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Radially symmetric minimizers for a p-Ginzburg Landau

type energy in R
2

Yaniv Almog∗, Leonid Berlyand†, Dmitry Golovaty‡and Itai Shafrir§

Abstract

We consider the minimization of a p-Ginzburg-Landau energy functional
over the class of radially symmetric functions of degree one. We prove the
existence of a unique minimizer in this class, and show that its modulus is
monotone increasing and concave. We also study the asymptotic limit of the
minimizers as p → ∞. Finally, we prove that the radially symmetric solution
is locally stable for 2 < p ≤ 4.

1 Introduction

Given p > 2 consider the minimization problem of the energy functional

Ep(u) =

∫

R2

|∇u|p + 1

2
(1− |u|2)2 (1.1)

over the class of maps u ∈ W 1,p
loc (R

2,R2) that satisfy Ep(u) < ∞ and have a degree
d “at infinity”. In our previous work [1] it was shown that the notion of degree at
infinity is well-defined. Hence, minimization over the homotopy class of maps with
degree d is a sensible task. Moreover, in the case of degree d = 1 we proved that
a minimizer does exist. An important open question is whether any minimizer u
is necessarily radially symmetric, i.e., u = f(r)eiθ for some function f(r) satisfying
f(0) = 0 (thanks to invariance with respect to translations we may assume that
u(0) = 0). We show in the sequel that a (unique) minimizer within the radially sym-
metric class up = fp(r)e

iθ exists. We were, however, unable to determine whether
up is a minimizer or not. As a preliminary step towards establishing the minimality
properties of up, we study in the present paper its stability properties. One of our
main results (see Theorem 2 below) establishes that up is indeed stable if p ∈ (2, 4].
We conjecture that this result remains valid for any p > 2. It should be mentioned
that the analogous stability problem for p = 2 on the disc B1(0) with the bound-
ary condition u(z) = z

|z| on ∂B1(0) was solved by Mironescu [9] and in a weaker
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form, by Lieb and Loss [8]. Going back to the problem on R
2, but again for p = 2,

we recall that the L2- stability of the radially symmetric solution was proved by
Ovchinnikov and Sigal [11] and in a more natural energy space by del Pino, Felmer
and Kowalczyk [5]. However, Mironescu [10] showed a stronger result, namely, that
the radially symmetric solution is the unique (up to rotations and translations) local
minimizer on R

2, that is, on every disc BR(0) it is minimizing for its boundary
values on ∂BR(0). Note that for p = 2 (in contrast with p > 2) only the notion of
local minimizer makes sense since the admissible maps have infinite energy.

The manuscript is organized as follows. In Section 2 we establish existence and
uniqueness of the minimizer up = fp(r)e

iθ in the radially symmetric class, as well
as its regularity. We also show that fp is increasing and concave and obtain some
precise estimates for fp(r) for large values of r. In Section 3 we study the limit of fp
as p tends to infinity. We show that limp→∞ fp = f∞ is the piecewise linear function
given by r√

2
for r <

√
2 and is identically equal to 1 for r ≥

√
2. Finally, Section 4

is devoted to the study of the stability of the radially symmetric solution.

2 Radially symmetric solutions

In this section we consider some of the properties of the minimizer of

Ip(f) =

∫ ∞

0

{

[

(f ′)2 +
f2

r2

]p/2
+

1

2
(1− f2)2

}

rdr (2.1)

for any p > 2. Note that Ip(f) =
1
2πE(u) where u = f(r)eiθ.

2.1 Existence

For each p > 2 we define the space

Xp =
{

f ∈W 1,p
loc (0,∞) :

∫ ∞

0

(

|f ′|2 + f2

r2
)p/2

rdr <∞
}

. (2.2)

Existence of a solution will be established by minimization of Ip(f) over Xp. Note
that Xp ⊂ Cα

loc[0,∞), with α = 1 − 2/p, since whenever f ∈ Xp, the function

F (x1, x2) = f(
√

x21 + x22) belongs to W 1,p
loc (R

2), and then we can apply Morrey’s
theorem. Furthermore, for every f ∈ Xp we must have have f(0) = 0. This follows
from the continuity of f and the fact that

∫ 1

0

|f |p
rp−1

<∞ .

Proposition 2.1. The minimum of Ip(f) over Xp is attained by a function fp ∈ Xp

satisfying 0 ≤ fp(r) ≤ 1, ∀r ∈ [0,∞).

Proof. Put
mp = inf

f∈Xp

Ip(f) . (2.3)
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We first note that mp <∞ since the function g∗ ∈ Xp defined by

g∗(r) =

{

r r ≤ 1 ,

1 r > 1 ,

verifies Ip(g
∗) <∞. Consider a minimizing sequence {gm} for (1.1), i.e.,

lim
m→∞

Ip(gm) = mp .

By passing to a diagonal sequence we may assume that for any compact interval
[a, b] ⊂ (0,∞) we have

gm ⇀ g weakly in W 1,p(a, b) . (2.4)

Since the convexity of the Lagrangian

L(P,Z, r) =

{

(

P 2 +
Z2

r2

)p/2
+

1

2
(1− Z2)2

}

r

in the variable P implies weak lower-semi-continuity of the functional I
(a,b)
p (f) :=

∫ b
a L(f

′, f, r)dr (see [7, Theorem 1,Sec. 8.2]), we deduce from (2.4) that

I(a,b)p (g) ≤ mp . (2.5)

Since the interval [a, b] is arbitrary, we conclude from (2.5) that g ∈ Xp, Ip(g) ≤ mp,
so that necessarily Ip(g) = mp, and g is a minimizer in (1.1). Since replacing g by

g̃(r) = min(1, |g(r)|) ,

gives a map g̃ ∈ Xp such that Ip(g̃) ≤ Ip(g) (with strict inequality, unless |g| ≤ 1)
we conclude that we may assume 0 ≤ g(r) ≤ 1 for all r, and the result follows for
fp = g.

The next lemma shows that f is positive on (0,∞).

Lemma 2.1. fp > 0 for all r > 0.

Proof. We first claim that there is no interval of the form [0, a], with a > 0 such
that

f ≡ 0 on [0, a] . (2.6)

Indeed, suppose that (2.6) holds for some a. Fix any function g ∈ C∞[0, a] satisfying
g(0) = g(a) = 0 and g(r) > 0 for r ∈ (0, a). Then, for any small ε > 0 consider the
function hε defined by

hε(r) =

{

εg(r) 0 ≤ r ≤ a ,

fp(r) r > a .
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A simple computation gives

Ip(hε) = I(a,∞)
p (fp) + ǫp

∫ a

0

(

|g′|2 + (
g

r
)2
)p/2

rdr +

∫ a

0
(1− ǫ2g2)2 rdr < Ip(fp) ,

provided ǫ is chosen small enough.
Next, we turn to the proof itself and assume by negation that fp(r0) = 0 for

some r0 > 0. Put
δ0 = max

r∈[0,r0]
fp(r) .

By the above claim δ0 > 0. Let δ ∈ (0, δ0) and consider the set Sδ = {r > 0 :
fp(r) < δ}. Denote by J = (α, β) the component of Sδ containing r0. Since δ < δ0
we have α > 0. There is a δ1 > 0 such that the function

Hr(t) =
( t

r

)p
+

1

2
(1− t2)2

is decreasing on [0, δ1] for every r ≥ α . We may now replace δ by min(δ, δ1) and set

f̃(r) =

{

fp r 6∈ J

δ r ∈ J
.

From the monotonicity of Hr it follows that Ip(f̃) < Ip(fp). A contradiction.

2.2 Uniqueness

Proposition 2.2. The non-negative minimizer for Ip(f) is unique.

