
ar
X

iv
:1

01
1.

24
17

v1
  [

m
at

h.
N

T
] 

 1
0 

N
ov

 2
01

0

INTERPOLATION FUNCTION OF THE
GENOCCHI TYPE POLYNOMIALS

Burak Kurt and Yilmaz Simsek
Akdeniz University, Faculty of Arts and Science, Department of Mathematics,
07058-Antalya, Turkey, burakkurt@akdeniz.edu.tr and ysimsek@akdeniz.edu.tr

Abstract The main purpose of this paper is to construct not only gen-
erating functions of the new approach Genocchi type numbers and polynomials
but also interpolation function of these numbers and polynomials which are
related to a, b, c arbitrary positive real parameters. We prove multiplication
theorem of these polynomials. Furthermore, we give some identities and ap-
plications associated with these numbers, polynomials and their interpolation
functions.
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1 Introduction, Definitions and Notations

The history of the Euler numbers and the Genocchi numbers go beck to Eu-
ler on16th century and Genocchi on 19th century, respectively. From Euler and
Genocchi to this time, these numbers can be defined in many other ways. These
numbers and polynomials play an important role in many branch of Mathemat-
ics, for instance, Number Theory, Finite differences. Therefore, applications of
these numbers and their generating functions have been investigated by many
authors in the literature. Many kind of functions are used to obtain generating
functions of the Euler numbers and the Genocchi numbers cf. ([1]-[28]).

The classical Euler numbers En are defined by means of the following gen-
erating function.

2

et + 1
=

∞
∑

n=0

En

tn

n!
, |t| < π,

cf. ([1]-[28]).
The classics Genocchi numbers Gn are defined by means of the following

generating function

fG(t) =
2t

et + 1
=

∞
∑

n=0

Gn

tn

n!
, |t| < π. (1)

The Genocchi numbers, named after Angelo Genocchi, are a sequence of
integers. This numbers are satisfies the following relations. By the umbral
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calculus convention in (1), we have the recurrence relations of the Genocchi
numbers as follows:

G0 = 0, (G+ 1)n +Gn =

{

2, n = 1
0, n 6= 1

(2)

where Gn is replaced by Gn.
Relations between Genocchi numbers, Euler numbers and Bernoulli numbers

are given by:

En =
Gn+1

n+ 1
, (3)

G2n = 2(1− 22n)B2n

= 2nE2n−1(0),

where Bn and En are Bernoulli numbers and Euler Numbers respectively, cf.
([4], [11], [14], [7], [16], [13], [24], [28], [26]).

The ordinary Genocchi Polynomials are defined by means of the following
generating function:

fG(t, x) = fG(t)e
xt =

∞
∑

n=0

Gn(x)
tn

n!
. (4)

From (1) and (4), we easily see that

Gn(x) =

n
∑

k=0

(

n

k

)

Gkx
n−k.

Observe that G0 = 0, G1 = 1, G3 = G5 = G7 = · · · = G2n+1 = 0, n ∈ Z+

cf. ([4], [5], [6], [11], [13], [18]).
In [19] and [20], Luo et al defined new type generalized Bernoulli polynomials

and Euler polynomials depending on three positive arbitrary real parameters.
They proved many identities and relations related to these polynomials. Main
motivation of the work is to define generating functions of Genocchi type num-
bers and polynomials depending on three positive arbitrary real parameters.

Luo et al ([19], [20]) did not define interpolation functions of their numbers
and polynomials. On the other hand, in this present paper, we can construct
interpolation functions of our new numbers and polynomials which depending
on three positive arbitrary real parameters. We also prove some new relations
and properties associated with these numbers, polynomials and intepolation
functions.

We now summarize our paper as follows:
In Section 2, we construct generating functions of the Genocchi type numbers

and polynomials. We give reoccurrence relations of these numbers. We prove
multiplication theorem of these polynomials. We also give some properties of
these numbers and polynomials.
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In Section 3, we find formula of the alternating sums of powers of consecutive
integers.

In section 4, by using derivative operator dkf(t)
dtk

|t=0 to the generating func-
tion of the Genocchi type numbers and polynomials, we construct interpolation
functions of these numbers and polynomials.

In Section 5, we give further remarks and observations on interpolation func-
tions.

