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Abstract

We give a simple proof of an extension of the existence results of Ricci flow of
G. Giesen and P.M. Topping [GiT1],[GiT2], on incomplete surfaces with bounded above
Gauss curvature without using the difficult Shi’s existence theorem of Ricci flow on
complete non-compact surfaces and the pseudolocality theorem of G. Perelman [P1] on
Ricci flow. We will also give a simple proof of a special case of the existence theorem
of P.M. Topping [T] without using the existence theorem of W.X. Shi [S1].
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Recently there is a lot of study on the Ricci flow on manifold by R. Hamilton [HI], [H2],
S.Y. Hsu [Hsl-4], G. Perelman [P1], [P2], W.X. Shi [S1], [S2], L.F. Wu [W1], [W2], and
others because Ricci flow is a powerful tool in the study of geometric problems. We refer
the readers to the book [CLN] by B. Chow, P. Lu and L. Ni, for the basics of Ricci flow and
the papers [P1], [P2], of G. Perelman and the book [Z] by Qi S. Zhang for the most recent
results on Ricci flow.

In 1982 R. Hamilton [HI|] proved that if M is a compact manifold and g¢;;(x) is a metric
of strictly positive Ricci curvature, then there exists a unique metric g that evolves by the
Ricci flow 3

agij =
on M x (0,T") for some T' > 0 with g;;(x,0) = g;;(x) where R;;(-,t) is the Ricci curvature of

—2R;; (1)


http://arxiv.org/abs/1011.2388v1

Short time existence of solutions of the Ricci flow on complete non-compact Riemannian
manifold with bounded curvature was proved by W.X Shi [S1]. Global existence and unique-
ness of solutions of the Ricci flow on non-compact manifold R? was obtained by S.Y. Hsu in
[Hs1]. Existence and uniqueness of the Ricci flow on incomplete surfaces with negative Gauss
curvature was obtained by G. Giesen and P.M. Topping in [GiT1]. In |GiT1] G. Giesen and
P.M. Topping proved the following theorem.

Theorem 1. (Theorem 1.1 of [GiT1]) Suppose M is a surface (i.e. a 2-dimensional manifold
without boundary) equipped with a smooth Riemannian metric gy whose Gauss curvature
satisfies K[go] < —n < 0, but which need not be complete. Then exists a unique smooth Ricci
flow g(t) fort € [0, 00) with the following properties:

(i) 9(0) = go;
(i1) g(t) is complete for all t > 0;
(#i) the curvature of g(t) is bounded above for any compact time interval within [0, c0);

(1v) the curvature of g(t) is bounded below for any compact time interval within (0, 00).

Moreover this solution satisfies K|g(t)] < —# fort >0 and —% < Klg(t)] fort > 0.

By abuse of notation we will write K[u] = KJg] for the Gauss curvature of a metric
of the form g = e€?“4;;. As observed by G. Giesen and P.M. Topping [GiTT] in order to
prove Theorem [I] it suffices to assume that M = D is a unit disk in R? and gy = 62u057;]’
is a conformal metric on D. Then by scaling Theorem [I] is equivalent to the following two
theorems.

Theorem 2. (¢f. Theorem 3.1 and Lemma 2.2 of [GiT1)]) Let go = €**°8;; be a smooth
conformal metric on the unit disk D with

Klug) < —1. (2)

Then there exists a smooth solution g(t) = €*“6;; of () in D x [0,00) with g(0) = go such
that g(t) is complete for every t > 0 with the Gauss curvature K [u(t)] satisfying

1
K[u(t)]2—2—t vt > 0, (3)
Ku(®)] < ——— vt >0 (4)

T
2 1
1
<log ———= + = log(2 1 D.t>

u(:):,t)_ogl_‘x|2+2og(t+) Vo e D,t >0, (6)



and
u(z, t) > ug(x) + % log(2t +1) in D x [0,00). (7)

Moreover g(t) is mazimal in the sense that if g(t) for t € [0,¢| is another Ricci flow with
9(0) = go for some € > 0, then

G(t) < g(t) YO<t<e (8)

Theorem 3. (cf. Theorem 4.1 of [GiT1)]) Let €**°5;; be a smooth metric on the unit disk D
satisfying the upper curvature bound (). Let €2“;; be a solution of (@) in D x (0,00) with
u(+,0) = ug which satisfies @) and {@). Then u is unique among solutions that satisfy (B

and {).