Proof. We use a convexity argument due to Benguria (see [4]) for the case of the
Laplacian (see [4]) and by Diaz and Saá [6] and Anane [2] for the case of the p-
Laplacian. More specifically, we follow the presentation of Belloni and Kawhol [3].
Assume f and g are both minimizers in (2.1). By an argument from the proof of
Proposition 2.1 it follows that necessarily f(r) ≤ 1 and g(r) ≤ 1 for each r. Set

η =
fp + gp

2
and w = η

1
p .

Denote also

s(r) =
fp

fp + gp
.

Note that

w′ =
1

2
η

1
p
−1(fp−1f ′ + gp−1g′

)

.
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Next we compute

(w′2 +
w2

r2
)
p

2 =
∣

∣

∣
η

2
p
−2(f

p−1f ′ + gp−1g′

2

)2
+
η

2
p

r2

∣

∣

∣

p

2
= η

∣

∣

∣

(fp−1f ′ + gp−1g′

2η

)2
+

1

r2

∣

∣

∣

p

2

= η
∣

∣

∣

(s(r)f ′

f
+

(1− s(r))g′

g

)2
+

1

r2

∣

∣

∣

p

2

≤ η
(

s(r)
( |f ′|2
f2

+
1

r2
)

p

2

+ (1− s(r))
( |g′|2
g2

+
1

r2
)

p

2)

=
η

fp + gp
(

f ′2 +
f2

r2
)

p

2 +
η

fp + gp
(

g′2 +
g2

r2
)

p

2 =
1

2

(

(

f ′2 +
f2

r2
)

p

2 +
(

g′2 +
g2

r2
)

p

2

)

Above we used the convexity of the function t 7→ (t2+ 1
r2
)
p

2 . Note that equality holds

in the above only if f ′

f = g′

g . If such an equality holds for all r, we conclude easily
that g = cf for some constant c, which then must be equal to 1. Therefore, the
uniqueness claim follows from the above inequality and the convexity of the second
term (1− f2)2 as a function of fp for p ≥ 2 and 0 ≤ f ≤ 1.

Remark 2.1. As a matter of fact, the only minimizers of Ip are fp and −fp. In
view of lemma 2.1 a non-negative minimizer must be strictly positive. Since Ip(|f |) =
Ip(f), it follows that a minimizer may not change sign, and our assertion follows
from the uniqueness for non-negative minimizers.

2.3 Regularity

This subsection is devoted to the study of the regularity properties of the minimizer
fp.

Proposition 2.3. We have fp ∈ C∞(0,∞).

Proof. The Euler-Lagrange equation associated with (2.1) is

1

r

(

r|∇up|p−2f ′p
)′
= |∇up|p−2 fp

r2
− 2

p
fp(1− f2p ) , (2.7)

where
up = fp(r)e

iθ .

A direct consequence of (2.7) is that |∇up|p−2f
′

p ∈W
1, p

p−2

loc (0,∞) ⊂ C(0,∞) and we
immediately obtain that fp ∈ C1(0,∞) (using that fp > 0 by Lemma 2.1) . Inserting
this new information into (2.7) we deuce that fp ∈ C2(0,∞). Bootstrapping gives
fp ∈ Ck(0,∞) for all k, as claimed.

Our next objective is to prove the differentiability of f at 0.

Proposition 2.4. f
′

p(0) = limr→0+
fp(r)
r exists and is a positive number.
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Proof. We denote for convenience f for fp and get from (2.7),

0 = f ′′
(

1 +
p− 2

|∇up|2
|f ′|2

)

+
f ′

r

(

1− p− 2

|∇up|2
f2

r2

)

− f

r2

(

1− p− 2

|∇up|2
|f ′|2

)

+
2

p
|∇up|2−pf(1− f2) , (2.8)

or equivalently,

rf ′′

f ′
=

−
(

|f ′|2 − (p− 3)f
2

r2

)

+ f
rf ′

(

f2

r2
− (p− 3)|f ′|2

)

f2

r2
+ (p− 1)|f ′|2

− 2

p
|∇up|2−p f

rf ′
r2(1− f2) · 1

1 + (p − 2) |f ′|2
|∇up|2

. (2.9)

Put

h =
rf ′

f
. (2.10)

We divide the rest of the proof into several steps.

Step 1: − 1
p−1 < h(r) < 1 for all r > 0 .

We can rewrite (2.9) as

r
f ′′

f ′
=

−h2 + (p − 3) + h−1 − (p − 3)h

1 + (p− 1)h2
− 2

p
|∇up|2−p r

2

h
(1− f2)

1 + h2

1 + (p− 1)h2
.

(2.11)
Since

h′ =
f ′′h
f ′

+
h

r
(1− h) , (2.12)

substituting (2.11) into (2.12) yields

h′ =
(1− h

r

)

·
(1 + (p− 2)h+ h2

1 + (p− 1)h2
+ h

)

− 2

p
|∇up|2−pr(1− f2)

1 + h2

1 + (p− 1)h2

=
1 + h2

1 + (p− 1)h2

[

(1− h)[1 + (p − 1)h]

r
− 2

p
|∇up|2−pr(1− f2)

]

. (2.13)

By (2.13) we have

h′ ≤ 1

r
Fp(h) , (2.14)

where

Fp(h) =
(1 + h2)(1− h)[1 + (p− 1)h]

1 + (p − 1)h2
. (2.15)

We now prove that h(r) < 1 for all r > 0. Suppose to the contrary that there exists
r0 > 0 for which h(r0) ≥ 1. Then, (2.14) yields h′(r) < 0 and h(r) > 1 for all r < r0.
Therefore, by (2.15) also Fp(h) < 0 for r < r0. Integrating (2.14) gives

∫ h(r)

h(r0)

dh

−Fp(h)
≥ ln

r0
r
, ∀r < r0 . (2.16)
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Since
∫∞
h(r0)

dh
−Fp(h)

<∞, (2.16) leads to a contradiction for r > 0 small enough.

Finally, we show that h(r) > − 1
p−1 on (0,∞). Suppose to the contrary that

h(r0) ≤ − 1
p−1 for some r0. Then, from (2.14) and (2.15) it follows that

h(r) ≤ − 1

p− 1
and h′(r) < 0 , ∀r ≥ r0 .

Therefore, also f
′

p(r) < 0 for all r ≥ r0, violating Ip(fp) <∞. Step 1 is established.

Step 2:
fp(r)
r is strictly decreasing on (0,∞).

From Step 1 we get that

(f

r

)′
=

f

r2
(h− 1) < 0 , ∀r > 0 , (2.17)

and the conclusion follows.

Step 3: limr→0+ h(r) = 1.

Fix any r0 > 0. By Step 2 we have,

|∇up|(r) ≥
f(r)

r
>
f(r0)

r0
, ∀r < r0 .

Consequently, we have by (2.13),

h′ ≥ Fp(h)

r
− C0r , ∀r ∈ (0, r0) , (2.18)

for some positive C0, which is independent of r. For a contradiction, we assume
that lim infr→0+ h(r) = a < 1. Then, using (2.18) we can find r1 ∈ (0, r0) small
enough so that h′(r1) > 0. Bootstrapping we obtain that h′(r) > 0 for all r < r1. In
particular, the full limit limr→0+ h(r) = a exists. Integration of (2.18) then yields

∫ h(r1)

h(r)

dh

Fp(h)
≥ ln

r1
r

− C , ∀r < r1 . (2.19)

Here we used the fact that Fp(h) > 0 by Step 1. Passing to the limit r → 0+ in

(2.19) gives
∫ h(r1)
a

dh
Fp(h)

= ∞. In view of (2.15) we must have

a = lim
r→0+

h(r) = − 1

p− 1
.

In particular, for r sufficiently small we have rf
′

f ≤ − 1
2(p−1) , implying

f(r) ≥ Cr
− 1

2(p−1) .

A contradiction.
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Step 4: f ′(0) exists and it is a positive number.