2 Genocchi Type Numbers and Polynomials

In this section, by using same method that of , we define generalized Genocchi
number and polynomial depending on three positive arbitrary real parameters.
We investigate fundamental properties of these numbers and polynomials.

Throughout of this paper a, b and c are positive real parameters with a 6= b

and x ∈ R.
Now we are ready to define generating function of Genocchi type number

depending on three positive arbitrary real parameters as follows:

F (t; a, b) =
2t

bt + at
=

∞
∑

n=0

Gn(a, b)
tn

n!
, |t| <

π

|ln a− ln b|
. (5)

By using (5) and the umbral calculus convention, we obtain

2te−t lna

et(ln b−lna) + 1
= eGn(a,b)t

After some calculations, we get the following reoccurrence relations for the num-
ber Gn(a, b) as follows:

Let G0(a, b) = 0 and G1(a, b) = 1. For n ≥ 2,

Gn(a, b) +

n
∑

k=0

(

n

k

)

(ln b− ln a)k−nGk(a, b) = 2n lnn−1

(

1

a

)

. (6)

By using (6), we give few Genocchi-type numbers as follows:

G2(a, b) = − ln a− ln b,

G3(a, b) = −6 ln2 a+ 3 lna ln b.

Remark 1 By substituting a = 1, b = e into (5) and (2), then we arrive at (1)
and (6), respectively. That is, the number Gn(1, e) reduces to the number Gn.

Lemma 2 Let a, b be arbitrary positive real parameters. Then we have

Gn(a, b) = (ln b− ln a)n−1Gn

(

ln a

ln a− ln b

)

, (7)

3



and

Gn(a, b) =
n
∑

k=0

(

n

k

)

(−1)n−k(ln a)n−k(ln b− ln a)k−1Gk. (8)

Proof. We firstly give proof of (7). From (5), we have

∞
∑

n=0

Gn(a, b)
tn

n!
=

∞
∑

n=0

(ln b− ln a)n−1Gn

(

ln a

ln a− ln b

)

tn

n!
.

By comparing the coefficient zn

n! in the both sides of the above equation, we
easily arrive at (7). Secondly, we give proof of (8). By using (5), we have

∞
∑

n=0

Gn(a, b)
tn

n!

=
1

(ln b− ln a)

∞
∑

n=0

Gn(ln b− ln a)n
tn

n!

∞
∑

n=0

(− ln a)n
tn

n!
.

By using Cauchy product in the above, we obtain

∞
∑

n=0

Gn(a, b)
tn

n!

=
1

ln b− ln a

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

Gk(−1)n−k(ln a)n−k(ln b− ln a)k

)

tn

n!
.

By comparing the coefficient tn

n! in the both sides of the above equation, we
easily arrive at (8).

Genocchi type polynomials, depending on three positive arbitrary real pa-
rameters, are defined by means of the following generating function:

Let

F(t, x; a, b, c) = F (t; a, b)cxt =
∞
∑

n=0

Gn(x; a, b, c)
tn

n!
, (9)

where |t| < π
|ln a−ln b| .

Remark 3 If x = 0, then (9) reduces to (5). By substituting a = 1, b = c = e

into (9), then we have

F(t, x; 1, e, e) = fG(t, x).

F (t; 1, e) = fG(t).

From the above, we have

Gn(x; 1, e, e) = Gn(x),

Gn(x; a, b, 1) = G(a, b),

Gn(0; a, b, c) = Gn(a, b),

and
Gn(0; 1, e, e) = Gn.
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Remark 4 Recently, many kind generating functions related to Bernoulli, Eu-
ler and Genocchi type polynomials have been found. Srivastava et al. [29, pp.
254, Eq. (20)], introduced and investigated the new type generalization of the

Bernoulli polynomials order α, B
(α)
n (x;λ; a, b, c), which are defined by means of

the following generating functions:

(

t

λbt − at

)α

cxt =

∞
∑

n=0

B(α)
n (x;λ; a, b, c)

tn

n!
,
(∣

∣

∣t ln(
a

b
) + ln λ

∣

∣

∣ < 2π; 1α := 1;x ∈ R
)

.

