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Abstract

We give a simple proof of an extension of the existence results of Ricci flow of
G. Giesen and P.M. Topping [GiT1],[GiT2], on incomplete surfaces with bounded above
Gauss curvature without using the difficult Shi’s existence theorem of Ricci flow on
complete non-compact surfaces and the pseudolocality theorem of G. Perelman [P1] on
Ricci flow. We will also give a simple proof of a special case of the existence theorem
of P.M. Topping [T] without using the existence theorem of W.X. Shi [S1].
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Recently there is a lot of study on the Ricci flow on manifold by R. Hamilton [H1], [H2],
S.Y. Hsu [Hs1–4], G. Perelman [P1], [P2], W.X. Shi [S1], [S2], L.F. Wu [W1], [W2], and
others because Ricci flow is a powerful tool in the study of geometric problems. We refer
the readers to the book [CLN] by B. Chow, P. Lu and L. Ni, for the basics of Ricci flow and
the papers [P1], [P2], of G. Perelman and the book [Z] by Qi S. Zhang for the most recent
results on Ricci flow.

In 1982 R. Hamilton [H1] proved that if M is a compact manifold and gij(x) is a metric
of strictly positive Ricci curvature, then there exists a unique metric g that evolves by the
Ricci flow

∂

∂t
gij = −2Rij (1)

on M × (0, T ) for some T > 0 with gij(x, 0) = gij(x) where Rij(·, t) is the Ricci curvature of
g(·, t).
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Short time existence of solutions of the Ricci flow on complete non-compact Riemannian
manifold with bounded curvature was proved by W.X Shi [S1]. Global existence and unique-
ness of solutions of the Ricci flow on non-compact manifold R

2 was obtained by S.Y. Hsu in
[Hs1]. Existence and uniqueness of the Ricci flow on incomplete surfaces with negative Gauss
curvature was obtained by G. Giesen and P.M. Topping in [GiT1]. In [GiT1] G. Giesen and
P.M. Topping proved the following theorem.

Theorem 1. (Theorem 1.1 of [GiT1]) SupposeM is a surface (i.e. a 2-dimensional manifold
without boundary) equipped with a smooth Riemannian metric g0 whose Gauss curvature
satisfies K[g0] ≤ −η < 0, but which need not be complete. Then exists a unique smooth Ricci
flow g(t) for t ∈ [0,∞) with the following properties:

(i) g(0) = g0;

(ii) g(t) is complete for all t > 0;

(iii) the curvature of g(t) is bounded above for any compact time interval within [0,∞);

(iv) the curvature of g(t) is bounded below for any compact time interval within (0,∞).

Moreover this solution satisfies K[g(t)] ≤ − η
1+tη

for t ≥ 0 and − 1
2t
≤ K[g(t)] for t > 0.

By abuse of notation we will write K[u] = K[g] for the Gauss curvature of a metric
of the form g = e2uδij . As observed by G. Giesen and P.M. Topping [GiT1] in order to
prove Theorem 1 it suffices to assume that M = D is a unit disk in R

2 and g0 = e2u0δij
is a conformal metric on D. Then by scaling Theorem 1 is equivalent to the following two
theorems.

Theorem 2. (cf. Theorem 3.1 and Lemma 2.2 of [GiT1]) Let g0 = e2u0δij be a smooth
conformal metric on the unit disk D with

K[u0] ≤ −1. (2)

Then there exists a smooth solution g(t) = e2uδij of (1) in D × [0,∞) with g(0) = g0 such
that g(t) is complete for every t > 0 with the Gauss curvature K[u(t)] satisfying

K[u(t)] ≥ − 1

2t
∀t > 0, (3)

K[u(t)] ≤ − 1

2t + 1
∀t ≥ 0, (4)

u(x, t) ≥ log
2

1− |x|2 +
1

2
log(2t) ∀x ∈ D, t > 0, (5)

u(x, t) ≤ log
2

1− |x|2 +
1

2
log(2t+ 1) ∀x ∈ D, t ≥ 0, (6)
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and

u(x, t) ≥ u0(x) +
1

2
log(2t+ 1) in D × [0,∞). (7)

Moreover g(t) is maximal in the sense that if g̃(t) for t ∈ [0, ε] is another Ricci flow with
g̃(0) = g0 for some ε > 0, then

g̃(t) ≤ g(t) ∀0 ≤ t ≤ ε. (8)

Theorem 3. (cf. Theorem 4.1 of [GiT1]) Let e2u0δij be a smooth metric on the unit disk D
satisfying the upper curvature bound (2). Let e2uδij be a solution of (1) in D × (0,∞) with
u(·, 0) = u0 which satisfies (3) and (4). Then u is unique among solutions that satisfy (3)
and (4).

