^{\prime} \geq \frac{F_{p}(h)}{r}-C_{0} r, \quad \forall r \in\left(0, r_{0}\right), \tag{2.18}
\end{equation*}
$$

for some positive C_{0}, which is independent of r. For a contradiction, we assume that $\lim \inf _{r \rightarrow 0^{+}} h(r)=a<1$. Then, using (2.18) we can find $r_{1} \in\left(0, r_{0}\right)$ small enough so that $h^{\prime}\left(r_{1}\right)>0$. Bootstrapping we obtain that $h^{\prime}(r)>0$ for all $r<r_{1}$. In particular, the full limit $\lim _{r \rightarrow 0^{+}} h(r)=a$ exists. Integration of (2.18) then yields

$$
\begin{equation*}
\int_{h(r)}^{h\left(r_{1}\right)} \frac{d h}{F_{p}(h)} \geq \ln \frac{r_{1}}{r}-C, \quad \forall r<r_{1} . \tag{2.19}
\end{equation*}
$$

Here we used the fact that $F_{p}(h)>0$ by Step 1. Passing to the limit $r \rightarrow 0^{+}$in (2.19) gives $\int_{a}^{h\left(r_{1}\right)} \frac{d h}{F_{p}(h)}=\infty$. In view of (2.15) we must have

$$
a=\lim _{r \rightarrow 0^{+}} h(r)=-\frac{1}{p-1} .
$$

In particular, for r sufficiently small we have $\frac{r f^{\prime}}{f} \leq-\frac{1}{2(p-1)}$, implying

$$
f(r) \geq C r^{-\frac{1}{2(p-1)}} .
$$

A contradiction.

Step 4: $f^{\prime}(0)$ exists and it is a positive number.
By Step 2, the (possibly generalized) limit $\lim _{r \rightarrow 0^{+}} \frac{f(r)}{r}$ exists, so we only need to exclude the possibility that the limit equals $+\infty$. From Step 3 and (2.18) we get that

$$
h(r) \geq 1-c r^{2}, \forall r<r_{0},
$$

i.e.,

$$
\frac{f^{\prime}}{f} \geq \frac{1}{r}-c r .
$$

Therefore, $f(r) \leq C r$ for some positive constant C, independently of r, and the differentiability of f at 0 follows. Finally, $f^{\prime}(0)>0$ since $\frac{f(r)}{r}$ is decreasing.

2.4 Monotonicity

Proposition 2.5. $f_{p}^{\prime}>0$ in $(0, \infty)$.
Proof. First we show that f_{p} is non-decreasing on $(0, \infty)$. Recall that $f_{p}^{\prime}(0)>0$ and define

$$
r_{1}=\sup \left\{r: f_{p}^{\prime}(s) \geq 0 \text { on }[0, r]\right\} .
$$

If $r_{1}=\infty$ then clearly f_{p} is non-decreasing on $(0, \infty)$. Assume then that $r_{1}<\infty$, and then obviously

$$
f_{p}^{\prime}\left(r_{1}\right)=0 .
$$

By the definition of r_{1} we have also

$$
\begin{equation*}
f_{p}^{\prime \prime}\left(r_{1}\right) \leq 0 . \tag{2.20}
\end{equation*}
$$

Next we distinguish between two cases:
(i) There exists a right-neighborhood of $r_{1},\left[r_{1}, R\right]$, in which $f_{p}^{\prime} \leq 0$.
(ii) There exists no neighborhood as in (i).

Consider first case (i). Since $f_{p} \xrightarrow[r \rightarrow \infty]{ } 1$, there must exist a maximal rightneighborhood, where $f_{p}^{\prime} \leq 0$ which we denote by $\left[r_{1}, r_{2}\right]$. Clearly, we must have $f_{p}^{\prime}\left(r_{2}\right)=0$. From (2.8) we get that

$$
\begin{equation*}
\frac{r^{2} f_{p}^{\prime \prime}}{f_{p}}=1-\frac{2}{p}\left(\frac{f_{p}}{r}\right)^{-(p-2)} r^{2}\left(1-f_{p}^{2}\right), \quad \text { for } r=r_{i}, i=1,2 . \tag{2.21}
\end{equation*}
$$

By Step 2 of the proof of Proposition 2.4 we have

$$
\begin{equation*}
\left(\frac{f_{p}\left(r_{2}\right)}{r_{2}}\right)^{-(p-2)}>\left(\frac{f_{p}\left(r_{1}\right)}{r_{1}}\right)^{-(p-2)} . \tag{2.22}
\end{equation*}
$$

Furthermore, since $f_{p}^{\prime} \leq 0$ in $\left[r_{1}, r_{2}\right]$ we have

$$
\begin{equation*}
\left(1-f_{p}^{2}\right)\left(r_{2}\right) \geq\left(1-f_{p}^{2}\right)\left(r_{1}\right) \tag{2.23}
\end{equation*}
$$

Substituting (2.22), (2.23) into (2.21) and using (2.20) yields

$$
\left.\frac{r^{2} f_{p}^{\prime \prime}}{f_{p}}\right|_{r=r_{2}}<\left.\frac{r^{2} f_{p}^{\prime \prime}}{f_{p}}\right|_{r=r_{1}} \leq 0
$$

i.e., $f_{p}^{\prime \prime}\left(r_{2}\right)<0$, which clearly contradicts the definition of r_{2}.

Next we turn to case (ii). In this case we have $f_{p}^{\prime \prime}\left(r_{1}\right)=0$. Differentiating the equation (2.7) at $r=r_{1}$ yields

$$
\begin{equation*}
f_{p}^{(3)}\left(r_{1}\right)=-p \frac{f_{p}}{r_{1}^{3}}<0 \tag{2.24}
\end{equation*}
$$

This implies that r_{1} is a maximum point for f_{p}^{\prime} which is obviously impossible.
Finally, we prove that $f_{p}^{\prime}>0$ on $[0, \infty)$ (we know already that $f_{p}^{\prime}(0)>0$). Suppose, for a contradiction, that there exists $r_{0}>0$ such that

$$
f_{p}^{\prime}\left(r_{0}\right)=f_{p}^{\prime \prime}\left(r_{0}\right)=0
$$

We then obtain the same identity as in (2.24), but this time at $r=r_{0}$. Again we get that f_{p}^{\prime} has a maximum at r_{0}, a contradiction.

To prove monotonicity of f_{p}^{\prime} we need the following result
Lemma 2.2. We have

$$
\begin{equation*}
h^{\prime} \leq 0, \quad \forall r>0 \tag{2.25}
\end{equation*}
$$

Furthermore,

$$
\lim _{r \rightarrow \infty} h(r)=0
$$

Proof. Suppose, for a contradiction that (2.25) does not hold. Since $\lim _{r \downarrow 0} h(r)=1$ and $h<1$ on $(0, \infty)$ (see Steps 1 and 4 in the proof of Proposition 2.4) h must have a minimum point at some $r=r_{0}$. By (2.13) we have

$$
\begin{align*}
h^{\prime \prime}\left(r_{0}\right)=-\frac{1}{r_{0}^{2}} F_{p}(h)-\frac{2}{p} \frac{1+h^{2}}{1+(p-1) h^{2}}\left|\nabla u_{p}\right|^{2-p}[- & \frac{\left(\left|\nabla u_{p}\right|^{2}\right)^{\prime}}{\left|\nabla u_{p}\right|^{2}} \frac{p-2}{2} r_{0}\left(1-f_{p}^{2}\right) \\
& \left.+\left(1-f_{p}^{2}\right)-2 r_{0} f_{p} f_{p}^{\prime}\right] \tag{2.26}
\end{align*}
$$

Furthermore, as $h^{\prime}\left(r_{0}\right)=0$ we also have

$$
\begin{gathered}
\frac{1}{r_{0}^{2}} F_{p}(h)=\frac{2}{p} \frac{1+h^{2}}{1+(p-1) h^{2}}\left|\nabla u_{p}\right|^{2-p}\left(1-f_{p}^{2}\right) \\
\left.\left(\left|\nabla u_{p}\right|^{2}\right)^{\prime}\right|_{r=r_{0}}=\left.\left(\frac{f_{p}^{2}}{r^{2}}\left(1+h^{2}\right)\right)^{\prime}\right|_{r=r_{0}}=-2\left(1+h^{2}\right) \frac{f_{p}}{r_{0}^{2}}\left(\frac{f_{p}}{r_{0}}-f_{p}^{\prime}\right) .
\end{gathered}
$$

Substituting the above into (2.26) we obtain

$$
\begin{equation*}
\operatorname{sign} h^{\prime \prime}\left(r_{0}\right)=\operatorname{sign} g\left(r_{0}\right) \tag{2.27}
\end{equation*}
$$

where

$$
\begin{equation*}
g(r):=2 h f_{p}^{2}-\{(p-2)(1-h)+2\}\left(1-f_{p}^{2}\right) . \tag{2.28}
\end{equation*}
$$

Since r_{0} is a minimum point of h, we must have $g\left(r_{0}\right) \geq 0$. Put

$$
r_{1}=\sup \left\{r \in\left(r_{0}, \infty\right): h^{\prime} \geq 0 \text { on }\left(r_{0}, r\right]\right\} .
$$

If $r_{1}=\infty$ then, since $h<1, h \underset{r \rightarrow \infty}{\longrightarrow} h_{\infty}$ where $0<h_{\infty} \leq 1$. But this leads to a contradiction since then also

$$
r f_{p}^{\prime} \xrightarrow[r \rightarrow \infty]{\longrightarrow} h_{\infty}
$$

which is inconsistent with $\lim _{r \rightarrow \infty} f(r)=1$. If $r_{1}<\infty$ then necessarily $h^{\prime}\left(r_{1}\right)=0$ and $h^{\prime \prime}\left(r_{1}\right) \leq 0$, implying that $g\left(r_{1}\right) \leq 0$ too. But since h is non-decreasing on $\left(r_{0}, r_{1}\right)$ while f is strictly increasing on $\left(r_{0}, r_{1}\right)$ (by Proposition 2.5), it follows from (2.28) that g is strictly increasing on $\left(r_{0}, r_{1}\right)$. Therefore, $g\left(r_{1}\right)>g\left(r_{0}\right) \geq 0$, implying as in (2.27) that $h^{\prime \prime}\left(r_{1}\right)>0$. This contradiction completes the proof of (2.25).