(10)
If we set α = 1 and λ = −1 in (10), then we have

B(1)
n (x;−1; a, b, c) = −

1

2
Gn(x; a, b, c).

The numbers B
(1)
n (x;−1; a, b, c) are related to Apostol-Bernoulli numbers. Oz-

den et al. [21] have unifed and extend the generating functions of the generalized
Bernoulli polynomials, the generalized Euler polynomials and the generalized
Genocchi polynomials associated with the positive real parameters a and b and
the complex parameter β. By applying the Mellin transformation to the gener-
ating function of the unification of Bernoulli, Euler and Genocchi polynomials,
they defined a unification of the zeta functions.

Theorem 5 Let a, b, c be arbitrary positive real parameters. Then we have

Gn(x; a, b, c) =
n
∑

k=0

(

n

k

)

(x ln c)n−kGk(a, b), (11)

or

Gn(x; a, b, c) =

n
∑

k=0

(

n

k

)

(x ln c)n−k(ln b− ln a)n−1Gk

(

ln a

ln a− ln b

)

. (12)

Proof of (11). By (7), we have

∞
∑

n=0

Gn(x; a, b, c)
tn

n!
=

∞
∑

n=0

Gn(a, b)
tn

n!

∞
∑

n=0

(x ln c)n
tn

n!
.

By Cauchy product in the above, we easily see that

∞
∑

n=0

Gn(x; a, b, c)
tn

n!
=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

Gk(a, b)x
n−k(ln c)n−k

)

tn

n!
.

By comparing the coefficient zn

n! in the both sides of the above equation, we
easily arrive at the desire result. By substituting (7) into (11) and (8) into (11),
after some elementary calculations, we arrive at the proofs of (12).

By (12), we easily obtain the following corollary.
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Corollary 6 Let a, b, c be arbitrary positive real parameters. Then we have

Gn(x; a, b, c) =

n
∑

k=0

k
∑

j=0

(

n

j, n− k, k − j

)

(−1)k−jxn−k

×(ln c)n−k(ln a)k−j(ln b− ln a)n+j−k−1Gj ,

where Gj denotes classical Genocchi numbers and
(

n

j, n− k, k − j

)

=
n!

j!(n− k)!(k − j)!
.

We now give application of Theorem 5 as follows:

G0(x; a, b, c) = 0,

G1(x; a, b, c) = 1,

G2(x; a, b, c) = 2x ln c− ln a− ln b,

If we take a = 1, and b = c = e in the above, then we obtain ordinary
Genocchi polynomials as follows:

G0(x; 1, e, e) = 0,

G1(x; 1, e, e) = 1,

G2(x; 1, e, e) = 2x− 1,

G3(x; 1, e, e) = 3(x2 − x).

By using (9), we have

∞
∑

n=0

Gn(x+ 1; a, b, c)
tn

n!
=

2tc(x+1)t

bt + at

= 2tcxt +
2tcxt(ct − at − bt)

bt + at
= 2

∞
∑

n=0

(ln c)nxntn+1

n!

+2

(

∞
∑

n=0

Gn(x; a, b, c)t
n

n!

)(

∞
∑

n=0

((ln c)n − (ln a)n − (ln b)n) tn

n!

)

.

After some elementary calculations in the above, we obtain

∞
∑

n=0

Gn(x+ 1; a, b, c)
tn

n!

= −2G0 + t (2 + 2(ln c− ln a− ln b)G0 − 2G1(x; a, b, c))

+
∞
∑

n=2

(

2n(ln c)n−1xn−1 − Gn(x; a, b, c)
) tn

n!

+
∞
∑

n=2

(

n−1
∑

l=0

(

n

l

)

(ln c)n−l − (ln a)n−l − (ln b)n−l

)

Gn(x; a, b, c)
tn

n!
.(13)

Thus, by using the above equation, we arrive at the following corollary:
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Corollary 7 Let a, b, c be arbitrary positive real parameters. Then we have

Gn(x+ 1; a, b, c) =

n
∑

k=0

(

n

k

)

Gk(x; a, b, c)(ln c)
n−k, (14)

or

Gn(x+ 1; a, b, c) = Gn(x;
a

c
,
b

c
, c). (15)

By substituting a = 1, b = c into (13) with n ≥ 1, we have

Gn(x+ 1; 1, b, b) = 2n(ln b)n−1xn−1 −Gn(x; 1, b, b).

