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Abstract. In this paper we study the effect of a homoclinic tan-
gency in the variation of the topological entropy. We prove that a
diffeomorphism with a homoclinic tangency associated to a basic
hyperbolic set with maximal entropy is a point of entropy varia-
tion in the C∞-topology. We also prove results about variation
of entropy in other topologies and when the tangency does not
correspond to a basic set with maximal entropy. We also show
an example of discontinuity of the entropy among C∞ diffeomor-
phisms of three dimensional manifolds.

1. Introduction

Topological entropy is one of the most important invariants of topo-
logical conjugacy in dynamical systems. By the Ω−stability of Axiom
A diffeomorphisms with no cycle condition, it comes out that the en-
tropy is a C1-locally constant function among such dynamics. We say
that a diffeomorphism f is a point of constancy of topological entropy
in Ck topology if there exists a Ck-neighborhood U of f such that for
any diffeomorphism g ∈ U , h(g) = h(f). We also call a diffeomorphism
as a point of entropy variation if it is not a point of constancy.

In [11], Pujals and Sambarino proved that surface diffeomorphisms
far from homoclinic tangency are the constancy points of topological
entropy in C∞ topology. In this paper we address the reciprocal prob-
lem. We are interested in the effect of a homoclinic tangency to the
variation of the topological entropy for a surface diffeomorphism. Of
course after unfolding a homoclinic tangency, new periodic points will
emerge, but it is not clear whether they contribute to the variation of
the topological entropy. We mention that Dı́az-Rios [3] studied unfold-
ing of critical saddle-node horseshoes and when the saddle-node horse-
shoe is not an attractor they proved that the entropy may decrease
after the bifurcation. In our context, the tangency occurs outside a
basic hyperbolic set.

For Axiom A diffeomorphisms, by the spectral decomposition theo-
rem of Smale (see e.g. [14])), we have Ω(f) = Λ1∪Λ2∪ · · · ∪Λk, where
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each Λi is a basic set, i.e, an isolated f -invariant hyperbolic set with a
dense orbit. By the definition of topological entropy we have

h(f) = max
0≤i≤k

h(f |Λi).

So, we conclude that there exists a set (at least one) which is “respon-
sible” for the topological entropy of an Axiom A. By this we mean,
there exists some k0 ∈ {1, . . . , k} such that h(f) = h(f |Λk0 ). Such Λk0

is called responsible for entropy.
We consider a class of diffeomorphisms on the frontier of Axiom

A systems which exhibit a homoclinic tangency corresponding to a
periodic point of Λi0 . We show that the topological entropy increases
after small C∞ perturbations.

More precisely, consider a parametrized family fµ : M → M of
diffeomorphisms of a closed surface M unfolding generically (like in
[10]) a homoclinic tangency at µ = 0 where Ω(f0) = Λ1∪· · ·∪Λk∪O(q)
where each Λi is an isolated hyperbolic set and O(q) is the unique
homoclinic tangency orbit associated to a saddle fixed point p of some
Λi0 .

Theorem 1. Let fµ be a one parameter family of C2 surface diffeo-
morphism as above, then if Λi0 is responsible for the entropy, f0 is a
variation point of the topological entropy in Cr topology, for 2 ≤ r ≤ ∞.

A natural question is what happens if the tangency corresponds to
a piece which is not responsible for the entropy. We prove that;

Theorem 2. Let fµ be a one parameter family of C2 surface diffeo-
morphism as above, then

• If Λi0 is not responsible for the entropy, then f0 is a constancy
point of the topological entropy in the C∞ topology.
• f0 is a point of constancy in Ck−topology ( 1 ≤ k < ∞) if
htop(f) − h(f |Λi0) > αk where αk > 0 is a constant depending
on f0.

So the above theorems assert that, in the C∞ topology, if the tan-
gency is at the “correct” place (the responsible basic set), then the
entropy varies and, if the tangency is at the “wrong” place, then the
entropy remains constant. It is interesting to note that if we consider
C1-topology then even a tangency “in a wrong place” may cause en-
tropy variation:

Theorem 3. There exists a diffeomorphism fof S2 fixing a saddle with
homoclinic transversal intersection and another one with homoclinic
tangency such that f is a point of entropy variation in C1-topology.
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By the existence of transverse homoclinic point in the example of
above theorem the entropy of system is positive. Moreover the en-
tropy is localized on the part of non wandering set far from homoclinic
tangency. However, C1-perturbations make the total entropy of the
system increase.