By Step 2, the (possibly generalized) limit limr→0+
f(r)
r exists, so we only need to

exclude the possibility that the limit equals +∞. From Step 3 and (2.18) we get
that

h(r) ≥ 1− cr2 , ∀r < r0 ,

i.e.,
f ′

f
≥ 1

r
− cr .

Therefore, f(r) ≤ Cr for some positive constant C, independently of r, and the

differentiability of f at 0 follows. Finally, f ′(0) > 0 since f(r)
r is decreasing.

2.4 Monotonicity

Proposition 2.5. f
′

p > 0 in (0,∞).

Proof. First we show that fp is non-decreasing on (0,∞). Recall that f ′p(0) > 0 and
define

r1 = sup{r : f ′p(s) ≥ 0 on [0, r]} .
If r1 = ∞ then clearly fp is non-decreasing on (0,∞). Assume then that r1 < ∞,
and then obviously

f ′p(r1) = 0 .

By the definition of r1 we have also

f
′′

p (r1) ≤ 0 . (2.20)

Next we distinguish between two cases:

(i) There exists a right-neighborhood of r1, [r1, R], in which f
′

p ≤ 0.

(ii) There exists no neighborhood as in (i).

Consider first case (i). Since fp −−−→
r→∞

1 , there must exist a maximal right-

neighborhood, where f ′p ≤ 0 which we denote by [r1, r2]. Clearly, we must have

f
′

p(r2) = 0. From (2.8) we get that

r2f ′′p
fp

= 1− 2

p

(fp
r

)−(p−2)
r2(1− f2p ) , for r = ri , i = 1, 2 . (2.21)

By Step 2 of the proof of Proposition 2.4 we have

(fp(r2)

r2

)−(p−2)
>

(fp(r1)

r1

)−(p−2)
. (2.22)

Furthermore, since f ′p ≤ 0 in [r1, r2] we have

(1− f2p )(r2) ≥ (1− f2p )(r1) . (2.23)

8



Substituting (2.22), (2.23) into (2.21) and using (2.20) yields

r2f ′′p
fp

∣

∣

∣

∣

r=r2

<
r2f ′′p
fp

∣

∣

∣

∣

r=r1

≤ 0 ,

i.e., f ′′p (r2) < 0, which clearly contradicts the definition of r2.
Next we turn to case (ii). In this case we have f ′′p (r1) = 0. Differentiating the

equation (2.7) at r = r1 yields

f (3)p (r1) = −pfp
r31
< 0 . (2.24)

This implies that r1 is a maximum point for f ′p which is obviously impossible.
Finally, we prove that f ′p > 0 on [0,∞) (we know already that f ′p(0) > 0).

Suppose, for a contradiction, that there exists r0 > 0 such that

f ′p(r0) = f ′′p (r0) = 0 .

We then obtain the same identity as in (2.24), but this time at r = r0. Again we
get that f ′p has a maximum at r0, a contradiction.

To prove monotonicity of f ′p we need the following result

Lemma 2.2. We have
h′ ≤ 0 , ∀r > 0 . (2.25)

Furthermore,
lim
r→∞

h(r) = 0 .

Proof. Suppose, for a contradiction that (2.25) does not hold. Since limr↓0 h(r) = 1
and h < 1 on (0,∞) (see Steps 1 and 4 in the proof of Proposition 2.4) h must have
a minimum point at some r = r0. By (2.13) we have

h′′(r0) = − 1

r20
Fp(h)−

2

p

1 + h2

1 + (p − 1)h2
|∇up|2−p

[

− (|∇up|2)′
|∇up|2

p− 2

2
r0(1− f2p )

+ (1− f2p )− 2r0fpf
′
p

]

. (2.26)

Furthermore, as h′(r0) = 0 we also have

1

r20
Fp(h) =

2

p

1 + h2

1 + (p − 1)h2
|∇up|2−p(1− f2p )

(|∇up|2)′
∣

∣

∣

r=r0
=

(

f2p
r2

(1 + h2)

)′∣
∣

∣

∣

r=r0

= −2(1 + h2)
fp
r20

(

fp
r0

− f ′p

)

.

Substituting the above into (2.26) we obtain

signh′′(r0) = sign g(r0) , (2.27)
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where
g(r) := 2hf2p − {(p − 2)(1 − h) + 2}(1 − f2p ) . (2.28)

Since r0 is a minimum point of h, we must have g(r0) ≥ 0. Put

r1 = sup{r ∈ (r0,∞) : h′ ≥ 0 on (r0, r]} .

If r1 = ∞ then, since h < 1, h −−−→
r→∞

h∞ where 0 < h∞ ≤ 1. But this leads to a

contradiction since then also
rf ′p −−−→r→∞

h∞ ,

which is inconsistent with limr→∞ f(r) = 1. If r1 < ∞ then necessarily h′(r1) = 0
and h′′(r1) ≤ 0, implying that g(r1) ≤ 0 too. But since h is non-decreasing on
(r0, r1) while f is strictly increasing on (r0, r1) (by Proposition 2.5), it follows from
(2.28) that g is strictly increasing on (r0, r1). Therefore, g(r1) > g(r0) ≥ 0, implying
as in (2.27) that h′′(r1) > 0. This contradiction completes the proof of (2.25).

Finally, as h is both positive and decreasing it must converge to a limit h∞ ≥ 0.
From the above argument we obtain that h∞ = 0.

Corollary 2.1. f ′p is monotone decreasing in R+.

The corollary follows immediately from the fact that f ′p is a product of the
positive functions h and fp/r, the first of which is non-increasing, and the second is
strictly decreasing.

2.5 Asymptotic behavior

In the following we derive the behavior of 1−f2p as r → ∞. The first lemma is a well-
established result in asymptotic analysis. We include the proof for the convenience
of the reader.

Lemma 2.3. Let g(x) be monotone decreasing on (0,∞). Let further
∫ ∞

r
g(t)dt =

1

rα
[1 + o(1)] as r → ∞ .

for some positive α. Then,

g(r) =
α

rα+1
[1 + o(1)] as r → ∞ .

Proof. Put G(r) =
∫∞
r g(t) dt. Then, for any h > 0,

hg(r) ≥
∫ r+h

r
g(t) dt = G(r)−G(r + h) =

1 + η(r)

rα
− 1 + η(r + h)

(r + h)α
, (2.29)

where limr→∞ η(r) = 0. By (2.29),

hg(r) ≥ (1 + η(r))
( 1

rα
− 1

(r + h)α

)

+
η(r)− η(r + h)

rα

≥ 1

rα

(

(1− ηm)
{

1− (1 +
h

r
)−α

}

− 2ηm

)

,

10



where ηm(r, h) = max(|η(r)|, |η(r + h)|). Let ǫ = h
r . Since for some C > 0 we have

1− (1 + ǫ)−α ≥ 1 + αǫ− Cǫ2 , ǫ ∈ [0,
1

2
] ,

it follows that

hg(r) ≥ 1

rα

(

(1− ηm)(αǫ− Cǫ2)− 2ηm

)

.

Therefore,

g(r) ≥ 1

rα+1

(

(1− ηm)(α− Cǫ)− 2
ηm
ǫ

)

. (2.30)

Choosing ǫ = η
1/2
m we get from (2.30) (since limr→∞ suph>0 ηm(r, h) = 0),

g(r) ≥ α

rα+1
(1 + o(1)) , as r → ∞ .

The second direction is proved in a similar manner.

We use the above lemma to prove the following result

Lemma 2.4.

1− f2p ∼ p

2

1

rp
as r → ∞ , (2.31a)

f ′p ∼
p2

4

1

rp+1
. (2.31b)

Proof. Integrating by parts (2.7) between r and infinity yields
∫ ∞

r
fp(1− f2p )dt =

p

2

∫ ∞

r
|∇up|p−2

[fp
t
− f ′p

]dt

t
+
p

2
|∇up|p−2f ′p ,

or equivalently that

∫ ∞

r
fp(1−f2p )dt =

p

2

∫ ∞

r
|1+h2|(p−2)/2(1−h)

(

fp
t

)p−1dt

t
+
p

2
|1+h2|(p−2)/2h

(

fp
r

)p−1

.