By substituting b = e into (13) with n ≥ 1, we obtain

Gn(x+ 1) = 2nxn−1 −Gn(x).

By using (9), we easily arrive at the following result:

Corollary 8 The Generalized Genocchi polynomial is satisfying following rela-
tions

Gn(x+ y; a, b, c) =

n
∑

k=0

(

n

k

)

Gk(x; a, b, c)(ln c)
n−kyn−k,

or

Gn(x+ y; a, b, c) =

n
∑

k=0

(

n

k

)

Gk(y; a, b, c)(ln c)
n−kxn−k.

Theorem 9 (Multiplication Theorem) Let a, b, c be arbitrary positive real pa-
rameters. Then we have

∞
∑

n=0

Gn(x; a, b, c)
tn

n!
= yn−1

y−1
∑

j=0

(−1)jGn

(

j

y
; a, b,

c(
x
y )b(

j

y )

a(
j+1

y )

)

.

Proof. By using (9), we have

∞
∑

n=0

Gn(x; a, b, c)
tn

n!
= yn−1

∞
∑

n=0

y−1
∑

j=0

(−1)jGn

(

j

y
; a, b,

c(
x
y )b(

j

y )

a(
j+1

y )

)

tn

n!
.

After some calculations in the above, we arrive at the desired result.
We now define Genocchi type polynomial of higher order as follows:

F (k)(t, x; a, b, c) =

(

2t

bt + at

)k

cxt =

∞
∑

n=0

G(k)
n (x; a, b, c)

tn

n!
, (16)

where G
(k)
n (x; a, b, c) denotes the Genocchi type polynomial of higher order and

k is positive integer.

Observe that F (1)(t, x; a, b, c) = F(t, x; a, b, c) and G
(1)
n (x; a, b, c) = Gn(x; a, b, c).
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By using (16), we obtain

∞
∑

n=0

G(l+k)
n (x + y; a, b, c)

tn

n!

= (
2t

at + bt
)l+kc(x+y)t

=

∞
∑

n=0

G(l)
n (x; a, b, c)

tn

n!

∞
∑

n=0

G(k)
n (y; a, b, c)

tn

n!
.

From the above, we obtain

∞
∑

n=0

G(l+k)
n (x+ y; a, b, c)

tn

n!

=

∞
∑

n=0





n
∑

j=0

(

n

j

)

G
(l)
j (x; a, b, c)G

(k)
n−j(y; a, b, c)





tn

n!
.

After some elementary calculations, we arrive at the following theorem:

Theorem 10 Let l and k be positive integers. Let a, b, c be arbitrary positive
real parameters. Then we have

G(l+k)
n (x + y; a, b, c) =

n
∑

j=0

(

n

j

)

G
(l)
j (x; a, b, c)G

(k)
n−j(y; a, b, c). (17)

3 The alternating sums of powers of consecutive

integers

In 1713, J. Bernoulli discovered a formula for the sum
n
∑

b=0

bj for j ∈ Z+. In

this section we prove the alternating sums of powers of consecutive integers for
Gn(x; a, b, c).

By using (5) and (9), we obtain

F (t; 1, b)− (−1)mF(t,m; 1, b, b)

=

∞
∑

n=0

(Gn(1, b)− (−1)mGn(m; 1, b, b))
tn

n!
.

From the above, we have

m−1
∑

k=0

(−1)kbkt =

∞
∑

n=0

(

Gn(1, b)− (−1)mGn(m; 1, b, b)

2

)

tn−1

n!
.

After some calculations, we arrive at the following theorem:
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Theorem 11 Let m and n be positive integers. Let b be arbitrary positive real
parameter. Then we have

m−1
∑

k=0

(−1)kkn =
Gn(1, b)− (−1)mGn(m; 1, b, b)

2n lnn (b)
.

Remark 12 By substituting b = e into Theorem 11, then we have

m−1
∑

k=0

(−1)kkn =
Gn(1, e)− (−1)mGn(m; 1, e, e)

2n

=
Gn − (−1)mGn(m)

2n
.

Thus, by (3), Theorem 11 reduces to

m−1
∑

k=0

(−1)kkn =
En − (−1)mEn(m)

2
,

cf. ([4], [5], [14], [22], [20], [19], [28]).