The proof of Theorem 3.1 and Lemma 2.2 of [GiT1] uses the results of [T], the Schwartz
Lemma of S.T. Yau [Y], and the difficult existence theorem of W.X. Shi [S1] for Ricci flow
on complete non-compact manifolds. In this paper we will give a simple proof of Theorem
2 using the results of K.M. Hui in [Hu3] and [Hu4]. We will assume that M = D ⊂ R

2 is
a unit disk for the rest of the paper. Note that for a metric g on a 2-dimensional manifold,
Ric[g] = K[g]g. We will also give simple proofs of the following extension of the existence
results of G. Giesen and P.M. Topping [GiT2] and a special case of Theorem 1.1 of [T]
without using the existence theorem of W.X. Shi [S1] and the pseudolocality Theorem of
G. Perelman [P1] on Ricci flow.

Theorem 4. (cf. Theorem 3.1 of [GiT2] and Theorem 1.1 of [T]) Let g0 = e2u0δij be
a smooth (possible incomplete) Riemannian metric on D. Then there exists a maximal
instantaneous smooth complete Ricci flow g(t) = e2uδij on D for all time t ∈ [0,∞) with
g(0) = g0 which satisfies (3) and (5). Suppose in addition the Gauss curvature satisfies

K[g0] ≤ K0 (9)

for some constant K0 ≥ 0. Then the following holds.

(i) If K0 > 0, then

K[u(t)] ≤ 1

K−1
0 − 2t

∀0 ≤ t < (2K0)
−1 (10)

and

u(x, t) ≥ u0(x) +
1

2
log(1− 2K0t) ∀0 ≤ t < (2K0)

−1. (11)

(ii) If K0 = 0, then
K[u(t)] ≤ 0 ∀t ≥ 0 (12)

and
u(x, t) ≥ u0(x) ∀t ≥ 0. (13)
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Theorem 5. (cf. [DP1], [Hu2], [Hs1], Theorem 1.1 of [T] and Theorem 3.2 of [GiT2]) Let
g0 = e2u0δij be a smoooth metric on R

2 which need not be complete. Then there exists a
maximal instantaneous smooth complete Ricci flow g(t) = e2uδij on R

2 for t ∈ [0, T ) with
g(0) = g0 which satisfies (3) and for any 0 < T1 < T and r0 > 1 there exists a constant
C > 0 such that

u(x, t) ≥ −C − log(|x| log |x|) + 1

2
log(2t) ∀|x| ≥ r0, 0 ≤ t ≤ T1 (14)

where

T =





Volg0(R
2)

4π
if Volg0(R

2) <∞
∞ if Volg0(R

2) = ∞
(15)

and

Volg(t)(R
2) =

{
4π(T − t) ∀0 ≤ t < T if Volg0(R

2) <∞
∞ ∀t > 0 if Volg0(R

2) = ∞.
(16)

If in addition the Gauss curvature satisfies (9) for some constant K0 ≥ 0, then the following
holds.

(i) If K0 > 0, then (10) and (11) holds on R
2 for any 0 ≤ t < (2K0)

−1 and T ≥ (2K0)
−1.

(ii) if K0 = 0, then (12) and (13) holds on R
2 for any t ≥ 0 and T = ∞.