Finally, as h is both positive and decreasing it must converge to a limit $h_{\infty} \geq 0$. From the above argument we obtain that $h_{\infty}=0$.

Corollary 2.1. f_{p}^{\prime} is monotone decreasing in \mathbb{R}_{+}.
The corollary follows immediately from the fact that f_{p}^{\prime} is a product of the positive functions h and f_{p} / r, the first of which is non-increasing, and the second is strictly decreasing.

2.5 Asymptotic behavior

In the following we derive the behavior of $1-f_{p}^{2}$ as $r \rightarrow \infty$. The first lemma is a wellestablished result in asymptotic analysis. We include the proof for the convenience of the reader.
Lemma 2.3. Let $g(x)$ be monotone decreasing on $(0, \infty)$. Let further

$$
\int_{r}^{\infty} g(t) d t=\frac{1}{r^{\alpha}}[1+o(1)] \quad \text { as } r \rightarrow \infty .
$$

for some positive α. Then,

$$
g(r)=\frac{\alpha}{r^{\alpha+1}}[1+o(1)] \quad \text { as } r \rightarrow \infty .
$$

Proof. Put $G(r)=\int_{r}^{\infty} g(t) d t$. Then, for any $h>0$,

$$
\begin{equation*}
h g(r) \geq \int_{r}^{r+h} g(t) d t=G(r)-G(r+h)=\frac{1+\eta(r)}{r^{\alpha}}-\frac{1+\eta(r+h)}{(r+h)^{\alpha}}, \tag{2.29}
\end{equation*}
$$

where $\lim _{r \rightarrow \infty} \eta(r)=0$. By (2.29),

$$
\begin{aligned}
h g(r) & \geq(1+\eta(r))\left(\frac{1}{r^{\alpha}}-\frac{1}{(r+h)^{\alpha}}\right)+\frac{\eta(r)-\eta(r+h)}{r^{\alpha}} \\
& \geq \frac{1}{r^{\alpha}}\left(\left(1-\eta_{m}\right)\left\{1-\left(1+\frac{h}{r}\right)^{-\alpha}\right\}-2 \eta_{m}\right),
\end{aligned}
$$

where $\eta_{m}(r, h)=\max (|\eta(r)|,|\eta(r+h)|)$. Let $\epsilon=\frac{h}{r}$. Since for some $C>0$ we have

$$
1-(1+\epsilon)^{-\alpha} \geq 1+\alpha \epsilon-C \epsilon^{2}, \epsilon \in\left[0, \frac{1}{2}\right]
$$

it follows that

$$
h g(r) \geq \frac{1}{r^{\alpha}}\left(\left(1-\eta_{m}\right)\left(\alpha \epsilon-C \epsilon^{2}\right)-2 \eta_{m}\right) .
$$

Therefore,

$$
\begin{equation*}
g(r) \geq \frac{1}{r^{\alpha+1}}\left(\left(1-\eta_{m}\right)(\alpha-C \epsilon)-2 \frac{\eta_{m}}{\epsilon}\right) . \tag{2.30}
\end{equation*}
$$

Choosing $\epsilon=\eta_{m}^{1 / 2}$ we get from (2.30) (since $\lim _{r \rightarrow \infty} \sup _{h>0} \eta_{m}(r, h)=0$),

$$
g(r) \geq \frac{\alpha}{r^{\alpha+1}}(1+o(1)), \quad \text { as } r \rightarrow \infty .
$$

The second direction is proved in a similar manner.
We use the above lemma to prove the following result

Lemma 2.4.

$$
\begin{gather*}
1-f_{p}^{2} \sim \frac{p}{2} \frac{1}{r^{p}} \quad \text { as } r \rightarrow \infty, \tag{2.31a}\\
f_{p}^{\prime} \sim \frac{p^{2}}{4} \frac{1}{r^{p+1}} . \tag{2.31b}
\end{gather*}
$$

Proof. Integrating by parts (2.7) between r and infinity yields

$$
\int_{r}^{\infty} f_{p}\left(1-f_{p}^{2}\right) d t=\frac{p}{2} \int_{r}^{\infty}\left|\nabla u_{p}\right|^{p-2}\left[\frac{f_{p}}{t}-f_{p}^{\prime}\right] \frac{d t}{t}+\frac{p}{2}\left|\nabla u_{p}\right|^{p-2} f_{p}^{\prime},
$$

or equivalently that

$$
\begin{equation*}
\int_{r}^{\infty} f_{p}\left(1-f_{p}^{2}\right) d t=\frac{p}{2} \int_{r}^{\infty}\left|1+h^{2}\right|^{(p-2) / 2}(1-h)\left(\frac{f_{p}}{t}\right)^{p-1} \frac{d t}{t}+\frac{p}{2}\left|1+h^{2}\right|^{(p-2) / 2} h\left(\frac{f_{p}}{r}\right)^{p-1} \tag{2.32}
\end{equation*}
$$

Applying the integral mean value theorem yields the existence of $r^{*} \in[r, \infty)$ such that

$$
\int_{r}^{\infty}\left|1+h^{2}\right|^{(p-2) / 2}(1-h)\left(\frac{f_{p}}{t}\right)^{p-1} \frac{d t}{t}=\left|1+h^{2}\left(r^{*}\right)\right|^{(p-2) / 2}\left(1-h\left(r^{*}\right)\right) f_{p}^{p-1}\left(r^{*}\right) \frac{r^{-(p-1)}}{p-1} .
$$

Hence, in view of Lemma 2.2 and the fact that $f_{p} \xrightarrow[r \rightarrow \infty]{ } 1$ we obtain

$$
\begin{equation*}
\int_{r}^{\infty}\left|1+h^{2}\right|^{(p-2) / 2}(1-h)\left(\frac{f_{p}}{t}\right)^{p-1} \frac{d t}{t}=\frac{r^{-(p-1)}}{p-1}[1+o(1)] \quad \text { as } r \rightarrow \infty . \tag{2.33}
\end{equation*}
$$

Further, in view of Lemma 2.2 we have

$$
\begin{equation*}
\left|1+h^{2}\right|^{(p-2) / 2} h\left(\frac{f_{p}}{r}\right)^{p-1}=o\left(r^{-(p-1)}\right) . \tag{2.34}
\end{equation*}
$$

Substituting (2.33)-(2.34) into (2.32) yields

$$
\int_{r}^{\infty} f_{p}\left(1-f_{p}^{2}\right) d t=\frac{p}{2} \frac{r^{-(p-1)}}{p-1}[1+o(1)] \quad \text { as } r \rightarrow \infty
$$

As $f_{p} \xrightarrow[r \rightarrow \infty]{ } 1$ we have

$$
\int_{r}^{\infty} f_{p}\left(1-f_{p}^{2}\right) d t=[1+o(1)] \int_{r}^{\infty}\left(1-f_{p}^{2}\right) d t \quad \text { as } r \rightarrow \infty
$$

and hence

$$
\int_{r}^{\infty}\left(1-f_{p}^{2}\right) d t=\frac{p}{2} \frac{r^{-(p-1)}}{p-1}[1+o(1)] \quad \text { as } r \rightarrow \infty
$$

The proof of (2.31 $)$ follows immediately from Lemma 2.3 and the monotonicity of f_{p}.

To prove (2.31]) we first note that

$$
\lim _{r \rightarrow \infty} \frac{1-f_{p}^{2}}{1-f_{p}}=2
$$

Hence,

$$
\int_{r}^{\infty} f_{p}^{\prime} d t=\frac{p}{4 r^{p}}[1+o(1)] \quad \text { as } r \rightarrow \infty
$$

Lemma 2.3 provides, once again, the closing argument for the proof.

3 Large p

In this section we discuss the behavior of the radially symmetric solution in the large p limit. We prove the following result

Theorem 1. Let

$$
f_{\infty}= \begin{cases}\frac{r}{\sqrt{2}} & r<\sqrt{2} \tag{3.1}\\ 1 & r \geq \sqrt{2}\end{cases}
$$

There exists $C>0$ such that for every $p>2$ we have

$$
\begin{equation*}
\left\|f_{p}-f_{\infty}\right\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}=\left\|f_{p}-f_{\infty}\right\|_{\infty} \leq C\left(\frac{\ln p}{p}\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

To prove the theorem we shall need to prove first a few auxiliary results. We first derive a simple upper bound

Lemma 3.1. We have

$$
\begin{equation*}
I_{p}\left(f_{p}\right) \leq\left(\frac{1}{6}+C \frac{\ln p}{p}\right), \quad \forall p>2 \tag{3.3}
\end{equation*}
$$

Proof. We use the test function

$$
\tilde{f}= \begin{cases}\frac{1}{\sqrt{2}}\left(1-\frac{\ln p}{p}\right) r, & r<\frac{\sqrt{2}}{1-\frac{\ln p}{p}} \\ 1, & r \geq \frac{\sqrt{2}}{1-\frac{\ln p}{p}} .\end{cases}
$$

It is easy to show that there exists $C>0$, independent of p such that

$$
I_{p}(\tilde{f}) \leq\left(\frac{1}{6}+C \frac{\ln p}{p}\right), \quad \forall p>2
$$

from which the lemma immediately follows.
We first deal with the interval $[0, \sqrt{2}]$.
Proposition 3.1. We have

$$
\begin{equation*}
\exists C>0:\left\|\nabla u_{p}\right\|_{\infty} \leq 1+\frac{C}{p}, \quad \forall p>2 \tag{3.4}
\end{equation*}
$$

Proof. We first note that by Lemma 2.2 and Step 2 of the proof of Proposition 2.4 both f_{p}^{\prime} and f_{p} / r are decreasing. Therefore, the same holds for $\left|\nabla u_{p}\right|$ and it follows that

$$
\begin{equation*}
\left\|\nabla u_{p}\right\|_{\infty}=\left|\nabla u_{p}(0)\right| . \tag{3.5}
\end{equation*}
$$

Obviously, if we have $\left|\nabla u_{p}\right|-1 \gg 1 / p$ over a sufficiently large right semi-neighborhood of $r=0$, then $I_{p}(f)$ would become larger than the upper bound (3.3). This, however, does not eliminate the possibility of a small neighborhood of $r=0$ where $p\left(\left|\nabla u_{p}\right|-1\right)$ is large. Thus, the proof splits into two parts: at first, using regularity arguments, we bound from below the size of the above neighborhood as a function of $\left|\nabla u_{p}(0)\right|$. Then, we use (3.3) to bound $\left|\nabla u_{p}(0)\right|$ from above.