4 Interpolation Functions

In this section, we construct interpolation function of the generalized Genocchi
type numbers and polynomials on C.

By using (9), we have

F(t, x; a, b, c) = 2t
∞
∑

n=0

(−1)ne(x ln c−lna+n ln b
a
)t

=

∞
∑

n=0

Gn(x; a, b, c)
tn

n!
.

By applying derivative operator dkF(t,x;a,b,c)
dtk

|t=0 to the above, we obtain

Gk(x; a, b, c) = 2k

∞
∑

n=0

(−1)n(n ln c− ln a+ n ln
b

a
)k−1.

Therefore, by using the above relation, we obtain the following theorem.

Theorem 13 Let k ∈ Z+. Let a, b, c be arbitrary positive real parameters.
Then we have

Gk(x; a, b, c)

k
= 2

∞
∑

n=0

(−1)n(x ln c− ln a+ n ln
b

a
)k−1.

9



By Theorem 13, we can derive Hurwitz type generalized Genocchi zeta func-
tion, which interpolates Genocchi polynomials at negative integers, as follows.

Definition 14 Let s ∈ C. Let a, b, c be arbitrary positive real parameters. We
define

ZG(s, x; a, b, c) = 2
∞
∑

n=0

(−1)n

(x ln c− ln a+ n ln b
a
)s
.

From Definition 14, we see that

ZG(s, 1; a, b, 1) = 2
∞
∑

n=0

(−1)n

(− lna+ n ln b
a
)s
. (18)

By substituting s = −n, with n ∈ Z+, into Definition 14 and using Theorem
13, we arrive at the following Theorem.

Theorem 15 Let n ∈ Z+. Let a, b, c be arbitrary positive real parameters.
Then we have

ZG(−n, x; a, b, c) =
Gn(x; a, b, c)

n
.

Observe that setting x = 1 in Theorem 15, we get interpolation function of
the numbers Gn(a, b) as follows:

ZG(−n, 1; a, b, 1) =
Gn(a, b)

n
.

By setting n = j +my with j = 1, 2, · · · , y, y is an odd integer, and m =
0, 1, · · · ,∞ in (18), we obtain

ZG(s, 1; a, b, 1) =
1

ys

y
∑

j=1

(−1)j
∞
∑

m=0

(−1)m
(

− lna
y

+
j ln b

a

y
+m ln b

a

)s .

After some calculations in the above, we arrive at the following corollary:

Corollary 16 Let y be an odd integer. Let a, b, c be arbitrary positive real
parameters. Then we have

ZG(s, 1; a, b, 1) =
1

ys

y
∑

j=1

(−1)jZG

(

s, 1; a, b,
b(

j
y )

a(
y+j−1

y )

)

.

5 Further Remarks and Observations

The function ZG(s, x; a, b, c) and ZG(s, 1; a, b, 1) are related to the Lerch tran-
cendent Φ(z, s, a) which is the analytic continuation of the series

Φ(z, s, a) =
1

as
+

z

(a+ 1)s
+

z

(a+ 2)s
+ · · · q

=
∞
∑

n=0

zn

(n+ a)s
,

10



cf. see [31, p. 121 et seq.], [2]. The series
∑∞

n=0
zn

(n+a)s converge for a ∈ C�Z
−
0 ,

s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1 where

Z−
0 = Z− ∪ {0} , Z− = {−1,−2,−3, ...} .

Φ denotes the familiar Hurwitz-Lerch Zeta function (cf. [31, p. 121 et seq.],
[2], [27], [11],[18]).

The Lerch zeta function Φ(z, s, u) is the analytic continuation of the following
series

∞
∑

n=0

zn

(n+ u)s
(19)

which converge for any real number u > 0 if z and s are any complex numbers
with either |z| < 1, or |z| = 1 and ℜ(s) > 1.