We recall a method for perturbation of surface dynamics with homo-
clinic tangency, due to Newhouse, which is so called the “Snake like”
perturbation. Although after such perturbation the non wandering set
becomes richer, the topological entropy does not necessarily increase.
See theorem 1.1 for the relation between an estimate of entropy after
the perturbation and the eigenvalues of the periodic point correspond-
ing to the homoclinic tangency.

Theorem 1.1 ([9]). Let p be a (conservative) saddle point of a C1-
diffeomorphism f , such that W u(O(p)) is tangent to W s(O(p)) at some
point. Given ε > 0, for any neighborhood N of f there exists g ∈ N
such that

h(g) >
1

τ(p)
log |λ(p)| − ε,

where τ(p) is the period of p.

In the above theorem det(Df(p)) = 1. However, if this is not the
case, |λ(p)| in the above theorem can be substitutes by min{λ(p), µ(p)−1}
where λ(p) > 1 > µ(p) are the eigenvalues of Df(p). As a corollary of
continuity of topological entropy for the surface C∞ diffeomorphisms
we conclude that:

Theorem 4. It is not possible to substitute C∞ instead of C1 in the
above theorem.

The continuity property of entropy is a challenging problem in smooth
ergodic theory. Newhouse [8] and Yomdin [15] results give semi-continuity
of entropy in C∞ topology and using a Katok’s result [7] the entropy
is continuous for C∞ surface diffeomorphisms.

Let us also mention a result of Hua, Saghin and Xia [5] where they
prove that the topological entropy is locally constant for some par-
tially hyperbolic diffeomorphisms with one dimensional central bundle.
They have shown that for a large class of partially hyperbolic diffeo-
morphisms with bi-dimensional central foliations, the entropy varies
continuously. The authors also claim that without the homological
conditions the result is not true, and they exhibit examples in higher
dimension (≥ 4) where the result fails without such hypothesis. So it
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arises a natural question about the continuity of the topological en-
tropy in the C∞− topology for partially hyperbolic systems defined on
3-dimensional manifolds.

Here we give an example of 3−dimensional manifold diffeomorphism
which is not the point of continuity of entropy in C∞-topology. How-
ever, this example is far from being partially hyperbolic.

Theorem 5. There exists a diffeomorphism on 3-dimensional ball which
is a discontinuity point of the topological entropy in the C∞-topology.

2. Main Ingredients

Topological Entropy. Consider ΣN = {1, . . . , N}Z and the shift σ :
ΣN → ΣN given by σ(x) = y where yi = xi+1, i ∈ Z. For A = (aij)

N
i,j=1

a square 0 − 1-matrix of order N , the correspondent subshift of finite
type is the restriction of σ to ΣA = {x ∈ ΣN | axixi+1

= 1 for i ∈ Z}.
It is well known (see [12]) that if σ|A : ΣA → ΣA is a subshift of

finite type, then

h(σA) = log(λmax),

where λmax is the biggest eigenvalue of A in modulus.

Ω-Homoclinic Explosions and Markov Partitions. One of the
important features of hyperbolic dynamics is the existence of Markov
partitions. with rectangles of arbitrarily small diameter.

In particular, for basic set from the spectral decomposition of a
Axiom A diffeomorphism there are Markov partitions with arbitrarily
small rectangles and this implies conjugacy between f |Λ and a subshift
of finite type σ|ΣA .

To prove our first theorem, we focus on Ω−explosion like in the
model in Palis-Takens result [10], of course, without any hypothesis on
the fractal dimensions.

That is, we are considering a one parameter family fµ where for the

parameter µ = 0 the nonwandering set Ω(f0) = Λ1 ∪ Λ2 ∪ · · · ∪ Λ̃i0 ∪
· · · ∪Λk such that Λi, i 6= i0 is a hyperbolic basic and Λ̃i0 = Λi0 ∪O(q)
where Λk is a basic set and O(q) is the orbit of a homoclinic tangency
associated with a saddle fixed point p ∈ Λk.

For µ > 0 we can consider the basic sets Λi(µ) as the continuation of
Λi. Thereby, we have that Λi(µ) is hyperbolic and fµ|Λi(µ) is conjugated
to f0|Λi . Then, we have

h(fµ|Λi(µ)) = h(f0|Λi)

for all i = 1, . . . , k and all µ positive or negative.
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However, when we unfold the family fµ new periodic points are cre-
ated and the entropy of the nonwandering sets may increase for positive
parameters µ. We will see that, in fact, the entropy increases for small
positive parameters. This can be shown by constructing a subsystem
of fµ with a dynamics richer than f0|Λi0 .