Suppose that $\left|\nabla u_{p}(0)\right|=a>1$. Let

$$
\begin{equation*}
s=\sup \left\{r>0:\left|\nabla u_{p}(r)\right|>\frac{1+a}{2}\right\} . \tag{3.6}
\end{equation*}
$$

By (2.13) we have for all $r<s$ that

$$
\begin{equation*}
h^{\prime} \geq-\frac{2}{p}\left(\frac{1+a}{2}\right)^{-(p-2)} r \tag{3.7}
\end{equation*}
$$

hence

$$
\begin{equation*}
1-\frac{1}{p}\left(\frac{1+a}{2}\right)^{-(p-2)} r^{2} \leq h \leq 1, \quad \forall r \leq s \tag{3.8}
\end{equation*}
$$

Assume first that

$$
\begin{equation*}
s^{2} \leq \frac{p}{2}\left(\frac{1+a}{2}\right)^{p-2}, \tag{3.9}
\end{equation*}
$$

implying by (3.8) that

$$
\begin{equation*}
h \geq \frac{1}{2}, \quad \forall r \leq s \tag{3.10}
\end{equation*}
$$

By (2.12) we have

$$
\begin{equation*}
\frac{f_{p}^{\prime \prime}}{f_{p}^{\prime}}=\frac{h^{\prime}}{h}-\frac{1-h}{r} \tag{3.11}
\end{equation*}
$$

Therefore, using (3.10) and (3.7)-(3.8) we deduce that

$$
\left|\frac{f_{p}^{\prime \prime}}{f_{p}^{\prime}}\right|=-\frac{f_{p}^{\prime \prime}}{f_{p}^{\prime}} \leq \frac{C}{p}\left(\frac{1+a}{2}\right)^{2-p} r, \quad \forall r \leq s,
$$

implying

$$
\begin{equation*}
\exp \left\{-\frac{C}{2 p}\left(\frac{1+a}{2}\right)^{2-p} r^{2}\right\} \leq \frac{f_{p}^{\prime}(r)}{f_{p}^{\prime}(0)}, \quad \forall r \leq s \tag{3.12}
\end{equation*}
$$

Since $h<1$,

$$
\frac{\left|\nabla u_{p}(r)\right|^{2}}{\left|\nabla u_{p}(0)\right|^{2}}=\frac{\left(1+h^{-2}\right)\left|f_{p}^{\prime}(r)\right|^{2}}{2\left|f_{p}^{\prime}(0)\right|^{2}} \geq \frac{\left|f_{p}^{\prime}(r)\right|^{2}}{\left|f_{p}^{\prime}(0)\right|^{2}}, \quad \forall r \leq s .
$$

Consequently, by (3.12)

$$
\begin{equation*}
\exp \left\{-\frac{C}{p}\left(\frac{1+a}{2}\right)^{2-p} r^{2}\right\} \leq \frac{\left|\nabla u_{p}(r)\right|^{2}}{\left|\nabla u_{p}(0)\right|^{2}}, \quad \forall r \leq s \tag{3.13}
\end{equation*}
$$

Setting $r=s$ in (3.13) we obtain

$$
s^{2} \geq C p\left(\frac{1+a}{2}\right)^{p-2} \ln \left(\frac{2 a}{1+a}\right) \geq C p\left(\frac{1+a}{2}\right)^{p-2} \frac{a-1}{a} .
$$

If (3.9) doesn't hold, then clearly

$$
s^{2}>\frac{p}{2}\left(\frac{1+a}{2}\right)^{p-2} .
$$

Therefore, in all cases we have

$$
\begin{equation*}
s^{2} \geq C p \frac{a-1}{a}\left(\frac{1+a}{2}\right)^{p-2} . \tag{3.14}
\end{equation*}
$$

To conclude, we shall use the upper-bound for the energy from Lemma 3.1] in order to bound s from above. Combining (3.14) with (3.3) and (3.6) yields

$$
\begin{equation*}
C \geq \int_{0}^{s}\left|\nabla u_{p}\right|^{p} r d r \geq \frac{s^{2}}{2}\left(\frac{1+a}{2}\right)^{p} \geq C p \frac{a-1}{a}\left(\frac{1+a}{2}\right)^{2(p-1)} \geq C p(a-1) \tag{3.15}
\end{equation*}
$$

From (3.15) we get

$$
a \leq 1+\frac{C}{p}, \quad \forall p>2,
$$

and (3.4) follows from (3.5).

We can now obtain L^{∞} convergence of f_{p} to f_{∞} in every compact set in $[0, \sqrt{2})$.
Proposition 3.2. For every $b \in(0, \sqrt{2})$ there exists $C=C(b)>0$ such that,

$$
\begin{array}{ll}
\left\|f_{p}-\frac{r}{\sqrt{2}}\right\|_{L^{\infty}(0, b)} \leq C \frac{\ln p}{p}, \quad p>2 \\
\left\|f_{p}^{\prime}-\frac{1}{\sqrt{2}}\right\|_{L^{\infty}(0, b)} \leq C \frac{\ln p}{p}, \quad p>2 \tag{3.16b}
\end{array}
$$

Proof. First we note that by (3.4)

$$
\left|\nabla u_{p}(0)\right|^{2}=2 f_{p}^{\prime}(0)^{2} \leq 1+\frac{C}{p} \Longrightarrow f_{p}^{\prime}(0) \leq \frac{1}{\sqrt{2}}+\frac{C}{p}
$$

Since f_{p}^{\prime} is decreasing, we conclude that

$$
\begin{equation*}
f_{p}^{\prime}(r) \leq \frac{1}{\sqrt{2}}+\frac{C}{p} \tag{3.17}
\end{equation*}
$$

Integrating (3.17), using $f_{p}(0)=0$, yields the existence of $C>0$ such that for every $p>2$ we have, for all $r>0$,

$$
\begin{equation*}
f_{p}(r) \leq \frac{1}{\sqrt{2}}\left(1+\frac{C}{p}\right) r . \tag{3.18}
\end{equation*}
$$

Put

$$
w(r)=\frac{r}{\sqrt{2}}-f_{p}(r) .
$$

By (3.17)-(3.18) we have

$$
w^{\prime}(r) \geq-\frac{C}{p} \geq-C \frac{\ln p}{p} \quad \text { and } \quad w(r) \geq-\frac{C}{p} \geq-C \frac{\ln p}{p}, \quad \forall r>0 .
$$

In order to conclude, we need to prove that for each $b \in(0, \sqrt{2})$ there exists C_{b} such that

$$
\begin{equation*}
w^{\prime}(r) \leq C_{b} \frac{\ln p}{p} \quad \text { and } \quad w(r) \leq C_{b} \frac{\ln p}{p}, \quad \forall r \in[0, b] . \tag{3.19}
\end{equation*}
$$

For such b we set $\tilde{b}=\frac{b+\sqrt{2}}{2}$ and claim that

$$
\begin{equation*}
\int_{b}^{\tilde{b}} w(r) d r \leq C_{b} \frac{\ln p}{p} \tag{3.20}
\end{equation*}
$$

To prove (3.20) we first note that

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\infty}\left(1-f_{p}^{2}\right)^{2} r d r \geq & \frac{1}{2} \int_{0}^{\sqrt{2}}\left(1-f_{p}^{2}\right)^{2} r d r=\frac{1}{2} \int_{0}^{\sqrt{2}}\left[1-\frac{1}{2} r^{2}\right]^{2} r d r+ \\
& \int_{0}^{\sqrt{2}}\left[1-\frac{1}{2} r^{2}\right]\left[\frac{1}{2} r^{2}-f_{p}^{2}\right] r d r+\frac{1}{2} \int_{0}^{\sqrt{2}}\left[\frac{1}{2} r^{2}-f_{p}^{2}\right]^{2} r d r
\end{aligned}
$$

Since

$$
\frac{1}{2} \int_{0}^{\sqrt{2}}\left[1-\frac{1}{2} r^{2}\right]^{2} r d r=\frac{1}{6},
$$

we deduce, using (3.3), that

$$
\int_{0}^{\sqrt{2}}\left[1-\frac{1}{2} r^{2}\right]\left[\frac{1}{2} r^{2}-f_{p}^{2}\right] r d r \leq C \frac{\ln p}{p} .
$$

Therefore

$$
C_{b} \frac{\ln p}{p} \geq\left(1-\frac{\tilde{b}^{2}}{2}\right) \int_{b}^{\tilde{b}} w(r)\left(\frac{r}{\sqrt{2}}+f_{p}\right) r d r,
$$

and (3.20) follows. Finally, using the convexity of w in conjunction with (3.20) gives

$$
w(b)(\tilde{b}-b)+\frac{w^{\prime}(b)}{2}(\tilde{b}-b)^{2}=\int_{b}^{\tilde{b}}\left(w(b)+(r-b) w^{\prime}(b)\right) d r \leq \int_{b}^{\tilde{b}} w(r) d r \leq C_{b} \frac{\ln p}{p},
$$

implying, in particular, that

$$
\begin{equation*}
w^{\prime}(b) \leq C_{b} \frac{\ln p}{p} . \tag{3.21}
\end{equation*}
$$

Since w^{\prime} is increasing we deduce the first inequality in (3.19). The second one follows by integration of the first one.

We now improve the estimates (3.16). We start by deriving a Pohozaev-type identity.