The functio Φ(z, s, u) is related to many special functions, some of them are
given as follows, cf. ([31, p. 124], [2], [27]):

Special cases include the analytic continuations of the Riemann zeta function

Φ(1, s, 1) = ζ(s) =

∞
∑

n=1

1

ns
, ℜ(s) > 1,

the Hurwitz zeta function

Φ(1, s, a) = ζ(s, a) =
∞
∑

n=0

1

(n+ a)s
, ℜ(s) > 1,

the alternating zeta function (also called Dirichlet’s eta function η(s))

Φ(−1, s, 1) = ζ∗(s) =
∞
∑

n=1

(−1)n−1

ns
,

the Dirichlet beta function

Φ(−1, s, 12 )

2s
= β(s) =

∞
∑

n=0

(−1)n

(2n+ 1)s
,

the Legendre chi function

zΦ(z2, s, 1
2 )

2s
= χs(z) =

∞
∑

n=0

z2n+1

(2n+ 1)s
, |z| ≤ 1;ℜ(s) > 1,

the polylogarithm

zΦ(z, n, 1) = Lim(z) =

∞
∑

n=0

zk

nm

and the Lerch zeta function (sometimes called the Hurwitz-Lerch zeta function)

L(λ, α, s) = Φ(e2πiλ, s, α),

11



which is a special function and generalizes the Hurwitz zeta function and poly-
logarithm, cf. ([2], [31], [4], [6], [7], [9], [8], [12], [17], [27]) and see also the
references cited in each of these earlier works.

Setting a = 1, b = c = e in Definition 14, then we have

ZG(s, x; 1, e, e) = 2

∞
∑

n=0

(−1)n

(x+ n)s
,

and

ZG(s, 1; 1, e, e) = 2

∞
∑

n=0

(−1)n

ns
.

By using (19), the function ZG(s, x; 1, e, e) and ZG(s, 1; 1, e, e) satisfies the
following identities:

ZG(s, x; 1, e, e) = −2Φ(−1, s, x).

and

ZG(s, 1; 1, e, e) = 2Φ(−1, s, 1)

= −2ζ∗(s).

Acknowledgement 17 This paper was supported by the Scientific Research
Fund of Project Administration of Akdeniz University.

References

[1] H. Ozden, I. N. Cangul and Y. Simsek, A new approach to q-Genocchi
numbers and their interpolation functions, Nonlinear Anal. 71(12) (2009),
e793-e799, doi:10.1016/j.na.2008.11.040.

[2] J. Guillera and J. Sondow, Double integrals and infinite products for some
classical constants via analytic continuations of Lerch’s transcendent, Ra-
manujan J. 16 (2008), 247-270. arXiv:math/0506319v3 [math.NT].

[3] L.-C. Jang, A study on the distribution of twisted q-Genocchi polynomials,
Adv. Stud. Contemp. Math. 18(2) (2009), 181-189.

[4] L.-C. Jang, T. Kim, D.-H. Lee and D.-W. Park, An application of polyloga-
rithms in the analogs of Genocchi numbers, Notes Number Theory Discrete
Math. 7(3) (2001), 65-69.

[5] L.-C. Jang and T. Kim, q-Genocchi numbers and polynomials associated
with fermionic p-adic invariant integrals on Zp, Abst. Appl. Anal. vol. 2008,
Article ID 232187, 8 pages, 2008. doi:10.1155/2008/232187.

[6] L.-C. Jang and T. Kim, On the distribution of the q-Euler polynomials and
the q-Genocchi polynomials of higher order, J. Inequal. Appl. 2008, Art.
ID 723615, 9 pp.

12

http://arxiv.org/abs/math/0506319


[7] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal.
Appl. 326 (2007), 1458-1465.

[8] T. Kim, q-Euler numbers and polynomials associated with p-adic q-
integrals, J. Nonlinear Math. Phys. 14(1) (2007), 15-27.

[9] T. Kim, A note on the q-Genocchi numbers and polynomials, J. Inequal.
Appl. vol. 2007, Article ID 71452, 8 pages, 2007. doi:10.1155/2007/71452.

[10] T. Kim, A note on p-adic q-integral on Zp associated with q-Euler numbers,
Adv. Stud. Contemp. Math. 15(2) (2007), 133-137.

[11] T. Kim, On the multiple q-Genocchi and Euler numbers, Russ. J. Math
Phys. 15(4) (2008), 481-486.

[12] T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp.
Math. 17(2) (2008), 131-136.