The proof of Theorem 3.1 and Lemma 2.2 of [GiT1] uses the results of [T], the Schwartz
Lemma of S.T. Yau [Y], and the difficult existence theorem of W.X. Shi [S1] for Ricci flow
on complete non-compact manifolds. In this paper we will give a simple proof of Theorem
using the results of K.M. Hui in [Hu3] and [Hu4]. We will assume that M = D C R? is
a unit disk for the rest of the paper. Note that for a metric g on a 2-dimensional manifold,
Riclg] = Klg]g. We will also give simple proofs of the following extension of the existence
results of G. Giesen and P.M. Topping [GiT2] and a special case of Theorem 1.1 of [T]
without using the existence theorem of W.X. Shi [SI] and the pseudolocality Theorem of
G. Perelman |P1] on Ricci flow.

Theorem 4. (¢f. Theorem 5.1 of [GiT2] and Theorem 1.1 of [1]) Let go = €*“06;; be
a smooth (possible incomplete) Riemannian metric on D. Then there exists a mazimal
instantaneous smooth complete Ricci flow g(t) = €*“0;; on D for all time t € [0,00) with
g(0) = go which satisfies [B) and [B). Suppose in addition the Gauss curvature satisfies

K{go] < Ko (9)
for some constant Ko > 0. Then the following holds.

(i) If Ky > 0, then

Klu()] < K_%Qt W0 <t < (26g)"! (10)
and .
u(x,t) > up(x) + 3 log(1 — 2Kot) V0 <t < (2Ky) ™. (11)
(i1) If Ko =0, then
Ku®)] <0 VYt >0 (12)
and
u(x,t) > uo(x) WVt >0. (13)



Theorem 5. (¢f. [DP1), [Hu2], [Hs1], Theorem 1.1 of [T] and Theorem 3.2 of [GiT2]) Let
go = €*06;; be a smoooth metric on R? which need not be complete. Then there exists a
mazimal instantaneous smooth complete Ricci flow g(t) = e*6;; on R? for t € [0,T) with
9(0) = go which satisfies [B) and for any 0 < Ty < T and ro > 1 there exists a constant
C > 0 such that

1
u(z,t) > —C —log(|z|log |z|) + 5 log(2t) Vx| >1r,0<t<Ty (14)
where Vol, (E2)
Olgy : 2
o) T if Vol (R7) < o0 (15)
00 if Vol (R?) = oo
and )
An(T —t) YO<t<T if Vol,,(R*) < o0
Voly) (R?) = =1 v Vol 2)_ (16)
00 vVt >0 if Voly,(R*) = oo.

If in addition the Gauss curvature satisfies (@) for some constant Ko > 0, then the following
holds.

(i) If Koy > 0, then (I0) and () holds on R? for any 0 <t < (2K,)™ and T > (2K,) ™.
(ii) if Ko =0, then (I2) and ([I3) holds on R? for any t > 0 and T = oo.

We start with some definitions. For any vy > 0, Ty > 0, let B,, = {z € R? : |z| < 7},
Qr, = By, x (0,00), Q' = B,, x (0,T%), and 8,Q,, = (B,, x [0,00)) U (B,, x {0}). For any
set A C R?, let y4 be the characteristic function of the set A. Note that for any metric of
the form e?®"¢;; in QF., we have
Au

B e2u

Klu] =

and e?(*9§;; is a solution of () in Q% if any only if

% =e*Au  in QL. (17)
where A is the Euclidean Laplacian on R?. Let
v = e (18)
Then (I7) is equivalent to
% =Alogv in Q. (19)

Existence and various properties of (I9) were studied by P. Daskalopoulos and M.A. Del
Pino [DPI1], S.H. Davis, E. Dibenedetto, and D.J. Diller [DDD], J.R. Esteban, A. Rodriguez,
and J.L. Vazquez [ERV1], [ERV2], S.Y. Hsu [Hs1], K.M. Hui [Hu2|, etc. We refer the readers
to the book [DK] by P. Daskalopoulos and C.E. Kenig and the book [V] by J.L. Vazquez for
the recent results on the equation (I9).