We start with some definitions. For any r1 > 0, T1 > 0, let Br1 = {x ∈ R
2 : |x| < r1},

Qr1 = Br1 × (0,∞), QT1
r1 = Br1 × (0, T1), and ∂pQr1 = (∂Br1 × [0,∞))∪ (Br1 ×{0}). For any

set A ⊂ R
2, let χA be the characteristic function of the set A. Note that for any metric of

the form e2u(x,t)δij in Q
T
r1
, we have

K[u] = −∆u

e2u

and e2u(x,t)δij is a solution of (1) in QT
r1

if any only if

∂u

∂t
= e−2u∆u in QT

r1 . (17)

where ∆ is the Euclidean Laplacian on R
2. Let

v = e2u. (18)

Then (17) is equivalent to
∂v

∂t
= ∆ log v in QT

r1
. (19)

Existence and various properties of (19) were studied by P. Daskalopoulos and M.A. Del
Pino [DP1], S.H. Davis, E. Dibenedetto, and D.J. Diller [DDD], J.R. Esteban, A. Rodriguez,
and J.L. Vazquez [ERV1], [ERV2], S.Y. Hsu [Hs1], K.M. Hui [Hu2], etc. We refer the readers
to the book [DK] by P. Daskalopoulos and C.E. Kenig and the book [V] by J.L. Vazquez for
the recent results on the equation (19).
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For any 0 ≤ v0 ∈ L1
loc(Br1), we say that v is a solution of





vt = ∆ log v in Qr1

v > 0 in Qr1

v(x, t) = ∞ on ∂Br1 × (0,∞)

v(x, 0) = v0(x) in Br1

(20)

if v is a classical solution of (19) in Qr1 ,

lim
y→x

v(y, t) = ∞ ∀x ∈ ∂Br1 , t > 0,

inf
Br1×(t1,t2)

v(x, t) > 0 ∀t2 > t1 > 0,

and
lim
t→0

‖v(·, t)− v0‖L1(K) = 0 (21)

for any compact set K ⊂ Br1 . We say that v is a solution of (19) in R
2 × (0, T ) with initial

value v0 if v is a classical solution of (19) in R
2× (0, T ), v > 0 in R

2× (0, T ), and (21) holds
for any compact set K ⊂ R

2.
Note that for any solution v of (19) the equation (19) is uniformly parabolic on K for

any compact set K ⊂ QT
r1
. Hence by the Schauder estimates [LSU] and a bootrap argument

v ∈ C∞(QT
r1
) for any solution v of (19). We first observe that by the same argument as the

proof of Theorem 1.6 of [Hu3] we have the following result.

Theorem 6. (cf. Theorem 1.6 of [Hu3]) Let r1 > 0. Suppose v0 ≥ 0 satisfies

v0 ∈ Lploc(Br1) for some constants p > 1.

Then exists a solution v of (20) which satisfies

vt ≤
v

t
(22)

in Qr1 and

v(x, t) ≥ C
t

φ(x)
in Qr1

for some constant C > 0 depending on φ and λ where φ and λ are the first positive eigenfunc-
tion and the first positive eigenvalue of the Laplace operator −∆ on Br1 with ‖φ‖L2(Br1 )

= 1.

Lemma 7. Let r1 > 0. Suppose v0 is a positive smooth function on Br1 and v is a solution
of (20). Then v ∈ C∞(Br1 × [0,∞)).

Proof: We will first use a modification of the technique of Lemma 1.6 of [Hu1] to show that
v is uniformly bounded below by a positive constant on Br3 × [0, 1] for any 0 < r3 < r1. Let
0 < r3 < r2 < r1, δ1 = r3 − r2, and

ε =
1

2
min
Br2

v0.
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Since v0 is a smooth positive function on Br1, ε > 0. Let w be the maximal solution of the
equation (19) in R

2×(0, T ) constructed in [DP1] and [Hu2] with initial value w(x, 0) = εχBδ1

and T = ε|Bδ1 |/4π which satisfies
∫

R2

w(x, t) dx =

∫

R2

w(x, 0) dx− 4πt ∀0 ≤ t < T.

For any α > 0, let

wα(x, t) = w(αx, α2t) ∀x ∈ R
2, 0 ≤ t < T/α2.

and
vα,p(x, t) = v(αx+ p, α2t) ∀p ∈ Br3 , |x| < δ1/α, t > 0.