(2.32)
Applying the integral mean value theorem yields the existence of r∗ ∈ [r,∞)

such that
∫ ∞

r
|1+h2|(p−2)/2(1−h)

(

fp
t

)p−1dt

t
= |1+h2(r∗)|(p−2)/2(1−h(r∗))fp−1

p (r∗)
r−(p−1)

p− 1
.

Hence, in view of Lemma 2.2 and the fact that fp −−−→
r→∞

1 we obtain

∫ ∞

r
|1 + h2|(p−2)/2(1 − h)

(

fp
t

)p−1dt

t
=
r−(p−1)

p− 1
[1 + o(1)] as r → ∞ . (2.33)

Further, in view of Lemma 2.2 we have

|1 + h2|(p−2)/2h

(

fp
r

)p−1

= o(r−(p−1)) . (2.34)
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Substituting (2.33)–(2.34) into (2.32) yields

∫ ∞

r
fp(1− f2p )dt =

p

2

r−(p−1)

p− 1
[1 + o(1)] as r → ∞ .

As fp −−−→
r→∞

1 we have

∫ ∞

r
fp(1− f2p )dt = [1 + o(1)]

∫ ∞

r
(1− f2p )dt as r → ∞ ,

and hence
∫ ∞

r
(1− f2p )dt =

p

2

r−(p−1)

p− 1
[1 + o(1)] as r → ∞ .

The proof of (2.31a) follows immediately from Lemma 2.3 and the monotonicity of
fp.

To prove (2.31b) we first note that

lim
r→∞

1− f2p
1− fp

= 2 .

Hence,
∫ ∞

r
f ′pdt =

p

4rp
[1 + o(1)] as r → ∞ .

Lemma 2.3 provides, once again, the closing argument for the proof.

3 Large p

In this section we discuss the behavior of the radially symmetric solution in the large
p limit. We prove the following result

Theorem 1. Let

f∞ =

{

r√
2

r <
√
2

1 r ≥
√
2
. (3.1)

There exists C > 0 such that for every p > 2 we have

‖fp − f∞‖L∞(R+) = ‖fp − f∞‖∞ ≤ C
( ln p

p

)1/2
. (3.2)

To prove the theorem we shall need to prove first a few auxiliary results. We
first derive a simple upper bound

Lemma 3.1. We have

Ip(fp) ≤
(

1

6
+ C

ln p

p

)

, ∀p > 2 . (3.3)

12



Proof. We use the test function

f̃ =











1√
2

(

1− ln p
p

)

r , r <
√
2

1− ln p

p

1 , r ≥
√
2

1− ln p

p

.

It is easy to show that there exists C > 0, independent of p such that

Ip(f̃) ≤
(

1

6
+ C

ln p

p

)

, ∀p > 2 ,

from which the lemma immediately follows.

We first deal with the interval [0,
√
2].

Proposition 3.1. We have

∃C > 0 : ‖∇up‖∞ ≤ 1 +
C

p
, ∀p > 2 . (3.4)

Proof. We first note that by Lemma 2.2 and Step 2 of the proof of Proposition 2.4
both f ′p and fp/r are decreasing. Therefore, the same holds for |∇up| and it follows
that

‖∇up‖∞ = |∇up(0)| . (3.5)

Obviously, if we have |∇up|−1 ≫ 1/p over a sufficiently large right semi-neighborhood
of r = 0, then Ip(f) would become larger than the upper bound (3.3). This, how-
ever, does not eliminate the possibility of a small neighborhood of r = 0 where
p(|∇up| − 1) is large. Thus, the proof splits into two parts: at first, using regularity
arguments, we bound from below the size of the above neighborhood as a function
of |∇up(0)|. Then, we use (3.3) to bound |∇up(0)| from above.

Suppose that |∇up(0)| = a > 1. Let

s = sup

{

r > 0 : |∇up(r)| >
1 + a

2

}

. (3.6)

By (2.13) we have for all r < s that

h′ ≥ −2

p

(

1 + a

2

)−(p−2)

r , (3.7)

hence

1− 1

p

(1 + a

2

)−(p−2)
r2 ≤ h ≤ 1 , ∀r ≤ s . (3.8)

Assume first that

s2 ≤ p

2

(1 + a

2

)p−2
, (3.9)

implying by (3.8) that

h ≥ 1

2
, ∀r ≤ s . (3.10)
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By (2.12) we have

f
′′

p

f ′p
=
h′

h
− 1− h

r
. (3.11)

Therefore, using (3.10) and (3.7)–(3.8) we deduce that

∣

∣

∣

∣

f ′′p
f ′p

∣

∣

∣

∣

= −
f ′′p
f ′p

≤ C

p

(

1 + a

2

)2−p

r , ∀r ≤ s ,

implying

exp
{

− C

2p

(

1 + a

2

)2−p

r2
}

≤
f ′p(r)

f ′p(0)
, ∀r ≤ s . (3.12)

Since h < 1,

|∇up(r)|2
|∇up(0)|2

=
(1 + h−2)|f ′p(r)|2

2|f ′p(0)|2
≥

|f ′p(r)|2
|f ′p(0)|2

, ∀r ≤ s .

Consequently, by (3.12)

exp
{

− C

p

(

1 + a

2

)2−p

r2
}

≤ |∇up(r)|2
|∇up(0)|2

, ∀r ≤ s . (3.13)

Setting r = s in (3.13) we obtain

s2 ≥ Cp

(

1 + a

2

)p−2

ln

(

2a

1 + a

)

≥ Cp

(

1 + a

2

)p−2a− 1

a
.

If (3.9) doesn’t hold, then clearly

s2 >
p

2

(1 + a

2

)p−2
.

Therefore, in all cases we have

s2 ≥ Cp
a− 1

a

(

1 + a

2

)p−2

. (3.14)

To conclude, we shall use the upper-bound for the energy from Lemma 3.1 in order
to bound s from above. Combining (3.14) with (3.3) and (3.6) yields

C ≥
∫ s

0
|∇up|prdr ≥

s2

2

(

1 + a

2

)p

≥ Cp
a− 1

a

(

1 + a

2

)2(p−1)

≥ Cp(a− 1) , (3.15)

From (3.15) we get

a ≤ 1 +
C

p
, ∀p > 2 ,

and (3.4) follows from (3.5).
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We can now obtain L∞ convergence of fp to f∞ in every compact set in [0,
√
2).

Proposition 3.2. For every b ∈ (0,
√
2) there exists C = C(b) > 0 such that,

∥

∥

∥
fp −

r√
2

∥

∥

∥

L∞(0,b)
≤ C

ln p

p
, p > 2, (3.16a)

∥

∥

∥
f ′p −

1√
2

∥

∥

∥

L∞(0,b)
≤ C

ln p

p
, p > 2 . (3.16b)

Proof. First we note that by (3.4)

|∇up(0)|2 = 2f ′p(0)
2 ≤ 1 +

C

p
=⇒ f ′p(0) ≤

1√
2
+
C

p
.

Since f ′p is decreasing, we conclude that

f ′p(r) ≤
1√
2
+
C

p
. (3.17)

Integrating (3.17), using fp(0) = 0, yields the existence of C > 0 such that for every
p > 2 we have, for all r > 0,

fp(r) ≤
1√
2

(

1 +
C

p

)

r . (3.18)

Put
w(r) =

r√
2
− fp(r).

By (3.17)–(3.18) we have

w′(r) ≥ −C
p

≥ −C ln p

p
and w(r) ≥ −C

p
≥ −C ln p

p
, ∀r > 0 .