Proposition 3.3. We have

$$
\begin{equation*}
\int_{0}^{\infty}\left|\nabla u_{p}\right|^{p} r d r=\frac{2}{p} m_{p} \tag{3.22}
\end{equation*}
$$

where m_{p} is defined in (2.3).
Proof. Let $f_{p}^{(\alpha)}(r)=f_{p}(\alpha r)$ and $J=\int_{0}^{\infty}\left|\nabla u_{p}\right|^{p} r d r$. Clearly,

$$
M_{\alpha}=I_{p}\left(f_{p}^{(\alpha)}\right)=\alpha^{p-2} J+\frac{1}{\alpha^{2}}\left(m_{p}-J\right) .
$$

Hence,

$$
\frac{d M_{\alpha}}{d \alpha}=(p-2) \alpha^{p-3} J-\frac{2}{\alpha^{3}}\left(m_{p}-J\right) .
$$

Since M_{α} must have a global minimum at $\alpha=1$, (3.22) follows.
Corollary 3.1. We have

$$
\begin{equation*}
\liminf _{p \rightarrow \infty} p\left|\nabla u_{p}(0)\right|^{p} \geq \frac{1}{3} \tag{3.23}
\end{equation*}
$$

Proof. Since $f_{p}^{\prime}<f_{p} / r<1 / r$ we have

$$
\left|\nabla u_{p}\right| \leq \frac{\sqrt{2}}{r}
$$

Thus, for every $l>0$,

$$
\int_{l}^{\infty}\left|\nabla u_{p}\right|^{p} r d r \leq \frac{2^{p / 2}}{(p-2) l^{p-2}}
$$

from which we get

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \int_{l}^{\infty}\left|\nabla u_{p}\right|^{p} r d r=0, \quad \forall l>\sqrt{2} . \tag{3.24}
\end{equation*}
$$

By (3.16) we have

$$
\liminf _{p \rightarrow \infty} m_{p} \geq \sup _{b \in(0, \sqrt{2})} \liminf _{p \rightarrow \infty} \frac{1}{2} \int_{0}^{b}\left(1-f_{p}^{2}\right)^{2} r d r=\frac{1}{6}
$$

Thus, by (3.24) and (3.22) we have for all $l>\sqrt{2}$,

$$
\liminf _{p \rightarrow \infty} p \int_{0}^{l}\left|\nabla u_{p}\right|^{p} r d r \geq \frac{1}{3} .
$$

As $\left|\nabla u_{p}(r)\right| \leq\left|\nabla u_{p}(0)\right|$ we deduce that

$$
\liminf _{p \rightarrow \infty} p\left|\nabla u_{p}(0)\right|^{p} \frac{l^{2}}{2} \geq \frac{1}{3} \quad \forall l>\sqrt{2},
$$

from which (3.23) readily follows.
Lemma 3.2. Let $g=\left|\nabla u_{p}\right|^{p}$, and

$$
g_{0}=\frac{1}{p}\left(1-\frac{1}{2} r^{2}\right)^{2} .
$$

Then,

$$
\begin{equation*}
\lim _{p \rightarrow \infty} p\left\|g-g_{0}\right\|_{L^{\infty}(0, a)}=0, \quad \forall a<\sqrt{2} \tag{3.25}
\end{equation*}
$$

Proof. Multiplying (2.7) by $r f_{p}$ and integrating over $[0, r]$, we obtain

$$
\begin{equation*}
\frac{p}{4} r^{2} g\left(1-\alpha_{p}\right)-\frac{p}{2} \int_{0}^{r} g(t) t d t+h(r)=0 \tag{3.26a}
\end{equation*}
$$

in which

$$
\begin{equation*}
\alpha_{p}=1-\frac{2 \frac{f_{p}}{r} f_{p}^{\prime}}{\left|\nabla u_{p}\right|^{2}}>0 \tag{3.26b}
\end{equation*}
$$

and

$$
\begin{equation*}
h(r)=\int_{0}^{r} f_{p}^{2}\left(1-f_{p}^{2}\right) t d t \tag{3.26c}
\end{equation*}
$$

We may write

$$
h(r)=h_{0}(r)\left(1+\beta_{p}\right) \text { with } h_{0}(r)=\int_{0}^{r} \frac{t^{2}}{2}\left(1-\frac{t^{2}}{2}\right) t d t=\frac{1}{8}\left(r^{4}-\frac{1}{3} r^{6}\right) .
$$

Set

$$
\begin{equation*}
\epsilon_{p}(a)=\max \left(\left\|\alpha_{p}\right\|_{L^{\infty}(0, a)},\left\|\beta_{p}\right\|_{L^{\infty}(0, a)}\right) . \tag{3.27}
\end{equation*}
$$

By (3.16) there exists $C>0$ such that

$$
\begin{equation*}
\epsilon_{p}(a) \leq C \frac{\ln p}{p} \tag{3.28}
\end{equation*}
$$

for all fixed $a<\sqrt{2}$.
Set

$$
G(r)=\int_{0}^{r} g(t) t d t
$$

to obtain from (3.26) that

$$
\begin{equation*}
G^{\prime}-\gamma_{p} G+\frac{2}{p} \gamma_{p} h=0, \tag{3.29}
\end{equation*}
$$

where

$$
\gamma_{p}=\frac{2}{r\left(1-\alpha_{p}\right)} .
$$

Solving (3.29) and then evaluating G^{\prime} once again from (3.29) yields the general solution of (3.26):

$$
\begin{equation*}
g(r)=-\frac{2}{p} \frac{\gamma_{p}}{r}\left[h+\int_{0}^{r} \exp \left\{\int_{t}^{r} \gamma_{p}(s) d s\right\} \gamma_{p}(t) h(t) d t+C_{0} \exp \left\{-\int_{r}^{a} \gamma_{p}(t) d t\right\}\right] \tag{3.30}
\end{equation*}
$$

where C_{0} is arbitrary.
First we compute

$$
\frac{\gamma_{p}}{r} \exp \left\{-\int_{r}^{a} \gamma_{p}(t) d t\right\} \leq \frac{\gamma_{p}}{r} \exp \left\{-2 \int_{r}^{a} \frac{d t}{t}\right\}=\frac{\gamma_{p} r}{a^{2}}
$$

On the other hand, a similar computation gives

$$
\frac{\gamma_{p}}{r} \exp \left\{-\int_{r}^{a} \gamma_{p}(t) d t\right\} \geq \frac{\gamma_{p}}{r}\left(\frac{r}{a}\right)^{\frac{2}{1-\epsilon_{p}}} .
$$

Therefore,

$$
\frac{2}{a^{2}}\left(\frac{r}{a}\right)^{2\left(\left(1-\epsilon_{p}\right)^{-1}-1\right)} \leq \frac{\gamma_{p}}{r} \exp \left\{-\int_{r}^{a} \gamma_{p}(t) d t\right\} \leq \frac{2}{a^{2}}\left(1+C \epsilon_{p}\right)
$$

Similarly,

$$
\begin{aligned}
\frac{\gamma_{p}}{r} \int_{0}^{r} \exp \left\{\int_{t}^{r} \gamma_{p}(s) d s\right\} \gamma_{p}(t) h(t) d t & \geq \frac{\gamma_{p}}{r} \int_{0}^{r}\left(\frac{r}{t}\right)^{2} \gamma_{p}(t) h(t) d t \\
& \geq 4 \int_{0}^{r} \frac{h(t)}{t^{3}} d t \geq\left(\frac{1}{4} r^{2}-\frac{1}{24} r^{4}\right)\left(1-\epsilon_{p}\right)
\end{aligned}
$$

and

$$
\frac{\gamma_{p}}{r} \int_{0}^{r} \exp \left\{\int_{t}^{r} \gamma_{p}(s) d s\right\} \gamma_{p}(t) h(t) d t \leq\left(\frac{1}{4} r^{2}-\frac{1}{24} r^{4}\right)\left(1+C \epsilon_{p}\right) .
$$

Combining the above with (3.30) we obtain that

$$
\begin{equation*}
\frac{2}{p}\left[\tilde{C}_{0} r^{2\left(\left(1-\epsilon_{p}\right)^{-1}-1\right)}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4}-C \epsilon_{p}\right] \leq g \leq \frac{2}{p}\left[\tilde{C}_{0}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4}+C \epsilon_{p}\right] . \tag{3.31}
\end{equation*}
$$

Note that the above lower bound is unsatisfactory in some neighborhood of $r=0$ where

$$
1-r^{2\left(\left(1-\epsilon_{p}\right)^{-1}-1\right)} \sim \mathcal{O}\left(\epsilon_{p}\right),
$$

which is valid for $r \sim \mathcal{O}(1)$ as $p \rightarrow \infty$.
We defer the proof of convergence near $r=0$ to a later stage and instead prove first the existence of $\lim _{p \rightarrow \infty} \tilde{C}_{0}(p)$, and then obtain its value. Clearly,

$$
\liminf _{p \rightarrow \infty} \tilde{C}_{0}(p) \geq \frac{1}{2}
$$

otherwise g would become negative, for some sufficiently large p and a fixed $r_{0}<\sqrt{2}$ - a contradiction. Suppose now to the contrary, that a sequence $\left\{p_{k}\right\}_{k=1}^{\infty}$ exists such that $\tilde{C}_{0}\left(p_{k}\right)=C_{k} \rightarrow b$, where $b \in\left(\frac{1}{2}, \infty\right]$. By (3.4) we have

$$
\left\|g\left(\cdot, p_{k}\right)\right\|_{L^{\infty}\left(\mathbb{R}_{+}\right)} \leq C,
$$

where C is independent of k. Hence, by (3.31) we have

$$
\begin{equation*}
C_{k} \leq C p_{k} \tag{3.32}
\end{equation*}
$$

Set

$$
g_{0, k}=2\left[C_{k}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4}\right] .
$$

Note that by our supposition $\lim g_{0, k}(r)>0$ in $[0, \sqrt{2}+\delta]$ for some $\delta>0$. It follows from (3.31) and (3.32) that

$$
\begin{equation*}
\frac{\ln \left(g_{0, k}-\epsilon_{k}\right)}{p_{k}}-2\left|\frac{\ln \left(g_{0, k}-\epsilon_{k}\right)}{p_{k}}\right|^{2} \leq\left|\nabla u_{p}\right|-1+\frac{\ln p_{k}}{p_{k}} \leq \frac{\ln \left(g_{0, k}+\epsilon_{k}\right)}{p_{k}}+2\left|\frac{\ln \left(g_{0, k}+\epsilon_{k}\right)}{p_{k}}\right|^{2} \tag{3.33}
\end{equation*}
$$

where $\epsilon_{k}(a)=\epsilon\left(p_{k}\right)(a)$.