For any 0 < vy € Lj,.(B,,), we say that v is a solution of

v, = Alogwv in @,
v>0 in Q,

20
v(z,t) = oo on 0B,, x (0,00) (20
v(x,0) =vo(z) in B,
if v is a classical solution of (1)) in Q,,,
limv(y,t) =00 Vze€dB,,t>0,
y—x
inf U(:L’,t) >0 Viy >t > 0,
Brlx(tl,tz)
and
lim [[v(-, %) — vo|lL1 k) = 0 (21)
t—0

for any compact set K C B,,. We say that v is a solution of ([J) in R? x (0,7") with initial
value vy if v is a classical solution of (I9) in R? x (0,7), v > 0 in R? x (0,7, and (1) holds
for any compact set K C R2.

Note that for any solution v of (I9) the equation (I9) is uniformly parabolic on K for
any compact set K C Qfl. Hence by the Schauder estimates [LSU] and a bootrap argument
v e C™(QL) for any solution v of (IJ). We first observe that by the same argument as the
proof of Theorem 1.6 of [Hu3] we have the following result.

Theorem 6. (cf. Theorem 1.6 of [Hud]) Let ry > 0. Suppose vg > 0 satisfies
vo € LY (B,,)  for some constants p > 1.

loc

Then exists a solution v of [20) which satisfies

vy <

~+ |
~—~
[\)
NG
S~—

mn Qp, and

t .
— Q@
() 1
for some constant C' > 0 depending on ¢ and \ where ¢ and X are the first positive eigenfunc-
tion and the first positive eigenvalue of the Laplace operator —A on B,, with ||§||L25,,) = 1.

v(x,t) > C

Lemma 7. Let ry > 0. Suppose vy is a positive smooth function on B,, and v is a solution
of 20). Then v € C*(B,, x [0,00)).

Proof: We will first use a modification of the technique of Lemma 1.6 of [Hul] to show that
v is uniformly bounded below by a positive constant on B, x [0,1] for any 0 < r3 < r;. Let
0<r3<ryg<ry,d; =r3—ry, and



Since vy is a smooth positive function on B,,, € > 0. Let w be the maximal solution of the
equation (I9) in R? x (0, T') constructed in [DP1] and [Hu2] with initial value w(x,0) = €XB;,
and T = ¢|Bs, |/4m which satisfies

/ w(m,t)dx:/ w(z,0)dr —4nt YO <t <T.
R R?

For any a > 0, let
we(z,t) = w(az,a’t) Vo e R*0<t<T/a’
and B
Vap(7,t) = v(az +p,a®t) Vp € B,,, || < d1/a,t > 0.
Since vo(x + p) > w(z,0) for any p € B,,, v +p € B,,, and v = o0 on dB,, x (0,00), by
Corollary 1.8 and Lemma 2.9 of [Hud],
v(z+p,t) >w(x,t) Vp€ B, v+p€B,,0<t<T
>

= Vap(T,t) > wa(z,t) Vp € By, |2 < 8i/a,0 <t <T/a’ (23)

Since wy(z,0) = w(az,0) = EXB,, 0
0 < Wa, (7,0) < W, (2,0) <& Vo € R* a; > ay > 0. (24)
By (24) and the comparison theorems in [DP1] and [Hu2l,
0 < Wa, (7,1) < Way(w,t) <e Vo €R?0<t<e|Bs|/(4na3),a; > ag > 0. (25)

We choose 0 < oy < & such that ¢|Bs,|/(4ma2) > 1. By (28) the equation (I9) for w,
0 < a < ap, is uniformly parabolic on every compact set K C R? x (0,1]. Then by
the Schauder estimates [LSU| {wa}{o<ca<ao} are equi-Holder continuous in C*(K) for any
compact set K C R? x (0,1]. Hence by (25) w, increases and converges uniformly on every
compact subset K of R? x (0, 1] to the constant function ¢ in R? x (0,1] as a — 0. Then
there exists a; € (0, o) such that

We(z,1) > = V]| < 1,0 < a < ay. (26)