Since v0(x + p) ≥ w(x, 0) for any p ∈ Br3 , x + p ∈ Br1 , and v = ∞ on ∂Br1 × (0,∞), by
Corollary 1.8 and Lemma 2.9 of [Hu4],

v(x+ p, t) ≥ w(x, t) ∀p ∈ Br3 , x+ p ∈ Br1 , 0 ≤ t < T

⇒ vα,p(x, t) ≥ wα(x, t) ∀p ∈ Br3 , |x| < δ1/α, 0 ≤ t < T/α2. (23)

Since wα(x, 0) = w(αx, 0) = εχBδ1/α
,

0 ≤ wα1(x, 0) ≤ wα2(x, 0) ≤ ε ∀x ∈ R
2, α1 ≥ α2 > 0. (24)

By (24) and the comparison theorems in [DP1] and [Hu2],

0 < wα1(x, t) ≤ wα2(x, t) ≤ ε ∀x ∈ R
2, 0 < t < ε|Bδ1 |/(4πα2

1), α1 ≥ α2 > 0. (25)

We choose 0 < α0 < δ1 such that ε|Bδ1 |/(4πα2
0) > 1. By (25) the equation (19) for wα,

0 < α ≤ α0, is uniformly parabolic on every compact set K ⊂ R
2 × (0, 1]. Then by

the Schauder estimates [LSU] {wα}{0<α≤α0} are equi-Holder continuous in C2(K) for any
compact set K ⊂ R

2 × (0, 1]. Hence by (25) wα increases and converges uniformly on every
compact subset K of R2 × (0, 1] to the constant function ε in R

2 × (0, 1] as α → 0. Then
there exists α1 ∈ (0, α0) such that

wα(x, 1) ≥
ε

2
∀|x| ≤ 1, 0 < α ≤ α1. (26)

By (23) and (26),

v(αx+ p, α2) = vα,p(x, 1) ≥
ε

2
∀p ∈ Br3 , |x| ≤ 1, 0 < α ≤ α1

⇒ v(p+ y, t) ≥ ε

2
∀p ∈ Br3, |y| ≤

√
t, 0 < t ≤ α2

1. (27)

Let λ and φ be the first positive eigenvalue and the first positive eigenfunction of −∆ on Br2

with ‖φ‖L2(Br2 )
= 1. Let C1 = max(2λ‖φ‖L∞, 12‖∇φ‖L∞, ‖v0‖L∞(Br1 )

+ 1) and

ψ(x, t) = C1(t+ 1)e1/φ(x).
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By the computation on P.784-785 of [Hu3], ψ is a supersolution of (19). Then an argument
similar to the proof Theorem 2.9 of [Hu4],

∫

Br2

(v − ψ)+(x, t) dx ≤
∫

Br2

(v − ψ)+(x, t1) dx ∀t ≥ t1 > 0. (28)

Since
∫

Br2

(v − ψ)+(x, t1) dx ≤
∫

Br2

|v(x, t1)− v0(x)| dx+
∫

Br2

(v0(x)− ψ(x, t1))+ dx

→0 as t1 → 0,

letting t1 → 0 in (28), ∫

Br2

(v − ψ)+(x, t) dx = 0 ∀t > 0.

Hence
v(x, t) ≤ ψ(x, t) = C1(t+ 1)e1/φ(x) ∀|x| < r2, t ≥ 0.

Thus
v(x, t) ≤ C ′(t+ 1) ∀|x| ≤ r3, t ≥ 0 (29)

for some constant C ′ > 0. By (27) and (29), the equation (19) is uniformly parabolic on
Br3 × [0, 1] for any 0 < r3 < r1. By standard parabolic estimates [LSU] and a bootstrap
argument, v ∈ C∞(Br1 × [0,∞)) and the lemma follows. �

We will now prove Theorem 2.
Proof of Theorem 2: Let v0(x) = e2u0(x). For any k = 2, 3, . . . , by Theorem 6 there exists a
solution vk of (20) with r1 = 1− (1/k) and initial value v0 which satisfies (22) in B1−(1/k) ×
(0,∞) and

vk(x, t) ≥ Ck
t

φk(x)
in B1−(1/k) × (0,∞) (30)

for some constant Ck > 0 depending on φk and λk where φk and λk are the first positive
eigenfunction and the first positive eigenvalue of the Laplace operator −∆ on B1−(1/k) with
‖φ‖L2(B1−(1/k)) = 1. By Lemma 7, vk ∈ C∞(B1−(1/k)× [0,∞)). By Corollary 1.8 and Theorem
2.9 of [Hu4],

vk ≥ vk+1 in B1−(1/k) × (0,∞) ∀k ≥ 2. (31)

Since φk and λk converges to φ and λ as k → ∞ where φ and λ are the first posi-
tive eigenfunction and the first positive eigenvalue of the Laplace operator −∆ on B1 with
‖φ‖L2(B1) = 1, by the proof of Theorem 1.2 and Theorem 1.6 of [Hu3] there exists a constant
C > 0 such that

Ck ≥ C ∀k ≥ 2. (32)

Let k0 ≥ 2. Then by (30) and (32) there exists a constant C0 > 0 such that

vk(x, t) ≥ C0t in B1−(1/k0) × (0,∞) ∀k > k0. (33)
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By Corollary 1.8 of [Hu4] for any 0 < t1 < t2 there exists a constant C ′ > 0 such that

vk(x, t) ≤ C ′ ∀|x| ≤ 1− (1/k0), t1 ≤ t ≤ t2, k > k0. (34)

By (33) and (34) the equation (19) for vk are uniformly parabolic on Q1−(1/k0) for all k > k0.
By the parabolic Schauder estimates [LSU] vk are equi-Holder continuous in C2(K) for
every compact set K ⊂ Q1−(1/k0) and all k > k0. Hence by (31) vk decreases and converges
uniformly on K to a solution v of (19) in D × (0,∞) as k → ∞ for any compact set
K ⊂ D × (0,∞). Since vk satisfies (22) in Q1−(1/k) for any k ∈ Z

+, by an argument similar
to the proof of Theorem 2.4 of [Hu3] v has initial value v0 and satisfies (22) in D × (0,∞).
Letting k → ∞ in (30), by (32),

v(x, t) ≥ C
t

φ(x)
in D × (0,∞)

⇒ lim
x→x0

v(x, t) = ∞ ∀|x0| = 1, t > 0.

Hence v is a solution of (20) with Br1 = D. By Lemma 7, v ∈ C∞(D × [0,∞)).
Let u be given by (18) and g(t) = e2uδij . Then g(t) is a smooth solution of (1) in

D × [0,∞) with initial value e2u0δij . By (19) and (22), we get (3). By (3),

∆u(x, t) ≤ 1

2t
e2u(x,t) in D ∀t > 0. (35)

For any 0 < δ < 1, let

ψδ(x, t) = log
2(1 + δ)

(1 + δ)2 − |x|2 +
1

2
log(2t) ∀x ∈ D, t > 0.

Then ψδ satisfies

∆ψδ(x, t) =
1

2t
e2ψδ(x,t) in D ∀t > 0. (36)

Let Ω(t) = {x ∈ D : u(x, t) < ψδ(x, t)}. By (35) and (36),

∆(u(x, t)− ψδ(x, t)) ≤
1

2t
(e2u(x,t) − e2ψδ(x,t)) < 0 in Ω(t) ∀t > 0. (37)

Since u(x, t)−ψδ(x, t) → ∞ as |x| → 1, Ω(t) ⊂ D. Hence by (37) and the maximum principle
[GT],

u(x, t)− ψδ(x, t) ≥ min
x∈∂Ω(t)

(u(x, t)− ψδ(x, t)) = 0 in Ω(t) ∀t > 0

⇒ u(x, t) ≥ ψδ(x, t) in D ∀t > 0. (38)

Letting δ → 0 in (38), (5) follows. We now let vk,m be the solution of





vt = ∆ log v in Q1−(1/k)

v > 0 in Q1−(1/k)

v(x, t) = v0(x)e
mt2+2t on ∂B1−(1/k) × (0,∞)

v(x, 0) = v0(x) in B1−(1/k)