We argue from here by bootstrapping. Let $a \in(0, \sqrt{2}+\delta]$ be such that

$$
\begin{equation*}
\lim \sup \epsilon_{k}(a) \leq \lim \sup \frac{g_{0, k}(a)}{2} \tag{3.34}
\end{equation*}
$$

For sufficiently large k we have, in view of (3.33) and (3.32) and the fact that $\epsilon_{k}(\sqrt{2}+\delta)$ is bounded, that

$$
2 \frac{f_{k}}{r} f_{k}^{\prime} \leq\left|\nabla u_{p}\right|^{2} \leq 1+\frac{C}{p_{k}} \quad \forall r \in[0, \sqrt{2}+\delta],
$$

where $f_{k}=f_{p_{k}}$, from which we obtain that

$$
\begin{equation*}
\frac{f_{k}}{r} \leq \frac{1}{\sqrt{2}}+\frac{C}{p_{k}} \quad \forall r \in[0, \sqrt{2}+\delta] . \tag{3.35}
\end{equation*}
$$

Consequently, by (3.33) and (3.34), we have for sufficiently large k that

$$
\begin{equation*}
f_{k}^{\prime} \geq \frac{1}{\sqrt{2}}-C \frac{\ln p_{k}}{p_{k}} \quad \forall r \in[0, a] \tag{3.36}
\end{equation*}
$$

where C is independent of a. Since $f_{k}^{\prime} \leq f_{k} / r$, we have by (3.26b), for sufficiently large k, that

$$
\begin{equation*}
\alpha_{p_{k}} \leq \frac{\ln p_{k}}{p_{k}} \quad \forall r \in[0, a] \tag{3.37}
\end{equation*}
$$

where C is independent of a. Furthermore, by (3.26c,d), (3.35), (3.36), and the fact that $f_{k} / r>f_{k}^{\prime}$ there exists $C>0$ which is independent of both k and a such that

$$
\beta_{p_{k}}(r) \leq C \frac{\ln p_{k}}{p_{k}}
$$

for all $r \leq a$. Combining the above and (3.37) we obtain for sufficiently large k

$$
\begin{equation*}
\lim \sup \epsilon_{k}(a) \leq \lim \frac{g_{0, k}(a)}{2} \Rightarrow \lim \sup \frac{p_{k}}{\ln p_{k}} \epsilon_{k} \leq C \tag{3.38}
\end{equation*}
$$

where C is independent of a. From (3.16) we thus have

$$
\limsup \frac{p_{k} \epsilon_{k}}{\ln p_{k}} \leq C
$$

for all $a<\sqrt{2}$.
Let then a_{0} be such that

$$
\lim \sup \epsilon_{k}\left(a_{0}\right)=\lim \frac{g_{0, k}\left(a_{0}\right)}{2} .
$$

Since by (3.38) we have $\lim g_{0, k}\left(a_{0}\right)=0$, it follows that $a_{0}>\sqrt{2}+\delta$. Hence

$$
\lim \sup \frac{p_{k}}{\ln p_{k}} \epsilon_{k}(\sqrt{2}+\delta) \leq C
$$

Substituting into (3.31) we obtain that

$$
\lim \frac{p_{k}}{\ln p_{k}} g(\sqrt{2}+\delta)>0
$$

Let $l>\sqrt{2}$. Then, $f_{p}^{\prime}(l)<f_{p}(l) / l<1 / l$, and hence $g(l) \leq(\sqrt{2} / l)^{p}$. Consequently, $g(l)$ is exponentially small for all $l>\sqrt{2}$ as $p \rightarrow \infty$, and in particular at $l=\sqrt{2}+\delta$ - a contradiction. Hence, we obtain that $\lim _{p \rightarrow \infty} \tilde{C}_{0}(p)=1 / 2$.

To complete the proof of (3.25) we need to extend (3.31) to every neighborhood of $r=0$. Since obtaining an $\mathcal{O}\left(\epsilon_{p}\right)$ accuracy in this neighborhood is a difficult task, we allow for an error of larger magnitude. Thus, requiring that

$$
\begin{equation*}
\frac{2}{p}\left[\tilde{C}_{0} r^{2\left(\left(1-\epsilon_{p}\right)^{-1}-1\right)}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4}-C \epsilon_{p}^{\frac{1}{2}}\right] \leq g \leq \frac{2}{p}\left[\tilde{C}_{0}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4}+C \epsilon_{p}^{\frac{1}{2}}\right] \tag{3.39}
\end{equation*}
$$

It is easy to show that the lower bound in (3.39) provides an estimate which is $O\left(\epsilon_{p}^{\frac{1}{2}}\right)$-accurate whenever $r^{2}>e^{-\epsilon_{p}^{-\frac{1}{2}}}$. To complete the proof of (3.25), we just need to obtain an $O\left(\epsilon_{p}^{\frac{1}{2}}\right)$-accurate estimate for g, valid for $r^{2} \leq e^{-\epsilon_{p}^{-\frac{1}{2}}}$.

We argue again by bootstrapping. We may regroup the terms in (2.8) to get

$$
\begin{equation*}
-\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} f_{p}\left(1-f_{p}^{2}\right)=f_{p}^{\prime \prime}\left(1+\frac{p-2}{\left|\nabla u_{p}\right|^{2}}\left|f_{p}^{\prime}\right|^{2}\right)+\left(\frac{f_{p}^{\prime}}{r}-\frac{f_{p}}{r^{2}}\right)\left(1+\frac{p-2}{\left|\nabla u_{p}\right|^{2}} \frac{f_{p} f_{p}^{\prime}}{r}\right) \tag{3.40}
\end{equation*}
$$

By Step 1 in the proof of Proposition 2.4 we have $\frac{f_{p}^{\prime}}{r}-\frac{f_{p}}{r^{2}}>0$, and by Corollary 2.1, $f_{p}^{\prime \prime}<0$. Hence,

$$
f_{p}^{\prime \prime} \geq-\frac{2}{p}\left|\nabla u_{p}\right|^{2-p} f_{p}\left(1-f_{p}^{2}\right)
$$

It follows that as long as

$$
g \geq g(0)\left(1-\epsilon_{p}^{\frac{1}{2}}\right)
$$

we must have, by (3.16) that

$$
f_{p}^{\prime \prime} \geq-\frac{2}{p} \frac{r}{\left[g(0)\left(1-\epsilon_{p}^{\frac{1}{2}}\right)\right]^{(p-2) / p}}
$$

Integrating the above yields, in view of (3.23),

$$
f_{p}^{\prime}(r) \geq f_{p}^{\prime}(0)-4 r^{2}\left(1+2 \epsilon_{p}^{\frac{1}{2}}\right)
$$

Note that we can replace the constant 4 by any other constant greater than 3 . Consequently,

$$
\left|\nabla u_{p}\right| \geq \sqrt{2}\left|f_{p}^{\prime}\right| \geq \sqrt{2}\left|f_{p}^{\prime}(0)-4 r^{2}\left(1+2 \epsilon_{p}^{\frac{1}{2}}\right)\right| \geq \sqrt{2}\left|f_{p}^{\prime}(0)\right|\left|1-\frac{4 \sqrt{2} r^{2}}{\left|\nabla u_{p}(0)\right|}\left(1+2 \epsilon_{p}^{\frac{1}{2}}\right)\right|
$$

Hence,

$$
g(r) \geq g(0)\left(1-\epsilon_{p}^{\frac{1}{2}}\right) \Rightarrow g(r) \geq g(0)\left[1-\frac{4 \sqrt{2} r^{2}}{\left|\nabla u_{p}(0)\right|}\left(1+2 \epsilon_{p}^{\frac{1}{2}}\right)\right]^{p}
$$

Applying again (3.23) we obtain that as long as

$$
r^{2}<\frac{1}{8 p} \epsilon_{p}^{\frac{1}{2}}
$$

we have

$$
\begin{equation*}
g(r) \geq g(0)\left(1-\epsilon_{p}^{\frac{1}{2}}\right) \tag{3.41}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
g(r) \leq g(0) \tag{3.42}
\end{equation*}
$$

Since (3.41), (3.42), and (3.39) are simultaneously satisfied at $r^{2}=2 e^{-\epsilon_{p}^{-\frac{1}{2}}}$, we obtain

$$
\left\{\begin{array}{l}
\frac{2}{p} \tilde{C}_{0}\left(1+C \epsilon_{p}^{\frac{1}{2}}\right) \geq g(0)\left(1-\epsilon_{p}^{\frac{1}{2}}\right) \\
\frac{2}{p} \tilde{C}_{0}\left(1-C \epsilon_{p}^{\frac{1}{2}}\right) \leq g(0)
\end{array}\right.
$$

Consequently,

$$
\left|\tilde{C}_{0}-\frac{p}{2} g(0)\right| \leq C \epsilon_{p}^{\frac{1}{2}}
$$

Furthermore, in view of (3.41) and (3.39) we can safely state that

$$
\begin{equation*}
\frac{2}{p}\left[\tilde{C}_{0}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4} \tilde{C}_{0}-C \epsilon_{p}^{\frac{1}{2}}\right] \leq g \leq \frac{2}{p}\left[\tilde{C}_{0}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4}+C \epsilon_{p}^{\frac{1}{2}}\right], \quad \text { in }[0, a], \forall a \in(0, \sqrt{2}) . \tag{3.43}
\end{equation*}
$$

Or

$$
\left\|p\left(g-g_{0}\right)\right\| \leq\left|\tilde{C}_{0}(p)-1\right|+C \epsilon_{p}^{1 / 2}
$$

Remark 3.1. From (3.25) we can obtain the next two terms in the asymptotic expansion of f_{p} in the large p limit

$$
\begin{equation*}
f_{p}=\frac{r}{\sqrt{2}}\left[1-\frac{\ln p}{p}+\frac{\ln g_{0}(r)}{p}+o\left(\frac{1}{p}\right)\right] . \tag{3.44}
\end{equation*}
$$

The above expansion is valid in $[0, a]$ for every $a<\sqrt{2}$.
Remark 3.2. Note that (3.43) is valid for all $r>0$. It is only because of (3.28) that we have to confine the validity of (3.25) to closed intervals in $[0, \sqrt{2})$ whose edges do not depend on p. Note further that by (3.27) we have that $\epsilon_{p} \leq 2$ for all $r \leq \sqrt{2}$.