DN ™M

By [@23) and (4,

v(az +p,a?) = vap(r, 1) > Vp € B,,,|z|<1,0<a<m

DO ™

= wv(p+yt)>< VpeB,, |yl <VE0<t<ai (27)

N ™

Let A and ¢ be the first positive eigenvalue and the first positive eigenfunction of —A on B,,
with [|¢[|z2(s,,) = 1. Let C1 = max(2A[|¢]| 1, 12| V| 1o, [[vo| o (5,,) + 1) and

P, t) = Oy (t 4 1)e/?@).
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By the computation on P.784-785 of [Hu3|, ¢ is a supersolution of (I9). Then an argument
similar to the proof Theorem 2.9 of [Hu4],

/B (v =) (x,t)de < / (v—1)s(z,t1)dx VYt >t > 0. (28)

9 BT2

Since

| o< [ n) —w@lder [ () - v0)de

T2 T2 T2

—0 as t; — 0,

letting ¢; — 0 in (23),
/ (v—v)i(z,t)de =0 Vt>0.
B

)
Hence
v(x,t) < Pz, t) = Cy(t + 1)e¥?@ Vx| < 1yt > 0.

Thus
v(z,t) <C'(t+1) Vx| <r3,t>0 (29)

for some constant C" > 0. By (27) and (29), the equation (IJ) is uniformly parabolic on
B,, x [0,1] for any 0 < r3 < r;. By standard parabolic estimates [LSU] and a bootstrap
argument, v € C°(B,, x [0,00)) and the lemma follows. O

We will now prove Theorem 2l
Proof of Theorem[Z Let vy(z) = €*0@). For any k = 2,3,..., by Theorem [f] there exists a
solution vy, of [20) with r; =1 — (1/k) and initial value vy which satisfies (22) in By_(1/x) X
(0,00) and

Uk(l’, t) > Ck in Bl—(l/k) X (0, OO) (30)

t
oi()
for some constant C} > 0 depending on ¢ and A\, where ¢, and A\, are the first positive
eigenfunction and the first positive eigenvalue of the Laplace operator —A on B;_y /) with
1l z2B, (i) = 1. By Lemmalll vy € C%(Bi—1/x) % [0,00)). By Corollary 1.8 and Theorem
2.9 of [Hud],

Vg > Vk+1 in Bl—(l/k) X (O, OO) vk > 2. (31)

Since ¢ and A\, converges to ¢ and A as k — oo where ¢ and A\ are the first posi-
tive eigenfunction and the first positive eigenvalue of the Laplace operator —A on By with
|®|lL2(8,) = 1, by the proof of Theorem 1.2 and Theorem 1.6 of [Hu3] there exists a constant
C > 0 such that

Cy,>C Vk>2. (32)

Let kg > 2. Then by B0) and (32) there exists a constant Cp > 0 such that

vk(x,t) > Cot in Bl—(l/ko) X (0, OO) Vk > k. (33)



By Corollary 1.8 of [Hud] for any 0 < ¢; < t5 there exists a constant C” > 0 such that
’Uk(l',t> SC/ V|LE“ < 1—(1/]€0>,t1 §t§t2,k>k0. (34)

By B3) and (34) the equation (I9) for vy are uniformly parabolic on Q) for all k > k.
By the parabolic Schauder estimates [LSU|] vy are equi-Holder continuous in C?(K) for
every compact set K C @1_(1 /ko) and all k& > ko. Hence by (BT)) vy decreases and converges
uniformly on K to a solution v of (I9) in D x (0,00) as k — oo for any compact set
K C D x (0,00). Since vy, satisfies [22) in Q1_(1/x) for any k € Z*, by an argument similar
to the proof of Theorem 2.4 of [Hu3] v has initial value vy and satisfies [22]) in D x (0, 00).
Letting k — oo in (30), by (32),

t

v(x,t) > C in D x (0,00

(@.0) 2 O (0,0)

= lim v(z,t) =00 V|zo| =1,t > 0.
T—IT0

Hence v is a solution of 20) with B,, = D. By Lemmal[ll v € C*°(D x [0,0)).
Let u be given by (I8) and g(t) = €?“6;;. Then g(t) is a smooth solution of (1)) in
D x [0, 00) with initial value e**°4,;. By ([[9) and [22)), we get (). By (3,