In order to conclude, we need to prove that for each b ∈ (0,
√
2) there exists Cb such

that

w′(r) ≤ Cb
ln p

p
and w(r) ≤ Cb

ln p

p
, ∀r ∈ [0, b] . (3.19)

For such b we set b̃ = b+
√
2

2 and claim that

∫ b̃

b
w(r) dr ≤ Cb

ln p

p
. (3.20)

To prove (3.20) we first note that

1

2

∫ ∞

0

(

1− f2p
)2
r dr ≥ 1

2

∫

√
2

0

(

1− f2p
)2
r dr =

1

2

∫

√
2

0

[

1− 1

2
r2
]2

rdr+

∫

√
2

0

[

1− 1

2
r2
][

1

2
r2 − f2p

]

r dr +
1

2

∫

√
2

0

[

1

2
r2 − f2p

]2

r dr .
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Since
1

2

∫

√
2

0

[

1− 1

2
r2
]2

rdr =
1

6
,

we deduce, using (3.3), that

∫

√
2

0

[

1− 1

2
r2
][

1

2
r2 − f2p

]

r dr ≤ C
ln p

p
.

Therefore

Cb
ln p

p
≥ (1− b̃2

2
)

∫ b̃

b
w(r)(

r√
2
+ fp) rdr ,

and (3.20) follows. Finally, using the convexity of w in conjunction with (3.20) gives

w(b)(b̃ − b) +
w′(b)
2

(b̃− b)2 =

∫ b̃

b
(w(b) + (r − b)w′(b)) dr ≤

∫ b̃

b
w(r) dr ≤ Cb

ln p

p
,

implying, in particular, that

w′(b) ≤ Cb
ln p

p
. (3.21)

Since w′ is increasing we deduce the first inequality in (3.19). The second one follows
by integration of the first one.

We now improve the estimates (3.16). We start by deriving a Pohozaev-type
identity.

Proposition 3.3. We have

∫ ∞

0
|∇up|pr dr =

2

p
mp , (3.22)

where mp is defined in (2.3).

Proof. Let f
(α)
p (r) = fp(αr) and J =

∫∞
0 |∇up|pr dr. Clearly,

Mα = Ip(f
(α)
p ) = αp−2J +

1

α2
(mp − J) .

Hence,
dMα

dα
= (p − 2)αp−3J − 2

α3
(mp − J) .

Since Mα must have a global minimum at α = 1, (3.22) follows.

Corollary 3.1. We have

lim inf
p→∞

p|∇up(0)|p ≥ 1

3
. (3.23)
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Proof. Since f ′p < fp/r < 1/r we have

|∇up| ≤
√
2

r
.

Thus, for every l > 0,
∫ ∞

l
|∇up|prdr ≤

2p/2

(p − 2)lp−2
,

from which we get

lim
p→∞

∫ ∞

l
|∇up|p rdr = 0 , ∀l >

√
2 . (3.24)

By (3.16) we have

lim inf
p→∞

mp ≥ sup
b∈(0,

√
2)

lim inf
p→∞

1

2

∫ b

0
(1− f2p )

2rdr =
1

6
.

Thus, by (3.24) and (3.22) we have for all l >
√
2,

lim inf
p→∞

p

∫ l

0
|∇up|prdr ≥

1

3
.

As |∇up(r)| ≤ |∇up(0)| we deduce that

lim inf
p→∞

p|∇up(0)|p
l2

2
≥ 1

3
∀l >

√
2 ,

from which (3.23) readily follows.

Lemma 3.2. Let g = |∇up|p, and

g0 =
1

p

(

1− 1

2
r2
)2
.

Then,
lim
p→∞

p‖g − g0‖L∞(0,a) = 0 , ∀a <
√
2 . (3.25)

Proof. Multiplying (2.7) by rfp and integrating over [0, r], we obtain

p

4
r2g(1 − αp)−

p

2

∫ r

0
g(t)tdt+ h(r) = 0 , (3.26a)

in which

αp = 1−
2
fp
r f

′
p

|∇up|2
> 0 , (3.26b)

and

h(r) =

∫ r

0
f2p (1− f2p )tdt . (3.26c)
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We may write

h(r) = h0(r)(1 + βp) with h0(r) =

∫ r

0

t2

2

(

1− t2

2

)

t dt =
1

8

(

r4 − 1

3
r6
)

.

Set
ǫp(a) = max

(

‖αp‖L∞(0,a), ‖βp‖L∞(0,a)

)

. (3.27)

By (3.16) there exists C > 0 such that

ǫp(a) ≤ C
ln p

p
, (3.28)

for all fixed a <
√
2.

Set

G(r) =

∫ r

0
g(t)t dt ,

to obtain from (3.26) that

G′ − γpG+
2

p
γph = 0 , (3.29)

where

γp =
2

r(1− αp)
.

Solving (3.29) and then evaluating G′ once again from (3.29) yields the general
solution of (3.26):

g(r) = −2

p

γp
r

[

h+

∫ r

0
exp

{
∫ r

t
γp(s)ds

}

γp(t)h(t)dt + C0 exp

{

−
∫ a

r
γp(t)dt

}]

,

(3.30)
where C0 is arbitrary.

First we compute

γp
r
exp

{

−
∫ a

r
γp(t)dt

}

≤ γp
r
exp

{

− 2

∫ a

r

dt

t

}

=
γpr

a2
.

On the other hand, a similar computation gives

γp
r
exp

{

−
∫ a

r
γp(t)dt

}

≥ γp
r

(

r

a

)
2

1−ǫp

.

Therefore,

2

a2

(

r

a

)2
(

(1−ǫp)−1−1
)

≤ γp
r
exp

{

−
∫ a

r
γp(t)dt

}

≤ 2

a2
(

1 +Cǫp
)

.
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Similarly,

γp
r

∫ r

0
exp

{
∫ r

t
γp(s) ds

}

γp(t)h(t) dt ≥
γp
r

∫ r

0

(

r

t

)2

γp(t)h(t) dt

≥ 4

∫ r

0

h(t)

t3
dt ≥

(1

4
r2 − 1

24
r4
)

(

1− ǫp
)

,

and
γp
r

∫ r

0
exp

{
∫ r

t
γp(s) ds

}

γp(t)h(t) dt ≤
(1

4
r2 − 1

24
r4
)

(

1 + Cǫp
)

.

Combining the above with (3.30) we obtain that

2

p

[

C̃0r
2
(

(1−ǫp)−1−1
)

− 1

2
r2 +

1

8
r4 − Cǫp

]

≤ g ≤ 2

p

[

C̃0 −
1

2
r2 +

1

8
r4 + Cǫp

]

. (3.31)

Note that the above lower bound is unsatisfactory in some neighborhood of r = 0
where

1− r2
(

(1−ǫp)−1−1
)

∼ O(ǫp) ,

which is valid for r ∼ O(1) as p→ ∞.
We defer the proof of convergence near r = 0 to a later stage and instead prove

first the existence of limp→∞ C̃0(p), and then obtain its value. Clearly,

lim inf
p→∞

C̃0(p) ≥
1

2
,

otherwise g would become negative, for some sufficiently large p and a fixed r0 <
√
2

- a contradiction. Suppose now to the contrary, that a sequence {pk}∞k=1 exists such
that C̃0(pk) = Ck → b, where b ∈ (12 ,∞]. By (3.4) we have

‖g(·, pk)‖L∞(R+) ≤ C ,

where C is independent of k. Hence, by (3.31) we have

Ck ≤ Cpk . (3.32)

Set

g0,k = 2

[

Ck −
1

2
r2 +

1

8
r4
]

.