We can now extend the validity of the above estimate to $[0, \sqrt{2}-\mathcal{O}(\sqrt{\ln p / p})]$.

Proposition 3.4. There exists $C>0$, which is independent of p, such that the estimate (3.25) holds for every $r \in\left[0, \sqrt{2}-C(\ln p / p)^{1 / 2}\right]$.

Proof. Let

$$
g_{0, C}=\tilde{C}_{0}-\frac{1}{2} r^{2}+\frac{1}{8} r^{4} .
$$

Suppose that \tilde{C}_{0} is such that $g_{0, C}\left(\sqrt{2}-\Delta_{p}\right)=0$. From the previous lemma we have that $\Delta_{p} \rightarrow 0$ as $p \rightarrow \infty$. It is easy to show that,

$$
g_{0, C}\left(\sqrt{2}-\frac{2}{3} \Delta_{p}\right) \leq-C \Delta_{p}^{2}
$$

for all $C<1 / 6$ and for sufficiently large p.
Let

$$
\left|\nabla u_{p}\right|\left(\sqrt{2}-\frac{2}{3} \Delta_{p}\right)=1-\delta_{p} .
$$

Since $f_{p} / r \leq 1 / \sqrt{2}$, we have $f_{p}^{\prime}\left(\sqrt{2}-2 \Delta_{p} / 3\right) \geq 1-C \delta_{p}$. From here it is easy to show that $\epsilon_{p}\left(\sqrt{2}-2 \Delta_{p} / 3\right) \leq C \delta_{p}$. By (3.40) we have

$$
\begin{equation*}
f_{p}^{\prime \prime} \leq-\frac{C}{p^{2}}\left|1-\delta_{p}\right|^{2-p}\left(1-\frac{r}{\sqrt{2}}\right)+C p^{1 / 2} \quad \forall r \in\left[\sqrt{2}-2 \Delta_{p} / 3, \sqrt{2}-\Delta_{p} / 3\right] \tag{3.45}
\end{equation*}
$$

where we have taken into account the fact that $\left|\nabla u_{p}\right|$ is decreasing and that

$$
\frac{1+\frac{p-2}{\left|\nabla u_{p}\right|^{2}} \frac{f_{p}^{\prime} f_{p}}{r}}{1+\frac{p-2}{\left.\nabla u_{p}\right|^{2}}\left|f_{p}^{\prime}\right|^{2}} \leq C p^{1 / 2}
$$

Integrating (3.45) over $\left[\sqrt{2}-2 \Delta_{p} / 3, \sqrt{2}-\Delta_{p} / 3\right]$ yields

$$
-\frac{1}{\sqrt{2}} \leq-C \frac{\Delta_{p}^{2}}{p^{2}}\left|1-\delta_{p}\right|^{-p}+C p^{1 / 2} \Delta_{p}
$$

from which we obtain

$$
\left(1-\delta_{p}\right)^{p} \geq C \frac{\Delta_{p}^{2}}{p^{5 / 2}}
$$

Consequently,

$$
\delta_{p} \leq \frac{5}{2} \frac{\ln p}{p}-2 \frac{\ln \Delta_{p}}{p}+\frac{C}{p} .
$$

We conclude from here that

$$
\begin{equation*}
\epsilon_{p}\left(\sqrt{2}-2 \Delta_{p} / 3\right) \leq C \delta_{p} \leq C \frac{\ln p}{p} \tag{3.46}
\end{equation*}
$$

Since g is positive we obtain by (3.31) that

$$
\Delta_{p} \leq C\left[\frac{\ln p}{p}\right]^{1 / 2}
$$

Since $\epsilon_{p}(a)$ is an increasing function of $a(\sqrt{3.25})$ must be valid in $\left[0, \sqrt{2}-2 \Delta_{p} / 3\right]$.

Proof of Theorem 1. In view of proposition 3.4 there exists $C>0$ such that (3.16a) and hence (3.44) hold for sufficiently large p whenever $r<\sqrt{2}-C(\ln p / p)^{1 / 2}$. From the monotonicity of f_{p} it follows that

$$
f_{p}\left(\sqrt{2}-C /(\ln p / p)^{1 / 2}\right) \leq f_{p}(r) \leq 1
$$

4 Stability of the radial solution

In this section we prove our main stability result for $u_{p}=f_{p}(r) e^{i \theta}$, the degree one radially symmetric solution of

$$
\begin{equation*}
\frac{p}{2} \nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)+u\left(1-|u|^{2}\right)=0 . \tag{4.1}
\end{equation*}
$$

A simple computation gives the second variation of E_{p} at u_{p} :

$$
\begin{align*}
& J_{2}(\phi)=\int_{\mathbb{R}^{2}}\left\{\frac{p}{2}\left|\nabla u_{p}\right|^{p-2}\left[|\nabla \phi|^{2}+(p-2) \frac{\left|\Re\left(\nabla u_{p} \cdot \nabla \bar{\phi}\right)\right|^{2}}{\left|\nabla u_{p}\right|^{2}}\right]\right. \\
&\left.+2\left|\Re\left(u_{p} \bar{\phi}\right)\right|^{2}-\left(1-\left|u_{p}\right|^{2}\right)|\phi|^{2}\right\} \tag{4.2}
\end{align*}
$$

Because of (4.2) and analogously to [5], we consider perturbations in the "natural" Hilbert space \mathcal{H} consisting of functions $\phi \in H_{\text {loc }}^{1}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ for which

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left\{\frac{p}{2}\left|\nabla u_{p}\right|^{p-2}\left[|\nabla \phi|^{2}+(p-2) \frac{\left|\Re\left(\nabla u_{p} \cdot \nabla \bar{\phi}\right)\right|^{2}}{\left|\nabla u_{p}\right|^{2}}\right]\right. \\
&\left.+2\left|\Re\left(u_{p} \bar{\phi}\right)\right|^{2}+\left(1-\left|u_{p}\right|^{2}\right)|\phi|^{2}\right\}<\infty
\end{aligned}
$$

Note that \mathcal{H} contains all "admissible perturbations" ϕ, i.e., any ϕ for which $E_{p}\left(u_{p}+\right.$ $\phi)<\infty$. Note also that in contrast with the case $p=2$, in our case $p>2$, constant functions do belong to \mathcal{H}. Thanks to the invariance of the functional E_{p} with respect to rotations and translations (see [11]) we have

$$
J_{2}(\phi)=0 \text { for } \phi=\left\{\begin{array}{l}
\frac{\partial u_{p}}{\partial \theta}=i f_{p} e^{i \theta}, \tag{4.3}\\
\frac{\partial u_{p}}{\partial x_{1}}=\frac{1}{2}\left(f_{p}^{\prime}-\frac{f_{p}}{r}\right) e^{2 i \theta}+\frac{1}{2}\left(f_{p}^{\prime}+\frac{f_{p}}{r}\right), \\
\frac{\partial u_{p}}{\partial x_{2}}=-\frac{i}{2}\left(f_{p}^{\prime}-\frac{f_{p}}{r}\right) e^{2 i \theta}+\frac{i}{2}\left(f_{p}^{\prime}+\frac{f_{p}}{r}\right) .
\end{array}\right.
$$

Indeed, this leads to the equality cases in the next theorem.
Theorem 2. For every $2<p \leq 4$ the radially symmetric solution u_{p} is stable in the sense that $J_{2}(\phi) \geq 0$ for all $\phi \in \mathcal{H}$. Moreover, we have $J_{2}(\phi)=0$ if and only if

$$
\begin{equation*}
\phi=c_{0} \frac{\partial u_{p}}{\partial \theta}+c_{1} \frac{\partial u_{p}}{\partial x_{1}}+c_{2} \frac{\partial u_{p}}{\partial x_{2}}, \text { for some constants } c_{0}, c_{1}, c_{2} \in \mathbb{R} . \tag{4.4}
\end{equation*}
$$

Following [9] we represent each ϕ by its Fourier expansion

$$
\begin{equation*}
\phi=\sum_{n=-\infty}^{\infty} \phi_{n}(r) e^{i n \theta} . \tag{4.5}
\end{equation*}
$$

Substituting into (4.2) we obtain

$$
\begin{equation*}
\frac{1}{2 \pi} J_{2}(\phi)=E_{1}\left(\phi_{1}\right)+\sum_{n=2}^{\infty} E_{n}\left(\phi_{n}, \phi_{2-n}\right), \tag{4.6}
\end{equation*}
$$

in which

$$
\begin{array}{r}
E_{1}\left(\phi_{1}\right)=\int_{0}^{\infty}\left\{\frac{p}{2}\left|\nabla u_{p}\right|^{p-2}\left[\left|\phi_{1}^{\prime}\right|^{2}+\frac{1}{r^{2}}\left|\phi_{1}\right|^{2}+(p-2) \frac{\left|\Re\left(f_{p}^{\prime} \phi_{1}^{\prime}+\frac{f_{p} \phi_{1}}{r^{2}}\right)\right|^{2}}{\left|\nabla u_{p}\right|^{2}}\right]\right. \\
\left.+2 f_{p}^{2}\left|\Re \phi_{1}\right|^{2}-\left(1-f_{p}^{2}\right)\left|\phi_{1}\right|^{2}\right\} r d r \tag{4.7a}
\end{array}
$$

and

$$
\begin{gather*}
E_{n}\left(\phi_{n}, \phi_{2-n}\right)=\int_{0}^{\infty}\left\{\frac { p } { 2 } | \nabla u _ { p } | ^ { p - 2 } \left[\left|\phi_{n}^{\prime}\right|^{2}+\left|\phi_{2-n}^{\prime}\right|^{2}+\frac{n^{2}}{r^{2}}\left|\phi_{n}\right|^{2}+\frac{(2-n)^{2}}{r^{2}}\left|\phi_{2-n}\right|^{2}+\right.\right. \\
\left.\frac{1}{2}(p-2) \frac{\left|f_{p}^{\prime}\left(\bar{\phi}_{n}^{\prime}+\phi_{2-n}^{\prime}\right)+\frac{f_{p}}{r^{2}}\left(n \bar{\phi}_{n}+(2-n) \phi_{2-n}\right)\right|^{2}}{\left|\nabla u_{p}\right|^{2}}\right] \\
 \tag{4.7~b}\\
\left.+f_{p}^{2}\left|\left(\bar{\phi}_{n}+\phi_{2-n}\right)\right|^{2}-\left(1-f_{p}^{2}\right)\left(\left|\phi_{n}\right|^{2}+\left|\phi_{2-n}\right|^{2}\right)\right\} r d r .
\end{gather*}
$$

A necessary and sufficient condition for the positive definiteness of J_{2} is that the E_{n} 's are all positive definite. An appropriate Hilbert space for the study of the functionals $\left\{E_{n}\right\}$ is

$$
\mathcal{S}=\left\{\phi \in H_{l o c}^{1}\left(\mathbb{R}_{+}, \mathbb{C}\right) \cap L_{r}^{2}\left(\mathbb{R}_{+}, \mathbb{C}\right): \int_{0}^{\infty} \frac{p}{2}\left|\nabla u_{p}\right|^{p-2}\left[\left|\phi^{\prime}\right|^{2}+\frac{1}{r^{2}}|\phi|^{2}\right] r d r<\infty\right\}
$$

We also denote by $\tilde{\mathcal{S}}$ the space of real-valued functions in \mathcal{S}.