1
Au(z,t) < Z&“W) inD Vt>0. (35)
For any 0 < 9 < 1, let
2(1+9) 1
=1 —log(2 D :
Ys(x,t) og(1+5)2_|x|2+20g( t) VeeD,t>0
Then 15 satisfies
1
Avs(z,t) = 2—te2%<m> inD Vt>0. (36)
Let Q(t) = {z € D : u(x,t) < ¥s(z,t)}. By (B3) and (36),
1
Au(z,t) — sz, 1)) < %(ezu(x’t) — 2@y <0 in Q(t) YVt > 0. (37)

Since u(z,t)—1s(z,t) — oo as |z| — 1, (t) C D. Hence by (B7) and the maximum principle
G,

u(x,t) — Ys(z,t) > é%igrét)(u(z, t) —s(x,t)) =0 inQ(t) Vt>0

= u(x,t) > vs(x,t) inD Vt>D0. (38)
Letting § — 0 in (38)), (B]) follows. We now let vy, be the solution of

Vg = AIOg'U in Ql—(l/k)
v>0 in Ql—(l/k)

mt2+2t

v(z,t) = vo(x)e on 0B1_(1/k) % (0,00)

v(x,0) = vo(z) in Bi_q/k)



for any k > 2, m € Z*, which can be constructed by similar technique as that of [Hu3]. By
an argument similar to the proof of [Hu3| vy, increases and converges uniformly to vy on
every compact subset K of Qi_(1/x) as m — oo and vy, satisfies

0< min vy(z) < vgm(z,t) < "I max wg(z) Vo] <1—kTLO0<t< Ty k> 2,
2| <1—k—1 |o|<1—k—1
(40)

for any 77 > 0. By (@0) the equation (I9) for vy, is uniformly parabolic on Qflpi(l sy for
any Ty > 0. Hence by (89), (#0), and parabolic estimates [LSU], vgm € C°(Q;_(x)). Let
Prm = OtV m/Vkm. Then py ., € C%(Q1_(1/x))- By @) and B9) py.n satisfies

pr=e " Ap—p*  in Qg (41)

and
{p =2mt +2  on dBi_qk % [0,00)

p(z,0) > 2 Vlg] <1-k"
Note that the function 2/(2t + 1) satisfies ({1l) and by (42),

Dhom = 2/(2t + 1) on 8pQ1_(1/k).

Hence by the maximum principle (cf. [A]),

8tvkm 2 .
M (2, 1) > ——— _ VEk>2,m>1
e e (@) 2 57 nGiam >2,m
(0 2 .
—> in D x [0,00) asm — oo,k — 00,
v 2t +1

and () follows. By () and an argument similar to the proof of (&) we get (@). By (&) g(¢)
is complete for any ¢t > 0. Now by ({4,

c__ 1 :
Klu(t)] < 1 in D x [0, 00)
ou 1
s - in D

= 5 2 T in D x [0, 00)

1
= u(x,t) > ug(x) + 3 log(2t +1) in D x [0,00)

and (@) follows. Suppose g(t), 0 < ¢ < ¢, is a solution of () in D x (0,¢) with g(0) = go.
As in [GIT1] we can write g = €*5;;. Let v = €**. Then  is a solution of ([20) with r; = 1.
Hence by Corollary 1.8 and Theorem 2.9 of [Hud],

v(,t)

= (1)

(2,t) Vo] <1—(1/k),0<t<e

< Uk
<wv(x,t) V|z]<1,0<t<e ask— o0

and (8)) follows.



O

Proof of Theorem [} Let vg = €*“0, vy, Vg m, v, U, g(t), pr.m be as in the proof of Theorem [l
By the proof of Theorem Bl v € C*°(D x [0,00)) satisfies ([B]) and (B and g¢(t) is a smooth
maximal instanteous complete solution of () for all time ¢ > 0.

Suppose now (@) holds for some constant Ky > 0. We will show that the curvature
Klu(t)] satisfies ([I0). Let Ty = (2K,)~*. By (@) and @B9), py satisfies

1
rt)=2mt+2>————— Vz|=1-k"1t>0
P 1) s Vel )
p(z,0) > —2K, V|| <1 -kt
Since both pg., and —1/((2K,)~! — t) satisfy (@), by ([@3) and the maximum principle,
OtV _ (x,t) > ot Vlz| <1—(1/k),0 <t < (2Kp)™*
'Uk7m _pk,m ) - (2K0)_1 —t 9 — 0
1
= U T e <1—(1/k),0<t < (2K,)"!  asm — 00,k — 00

v (2K0)_1 —t

and (I0) follows. By (I0) and (1),

1

e Y
u(@,t) 2 Kyt =2t

V|r| < 1,0 <t < (2Ky) ™.
Integrating the above equation with respect to t and (I1J) follows.
Suppose now ([9) holds with Ky = 0. Then by () and (B9,

Pen = 0 on 0pQ1—(1/k)-
Hence by the maximum principle,

at'Uk,m

= prm(z,8) >0 Viz|<1—k1t>0
Vk,m

= v >0 Vz|<1,t>0 asm — 00,k — o0

and (I2)) follows. By (I2)) and (I8,
u(x, t) >0 Vz|<1,t>0

and (I3]) follows.
U

Proof of Theorem[Z We will use a modification of the technique of [DP2] and [Hu3| to prove
the theorem. Let vy = €?“0. by the results of [DP1], [Hu2], and [Hsl], there exists a unique
maximal solution v of (I9) in R? x (0,7) which satisfies (I6) and [22) in R? x (0,7T) where
T is given by (I3)). By Theorem 3.4 of [ERV2] and the result of [Hsl] for any 0 < 73 < T
and ro > 1 there exists a constant C' > 0 such that

ct

v(r,t) > ——
(1) 2 R (og 2l

V|| > 1,0 <t <T. (44)

10



Let u be given by (I8) and g(t) = €2“d;;. Then by [22) and ([@4)), [B) and () hold.
For any k € Z™, by the same argument as the proof of Theorem [ there exists a solution

v of (20) with r; = k which satisfies (22)) in By x (0,00). By Corollary 1.8 and Theorem
2.9 of [Hudl,
Vp > gy > v in B x (0,T) Vk e Z . (45)

Let ko € Z1 and 0 < t; < ty < T. By Corollary 1.8 of [Hud] there exists a constant C' > 0
such that B
ﬁk <C in Bko X [tl,tg] Vk > ]{30. (46)

Hence by (@H) and (46)) the equation (I9) for vy is uniformly parabolic on By, X [t1, t5] for any
k > ko. By the Schauder estimates [LSU| the sequence {¥} x>k, is equi-Holder continuous
in C?(By, X [t1,ts]). Hence by (@) as k — 0o, Uy, decreases and converges unformly on every
compact subset K of R? x (0,7 to a solution v of (I9) in R? x (0, 7). Similar to the proof
of Theorem 1.2 of [Hu3] v has initial value vy. By ({5,

v>v inR?*x(0,T) VkeZ'. (47)

Since v is the maximal solution of (I9) in R? x (0, T") with initial value vy, by (@T), v = v in
R? x [0, 7).
Since vy > 0 on R?, by (#H) and an argument similar to the proof of Lemma [,

0< inf v< sup v<oo Vry>0
Box01] B, x[0]

and v € C*°(R? x [0,T)). Then g(t) is the smooth maximal solution of () in 0 < ¢t < T
with initial value go. By (I4), g(¢) is complete for any 0 < ¢ < T.
Finally if in addition the Gauss curvature satisfies (@) for some constant Ky > 0, then
by an argument similar to the proof of Theorem (@) we get that (I0) and (II]) hold on R?
for any 0 < t < min((2K,)™*,T) if Ky > 0 and (I2) and ([I3]) hold on R? for any 0 < ¢ < T
If Ky > 0, we claim that T > (2K,)™'. Suppose not. Then T' < (2K,)~*. Hence by (LTI,

VOlg(T) (R2) = /

RQ

v(z, T)dz > (1 — QKOT)/ vo(x) dx > 0. (48)

RQ

This contradicts (I6). Hence T > (2K,)~" and the theorem follows.
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