[13] T. Kim, Note on q-Genocchi numbers and polynomials, Adv. Stud. Con-
temp. Math. 17(1) (2008), 9-15.

[14] T. Kim, On the alternating sums of powers of consecutive q-integers, Bull.
Korean Math. Soc. 43(3) (2006), 611-617, arXiv:math/0509613 [math.NT].

[15] T. Kim, New approach to q-Euler, Genocchi numbers and their interpola-
tion functions, Adv. Stud. Contemp. Math. 18(2) (2009), 105-112.

[16] T. Kim and S-H. Rim, On the twisted q-Euler numbers and polynomials
associated with basic q-l-functions, J. Math. Anal. Appl. 336(1) (2007),
738-744.

[17] T. Kim, M.-S. Kim, L.-C. Jang and S.-H. Rim, New q-Euler numbers and
polynomials associated with p-adic q-integrals, Adv. Stud. Contemp. Math.
15(2) (2007), 243-252.

[18] T. Kim, L.-C. Jang and H. K. Pak, A note on q-Euler and Genocchi num-
bers, Proced. Japan Acad. Series A, 77(8) (2001), 139-141.

[19] Q.-M. Luo, B.-N. Guo, F. Qi, and L. Debnath, Generalizations of Bernoulli
numbers and polynomials, International J. Math. Math. Sci. vol. 2003, no.
59, pp. 3769-3776, 2003. doi:10.1155/S0161171203112070

[20] Q.-M. Luo, F. Qi, and L. Debnath, Generalizations of Euler numbers and
polynomials, International J. Math. Math. Sci. vol. 2003, no. 61, pp. 3893-
3901, 2003. doi:10.1155/S016117120321108X.

[21] H. Ozden, Y. Simsek and H.M. Srivastava, A unified presentation of the
generating functions of the generalized Bernoulli, Euler and Genocchi poly-
nomials, Computers & Mathematics with Applications, In Press, Corrected
Proof, Available online 8 October 2010, doi:10.1016/j.camwa.2010.09.031.

13

http://arxiv.org/abs/math/0509613


[22] H. Ozden, I. N. Cangul and Y. Simsek, Multivariate interpolation functions
of higher-order q-Euler numbers and their applications, Abst. Appl. Anal.
2008, Art. ID 390857, 16 pp.

[23] K. H. Park and Y.-H. Kim, On some arithmetical properties of the Genocchi
numbers and polynomials, Adv. Differ. Equ. vol. 2008, Article ID 195049,
14 pages, 2008. doi:10.1155/2008/195049.

[24] S-H. Rim, K. H. Park and E. J. Moon, On Genocchi numbers and
polynomials, Abst. Appl. Anal. vol. 2008, Article ID 898471, 7 pages,
doi:10.1155/2008/898471.

[25] Y. Simsek, q-analogue of twisted l-series and q-twisted Euler numbers, J.
Number Theory 110(2) (2005), 267–278.

[26] Y. Simsek, q-Hardy–Berndt type sums associated with q-Genocchi
type zeta and q-l-functions, Nonlinear Anal., 71(12) (2009), e377-e395,
doi:10.1016/j.na.2008.11.014.24.

[27] Y. Simsek, Special functions related to Dedekind type DC-Sums and their
applications, arXiv:0902.0380v1 [math.CV].

[28] Y. Simsek, I. N. Cangul, V. Kurt and D. Kim, q-Genocchi numbers and
polynomials associated with q-Genocchi-type L-functions, Adv. Differ. Equ.
Vol. 2008, Article ID: 815750, 12 pages, DOI: 10.1155/2008/815750.

[29] H. M. Srivastava, M. Garg and S. Choudhary, A new generalization of
the Bernoulli and related polynomials, Russian J. Math. Phys. 17 (2010)
251-261.

[30] H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and poly-
nomials associated with multiple q-zeta functions and basic L-series. Russ.
J. Math. Phys. 12 (2005) 241-268.

[31] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related
Functions, Kluwer Acedemic Publishers, Dordrecht, Boston and London,
2001.

14

http://arxiv.org/abs/0902.0380

	1 Introduction, Definitions and Notations
	2 Genocchi Type Numbers and Polynomials
	3 The alternating sums of powers of consecutive integers
	4 Interpolation Functions
	5 Further Remarks and Observations