$4.1 \quad n \neq 2$

We consider first the case $n=1$.

Lemma 4.1.

$$
\begin{equation*}
\inf _{\phi \in \mathcal{S}} E_{1}(\phi)=0 . \tag{4.8}
\end{equation*}
$$

Furthermore, the minimum in (4.8) is attained only for $\phi=c i f_{p}$, for any real constant c.

Proof. Since $E_{1}(i|\phi|) \leq E_{1}(\phi)$ for every ϕ for which $E_{1}(\phi)<\infty$, with strict inequality unless ϕ takes only purely imaginary values, we may consider instead of E_{1} the following functional

$$
\tilde{E}_{1}(\phi)=\int_{0}^{\infty}\left\{\frac{p}{2}\left|\nabla u_{p}\right|^{p-2}\left[\left|\phi^{\prime}\right|^{2}+\frac{1}{r^{2}}|\phi|^{2}\right]-\left(1-f_{p}^{2}\right)|\phi|^{2}\right\} r d r
$$

over $\tilde{\mathcal{S}}$. Consider first $\phi \in C_{c}^{\infty}(0, \infty)$ and set $\phi=f_{p} w$. Integration by parts, with the aid of (2.7) yields

$$
\begin{equation*}
F_{1}(w)=\tilde{E}_{1}\left(f_{p} w\right)=\int_{0}^{\infty} \frac{p}{2}\left|\nabla u_{p}\right|^{p-2} f_{p}^{2}\left|w^{\prime}\right|^{2} r d r \tag{4.9}
\end{equation*}
$$

A standard use of cut-off functions yields that (4.9) holds also for smooth $\phi=f_{p} w$ with compact support in $[0, \infty)$ (i.e, the support may contain the origin). Finally, by density of smooth maps with compact support in $[0, \infty)$ in $\tilde{\mathcal{S}}$ it follows that (4.9) continues to hold for $\phi=f_{p} w \in \tilde{\mathcal{S}}$. Therefore, $\tilde{E}_{1}(\phi) \geq 0$ for all $\phi \in \tilde{\mathcal{S}}$ and $F_{1}(w)=0$ if and only if $w \equiv$ const.

We now consider the case $n \geq 3$.
Proposition 4.1. For each $n \geq 3$ we have

$$
E_{n}\left(u_{1}, u_{2}\right)>0 \text { for all }\left(u_{1}, u_{2}\right) \in \tilde{\mathcal{S}} \times \tilde{\mathcal{S}} \backslash\{(0,0)\}
$$

Proof. The result follows right away from the previous lemma and the inequality

$$
E_{n}\left(u_{1}, u_{2}\right) \geq \tilde{E}_{1}\left(\left|u_{1}\right|\right)+\tilde{E}_{1}\left(\left|u_{2}\right|\right),
$$

with strict inequality, unless $u_{j} \equiv 0, j=1,2$.

$4.2 \quad n=2$

It is easy to reduce the analysis of E_{2} to that of a functional acting on real-valued functions. Indeed, writing a complex-valued function ϕ as $\phi=\phi^{R}+i \phi^{I}$, we have

$$
E_{2}\left(\phi_{2}, \phi_{0}\right)=E_{2}^{R}\left(\phi_{2}^{R}, \phi_{0}^{R}\right)+E_{2}^{I}\left(\phi_{2}^{I}, \phi_{0}^{I}\right),
$$

where

$$
E_{2}^{R}\left(\phi_{2}^{R}, \phi_{0}^{R}\right)=E_{2}\left(\phi_{2}^{R}, \phi_{0}^{R}\right), \quad E_{2}^{I}\left(\phi_{2}^{I}, \phi_{0}^{I}\right)=E_{2}\left(i \phi_{2}^{I}, i \phi_{0}^{I}\right)
$$

Clearly,

$$
E_{2}\left(i \phi_{2}^{I}, i \phi_{0}^{I}\right)=E_{2}^{R}\left(-\phi_{2}^{I}, \phi_{0}^{I}\right)
$$

Hence,

$$
\begin{equation*}
E_{2}\left(\phi_{2}, \phi_{0}\right)=E_{2}^{I}\left(-\phi_{2}^{R}, \phi_{0}^{R}\right)+E_{2}^{I}\left(\phi_{2}^{I}, \phi_{0}^{I}\right), \tag{4.10}
\end{equation*}
$$

and it suffices to study the minimization to the functional E_{2}^{I} over $\tilde{\mathcal{S}} \times \tilde{\mathcal{S}}$.

From (4.3) and (4.6) it follows that the functions

$$
\begin{equation*}
\Phi_{0}=f_{p}^{\prime}+\frac{f_{p}}{r} \text { and } \Phi_{2}=-f_{p}^{\prime}+\frac{f_{p}}{r} \tag{4.11}
\end{equation*}
$$

satisfy

$$
E_{2}^{R}\left(-\Phi_{2}, \Phi_{0}\right)=E_{2}^{I}\left(\Phi_{2}, \Phi_{0}\right)=0
$$

We next claim:
Proposition 4.2. For $p \in(2,4]$ we have $E_{2}^{I}\left(\phi_{2}, \phi_{0}\right) \geq 0$ for every $\left(\phi_{2}, \phi_{0}\right) \in \tilde{\mathcal{S}} \times \tilde{\mathcal{S}}$ with equality if and only if $\left(\phi_{2}, \phi_{0}\right)=c\left(\Phi_{2}, \Phi_{0}\right)$ for some $c \in \mathbb{R}$ (see (4.11)).

For the proof of Proposition 4.2 we shall need some preliminary results. First, by (4.7b) we have

$$
\begin{align*}
& E_{2}^{I}\left(\phi_{2}, \phi_{0}\right)=\int_{0}^{\infty}\left\{\frac { p } { 2 } | \nabla u _ { p } | ^ { p - 2 } \left[\left(\phi_{2}^{\prime}\right)^{2}+\left(\phi_{0}^{\prime}\right)^{2}+\frac{4}{r^{2}}\left(\phi_{2}\right)^{2}\right.\right. \\
&\left.+\frac{1}{2}(p-2) \frac{\left.\left(f_{p}^{\prime}\left(\phi_{0}^{\prime}-\phi_{2}^{\prime}\right)-2 \frac{f_{p}}{r^{2}} \phi_{2}\right)\right)^{2}}{\left|\nabla u_{p}\right|^{2}}\right] \\
&\left.\quad+f_{p}^{2}\left(\phi_{0}-\phi_{2}\right)^{2}-\left(1-f_{p}^{2}\right)\left(\left(\phi_{2}\right)^{2}+\left(\phi_{0}\right)^{2}\right)\right\} r d r \tag{4.12}
\end{align*}
$$

It is more convenient to consider an alternative form by applying the transformation

$$
A=\phi_{0}+\phi_{2}, \quad B=\phi_{0}-\phi_{2}
$$

to obtain

$$
\begin{align*}
E_{2}^{I}\left(\phi_{0}, \phi_{2}\right)=F_{2}(A, B): & =\int_{0}^{\infty}\left\{\frac { p } { 4 } | \nabla u _ { p } | ^ { p - 2 } \left[\left(A^{\prime}\right)^{2}+\left(B^{\prime}\right)^{2}+\frac{2}{r^{2}}(A-B)^{2}\right.\right. \\
& \left.+(p-2) \frac{\left(f_{p}^{\prime} B^{\prime}-\frac{f_{p}}{r^{2}}(A-B)\right)^{2}}{\left|\nabla u_{p}\right|^{2}}\right] \\
& \left.\quad+f_{p}^{2} B^{2}-\frac{1}{2}\left(1-f_{p}^{2}\right)\left(A^{2}+B^{2}\right)\right\} r d r \tag{4.13}
\end{align*}
$$

Clearly,

$$
\begin{equation*}
F_{2}\left(f_{p} / r, f_{p}^{\prime}\right)=0 \tag{4.14}
\end{equation*}
$$

The "problematic term" in (4.13) is the one involving the mixed product $A B^{\prime}$. The difficulty in handling this term is the obstacle for determining the positivity of F_{2} for every $p>2$. We were able to overcome this difficulty only in the case $p \in(2,4]$ thanks to the following lemma.