(39)
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for any k ≥ 2, m ∈ Z
+, which can be constructed by similar technique as that of [Hu3]. By

an argument similar to the proof of [Hu3] vk,m increases and converges uniformly to vk on
every compact subset K of Q1−(1/k) as m→ ∞ and vk,m satisfies

0 < min
|x|≤1−k−1

v0(x) ≤ vk,m(x, t) ≤ emT
2
1 +2T1 max

|x|≤1−k−1
v0(x) ∀|x| ≤ 1− k−1, 0 ≤ t ≤ T1, k ≥ 2,

(40)

for any T1 > 0. By (40) the equation (19) for vk,m is uniformly parabolic on QT1
1−(1/k) for

any T1 > 0. Hence by (39), (40), and parabolic estimates [LSU], vk,m ∈ C∞(Q1−(1/k)). Let

pk,m = ∂tvk,m/vk,m. Then pk,m ∈ C∞(Q1−(1/k)). By (2) and (39) pk,m satisfies

pt = e−vk,m∆p− p2 in Q1−(1/k) (41)

and {
p = 2mt+ 2 on ∂B1−(1/k) × [0,∞)

p(x, 0) ≥ 2 ∀|x| ≤ 1− k−1.
(42)

Note that the function 2/(2t+ 1) satisfies (41) and by (42),

pk,m ≥ 2/(2t+ 1) on ∂pQ1−(1/k).

Hence by the maximum principle (cf. [A]),

∂tvk,m
vk,m

= pk,m(x, t) ≥
2

2t+ 1
in Q1−(1/k) ∀k ≥ 2, m ≥ 1

⇒ vt
v

≥ 2

2t+ 1
in D × [0,∞) as m→ ∞, k → ∞,

and (4) follows. By (4) and an argument similar to the proof of (5) we get (6). By (5) g(t)
is complete for any t > 0. Now by (4),

K[u(t)] ≤ − 1

2t+ 1
in D × [0,∞)

⇒ ∂u

∂t
≥ 1

2t+ 1
in D × [0,∞)

⇒ u(x, t) ≥ u0(x) +
1

2
log(2t+ 1) in D × [0,∞)

and (7) follows. Suppose g̃(t), 0 ≤ t ≤ ε, is a solution of (1) in D × (0, ε) with g(0) = g0.
As in [GiT1] we can write g̃ = e2ũδij . Let ṽ = e2ũ. Then ṽ is a solution of (20) with r1 = 1.
Hence by Corollary 1.8 and Theorem 2.9 of [Hu4],

ṽ(x, t) ≤ vk(x, t) ∀|x| ≤ 1− (1/k), 0 ≤ t ≤ ε

⇒ ṽ(x, t) ≤ v(x, t) ∀|x| < 1, 0 ≤ t ≤ ε as k → ∞

and (8) follows.

9



�

Proof of Theorem 4: Let v0 = e2u0 , vk, vk,m, v, u, g(t), pk,m be as in the proof of Theorem 3.
By the proof of Theorem 3 v ∈ C∞(D × [0,∞)) satisfies (3) and (5) and g(t) is a smooth
maximal instanteous complete solution of (1) for all time t ≥ 0.

Suppose now (9) holds for some constant K0 ≥ 0. We will show that the curvature
K[u(t)] satisfies (10). Let T0 = (2K0)

−1. By (9) and (39), pk,m satisfies




p(x, t) = 2mt + 2 ≥ − 1

(2K0)−1 − t
∀|x| = 1− k−1, t ≥ 0

p(x, 0) ≥ −2K0 ∀|x| ≤ 1− k−1.

(43)

Since both pk,m and −1/((2K0)
−1 − t) satisfy (41), by (43) and the maximum principle,

∂tvk,m
vk,m

= pk,m(x, t) ≥ − 1

(2K0)−1 − t
∀|x| < 1− (1/k), 0 ≤ t < (2K0)

−1

⇒ vt
v

≥ − 1

(2K0)−1 − t
∀|x| < 1− (1/k), 0 ≤ t < (2K0)

−1 as m→ ∞, k → ∞

and (10) follows. By (10) and (17),

ut(x, t) ≥ − 1

K−1
0 − 2t

∀|x| < 1, 0 < t < (2K0)
−1.