Note that by our supposition lim g0,k(r) > 0 in [0,
√
2+ δ] for some δ > 0. It follows

from (3.31) and (3.32) that

ln(g0,k − ǫk)

pk
−2

∣

∣

∣

∣

ln(g0,k − ǫk)

pk

∣

∣

∣

∣

2

≤ |∇up|−1+
ln pk
pk

≤ ln(g0,k + ǫk)

pk
+2

∣

∣

∣

∣

ln(g0,k + ǫk)

pk

∣

∣

∣

∣

2

(3.33)
where ǫk(a) = ǫ(pk)(a).
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We argue from here by bootstrapping. Let a ∈ (0,
√
2 + δ] be such that

lim sup ǫk(a) ≤ lim sup
g0,k(a)

2
. (3.34)

For sufficiently large k we have, in view of (3.33) and (3.32) and the fact that
ǫk(

√
2 + δ) is bounded , that

2
fk
r
f ′k ≤ |∇up|2 ≤ 1 +

C

pk
∀r ∈ [0,

√
2 + δ] ,

where fk = fpk , from which we obtain that

fk
r

≤ 1√
2
+
C

pk
∀r ∈ [0,

√
2 + δ] . (3.35)

Consequently, by (3.33) and (3.34), we have for sufficiently large k that

f ′k ≥ 1√
2
− C

ln pk
pk

∀r ∈ [0, a] , (3.36)

where C is independent of a. Since f ′k ≤ fk/r, we have by (3.26b), for sufficiently
large k, that

αpk ≤ ln pk
pk

∀r ∈ [0, a] , (3.37)

where C is independent of a. Furthermore, by (3.26c,d), (3.35), (3.36), and the fact
that fk/r > f ′k there exists C > 0 which is independent of both k and a such that

βpk(r) ≤ C
ln pk
pk

for all r ≤ a. Combining the above and (3.37) we obtain for sufficiently large k

lim sup ǫk(a) ≤ lim
g0,k(a)

2
⇒ lim sup

pk
ln pk

ǫk ≤ C , (3.38)

where C is independent of a. From (3.16) we thus have

lim sup
pkǫk
ln pk

≤ C

for all a <
√
2.

Let then a0 be such that

lim sup ǫk(a0) = lim
g0,k(a0)

2
.

Since by (3.38) we have lim g0,k(a0) = 0, it follows that a0 >
√
2 + δ. Hence

lim sup
pk
ln pk

ǫk(
√
2 + δ) ≤ C .
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Substituting into (3.31) we obtain that

lim
pk

ln pk
g(
√
2 + δ) > 0 .

Let l >
√
2. Then, f ′p(l) < fp(l)/l < 1/l, and hence g(l) ≤ (

√
2/l)p. Consequently,

g(l) is exponentially small for all l >
√
2 as p→ ∞, and in particular at l =

√
2 + δ

- a contradiction. Hence, we obtain that limp→∞ C̃0(p) = 1/2 .
To complete the proof of (3.25) we need to extend (3.31) to every neighborhood

of r = 0. Since obtaining an O(ǫp) accuracy in this neighborhood is a difficult task,
we allow for an error of larger magnitude. Thus, requiring that

2

p

[

C̃0r
2
(

(1−ǫp)−1−1
)

− 1

2
r2 +

1

8
r4 −Cǫ

1
2
p

]

≤ g ≤ 2

p

[

C̃0 −
1

2
r2 +

1

8
r4 +Cǫ

1
2
p

]

. (3.39)

It is easy to show that the lower bound in (3.39) provides an estimate which is

O(ǫ
1
2
p )-accurate whenever r2 > e−ǫ

− 1
2

p . To complete the proof of (3.25), we just need

to obtain an O(ǫ
1
2
p )-accurate estimate for g, valid for r2 ≤ e−ǫ

− 1
2

p .
We argue again by bootstrapping. We may regroup the terms in (2.8) to get

− 2

p
|∇up|2−pfp(1−f2p ) = f ′′p

(

1+
p− 2

|∇up|2
|f ′p|2

)

+
(f ′p
r
− fp
r2

)(

1+
p− 2

|∇up|2
fpf

′
p

r

)

. (3.40)

By Step 1 in the proof of Proposition 2.4 we have
f ′
p

r − fp
r2
> 0, and by Corollary 2.1,

f ′′p < 0. Hence,

f ′′p ≥ −2

p
|∇up|2−pfp(1− f2p ) .

It follows that as long as

g ≥ g(0)
(

1− ǫ
1
2
p

)

,

we must have, by (3.16) that

f ′′p ≥ −2

p

r
[

g(0)
(

1− ǫ
1
2
p

)

](p−2)/p
.

Integrating the above yields, in view of (3.23),

f ′p(r) ≥ f ′p(0)− 4r2
(

1 + 2ǫ
1
2
p

)

.

Note that we can replace the constant 4 by any other constant greater than 3.
Consequently,

|∇up| ≥
√
2|f ′p| ≥

√
2
∣

∣f ′p(0)− 4r2
(

1 + 2ǫ
1
2
p

)
∣

∣ ≥
√
2|f ′p(0)|

∣

∣

∣

∣

1− 4
√
2r2

|∇up(0)|

2
(

1 + 2ǫ
1
2
p

)

∣

∣

∣

∣

.
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Hence,

g(r) ≥ g(0)
(

1− ǫ
1
2
p

)

⇒ g(r) ≥ g(0)

[

1− 4
√
2r2

|∇up(0)|
(

1 + 2ǫ
1
2
p

)

]p

Applying again (3.23) we obtain that as long as

r2 <
1

8p
ǫ
1
2
p ,

we have

g(r) ≥ g(0)
(

1− ǫ
1
2
p

)

. (3.41)

On the other hand,
g(r) ≤ g(0) . (3.42)

Since (3.41), (3.42), and (3.39) are simultaneously satisfied at r2 = 2e−ǫ
− 1

2
p , we

obtain






2
p C̃0(1 + Cǫ

1
2
p ) ≥ g(0)(1 − ǫ

1
2
p )

2
p C̃0(1− Cǫ

1
2
p ) ≤ g(0)

.

Consequently,
∣

∣

∣

∣

C̃0 −
p

2
g(0)

∣

∣

∣

∣

≤ Cǫ
1
2
p .

Furthermore, in view of (3.41) and (3.39) we can safely state that

2

p

[

C̃0−
1

2
r2+

1

8
r4C̃0−Cǫ

1
2
p

]

≤ g ≤ 2

p

[

C̃0−
1

2
r2+

1

8
r4+Cǫ

1
2
p

]

, in [0, a], ∀a ∈ (0,
√
2).

(3.43)
Or

‖p(g − g0)‖ ≤ |C̃0(p)− 1|+ Cǫ1/2p .

Remark 3.1. From (3.25) we can obtain the next two terms in the asymptotic
expansion of fp in the large p limit

fp =
r√
2

[

1− ln p

p
+

ln g0(r)

p
+ o

(

1

p

)]

. (3.44)

The above expansion is valid in [0, a] for every a <
√
2.

Remark 3.2. Note that (3.43) is valid for all r > 0. It is only because of (3.28)
that we have to confine the validity of (3.25) to closed intervals in [0,

√
2) whose

edges do not depend on p. Note further that by (3.27) we have that ǫp ≤ 2 for all
r ≤

√
2.

We can now extend the validity of the above estimate to [0,
√
2−O(

√

ln p/p)].
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Proposition 3.4. There exists C > 0, which is independent of p, such that the
estimate (3.25) holds for every r ∈ [0,

√
2− C(ln p/p)1/2].

Proof. Let

g0,C = C̃0 −
1

2
r2 +

1

8
r4 .

Suppose that C̃0 is such that g0,C(
√
2−∆p) = 0. From the previous lemma we have

that ∆p → 0 as p→ ∞. It is easy to show that,

g0,C

(√
2− 2

3
∆p

)

≤ −C∆2
p ,

for all C < 1/6 and for sufficiently large p.
Let

|∇up|
(√

2− 2

3
∆p

)

= 1− δp .

