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Abstract

We say that a discrete set X = {xn}n∈N0
on the half-line

0 = x0 < x1 < x2 < x3 < · · · < xn < · · · < +∞

is sparse in the case the distances ∆xn = xn+1 − xn between neighbor-

ing points satisfy the condition ∆xn
∆xn−1

→ +∞. Half-line Schrödinger

operators with point δ- and δ
′-interactions on a sparse discrete set are

considered. Assuming that strengths of point interactions tend to ∞ we

give simple sufficient conditions for such Schrödinger operators to have

non-empty singular continuous spectrum and to have purely singular con-

tinuous spectrum coinciding with R+.

Keywords: Schrödinger operator, sparse set, point interactions, singular con-
tinuous spectrum.
Subject classification: Primary 34L05 ; Secondary 34L40, 47E05.

1 Introduction

One-dimensional Schrödinger operator with δ-interactions on a discrete set de-
scribes the motion of a non-relativistic charged particle in a one-dimensional
lattice. Periodic models of such a type were considered first by Kronig and Pen-
ney in [KrPe]. Classical results and sufficiently complete list of references on
the theory of one-dimensional Schrödinger operators with δ- and δ′-interactions
on a discrete set are given in the monograph [AGHHE]. Schrödinger operators
with point interactions were considered for example in [AKM, B, BuStW, ChrSt,
GeKi, GoO, Ko, KM, Mi1, Mi2, N, SaSh] and in many other works. Our list of
references is far from being complete, but many of recent significant works are
mentioned.
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In the present paper we are interested in the effect first discovered by Pear-
son in [P] for one-dimensional Schrödinger operators with regular sparse poten-
tials. Sparse potentials were also discussed by Gordon, Molchanov and Zagany
in [GMoZ], where some results were given without proofs. Under some as-
sumptions on the degree of sparseness of the potential one gets purely singular
continuous spectrum. An example of such a potential was constructed by Si-
mon and Stolz in [SiSt]. According to the results of [SiSt] half-line Schrödinger
operator

− d2

dx2
+ V

with the potential

V (x) =

{
n,

∣∣x− e2n
3/2∣∣ < 1

2 ,

0, otherwise,
(1.1)

and arbitrary self-adjoint boundary condition at the origin has the following
structure of the spectrum

σp = σac = ∅, σsc =
[
0,+∞

)
.

The main achievement of this construction is the stability of the singular contin-
uous spectrum under ”small” variations of the potential V in (1.1) and arbitrary
self-adjoint variations of the boundary condition at the origin. This situation is
non-typical for other known examples with singular continuous spectrum.

Recently sparse potentials attracted the attention again. In works of Breuer
and Frank [Br, BrF] sufficient conditions for the spectrum of the Laplace oper-
ator on discrete and metric sparse radial trees to be purely singular continuous
are given.

In the present paper we establish the existence of such an effect for Schrödinger
operators with point δ- and δ′-interactions on a sparse discrete set. As in the
classical case the obtained singular continuous spectrum is stable under ”small”
variations of interactions strengths and the discrete set itself.

Let α = {αn}n∈N be a sequence of real numbers. Let X = {xn}n∈N0
be a

discrete set on the half-line

0 = x0 < x1 < x2 < x3 < · · · < xn < · · · < +∞

such that the sequence ∆xn = xn+1 − xn satisfies the condition

inf
n∈N0

∆xn > 0. (1.2)

We are interested in the half-line Schrödinger operators Hδ,X,α, and Hδ′,X,α

formally given by expressions

Hδ,X,α = − d2

dx2
+
∑

n∈N

αnδxn and Hδ′,X,α = − d2

dx2
+
∑

n∈N

αn〈δ′xn
, ·〉δ′xn

, (1.3)

where δx and δ′x are delta distribution and its derivative supported by the point
x ∈ R+. We fix for simplicity Dirichlet boundary condition at the origin.
Strictly defined operators Hδ,X,α and Hδ′,X,α are self-adjoint in L2(R+), see
Section 2.
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We say that a discrete set X is sparse if the following condition holds

∆xn
∆xn−1

→ +∞. (1.4)

Our main results are listed in the following theorem.

Theorem 1.1. Let X = {xn}n∈N0
be a sparse discrete set on the half-line. Let

α = {αn}n∈N be a sequence of real numbers such that αn → ∞. Let Hδ,X,α and
Hδ′,X,α be self-adjoint half-line Schrödinger operators as in (1.3), see Section
2 for strict definitions. Let us define a value a ∈ R+ ∪ {+∞} as the following
limit

a := lim inf
n→∞

∆xn
∆xn−1α2

n

. (1.5)

Then the following assertions hold:

(i) if 0 < a < +∞, then the spectrum of the operator Hδ,X,α has the following
structure:

(pp) σpp ∩R+ ⊆
[
0, 1/a

]
,

(sc)
[
1/a,+∞

)
⊆ σsc ⊆

[
0,+∞

)
,

(ac) σac = ∅,

and the spectrum of the operator Hδ′,X,α has the structure:

(pp) σpp ∩R+ ⊆
[
a,+∞

)
,

(sc)
[
0, a
]
⊆ σsc ⊆

[
0,+∞

)
,

(ac) σac = ∅,

it is worth noting that in this case the singular continuous spectrum of
both operators is non-empty;

(ii) if a = +∞ and the sequence α contains only positive real numbers, then
the spectrum of both operators Hδ,X,α and Hδ′,X,α is purely singular con-
tinuous and coincides with R+.

As an example the spectrum of Schrödinger operator formally given by the
expression

− d2

dx2
+
∑

n∈N

n1/4δn!

is purely singular continuous and coincides with R+, in this case a = +∞.
The singular continuous spectrum of Schrödinger operator formally given by
the expression

− d2

dx2
+
∑

n∈N

n1/2δn!

is non-empty and contains the interval
[
1,+∞), in this case a = 1.

Notations: By N0 we denote N ∪ {0}. We write T ∈ S∞ in the case the
operator T is compact. By σp, σpp, σac and σsc we denote point, pure point,
absolutely continuous and singular continuous spectra. By σess we denote the
essential spectrum. We write ψ ∈ ACloc(I) if the function ψ is locally absolutely
continuous on the set I.
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2 Definitions of operators with point interac-

tions

In this section we give strict definitions of operators Hδ,X,α and Hδ′,X,α on the
language of boundary conditions.

Let α = {αn}n∈N be a sequence of real numbers. Let X = {xn}n∈N0
be a

discrete set of points on the half-line arranged from the origin to +∞ such that
the sequence ∆xn = xn+1 − xn satisfies the condition (1.2).

Let us introduce two classes of functions ψ on the half-line

Sδ,X,α =
{
ψ, ψ′ ∈ ACloc(R+ \X) : ψ(0) = 0,

ψ(xn+)=ψ(xn−)=ψ(xn)

ψ′(xn+)−ψ′(xn−)=αnψ(xn)

}
(2.1)

and

Sδ′,X,α =
{
ψ, ψ′ ∈ ACloc(R+ \X) : ψ(0) = 0, ψ′(xn+)=ψ′(xn−)=ψ′(xn)

ψ(xn+)−ψ(xn−)=αnψ
′(xn)

}
. (2.2)

The operator Hδ,X,α is defined in the following way

Hδ,X,αψ = −ψ′′, domHδ,X,α =
{
ψ ∈ L2(R+) ∩ Sδ,X,α : − ψ′′ ∈ L2(R+)

}
.

(2.3)
Analogously we define the operator Hδ′,X,α

Hδ′,X,αψ = −ψ′′, domHδ′,X,α =
{
ψ ∈ L2(R+) ∩ Sδ′,X,α : − ψ′′ ∈ L2(R+)

}
.

(2.4)
OperatorsHδ,X,α andHδ′,X,α are both self-adjoint in L2(R+) according to [GeKi,
Ko].

3 Sufficient conditions for absence of point spec-

trum on a subinterval of positive semi-axis

In this section we establish sufficient conditions on X and α, which give op-
erators Hδ,X,α and Hδ′,X,α with absence of point spectra on a subinterval of
R+. We adapt the approach suggested by Simon and Stolz in [SiSt] for regular
potentials to the case of point interactions. Similar ideas were used recently
by Breuer and Frank in [BrF] in order to prove absence of point spectrum for
certain classes of sparse trees.

Let us consider a function ψ such that for some λ > 0

− ψ′′(x) = λψ(x), for all x ∈ R+ \X. (3.1)

If we show that any non-trivial function ψ ∈ Sδ,X,α satisfying (3.1) for some
λ > 0 does not belong to L2(R+), then λ /∈ σp(Hδ,X,α). Analogously if we show,
that any non-trivial function ψ ∈ Sδ′,X,α satisfying (3.1) for some λ > 0 does
not belong to L2(R+), then λ /∈ σp(Hδ′,X,α).

We need the following subsidiary lemma.

Lemma 3.1. Let X = {xn}n∈N0
be a discrete set on the half-line satisfying

the condition (1.2). Let a function ψ ∈ ACloc(R+ \ X) be such that ψ′ ∈
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ACloc(R+ \ X). Assume ψ satisfies (3.1) for some λ > 0. If the sequence of

vectors ξn :=

(
ψ(xn+)
ψ′(xn+)

)
satisfies the condition

∞∑

n=0

∆xn‖ξn‖2C2 = ∞, (3.2)

then ∫ ∞

0

|ψ(x)|2dx = ∞.

Proof. For a point x ∈ (xn, xn+1) one has the following identity

ξn =Mλ(xn − x)

(
ψ(x)
ψ′(x)

)
, (3.3)

where the matrix Mλ(d) is the fundamental matrix of the differential equation
−ψ′′ = λψ having the following explicit form

Mλ(d) =

(
cos(d

√
λ) sin(d

√
λ)√

λ

−
√
λ sin(d

√
λ) cos(d

√
λ)

)
. (3.4)

It follows from the identity (3.3) that
∥∥∥∥∥

(
ψ(x)
ψ′(x)

)∥∥∥∥∥
C2

≥ ‖ξn‖C2

‖Mλ(x− xn)‖
.

The following estimate takes place

sup
d∈R

‖Mλ(d)‖ ≤ Cλ < +∞. (3.5)

According to (3.2) we have

∫ ∞

0

∥∥( ψ(x)
ψ′(x)

)∥∥2
C2dx ≥ 1

(Cλ)2

∞∑

n=0

∫ xn+1

xn

‖ξn‖2C2dx =
1

(Cλ)2

∞∑

n=0

∆xn‖ξn‖2C2 = ∞.

(3.6)
If ψ ∈ L2(R+), then ψ

′′ = −λψ ∈ L2(R+). Taking into account the inequality,
see, e.g., [EE, §III.10],

‖ψ′‖2L2(R+) ≤ a‖ψ‖2L2(R+) + b‖ψ′′‖2L2(R+), (3.7)

which holds for some constants a, b > 0, we get ψ′ ∈ L2(R+). Finally we come
to the conclusion that for the divergence of the integral on the left hand side
in (3.6) one needs ψ /∈ L2(R+).

Let α = {αn}n∈N be a sequence of real numbers, then we introduce two se-
quences of real-valued functions {An(λ)}n∈N0

and {Bn(λ)}n∈N0
of the argument

λ ∈
(
0,+∞

)
in the following way

An(λ) :=

n∏

i=1

(
1 +

|αi|√
λ

)
and Bn(λ) :=

n∏

i=1

(
1 + |αi|

√
λ
)
. (3.8)

Further we need two lemmas, which give asymptotic estimates of the be-
havior of functions in the classes Sδ,X,α and Sδ′,X,α satisfying (3.1) for some
λ > 0.
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Lemma 3.2. Let X = {xn}n∈N0
be a discrete set on the half-line satisfying

the condition (1.2). Let α = {αn}n∈N be a sequence of real numbers. Let a
function ψ ∈ Sδ,X,α satisfy (3.1) for some λ > 0. Let the sequence {An(λ)}n∈N0

be defined as in (3.8). Then norms of vectors ξn :=

(
ψ(xn+)
ψ′(xn+)

)
satisfy the

estimate

‖ξn‖C2 ≥ cλ
‖ξ0‖C2

An(λ)
, n ∈ N, (3.9)

with some positive constant cλ > 0.

Proof. The sequence of vectors {ξn}n∈N0
is a solution of the discrete linear

system
ξn = Λnξn−1, n ∈ N, (3.10)

with the sequence of matrices {Λn}n∈N having the explicit form

Λn =

(
1 0
αn 1

)

︸ ︷︷ ︸
Jδ(αn)

Mλ(∆xn−1), (3.11)

whereMλ(d) is the fundamental matrix defined in (3.4) and Jδ(α) is the δ-jump
matrix.

One can do the substitution in the discrete linear system (3.10) of the type

ξ̃n =

(
1
2 − i

2
√
λ

1
2

i
2
√
λ

)

︸ ︷︷ ︸
U−1

λ

ξn. (3.12)

The sequence {ξ̃n}n∈N0
is a solution of a new discrete linear system

ξ̃n = Λ̃nξ̃n−1, n ∈ N, (3.13)

where matrices Λ̃n can be expressed in the following way

Λ̃n = U−1
λ Jδ(αn)Mλ(∆xn−1)Uλ.

Using that (Mλ(d))
−1 =Mλ(−d) and (Jδ(α))

−1 = Jδ(−α) we get

Λ̃−1
n = U−1

λ Mλ(−∆xn−1)Jδ(−αn)Uλ. (3.14)

Substituting in (3.14) the matrix Mλ(d) by its explicit form given in (3.4), the
matrix Jδ(α) by its explicit form given in (3.11) and the matrix Uλ by its explicit
form in (3.12) we get after simple calculations

Λ̃−1
n =

(
e−i

√
λ∆xn−1 0

0 ei
√
λ∆xn−1

)((
1 0
0 1

)
+

iαn

2
√
λ

(
1 1
−1 −1

))
. (3.15)

Now it is clear that

‖Λ̃−1
n ‖ ≤ 1 +

|αn|√
λ
. (3.16)
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Taking into account the discrete linear system (3.13) and the estimate (3.16)
we get

‖ξ̃n‖C2 ≥ ‖ξ̃n−1‖C2

‖Λ̃−1
n ‖

≥ ‖ξ̃n−1‖C2

1 + |αn|√
λ

. (3.17)

Expanding the estimate (3.17) we get

‖ξ̃n‖C2 ≥ ‖ξ̃n−1‖C2

1 + |αn|√
λ

≥ ‖ξ̃n−2‖C2

(
1 + |αn−1|√

λ

)(
1 + |αn|√

λ

) ≥ · · · ≥ ‖ξ̃0‖C2

An(λ)
. (3.18)

Returning from ξ̃ to ξ we get estimates

‖ξ̃n‖C2 ≤ ‖ξn‖C2‖U−1
λ ‖, ‖ξ̃0‖C2 ≥ ‖ξ0‖C2

‖Uλ‖
. (3.19)

Hence from (3.18) and (3.19) we get the claim

‖ξn‖C2 ≥ cλ
‖ξ0‖C2

An(λ)
, (3.20)

where cλ =
(
‖Uλ‖‖U−1

λ ‖
)−1

.

Lemma 3.3. Let X = {xn}n∈N0
be a discrete set on the half-line satisfying the

condition (1.2). Let α = {αn}n∈N be a sequence of real numbers. Let a function
ψ ∈ Sδ′,X,α satisfy (3.1) for some λ > 0. Let the sequence {Bn(λ)}n∈N0

be

defined as in (3.8). Then norms of vectors ξn :=

(
ψ(xn+)
ψ′(xn+)

)
satisfy the estimate

‖ξn‖C2 ≥ cλ
‖ξ0‖C2

Bn(λ)
, n ∈ N, (3.21)

with some constant cλ > 0.

Proof. The proof of this lemma is almost the same as the proof of the previous
lemma. One should substitute the δ-jump matrix Jδ(α) in (3.11) by the δ′-jump

matrix Jδ′(α) =

(
1 α
0 1

)
. Repeating the calculations of the previous lemma we

get

Λ̃−1
n =

(
e−i

√
λ∆xn−1 0

0 ei
√
λ∆xn−1

)((
1 0
0 1

)
+
iαn

√
λ

2

(
−1 1
−1 1

))
.

Now it is clear that
‖Λ̃−1

n ‖ ≤ 1 + |αn|
√
λ.

Analogously to the previous lemma we get

‖ξn‖C2 ≥ cλ
‖ξ0‖C2

Bn(λ)
, (3.22)

where cλ =
(
‖Uλ‖‖U−1

λ ‖
)−1

.
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Further we prove two theorems, which contain sufficient conditions on X
and α for some subinterval of R+ to be free of point spectra of operators Hδ,X,α

and Hδ′,X,α.

Theorem 3.1. LetX = {xn}n∈N0
be a discrete set satisfying the condition (1.2).

Let α = {αn}n∈N be a sequence of real numbers. Let the self-adjoint opera-
tor Hδ,X,α be defined as in (2.3). Let the sequence {An(λ)}n∈N0

be defined as
in (3.8). If for some λ0 > 0

∞∑

n=0

∆xn
An(λ0)2

= ∞, (3.23)

then the point spectrum of Hδ,X,α satisfies

σp ∩ R+ ⊂ [0, λ0). (3.24)

Proof. Let us fix λ ∈ [λ0,+∞). Let ψ be a non-trivial function from the class

Sδ,X,α satisfying (3.1) for this λ. Let us introduce a sequence ξn =

(
ψ(xn+)
ψ′(xn+)

)
.

According to Lemma 3.2

‖ξn‖C2 ≥ cλ
‖ξ0‖C2

An(λ)
. (3.25)

Functions An(λ) are monotonously decreasing by λ for all n ∈ N and hence the
divergence of the series in (3.23) implies

∞∑

n=0

‖ξn‖2C2∆xn ≥ cλ‖ξ0‖2C2

∞∑

n=0

∆xn
An(λ)2

≥ cλ‖ξ0‖2C2

∞∑

n=0

∆xn
An(λ0)2

= ∞. (3.26)

Then according to Lemma 3.1 we get ψ /∈ L2(R+) and hence λ /∈ σp(Hδ,X,α).

Corollary 3.1. If we are in the conditions of Theorem 3.1 and the sequence α
contains only positive real numbers, then the point spectrum of Hδ,X,α satisfies

σp ⊂
(
0, λ0

)
. (3.27)

Proof. We need only to show that there are no eigenvalues on R−. Let ψ be an
arbitrary function from dom (Hδ,X,α). The scalar product

(
Hδ,X,αψ, ψ)L2(R+)

can be rewritten according to boundary conditions (2.1) in the form

‖ψ′‖2L2(R+) +
∑

n∈N

αn|ψ(xn)|2. (3.28)

Hence Hδ,X,α ≥ 0 and therefore σ(Hδ,X,α) ∩
(
−∞, 0

)
= ∅. If ψ is such that

Hδ,X,αψ = 0, then according to (3.28), ψ′(x) = 0 on R+ \X and ψ(xn) = 0 for
all n ∈ N, i.e. the function ψ is a constant on each interval (xn, xn+1), n ∈ N0,
and it takes the value zero at the points xn, n ∈ N, therefore ψ(x) = 0 for all
x ∈ R+ and hence 0 /∈ σp(Hδ,X,α).

Theorem 3.2. LetX = {xn}n∈N0
be a discrete set satisfying the condition (1.2).

Let α = {αn}n∈N be a sequence of real numbers. Let the self-adjoint operator

8



Hδ′,X,α be defined as in (2.4). Let the sequence {Bn(λ)}n∈N0
be defined as

in (3.8). If for some λ0 > 0

∞∑

n=0

∆xn
Bn(λ0)2

= ∞, (3.29)

then the point spectrum of the operator Hδ′,X,α satisfies

σp ∩ R+ ⊂
(
λ0,+∞

)
.

Proof. The proof of this theorem repeats the proof of Theorem 3.1 with the
only one difference: functions Bn(λ) are monotonously increasing by λ for all
n ∈ N, unlike monotonously decreasing functions An(λ), n ∈ N.

Corollary 3.2. If we are in the conditions of Theorem 3.2 and the sequence
α contains only positive real numbers, then the point spectrum of the operator
Hδ′,X,α satisfies

σp ⊂
(
λ0,+∞

)
.

Proof. The proof is analogous to the proof of Corollary 3.1.

4 Non-empty singular continuous spectrum and

purely singular continuous spectrum

In this section we give sufficient conditions on X and α for the operators
Hδ,X,α and Hδ′,X,α to have non-empty singular continuous spectra and to have
even purely singular continuous spectra. Finally we give the proof of The-
orem 1.1 formulated in the introduction. We use results of Section 3, the
compact perturbation argument and some results of Christ, Stolz [ChrSt] and
Mikhailets [Mi1, Mi2].

Lemma 4.1. Let X = {xn}n∈N0
be a discrete set on the half-line such that

∆xn → +∞. Let Hl,D be one-dimensional Laplacian on the interval of a
length l > 0 with Dirichlet boundary conditions on each end. Let Hl,N be one-
dimensional Laplacian on the interval of a length l > 0 with Neumann boundary
conditions on each end. Let self-adjoint operators HX,D and HX,N be defined as
direct sums:

HX,D =
∞⊕

n=0

H∆xn,D and HX,N =
∞⊕

n=0

H∆xn,N. (4.1)

Then the essential spectra of operators HX,D and HX,N coincide with R+.

Proof. Let us prove the claim only for the operatorHX,D. The proof for HX,N is
analogous. The operatorHX,D is positive as the direct sum of positive operators.
Let s > 0 be an arbitrary positive real number. Let us consider the sequence

λs,n =

(
π
⌈√

s∆xn

π

⌉

∆xn

)2

, n ∈ N, (4.2)

9



where ⌈·⌉ is the ceiling function. Since λs,n ∈ σp(H∆xn,D), then by the definition
of HX,D we get λs,n ∈ σp(HX,D). The claim for HX,D follows from the fact that

lim
n→∞

λs,n = s. (4.3)

The proof of the following lemma is the main step toward the proof of the
main result: Theorem 1.1.

Lemma 4.2. Let X = {xn}n∈N0
be a sparse discrete set on the half-line. Let

α = {αn}n∈N be a sequence of real numbers such that αn → ∞. Let the self-
adjoint operators Hδ,X,α and Hδ′,X,α be defined as in (2.3) and as in (2.4),
respectively. Then the following assertions hold:

(i) if for some λ0 > 0

∞∑

n=0

∆xn
∏n
i=1

(
1 + |αi|√

λ0

)2 = ∞, (4.4)

then the spectrum of Hδ,X,α has the following structure:

(ess) σess =
[
0,+∞

)
,

(pp) σpp ∩R+ ⊆ [0, λ0],

(sc)
[
λ0,+∞

)
⊆ σsc ⊆

[
0,+∞

)
,

(ac) σac = ∅;

(ii) if for some λ0 > 0

∞∑

n=0

∆xn
∏n
i=1

(
1 + |αi|

√
λ0

)2 = ∞, (4.5)

then the spectrum of Hδ′,X,α has the structure:

(ess) σess =
[
0,+∞

)
,

(pp) σpp ∩R+ ⊆
[
λ0,+∞

)
,

(sc)
[
0, λ0

]
⊆ σsc ⊆

[
0,+∞

)
,

(ac) σac = ∅.

Proof. (i) Since αn → ∞, then according to [ChrSt, Theorem 3] we have
σac(Hδ,X,α) = ∅. According to [Mi1, Theorem 1]

(Hδ,X,α − µ)− (HX,D − µ)−1 ∈ S∞

for all µ ∈ ρ(Hδ,X,α) ∩ ρ(HX,D). Therefore by the compact perturbation argu-
ment and Lemma 4.1

σess(Hδ,X,α) = σess(HX,D) = R+. (4.6)

By Theorem 3.1
σpp(Hδ,X,α) ∩ R+ ⊆

[
0, λ0

]
. (4.7)
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Taking into account the emptiness of the absolutely continuous spectrum we get
from (4.6) that

(
σsc ∪ σpp

)
(Hδ,X,α) ⊇ σess(Hδ,X,α) = R+.

Then according to (4.7) we get

[
λ0,+∞

)
⊆ σsc(Hδ,X,α) ⊆

[
0,+∞

)
.

(ii) The idea is almost the same as in the proof of the item (i). In order to
prove that σac(Hδ′,X,α) = ∅ one should make some minor changes in [ChrSt,
Theorem 3], see also [Mi2, Theorem 1]. According to [Mi1, Theorem 1] the
operatorHδ′,X,α is a compact perturbation of the operatorHX,N in the resolvent
sense. Hence by the compact perturbation argument and Lemma 4.1

σess(Hδ′,X,α) = σess(HX,N) = R+. (4.8)

By Theorem 3.2
σpp(Hδ′,X,α) ∩ R+ ⊆

[
λ0,+∞

)
. (4.9)

Again taking into account that the absolutely continuous spectrum is empty we
get from (4.8) that

(
σsc ∪ σpp

)
(Hδ′,X,α) ⊇ σess(Hδ′,X,α) = R+.

Then according to (4.9) we get

[
0, λ0

]
⊆ σsc(Hδ′,X,α) ⊆

[
0,+∞

)
.

Corollary 4.1. Assume we are in the conditions of Lemma 4.2 and the sequence
α contains only positive real numbers. Then the following assertions hold:

(i) if the series in (4.4) diverges for all λ0 > 0, then the spectrum of Hδ,X,α

is purely singular continuous and coincides with R+;

(ii) if the series in (4.5) diverges for all λ0 > 0, then the spectrum of Hδ′,X,α

is purely singular continuous and coincides with R+.

Proof. The item (i) follows from Lemma 4.2 (i) and Corollary 3.1. The item (ii)
follows from Lemma 4.2 (ii) and Corollary 3.2.

Remark 4.1. Conditions in the items (i) and (ii) of Corollary 4.1 are indeed
equivalent.

Further we give the proof of the main result.

Proof of Theorem 1.1

Recall from the introduction that the value a is defined as the following limit

a := lim inf
n→∞

∆xn
∆xn−1α2

n

.
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Let us apply d’Alembert principle to the series (4.4) from Lemma 4.2 (i). For
the divergence of this series it is sufficient to satisfy the condition

lim inf
n→∞

∆xn

∆xn−1

(
1 + 2√

λ0

|αn|+ 1
λ0
α2
n

) = lim inf
n→∞

λ0
∆xn

∆xn−1α2
n

= λ0a > 1.

(4.10)
If 0 < a +∞, then for all λ0 >

1
a the series (4.4) diverges and we get the first

part of the item (i).
Analogously let us apply d’Alembert principle to the series (4.5) from Lemma 4.2 (ii).

For the divergence of this series it is sufficient to satisfy the condition

lim inf
n→∞

∆xn

∆xn−1

(
1 + 2

√
λ0|αn|+ λ0α2

n

) = lim inf
n→∞

1

λ0

∆xn
∆xn−1α2

n

=
a

λ0
> 1.

(4.11)
If 0 < a < +∞, then for all λ0 ∈

(
0, a
)
the series (4.5) diverges and we get the

second part of the item (i).
If a = +∞, then according to d’Alembert principle both series (4.4) and (4.5)

diverge for all λ0 > 0 and we get from Corollary 4.1 the item (ii).

5 Discussion based on examples

Let us consider Schrödinger operator formally given by the expression

− d2

dx2
+
∑

n∈N

n1/4δn!. (5.1)

Since

lim inf
n→∞

n · n!
(n− 1) · (n− 1)!n1/2

= lim inf
n→∞

n2

n3/2 − n1/2
= +∞, (5.2)

then by Theorem 1.1 (ii) the spectrum is purely singular continuous and coin-
cides with R+.

Let us consider Schrödinger operator formally given by the expression

− d2

dx2
+
∑

n∈N

n1/2δn!. (5.3)

Since

lim inf
n→∞

n · n!
(n− 1) · (n− 1)!n

= lim inf
n→∞

n

n− 1
= 1, (5.4)

then by Theorem 1.1 (i) the singular continuous spectrum is non-empty and
contains the interval [1,+∞)

Our results do not allow to define exactly the structure of the spectrum on
the interval [0, 1] in the last example. The spectrum on this interval may be
purely singular continuous, only pure point or a mixture of these two kinds of
spectra. It is the question of interest for the author to construct an operator
Hδ,X,α with δ-interactions on a sparse discrete set X having non-empty positive
singular continuous spectrum and non-empty positive pure point spectrum or
to establish that this situation can not occur.

Another question of interest is to determine the Hausdorff dimension of the
obtained singular continuous spectrum.
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