Integrating the above equation with respect to t and (11) follows.
Suppose now (9) holds with K0 = 0. Then by (9) and (39),

pk,m ≥ 0 on ∂pQ1−(1/k).

Hence by the maximum principle,

∂tvk,m
vk,m

= pk,m(x, t) ≥ 0 ∀|x| < 1− k−1, t ≥ 0

⇒ vt ≥ 0 ∀|x| < 1, t ≥ 0 as m→ ∞, k → ∞

and (12) follows. By (12) and (18),

ut(x, t) ≥ 0 ∀|x| < 1, t > 0

and (13) follows.
�

Proof of Theorem 5: We will use a modification of the technique of [DP2] and [Hu3] to prove
the theorem. Let v0 = e2u0 . by the results of [DP1], [Hu2], and [Hs1], there exists a unique
maximal solution v of (19) in R

2 × (0, T ) which satisfies (16) and (22) in R
2 × (0, T ) where

T is given by (15). By Theorem 3.4 of [ERV2] and the result of [Hs1] for any 0 < T1 < T
and r0 > 1 there exists a constant C > 0 such that

v(x, t) ≥ Ct

|x|2(log |x|)2 ∀|x| ≥ r0, 0 ≤ t < T. (44)
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Let u be given by (18) and g(t) = e2uδij . Then by (22) and (44), (3) and (14) hold.
For any k ∈ Z

+, by the same argument as the proof of Theorem 4 there exists a solution
ṽk of (20) with r1 = k which satisfies (22) in Bk × (0,∞). By Corollary 1.8 and Theorem
2.9 of [Hu4],

ṽk ≥ ṽk+1 ≥ v in Bk × (0, T ) ∀k ∈ Z
+. (45)

Let k0 ∈ Z
+ and 0 < t1 < t2 < T . By Corollary 1.8 of [Hu4] there exists a constant C > 0

such that
ṽk ≤ C in Bk0 × [t1, t2] ∀k > k0. (46)

Hence by (45) and (46) the equation (19) for ṽk is uniformly parabolic on Bk0× [t1, t2] for any
k > k0. By the Schauder estimates [LSU] the sequence {ṽk}{k>k0} is equi-Holder continuous
in C2(Bk0 × [t1, t2]). Hence by (45) as k → ∞, ṽk decreases and converges unformly on every
compact subset K of R2 × (0, T ) to a solution ṽ of (19) in R

2 × (0, T ). Similar to the proof
of Theorem 1.2 of [Hu3] ṽ has initial value v0. By (45),

ṽ ≥ v in R
2 × (0, T ) ∀k ∈ Z

+. (47)

Since v is the maximal solution of (19) in R
2 × (0, T ) with initial value v0, by (47), ṽ ≡ v in

R
2 × [0, T ).
Since v0 > 0 on R

2, by (45) and an argument similar to the proof of Lemma 7,

0 < inf
Br1×[0,1]

v ≤ sup
Br1×[0,1]

v <∞ ∀r1 > 0

and v ∈ C∞(R2 × [0, T )). Then g(t) is the smooth maximal solution of (1) in 0 ≤ t < T
with initial value g0. By (14), g(t) is complete for any 0 < t < T .

Finally if in addition the Gauss curvature satisfies (9) for some constant K0 ≥ 0, then
by an argument similar to the proof of Theorem (4) we get that (10) and (11) hold on R

2

for any 0 ≤ t < min((2K0)
−1, T ) if K0 > 0 and (12) and (13) hold on R

2 for any 0 ≤ t < T
if K0 = 0. By (13), T = ∞ if K0 = 0.

If K0 > 0, we claim that T ≥ (2K0)
−1. Suppose not. Then T < (2K0)

−1. Hence by (11),

Volg(T )(R
2) =

∫

R2

v(x, T ) dx ≥ (1− 2K0T )

∫

R2

v0(x) dx > 0. (48)

This contradicts (16). Hence T ≥ (2K0)
−1 and the theorem follows.

�
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