Since fp/r ≤ 1/
√
2, we have f ′p

(√
2 − 2∆p/3

)

≥ 1 − Cδp. From here it is easy to

show that ǫp(
√
2− 2∆p/3) ≤ Cδp. By (3.40) we have

f ′′p ≤ −C

p2
|1− δp|2−p(1− r√

2
) + Cp1/2 ∀r ∈ [

√
2− 2∆p/3,

√
2−∆p/3] , (3.45)

where we have taken into account the fact that |∇up| is decreasing and that

1 + p−2
|∇up|2

f ′
pfp
r

1 + p−2
|∇up|2 |f ′p|2

≤ Cp1/2 .

Integrating (3.45) over [
√
2− 2∆p/3,

√
2−∆p/3] yields

− 1√
2
≤ −C

∆2
p

p2
|1− δp|−p + Cp1/2∆p ,

from which we obtain

(1− δp)
p ≥ C

∆2
p

p5/2
.

Consequently,

δp ≤
5

2

ln p

p
− 2

ln∆p

p
+
C

p
.

We conclude from here that

ǫp(
√
2− 2∆p/3) ≤ Cδp ≤ C

ln p

p
. (3.46)

Since g is positive we obtain by (3.31) that

∆p ≤ C
[ ln p

p

]1/2
.

Since ǫp(a) is an increasing function of a (3.25) must be valid in [0,
√
2−2∆p/3].
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Proof of Theorem 1. In view of proposition 3.4 there exists C > 0 such that (3.16a)
and hence (3.44) hold for sufficiently large p whenever r <

√
2−C(ln p/p)1/2. From

the monotonicity of fp it follows that

fp(
√
2− C/(ln p/p)1/2) ≤ fp(r) ≤ 1 .

4 Stability of the radial solution

In this section we prove our main stability result for up = fp(r)e
iθ, the degree one

radially symmetric solution of

p

2
∇ · (|∇u|p−2∇u) + u(1− |u|2) = 0 . (4.1)

A simple computation gives the second variation of Ep at up:

J2(φ) =

∫

R2

{

p

2
|∇up|p−2

[

|∇φ|2 + (p− 2)
|ℜ(∇up · ∇φ̄)|2

|∇up|2
]

+ 2|ℜ(upφ̄)|2 − (1− |up|2)|φ|2
}

. (4.2)

Because of (4.2) and analogously to [5], we consider perturbations in the “natural”
Hilbert space H consisting of functions φ ∈ H1

loc(R
2,R2) for which

∫

R2

∫

R2

{

p

2
|∇up|p−2

[

|∇φ|2 + (p− 2)
|ℜ(∇up · ∇φ̄)|2

|∇up|2
]

+ 2|ℜ(upφ̄)|2 + (1− |up|2)|φ|2
}

<∞ .

Note that H contains all “admissible perturbations” φ, i.e., any φ for which Ep(up+
φ) <∞. Note also that in contrast with the case p = 2, in our case p > 2, constant
functions do belong to H. Thanks to the invariance of the functional Ep with respect
to rotations and translations (see [11]) we have

J2(φ) = 0 for φ =











∂up

∂θ = ifpe
iθ ,

∂up

∂x1
= 1

2(f
′
p −

fp
r )e

2iθ + 1
2(f

′
p +

fp
r ) ,

∂up

∂x2
= − i

2(f
′
p −

fp
r )e

2iθ + i
2(f

′
p +

fp
r ) .

(4.3)

Indeed, this leads to the equality cases in the next theorem.

Theorem 2. For every 2 < p ≤ 4 the radially symmetric solution up is stable in
the sense that J2(φ) ≥ 0 for all φ ∈ H. Moreover, we have J2(φ) = 0 if and only if

φ = c0
∂up
∂θ

+ c1
∂up
∂x1

+ c2
∂up
∂x2

, for some constants c0, c1, c2 ∈ R. (4.4)
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Following [9] we represent each φ by its Fourier expansion

φ =

∞
∑

n=−∞
φn(r)e

inθ . (4.5)

Substituting into (4.2) we obtain

1

2π
J2(φ) = E1(φ1) +

∞
∑

n=2

En(φn, φ2−n) , (4.6)

in which

E1(φ1) =

∫ ∞

0

{

p

2
|∇up|p−2

[

|φ′1|2 +
1

r2
|φ1|2 + (p− 2)

∣

∣ℜ
(

f ′pφ
′
1 +

fpφ1

r2

)
∣

∣

2

|∇up|2
]

+ 2f2p |ℜφ1|2 − (1− f2p )|φ1|2
}

rdr , (4.7a)

and

En(φn, φ2−n) =

∫ ∞

0

{

p

2
|∇up|p−2

[

|φ′n|2 + |φ′2−n|2 +
n2

r2
|φn|2 +

(2− n)2

r2
|φ2−n|2+

1

2
(p− 2)

∣

∣f ′p(φ̄
′
n + φ′2−n) +

fp
r2
(nφ̄n + (2− n)φ2−n)

∣

∣

2

|∇up|2
]

+ f2p |(φ̄n + φ2−n)|2 − (1− f2p )(|φn|2 + |φ2−n|2)
}

rdr . (4.7b)

A necessary and sufficient condition for the positive definiteness of J2 is that
the En’s are all positive definite. An appropriate Hilbert space for the study of the
functionals {En} is

S = {φ ∈ H1
loc(R+,C) ∩ L2

r(R+,C) :

∫ ∞

0

p

2
|∇up|p−2

[

|φ′|2 + 1

r2
|φ|2

]

rdr <∞} .

We also denote by S̃ the space of real-valued functions in S.

4.1 n 6= 2

We consider first the case n = 1.

Lemma 4.1.

inf
φ∈S

E1(φ) = 0 . (4.8)

Furthermore, the minimum in (4.8) is attained only for φ = cifp, for any real
constant c.
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Proof. Since E1(i|φ|) ≤ E1(φ) for every φ for which E1(φ) <∞, with strict inequal-
ity unless φ takes only purely imaginary values, we may consider instead of E1 the
following functional

Ẽ1(φ) =

∫ ∞

0

{

p

2
|∇up|p−2

[

|φ′|2 + 1

r2
|φ|2

]

− (1− f2p )|φ|2
}

rdr ,

over S̃. Consider first φ ∈ C∞
c (0,∞) and set φ = fpw. Integration by parts, with

the aid of (2.7) yields

F1(w) = Ẽ1(fpw) =

∫ ∞

0

p

2
|∇up|p−2f2p |w′|2rdr . (4.9)

A standard use of cut-off functions yields that (4.9) holds also for smooth φ = fpw
with compact support in [0,∞) (i.e, the support may contain the origin). Finally,
by density of smooth maps with compact support in [0,∞) in S̃ it follows that (4.9)
continues to hold for φ = fpw ∈ S̃. Therefore, Ẽ1(φ) ≥ 0 for all φ ∈ S̃ and F1(w) = 0
if and only if w ≡ const.

We now consider the case n ≥ 3.

Proposition 4.1. For each n ≥ 3 we have

En(u1, u2) > 0 for all (u1, u2) ∈ S̃ × S̃ \ {(0, 0)} .

Proof. The result follows right away from the previous lemma and the inequality

En(u1, u2) ≥ Ẽ1(|u1|) + Ẽ1(|u2|) ,

with strict inequality, unless uj ≡ 0, j = 1, 2.

4.2 n = 2

It is easy to reduce the analysis of E2 to that of a functional acting on real-valued
functions. Indeed, writing a complex-valued function φ as φ = φR + iφI , we have

E2(φ2, φ0) = ER
2 (φ

R
2 , φ

R
0 ) + EI

2(φ
I
2, φ

I
0) ,

where
ER

2 (φ
R
2 , φ

R
0 ) = E2(φ

R
2 , φ

R
0 ), EI

2(φ
I
2, φ

I
0) = E2(iφ

I
2, iφ

I
0) .

Clearly,
E2(iφ

I
2, iφ

I
0) = ER

2 (−φI2, φI0) .
Hence,

E2(φ2, φ0) = EI
2(−φR2 , φR0 ) + EI

2(φ
I
2, φ

I
0) , (4.10)

and it suffices to study the minimization to the functional EI
2 over S̃ × S̃.
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From (4.3) and (4.6) it follows that the functions

Φ0 = f ′p +
fp
r

and Φ2 = −f ′p +
fp
r
, (4.11)

satisfy
ER

2 (−Φ2,Φ0) = EI
2(Φ2,Φ0) = 0 .

We next claim:

Proposition 4.2. For p ∈ (2, 4] we have EI
2(φ2, φ0) ≥ 0 for every (φ2, φ0) ∈ S̃ × S̃

with equality if and only if (φ2, φ0) = c(Φ2,Φ0) for some c ∈ R (see (4.11)).

For the proof of Proposition 4.2 we shall need some preliminary results. First,
by (4.7b) we have

EI
2(φ2, φ0) =

∫ ∞

0

{

p

2
|∇up|p−2

[

(φ′2)
2 + (φ′0)

2 +
4

r2
(φ2)

2

+
1

2
(p− 2)

(

f ′p(φ
′
0 − φ′2)− 2

fp
r2φ2)

)2

|∇up|2
]

+ f2p (φ0 − φ2)
2 − (1− f2p )

(

(φ2)
2 + (φ0)

2
)

}

rdr . (4.12)

It is more convenient to consider an alternative form by applying the transformation

A = φ0 + φ2, B = φ0 − φ2,

to obtain

EI
2(φ0, φ2) = F2(A,B) :=

∫ ∞

0

{

p

4
|∇up|p−2

[

(A′)2 + (B′)2 +
2

r2
(A−B)2

+ (p− 2)

(

f ′pB
′ − fp

r2 (A−B)
)2

|∇up|2
]

+ f2pB
2 − 1

2
(1− f2p )(A

2 +B2)

}

rdr . (4.13)

Clearly,
F2(fp/r, f

′
p) = 0 . (4.14)

The “problematic term” in (4.13) is the one involving the mixed product AB′. The
difficulty in handling this term is the obstacle for determining the positivity of F2

for every p > 2. We were able to overcome this difficulty only in the case p ∈ (2, 4]
thanks to the following lemma.
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Lemma 4.2. We have

F2(A,B) = G2(A,B) +

∫ ∞

0

p(p− 2)

4
|∇up|p−2

(

hA′ − 1
r (h

2A−B)
)2

1 + h2
rdr , (4.15)

with

G2(A,B) =

∫ ∞

0

{

p

4
|∇up|p−2

[

(A′)2 + (B′)2 +
2

r2
(A−B)2

+ (p− 2)
h2((B′)2 − (A′)2) + 1−h4

r2
A2 − 2

r2
(1− h2)AB

1 + h2

]

+
p(p− 2)

4r
[H ′(2AB −B2)− (h2H)′A2]

+ f2pB
2 − 1

2
(1− f2p )(A

2 +B2)

}

rdr , (4.16)

where

H =
h

1 + h2
|∇up|p−2 and h = rf ′p/fp (as in (2.10)) .

Moreover, G2(fp/r, f
′
p) = 0 and the pair (fp/r, f

′
p) solves the Euler-Lagrange equa-

tions associated with G2.

Proof. First, a direct computation gives the identity

(f ′pB
′ − fp

r2 (A−B))2

|∇up|2

=
h2(|B′|2 − |A′|2)− 2h

r [(AB)′ −BB′ − h2AA′] + 1−h4

r2
|A|2 − 2

r2
(1− h2)AB

1 + h2

+
(hA′ − 1

r (h
2A−B))2

1 + h2
. (4.17)

Next, integration by parts yields

∫ ∞

0
|∇up|p−2

{−2h
r [(AB)′ −BB′ − h2AA′]

1 + h2

}

r dr

=

∫ ∞

0

{

H ′(2AB −B2)− (h2H)′A2
}

dr (4.18)

Using (4.17)–(4.18) in conjunction with (4.13) leads to (4.15)–(4.16). Finally, a
direct computation shows that the integrand in the integral on the right-hand-side
of (4.15) is identically zero for A = fp/r and B = f ′p, and the last assertion of the
lemma follows.
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Proof of Proposition 4.2. In view of Lemma 4.2 it suffices to show that

G2(u, v) ≥ 0, ∀(u, v) ∈ S̃ × S̃, with equality iff:

u = φ := fp/r and v = ψ := f ′p . (4.19)

We write G2 in the form

G(u, v) =

∫ ∞

0

(

α(r)u′2 + β(r)v′2 + a(r)u2 + 2b(r)uv + c(r)v2
)

dr .

The properties of the coefficients which are important to us are

α(r), β(r) > 0 and b(r) < 0, for r > 0 . (4.20)

Indeed, clearly β(r) > 0. Next,

α(r) =
p

4
|∇up|p−2r

(

1− (p− 2)
h2

1 + h2

)

> 0 ,

provided p ≤ 4, since 0 < h < 1 by Step 1 of Proposition 2.4 and Proposition 2.5.
Finally,

b = r
{p

4
|∇u0|p−2

[

− 2

r2
− (p− 2)

r2
(1− h2)

]

+
p(p− 2)

4r
H ′

}

< 0 ,

since 0 < h(r) < 1, and

H ′ = |∇up|p−2 (1− h2)h′

(1 + h2)2
+ (p − 2)

h

1 + h2

(

(fp
r

)(fp
r

)′
+ f ′pf

′′
p

)

< 0 ,

since h′ ≤ 0 by Lemma 2.2 and both f ′p and fp/r are decreasing (as we noted already
before, by Lemma 2.2 and Step 2 of the proof of Proposition 2.4).

By Lemma 4.2 we know that φ and ψ satisfy

{

−(αφ′)′ + aφ+ bψ = 0,

−(βψ′)′ + cψ + bφ = 0.
(4.21)

We consider first u, v ∈ C∞
c (0,∞). By Picone’s identity

(u′)2 − (
u2

φ
)′φ′ = (u′ − (u/φ)φ′)2 ≥ 0 (4.22)

(v′)2 − (
v2

ψ
)′ψ′ = (v′ − (v/ψ)ψ′)2 ≥ 0 . (4.23)
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Multiplying (4.22)–(4.23) by α and β respectively, applying integration by parts and
using (4.21) we obtain

0 ≤
∫ ∞

0
α(u′)2 − α(

u2

φ
)′φ′ + β(v′)2 − β(

v2

ψ
)′

=

∫ ∞

0
α(u′)2 +

u2

φ
(aφ+ bψ) + β(v′)2 +

v2

ψ
(cψ + bφ)

=

∫ ∞

0
αu′2 + βv′2 + au2 + cv2 + b(u2

ψ

φ
+ v2

φ

ψ
)

= G(u, v) +

∫ ∞

0
b
(

u
(ψ

φ

)1/2 − v
(φ

ψ

)1/2
)2
.

(4.24)

From (4.24) and a density argument we conclude that

G(u, v) ≥
∫ ∞

0
(−b)

(

u
(ψ

φ

)1/2 − v
(φ

ψ

)1/2
)2
, ∀u, v ∈ S̃ ,

and (4.19) follows.
Next we are ready to present the proof of our main stability theorem.

Proof of Theorem 2. Representing each φ ∈ H by its Fourier expansion (4.5), we
have by (4.6), Lemma 4.1, Proposition 4.1, (4.10) and Proposition 4.2 that J2(φ) ≥ 0.
Furthermore, by the equality cases in Lemma 4.1, Proposition 4.1 and Proposi-
tion 4.2 we have J2(φ) = 0 iff φ = φ0 + φ1e

iθ + φ2e
2iθ where

φ1 = a1ifp , (φI2, φ
I
0) = a2(Φ2,Φ0) and (−φR2 , φR0 ) = a3(Φ2,Φ0) , with a1, a2, a3 ∈ R .

It is easy to verify that these relations are equivalent to (4.4).
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