Lemma 4.2. We have

$$
\begin{equation*}
F_{2}(A, B)=G_{2}(A, B)+\int_{0}^{\infty} \frac{p(p-2)}{4}\left|\nabla u_{p}\right|^{p-2} \frac{\left(h A^{\prime}-\frac{1}{r}\left(h^{2} A-B\right)\right)^{2}}{1+h^{2}} r d r \tag{4.15}
\end{equation*}
$$

with

$$
\begin{align*}
& G_{2}(A, B)= \int_{0}^{\infty}\left\{\frac { p } { 4 } | \nabla u _ { p } | ^ { p - 2 } \left[\left(A^{\prime}\right)^{2}+\left(B^{\prime}\right)^{2}+\frac{2}{r^{2}}(A-B)^{2}\right.\right. \\
&\left.+(p-2) \frac{h^{2}\left(\left(B^{\prime}\right)^{2}-\left(A^{\prime}\right)^{2}\right)+\frac{1-h^{4}}{r^{2}} A^{2}-\frac{2}{r^{2}}\left(1-h^{2}\right) A B}{1+h^{2}}\right] \\
&+\frac{p(p-2)}{4 r}\left[H^{\prime}\left(2 A B-B^{2}\right)-\left(h^{2} H\right)^{\prime} A^{2}\right] \\
&\left.+f_{p}^{2} B^{2}-\frac{1}{2}\left(1-f_{p}^{2}\right)\left(A^{2}+B^{2}\right)\right\} r d r \tag{4.16}
\end{align*}
$$

where

$$
H=\frac{h}{1+h^{2}}\left|\nabla u_{p}\right|^{p-2} \text { and } h=r f_{p}^{\prime} / f_{p}(\text { as in (2.10) }) .
$$

Moreover, $G_{2}\left(f_{p} / r, f_{p}^{\prime}\right)=0$ and the pair $\left(f_{p} / r, f_{p}^{\prime}\right)$ solves the Euler-Lagrange equations associated with G_{2}.

Proof. First, a direct computation gives the identity

$$
\begin{align*}
& \frac{\left(f_{p}^{\prime} B^{\prime}-\frac{f_{p}}{r^{2}}(A-B)\right)^{2}}{\left|\nabla u_{p}\right|^{2}} \\
& =\frac{h^{2}\left(\left|B^{\prime}\right|^{2}-\left|A^{\prime}\right|^{2}\right)-\frac{2 h}{r}\left[(A B)^{\prime}-B B^{\prime}-h^{2} A A^{\prime}\right]+\frac{1-h^{4}}{r^{2}}|A|^{2}-\frac{2}{r^{2}}\left(1-h^{2}\right) A B}{1+h^{2}} \\
& \quad+\frac{\left(h A^{\prime}-\frac{1}{r}\left(h^{2} A-B\right)\right)^{2}}{1+h^{2}} . \tag{4.17}
\end{align*}
$$

Next, integration by parts yields

$$
\begin{align*}
& \int_{0}^{\infty}\left|\nabla u_{p}\right|^{p-2}\left\{\frac{-\frac{2 h}{r}\left[(A B)^{\prime}-B B^{\prime}-h^{2} A A^{\prime}\right]}{1+h^{2}}\right\} r d r \\
&=\int_{0}^{\infty}\left\{H^{\prime}\left(2 A B-B^{2}\right)-\left(h^{2} H\right)^{\prime} A^{2}\right\} d r \tag{4.18}
\end{align*}
$$

Using (4.17)-(4.18) in conjunction with (4.13) leads to (4.15)-(4.16). Finally, a direct computation shows that the integrand in the integral on the right-hand-side of (4.15) is identically zero for $A=f_{p} / r$ and $B=f_{p}^{\prime}$, and the last assertion of the lemma follows.

Proof of Proposition 4.2. In view of Lemma 4.2 it suffices to show that
$G_{2}(u, v) \geq 0, \forall(u, v) \in \tilde{\mathcal{S}} \times \tilde{\mathcal{S}}$, with equality iff:

$$
\begin{equation*}
u=\phi:=f_{p} / r \text { and } v=\psi:=f_{p}^{\prime} \tag{4.19}
\end{equation*}
$$

We write G_{2} in the form

$$
G(u, v)=\int_{0}^{\infty}\left(\alpha(r) u^{\prime 2}+\beta(r) v^{\prime 2}+a(r) u^{2}+2 b(r) u v+c(r) v^{2}\right) d r
$$

The properties of the coefficients which are important to us are

$$
\begin{equation*}
\alpha(r), \beta(r)>0 \text { and } b(r)<0, \text { for } r>0 \tag{4.20}
\end{equation*}
$$

Indeed, clearly $\beta(r)>0$. Next,

$$
\alpha(r)=\frac{p}{4}\left|\nabla u_{p}\right|^{p-2} r\left(1-(p-2) \frac{h^{2}}{1+h^{2}}\right)>0,
$$

provided $p \leq 4$, since $0<h<1$ by Step 1 of Proposition 2.4 and Proposition 2.5. Finally,

$$
b=r\left\{\frac{p}{4}\left|\nabla u_{0}\right|^{p-2}\left[-\frac{2}{r^{2}}-\frac{(p-2)}{r^{2}}\left(1-h^{2}\right)\right]+\frac{p(p-2)}{4 r} H^{\prime}\right\}<0,
$$

since $0<h(r)<1$, and

$$
H^{\prime}=\left|\nabla u_{p}\right|^{p-2} \frac{\left(1-h^{2}\right) h^{\prime}}{\left(1+h^{2}\right)^{2}}+(p-2) \frac{h}{1+h^{2}}\left(\left(\frac{f_{p}}{r}\right)\left(\frac{f_{p}}{r}\right)^{\prime}+f_{p}^{\prime} f_{p}^{\prime \prime}\right)<0
$$

since $h^{\prime} \leq 0$ by Lemma 2.2 and both f_{p}^{\prime} and f_{p} / r are decreasing (as we noted already before, by Lemma 2.2 and Step 2 of the proof of Proposition (2.4).

By Lemma 4.2 we know that ϕ and ψ satisfy

$$
\left\{\begin{array}{l}
-\left(\alpha \phi^{\prime}\right)^{\prime}+a \phi+b \psi=0 \tag{4.21}\\
-\left(\beta \psi^{\prime}\right)^{\prime}+c \psi+b \phi=0
\end{array}\right.
$$

We consider first $u, v \in C_{c}^{\infty}(0, \infty)$. By Picone's identity

$$
\begin{align*}
& \left(u^{\prime}\right)^{2}-\left(\frac{u^{2}}{\phi}\right)^{\prime} \phi^{\prime}=\left(u^{\prime}-(u / \phi) \phi^{\prime}\right)^{2} \geq 0 \tag{4.22}\\
& \left(v^{\prime}\right)^{2}-\left(\frac{v^{2}}{\psi}\right)^{\prime} \psi^{\prime}=\left(v^{\prime}-(v / \psi) \psi^{\prime}\right)^{2} \geq 0 \tag{4.23}
\end{align*}
$$

Multiplying (4.22)-(4.23) by α and β respectively, applying integration by parts and using (4.21) we obtain

$$
\begin{align*}
0 & \leq \int_{0}^{\infty} \alpha\left(u^{\prime}\right)^{2}-\alpha\left(\frac{u^{2}}{\phi}\right)^{\prime} \phi^{\prime}+\beta\left(v^{\prime}\right)^{2}-\beta\left(\frac{v^{2}}{\psi}\right)^{\prime} \\
& =\int_{0}^{\infty} \alpha\left(u^{\prime}\right)^{2}+\frac{u^{2}}{\phi}(a \phi+b \psi)+\beta\left(v^{\prime}\right)^{2}+\frac{v^{2}}{\psi}(c \psi+b \phi) \tag{4.24}\\
& =\int_{0}^{\infty} \alpha u^{\prime 2}+\beta v^{\prime 2}+a u^{2}+c v^{2}+b\left(u^{2} \frac{\psi}{\phi}+v^{2} \frac{\phi}{\psi}\right) \\
& =G(u, v)+\int_{0}^{\infty} b\left(u\left(\frac{\psi}{\phi}\right)^{1 / 2}-v\left(\frac{\phi}{\psi}\right)^{1 / 2}\right)^{2} .
\end{align*}
$$

From (4.24) and a density argument we conclude that

$$
G(u, v) \geq \int_{0}^{\infty}(-b)\left(u\left(\frac{\psi}{\phi}\right)^{1 / 2}-v\left(\frac{\phi}{\psi}\right)^{1 / 2}\right)^{2}, \forall u, v \in \tilde{\mathcal{S}},
$$

and (4.19) follows.
Next we are ready to present the proof of our main stability theorem.
Proof of Theorem 园. Representing each $\phi \in \mathcal{H}$ by its Fourier expansion (4.5), we have by (4.6), Lemma 4.1, Proposition 4.1, (4.10) and Proposition 4.2 that $J_{2}(\phi) \geq 0$. Furthermore, by the equality cases in Lemma 4.1, Proposition 4.1 and Proposition 4.2 we have $J_{2}(\phi)=0$ iff $\phi=\phi_{0}+\phi_{1} e^{i \theta}+\phi_{2} e^{2 i \theta}$ where
$\phi_{1}=a_{1} i f_{p}, \quad\left(\phi_{2}^{I}, \phi_{0}^{I}\right)=a_{2}\left(\Phi_{2}, \Phi_{0}\right)$ and $\left(-\phi_{2}^{R}, \phi_{0}^{R}\right)=a_{3}\left(\Phi_{2}, \Phi_{0}\right), \quad$ with $a_{1}, a_{2}, a_{3} \in \mathbb{R}$.
It is easy to verify that these relations are equivalent to (4.4).

References

[1] Y. Almog, L. Berlyand, D. Golovaty, and I. Shafrir, Global minimizers for a p-Ginzburg-Landau-type energy in \mathbb{R}^{2}, J. Funct. Anal., 256 (2009), pp. 2268-2290.
[2] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), pp. 725-728.
[3] M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the p-Laplace operator, Manuscripta Math., 109 (2002), pp. 229-231.
[4] R. Benguria, H. Brezis, and E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), pp. 167-180.
[5] M. del Pino, P. Felmer, and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., (2004), pp. 1511-1527.
[6] J. I. DÍaz and J. E. SaÁ, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), pp. 521-524.
[7] L. C. Evans, Partial Differential Equations, AMS, 1st. ed., 1998.
[8] E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc, Math. Res. Lett., 1 (1994), pp. 701-715.
[9] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), pp. 334-344.
[10] ——, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), pp. 593-598.
[11] Y. N. Ovchinnikov and I. M. Sigal, Ginzburg-Landau equation. I. Static vortices, in Partial differential equations and their applications (Toronto, ON, 1995), vol. 12 of CRM Proc. Lecture Notes, Amer. Math. Soc., Providence, RI, 1997, pp. 199-220.

[^0]: *Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA
 ${ }^{\dagger}$ Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
 ${ }^{\ddagger}$ Department of Theoretical and Applied Mathematics, The University of Akron, Akron, Ohio 44325, USA
 ${ }^{\S}$ Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel

