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FREE PRODUCTS AND THE LACK OF STATE PRESERVING
APPROXIMATIONS OF NUCLEAR C*-ALGEBRAS

CALEB ECKHARDT

Abstract. Let A be a homogeneous C*-algebra and φ a state on A. We show that if φ
satisfies a certain faithfulness condition, then there is a net of finite-rank, unital completely
positive, φ-preserving maps on A that tend to the identity pointwise. This combined with
results of Ricard and Xu show that the reduced free product of homogeneous C*-algebras
with respect to these states have the completely contractive approximation property. We
also give an example of a faithful state on M2 ⊗ C[0, 1] for which no such state-preserving
approximation of the identity map exists, thus answering a question of Ricard and Xu.

1. Introduction

It is not completely understood which approximation properties of C*-algebras are pre-
served by reduced free products. One of the most satisfying positive results was obtained by
Dykema [3] when he showed that exactness is preserved by reduced free products. On the
other hand the non-nuclear C*-algebra C∗

r (F2) is isomorphic to C∗
r (Z)∗rC∗

r (Z) (with respect
to the canonical trace), hence nuclearity is not preserved by reduced free products. But J.
de Cannière and Haagerup showed in [2] that C∗

r (F2) does have the completely contractive
approximation property (CCAP). Recall that a C*-algebra has the CCAP if there is a net
of finite rank, complete contractions that converge to the identity pointwise, and that the
CCAP is strictly weaker than nuclearity, yet strictly stronger than exactness. Bożejko and
Picardello extended this result in [1] by showing that the reduced C*-algebras of free prod-
ucts of amenable groups have the CCAP, and Ricard and Xu [5] extended this to the case
of weakly amenable groups (with constant 1). Weak amenability (with constant 1) is the
group theoretic analog of the CCAP, hence it is natural to ask if the CCAP is preserved by
reduced free products. This problem is still open, in fact it is unknown if the reduced free
product of nuclear C*-algebras has the CCAP.

The goals of this paper are (i) to show that reduced free products of homogeneous C*-
algebras with respect to certain well-behaved states have the CCAP and (ii) to answer a
question of Ricard and Xu by giving examples of states on nuclear C*-algebras that are not
CP-approximable:

Definition 1.1. Let A be a unital, nuclear C*-algebra and φ a state on A. We say that φ is
CP-approximable if there is a net (Tα) of finite-rank, unital, completely positive maps on
A such that Tα converges to the identity pointwise and φ ◦ Tα = φ for all α.

Our goals are related by the following theorem of Ricard and Xu:

A portion of this work was completed while the author was funded by the research program ANR-06-
BLAN-0015.
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Theorem 1.2 (Ricard & Xu, [5]). Let (Ai, φi) be a family of nuclear C*-algebras with
states φi such that the corresponding GNS representations are faithful. If each φi is CP-
approximable, then the reduced free product of (Ai, φi) has the CCAP.

This theorem then provides a promising strategy for showing that free products of nuclear
C*-algebra have the CCAP, and already covers many cases of interest. Indeed, one sees
that all product states on UHF algebras are CP-approximable and that all states on a
commutative C*-algebra, or a subalgebra of the compact operators are CP-approximable.

Therefore, we would like to know if all states on nuclear C*-algebras are CP-approximable.
In Section 2, we give an example of a faithful state on M2 ⊗ C[0, 1] which is not CP-
approximable. On the other hand, in Section 3 we show that if A is a homogeneous C*-
algebra and φ is a GNS-faithful state (Definition 3.1) then φ is CP-approximable. This, com-
bined with Theorem 1.2, shows that the reduced free product of homogeneous C*-algebras
with respect to GNS-faithful states have the CCAP. In Section 4 we discuss some open
questions raised by this work.

We will use the following notation throughout: For a C*-algebra A, we let A+ denote the
positive cone and we write Mn for the n × n matrices over C. For a linear map T between
C*-algebras we define the map T ∗ as T ∗(x) = T (x∗)∗. For sets X ⊆ Y we let 1X denote
the characteristic function of X and Xc denote the complement of X. We write UCP as
shorthand for the phrase “unital completely positive.”

2. A non CP-approximable faithful state on M2 ⊗ C[0, 1]

In this section, we give an example of a faithful, non CP-approximable state onM2⊗C[0, 1].
We first show that the approximating maps for CP-approximable diagonal states can be
manipulated to take a nice form.

2.1. Technical reformulation. Let n ∈ N and A be a unital C*-algebra. Let eij denote
the standard matrix units on Mn ⊗ 1A ⊆Mn ⊗ A.

Definition 2.1. Let φ be a state on Mn ⊗ A. We say that φ is diagonal if φ(eij ⊗ a) = 0
for all a ∈ A whenever i 6= j.

Lemma 2.2. Let A be a unital C*-algebra and φ a faithful, CP-approximable, diagonal state
on Mn ⊗ A. Then, for every 1 ≤ i ≤ j ≤ n there are nets of finite rank maps Rij,α : A→ A
such that

Rα =




R11,α R12,α · · R1n,α

R∗
12,α R22,α · · R2n,α

· · · · ·
R∗

1n,α R∗
2n,α · · Rnn,α


 ,

is UCP with φ ◦Rα = φ for every α and Rα converges to the identity pointwise.

Proof. Let S be a UCP map onMn⊗A such that φ◦S = φ and eiiS(eii)eii 6= 0 for i = 1, ..., n.

Define the map S̃ on Mn ⊗ A by

S̃(x) =
n∑

i,j=1

eiiS(eiixejj)ejj
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Then, clearly S̃ is completely positive and maps eij ⊗A into eij ⊗A. We now slightly modify

S̃ to make it unital and φ-preserving. For each k = 1, ..., n define

Tk(x) =
φ(ekkxekk − ekkS(ekkxekk)ekk)

φ(ekk)
ekk.

Since φ is diagonal and S is φ-preserving, it follows that each Tk is completely positive and

that R = S̃ +
∑n

k=1 Tk is φ-preserving. As in [5, Proposition 4.5], we define

T̃k(x) =
1

‖R(ekk)‖
R(ekkxekk) +

φ(ekkxekk)

φ(ekk)

[
ekk −

1

‖R(ekk)‖
R(ekk)

]

Let V be the diagonal matrix diag(‖R(e11)‖−
1

2 , ‖R(e22)‖−
1

2 , ..., ‖R(enn)‖−
1

2 ).We finally define

R̃(x) = V R(x)V +
n∑

k=1

T̃k(x).

Then R̃ is unital φ-preserving and maps eij ⊗ A into eij ⊗ A for each 1 ≤ i, j ≤ n. The
conclusion of the lemma now follows from the above construction. �

2.2. Construction of the example. Let m denote Lebesgue measure on [0, 1]. By [6],
there is a Lebesgue measurable subset X ⊆ [0, 1] such that for every non-empty open subset
O ⊆ [0, 1] we have

(2.1) m(X ∩O) > 0, and m(Xc ∩ O) > 0.

Define the diagonal state φ on M2 ⊗ C[0, 1] as

(2.2) φ =

[
1X dm 0

0 1Xc dm

]
,

i.e. φ((fij)i,j) =
∫
X
f11 dm+

∫
Xc f22 dm. By (2.1) it follows that φ is faithful onM2⊗C[0, 1].

Proposition 2.3. Let

S =

[
S11 S12

S∗
12 S22

]

be a finite rank, φ-preserving UCP map on M2 ⊗ C[0, 1]. Then S12 = 0. In particular, φ is
not CP-approximable.

Proof. Let θ ∈ [0, 1] and ǫ > 0. Choose an open cover I1, ..., IN of [0, 1] such that for every
f ∈ span{S11(C[0, 1]), S22(C[0, 1])} we have

(2.3) max
i=1,...,N

sup
x,y∈Ik

|f(x)− f(y)| < ‖f‖ǫ.

Without loss of generality, suppose that θ ∈ I1 and there is an open interval J such that

(2.4) θ ∈ J ⊆ I1 and J ∩ Ij = ∅ for all j ≥ 2.

Moreover, assume that there are points ti ∈ Ii \ (∪j 6=iIj) for 2 ≤ i ≤ N. Let ρ1, ρ2, ..., ρN be
a partition of unity subject to the cover {Ii}Ni=1. For i = 1, 2 define UCP maps Ti : C[0, 1] →
C[0, 1] as

T1(f) =
N∑

i=2

f(ti)ρi +
(∫

X
fρ1 dm∫

X
ρ1 dm

)
ρ1 , T2(f) =

N∑

i=2

f(ti)ρi +
(∫

Xc fρ1 dm∫
Xc ρ1 dm

)
ρ1.
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By (2.3), we have

(2.5) ‖Ti(Sii(f))− Sii(f)‖ ≤ ǫ‖f‖ for all f ∈ C[0, 1] and i = 1, 2.

Let 0 ≤ f ≤ 1 be in C[0, 1]. Then

[
f f
f 1

]
≥ 0. Since S22 is unital, by (2.5), we have

T1(S11(f))− |S12(f)|2 ≥ det

[
S11(f) S12(f)
S12(f)

∗ 1

]
− ǫ ≥ −ǫ

By a similar calculation with T2, we have

(2.6) |S12(f)|2 ≤ Ti(Sii(f)) + ǫ for i = 1, 2.

Now, let θ ∈ I ⊆ J (as defined in (2.4)) be an interval and set φI = 1
m(I)

∫
I
f dm. Since

ρi = 0 on I for every i > 1 and
∫
X
S11(f)dm =

∫
X
fdm, we have

φI(T1(S11(f))) = φI

(∫
X
S11(f)ρ1 dm∫
X
ρ1 dm

ρ1

)

≤ φI

(∫
X
S11(f) dm∫
X
ρ1 dm

ρ1

)

= φI

( ∫
X
f dm∫

X
ρ1 dm

ρ1

)
.(2.7)

Let K ⊆ [0, 1] be compact and O ⊆ [0, 1] be open such that K ⊆ X ⊆ O and

(2.8) m(O \K) < ǫmin
{∫

X

ρ1dm,

∫

Xc

ρ1dm
}
.

Let 0 ≤ γ ≤ 1 be a continuous function such that γ|K = 1 and γ|Oc = 0. By (2.7) and (2.8),
it follows that

φI(T1(S11((1− γ)f))) ≤ ǫ.

By a similar computation as in (2.7), we obtain

φI(T2(S22(γf))) ≤ ǫ.

We now combine the previous inequalities with (2.6) to obtain

1

m(I)

∫

I

|S12(f)|2 dm ≤
(( 1

m(I)

∫

I

|S12(γf)|2 dm
)1/2

+
( 1

m(I)

∫

I

|S12((1− γ)f)|2 dm
)1/2)2

≤ (
√
2ǫ+

√
2ǫ)2.

Since ǫ > 0 was arbitrary, it follows that

|S12(f)|2(θ) = lim
θ∈I; m(I)→0

1

m(I)

∫

I

|S12(f)|2 dm = 0.

Since θ was arbitrary it follows that S12 = 0. That φ is not CP-approximable now follows
from Lemma 2.2. �
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3. GNS-faithful states

In this section we show that all states of the following type on homogeneous C*-algebras
are CP-approximable:

Definition 3.1. Let B be a unital C*-algebra and φ a state on B with associated GNS
representation and cyclic vector (πφ, ξφ). We say that φ is GNS-faithful if the vector state
〈 (·) ξφ, ξφ〉 is faithful on πφ(B)′′.

For a function g : X → Y between sets, we will adopt the common practice from measure
theory by writing {φ(g)} as shorthand notation for {x ∈ X : φ(g(x))} where φ is some
formula (for example φ(x) = “x ≤ 10” or “x is invertible.”).

The following is easy to verify from the Riesz representation theorem, Radon-Nikodym
theorem and basic facts about the GNS construction.

Lemma 3.2. Let X be a compact Hausdorff space, n ∈ N and φ a state on A =Mn⊗C(X).
Let τ denote the tracial state on Mn. There is a regular Borel probability measure µ on X
and a bounded measurable function g : X →M+

n such that

(3.1) φ(f) =

∫

X

τ(g(x)f(x))dµ for f ∈ A.

Moreover, if φ is GNS-faithful, then the natural extension of φ to Mn⊗L∞(X, µ) is faithful.
In particular,

(3.2) µ
(
{g is invertible }

)
= 1.

Theorem 3.3. Let X be a compact Hausdorff space, n ∈ N and φ be a GNS-faithful state
on A =Mn ⊗ C(X). Then φ is CP-approximable.

Proof. Let F ⊆ C(X) be a finite subset and ǫ > 0. We construct a finite rank, UCP,
φ-preserving map T : A→ A such that

(3.3) max
f∈F

max
b∈Mn,‖b‖≤1

‖T (b⊗ f)− b⊗ f‖ ≤ ǫ.

To this end, let B be a finite set of disjoint Borel subsets of X with positive measure and
∪B = X such that

(3.4) max
f∈F

max
B∈B

sup
x,y∈B

|f(x)− f(y)| ≤ ǫ/8.

Let µ, τ and g be as in Lemma 3.2. Set ‖g‖ := supx∈X ‖g(x)‖Mn. For each δ > 0 define

Zδ = {a ∈M+
n : δ ≤ a ≤ ‖g‖}.

For a subset W ⊆Mn, we let conv(W ) denote the closed convex hull of W. Partition Zδ into
finitely many disjoint Borel subsets Z1,δ, ..., ZNδ,δ such that

(3.5) max
i=1,..,Nδ

sup{‖a 1

2 b−
1

2 − 1‖ : a, b ∈ conv(Zi,δ)} <
ǫ

8
.

By (3.2) we may suppose that δ has been chosen small enough so that for every B ∈ B we
have µ(B ∩ {g ≥ δ}) > 0. Then for each B ∈ B there is an index 1 ≤ iB ≤ Nδ such that

(3.6) 0 < r := min
B∈B

µ(B ∩ {g ∈ ZiB ,δ}).
5



Let F : (0, 1) → (0, 1) be a function that satisfies the following sentence:

(3.7) (∀a, b ∈M+
n )(sp(a), sp(b) ⊆ [s, ‖g‖])(‖a− b‖ ≤ F (s) → ‖a− 1

2 − b−
1

2‖ ≤ ǫ/(‖g‖8))
By (3.2) there is a γ < δ such that

(3.8) µ({g ≥ γ}c) < 1

2
min{F ((δr)/2), ǫδr

8‖g‖}.

Now obtain a finite partition of Zγ; Z1,γ, ..., ZNγ ,γ that satisfies (3.5) and such that Zi,δ = Zi,γ

for all 1 ≤ i ≤ Nδ. For each B ∈ B define the set

(3.9) Y1,B := B ∩ ({g ≥ γ}c ∪ {g ∈ ZiB,δ})
Then let Y2,B, ..., YNB,B be an enumeration of the sets

(3.10) {B ∩ {g ∈ Zi,γ} : µ(B ∩ {g ∈ Zi,γ}) > 0 and i 6= iB}.
For each B ∈ B and 1 ≤ i ≤ NB obtain a compact set Ki,B ⊆ Yi,B and an open set
Oi,B ⊇ Yi,B such that

(3.11) µ(Oi,B \Ki,B) <
1

2
min

{
F ((γµ(Yi,B))/2),

ǫγµ(Yi,B)

8‖g‖
}
.

Then,

(3.12) Ki,B ∩Ki′,B′ = ∅ if (i, B) 6= (i′, B′) and
⋃

B∈B

NB⋃

i=1

Oi,B = X.

Let {ρi,B : B ∈ B, 1 ≤ i ≤ NB} ⊆ C(X) ⊆ Mn⊗C(X) be a partition of unity subject to the
open cover {Oi,B}. Note that

(3.13) ρi,B(x) = 1 for every x ∈ Ki,B.

Denote by E : Mn ⊗ L∞(X, µ) → Mn the conditional expectation idMn ⊗
∫
(·)dµ. Note that

E satisfies the following equations:

(3.14) τ(aE(h)) =

∫
τ(ah(x))dµ(x) for all a ∈Mn and h ∈ Mn ⊗ L∞(X, µ).

Before constructing our map T , we first need a few estimates. Let B ∈ B. Due to the
difference in definitions of Y1,B and Yi,B for i > 1, we first isolate the case i = 1. We have

E(ρ1,Bg) = E

(
1K1,B∩{g∈ZiB,δ}ρ1,Bg

)
+ E

(
1(K1,B∩{g∈ZiB,δ})cρ1,Bg

)

≥ δ(r − µ(O1,B \K1,B)− µ({g ≥ γ}c)) + E

(
1(K1,B∩{g∈ZiB,δ})cρ1,Bg

)

≥ δr

2
+ E

(
1(K1,B∩{g∈ZiB,δ})cρ1,Bg

)

From this we deduce that

(3.15) sp(E(ρ1,Bg)) ⊆ [
δr

2
, ‖g‖] and ‖E(ρ1,Bg)−

1

2‖ ≤
( 2

δr

) 1

2

.
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Now, set a1,B := E

(
1K1,B∩{g∈ZiB,δ}ρ1,Bg

)
. By (3.8) and (3.11) it follows that

‖E(ρ1,Bg)− a1,B‖ = ‖E
(
1(K1,B∩{g∈ZiB,δ})cρ1,Bg

)
‖ ≤ F ((δr)/2).

From which, in conjunction with (3.7) and (3.15), we deduce that

(3.16) ‖(E(ρ1,Bg))−
1

2 − a
− 1

2

1,B‖ < ǫ/(8‖g‖).

Notice that µ(K1,B ∩ {g ∈ YiB ,δ})−1a1,B ∈ conv(ZiB,δ). So by (3.5) and (3.16) we obtain

(3.17) sup
y∈ZiB,δ

∥∥∥g(y)
1

2E(ρ1,Bg)
− 1

2 − µ(K1,B ∩ {g ∈ ZiB ,δ})−
1

2

∥∥∥ <
ǫ

4
µ(K1,B ∩ {g ∈ ZiB ,δ})−

1

2 .

We isolated the case i = 1 above, because we had to take into account the sets B∩{g ≥ γ}c.
When i > 1, we no longer concern ourselves with these sets. Therefore, by essentially the
same (but slightly simpler) estimates as above and using line (3.11) we obtain

(3.18) max
B∈B

max
i=2,..,NB

sup
y∈g−1(Yi,B)

∥∥∥g(y)
1

2E(ρi,B)
− 1

2 − µ(Ki,B)
− 1

2

∥∥∥ <
ǫ

4
µ(Ki,B)

− 1

2 ,

and

(3.19) ‖E(ρi,Bg)−
1

2‖ ≤
( 2

γµ(Yi,B)

) 1

2

.

We now define the map T : A→ A as

(3.20) T (h) =
∑

B∈B

NB∑

i=1

[
E(ρi,Bg)

− 1

2E(ρi,Bg
1

2hg
1

2 )E(ρi,Bg)
− 1

2

]
⊗ ρi,B.

It is clear that T is UCP and finite rank. We now show that T preserves φ. To this end, fix
a pair (i, B). Then by (3.1) and (3.14) we have

φ
([

E(ρi,Bg)
− 1

2E(ρi,Bg
1

2hg
1

2 )E(ρi,Bg)
− 1

2

]
⊗ ρi,B

)

=

∫
τ
(
E(ρi,Bg)

− 1

2E(ρi,Bg
1

2hg
1

2 )E(ρi,Bg)
− 1

2ρi,B(x)g(x)
)
dµ(x)

=τ
(
E(ρi,Bg)

− 1

2E(ρi,Bg
1

2hg
1

2 )E(ρi,Bg)
− 1

2E(ρi,Bg)
)

=τ
(
E(ρi,Bg

1

2hg
1

2 )
)

=

∫
τ
(
ρi,B(x)g(x)h(x)

)
dµ(x).

Since the ρi,B form a partition of unity, it follows that φ ◦ T = φ.
We now show that T approximately fixes matrices. Let b ∈ Mn of norm 1 and a ∈ Mn

with τ(|a|) ≤ 1. Again, we will isolate the case i = 1 for each B ∈ B. For convenience we
7



denote S = K1,B ∩ {g ∈ YiB ,δ} and s := µ(S). Then,
∣∣∣τ
(
aE(ρ1,Bg)

− 1

2E(ρ1,Bg
1

2 bg
1

2 )E(ρ1,Bg)
− 1

2

)
− τ(ab)

∣∣∣

=
∣∣∣
∫

O1,B

τ
(
aE(ρ1,Bg)

− 1

2ρ1,B(y)g(y)
1

2 bg(y)
1

2E(ρ1,Bg)
− 1

2

)
dµ(y)− τ(ab)

∣∣∣

≤
∣∣∣
∫

S

τ
(
aE(ρ1,Bg)

− 1

2g(y)
1

2 bg(y)
1

2E(ρ1,Bg)
− 1

2

)
− τ(ab)

∣∣∣ + µ(O1,B \ S)‖g‖‖E(ρg)− 1

2‖2

≤
∣∣∣
∫

S

τ
(
aE(ρ1,Bg)

− 1

2g(y)
1

2 bg(y)
1

2E(ρ1,Bg)
− 1

2

)
− τ(ab)

∣∣∣ +
ǫ

4
(by (3.8, 3.11, 3.15))

≤
∣∣∣s−1

∫

S

τ(ab)− τ(ab)
∣∣∣ + 2s sup

y∈S
‖g(y) 1

2E(ρ1,Bg)
− 1

2‖‖g(y) 1

2E(ρ1,Bg)
− 1

2 − s−
1

2‖+ ǫ

4

≤
∣∣∣s−1

∫

S

τ(ab)dµ− τ(ab)
∣∣∣ + 2s(s−

1

2 (1 +
ǫ

4
)s−

1

2

ǫ

4
) +

ǫ

4
(by (3.17))

≤ 7ǫ

8
.

Once again, by very similar (but slightly simpler) estimates we obtain

(3.21) max
B∈B

max
i=2,...,NB

∣∣∣τ
(
aE(ρi,Bg)

− 1

2E(ρi,Bg
1

2 bg
1

2 )E(ρi,Bg)
− 1

2

)
− τ(ab)

∣∣∣ ≤ 7ǫ

8
.

Since a and b were arbitrary, we obtain the following:

max
B∈B

max
i=1,...,NB

sup
b∈Mn,‖b‖=1

∥∥∥E(ρi,Bg)−
1

2E(ρi,Bg
1

2 bg
1

2 )E(ρi,Bg)
− 1

2 − b
∥∥∥
Mn

≤ 7ǫ

8
.

From this it follows that ‖T (b)− b‖ ≤ 7ǫ
8
for every b ∈Mn of norm 1.

Finally, since all of the functions f ∈ F have variation at most ǫ/8 on the sets B ∈ B,
very easy estimates show that ‖T (b⊗ f)− b⊗ f‖ ≤ ǫ for every f ∈ F and b ∈ Mn of norm
1. This completes the proof. �

Corollary 3.4. Let (Ai, φi)i∈I be a family of homogeneous C*-algebra such that each φi is
GNS faithful. Then the reduced free product of the family (Ai, φi)i∈I has the CCAP.

Proof. This follows from Theorem 3.3 and Theorem 1.2 �

4. Further Remarks

Proposition 2.3 raises the following natural question:

Question 4.1. Let A be a nuclear C*-algebra. Is there a nice characterization of CP-
approximable states?

In general, we feel that there will be no satisfying answer to Question 4.1 because the
set of CP-approximable states needn’t be convex or norm closed. Indeed consider φ from
Proposition 2.3. It is easy to see that the states

φ1 = 2

[
1X dm 0

0 0

]
, φ2 = 2

[
0 0
0 1Xc dm

]

are both CP-approximable, but φ = 1/2(φ1 + φ2) is not CP-approximable. Furthermore,
Theorem 3.3 shows that φ is the norm limit of CP-approximable states.

8



It is fairly straightforward to see that all states on a commutative C*-algebra or on a unital
subalgebra of K(H)1 (the unitization of the compact operators) are CP-approximable. Since
M2 ⊗ C[0, 1] has a non CP-approximable state, we feel the answer to the following should
be yes:

Question 4.2. Let A be a separable nuclear C*-algebra such that every state is CP-approximable.
Is A commutative or isomorphic to a unital subalgebra of K(H)1?

We note that the separability condition is necessary as it is straightforward to show (using
ideas similar to those in Theorem 3.3) that every state onMn⊗L∞[0, 1] is CP-approximable.
It is the abundance of projections inMn⊗L∞[0, 1] that allows one to show that all states are
CP-approximable, hence it is natural to consider if all states on a real rank zero C*-algebra
are CP-approximable. Applying a deep theorem of Kirchberg we see that real rank zero
doesn’t help:

Corollary 4.3. Let M2∞ be the CAR algebra. Then there is a state ψ on M2∞ that is
not CP-approximable. Since M2∞ is simple, the GNS representation associated with ψ is
necessarily faithful.

Proof. By [4, Corollary 1.5] there are unital completely positive maps T :M2⊗C[0, 1] →M2∞

and S :M2∞ →M2⊗C[0, 1] such that ST = id. By Proposition 2.3, it follows that ψ = φ◦S
is not CP-approximable. �

Finally, Proposition 2.3 leaves open the natural question:

Question 4.4. Does the reduced free product of (M2⊗C[0, 1], φ) with itself have the CCAP?
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