To construct such a subsystem, we find a subset of Ω(fµ) containing
Λi0(µ) using Markov partitions. Take a parameter µ very close to µ = 0.
Since fµ unfolds generically, the map fµ has transversal homoclinic
intersections close to O(q0), the tangency orbit of f0. We have the
situation represented below in the figure 1.

A B

D

C E F

G

H

Figure 1. Unfolding of a homoclinic tangency close to
µ = 0.

Consider qµ a transversal homoclinic intersection point betweenW s(pµ)
and W u(pµ) close to q0 (the tangency for f0). Since Λi0(µ) is hyperbolic
and maximal invariant set for fµ, there exist a isolating neighborhood
of Λi0(µ), say Vi0 . Suppose that qµ 6∈ Vi0 . Moreover, we can use the
Bowen’s construction of Markov partition [2]. Consider {R1, . . . , Rs} a
Markov partition for Λi0(µ) such that

Λi0(µ) =
s⋃
j=1

Rj ⊂ Vi0 .

Furthermore, as qµ 6∈ Vi0 we have that a part of O(qµ) remains out
of Vi0 . Take N1, N2 ∈ N such that fN1

µ (qµ) ∈ Rs, f
−N2
µ (qµ) ∈ R1 and

f jµ(qµ) 6∈
⋃s
j=1Rj for j = −N2 +1, . . . , 0, . . . , N1−1. In other words, Rs

is the rectangle containing the first forward iterated of qµ that belongs
to Vi0 , and R1 is the rectangle containing the first backward iterated
of qµ that belongs to Vi0 .
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Figure 2. Construction of the Markov partition.

Given the Markov partition for Λi0(µ), we extend it for a larger set
which contains Λi0(µ)∪O(qµ) by constructing other rectangles contain-
ing {f−N2+1

µ (qµ), . . . , qµ, . . . , f
N1+1
µ (qµ)} in the following way: if we iter-

ate R1 under fN2 , we get a narrow strip around W u(pµ) containing qµ.
And if we iterate Rs under f−N1

µ , we get a narrow strip around W s(pµ)
containing qµ. We know that W s(pµ) and W u(pµ) have transversal in-
tersection on qµ. As we could take the diameter of the partition small
enough, it comes out that f−N1

µ (Rs) and fN2
µ (R1) are transversal. Let

C := f−N1
µ (Rs) ∩ fN2

µ (R1). It is clear that C is disjoint from
⋃s
i=1Ri

and contains qµ.
Note that fN1

µ (C) is a vertical strip of full height contained in Rs and

f−N2
µ (C) is a horizontal strip of full weight contained in R1. Consider

the disjoint sets Si defined as

Sj = f−N2+j
µ (C)

for j = 1, 2, . . . , N2, N2 + 1, . . . , N1 +N2 − 1. Note that SN2 = C. Now
denote ` = N1 +N2− 1 and consider P = {R1, . . . , Rs, S1, . . . , S`} and

R =
s⋃
i=1

Ri ∪
⋃̀
j=1

Sj.

So ΛR =
⋂
n∈Z

fnµ (R) is an isolated hyperbolic set such that Λi0(µ) ⊂

ΛR ⊂ Ω(fµ). The desired subsystem is the restriction fµ : ΛR → ΛR.

Lemma 2.1. P is Markov partition for ΛR.

Proof. We already know that all Ri’s satisfy the Markov property. It
remains to verify the Markov property for Sj’s. By construction we
have all Ri’s and Sj’s pairwise disjoint. Furthermore fµ(Sj) = Sj+1 for
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j = 1, . . . , ` − 1. In particular, we have fµ(S`) ⊂ Rs is a vertical strip
of full height. So

fµ(S`) ∩Rs 6= ∅,
fµ(S`) ∩Ri = ∅, for i = 1, . . . , s and

fµ(S`) ∩ Sj = ∅, for j = 1, . . . , `.

On the other hand, only R1 has image by fµ that intersects some Sj.
In fact,

fµ(R1) ∩ S1 6= ∅ and fµ(R1) ∩ Sj = ∅, for j = 2, . . . , `.

Note that since f−1
µ (S1) ⊂ R1 is a horizontal strip of full weight in

R1, then S1 = fµ(f−1
µ (S1)) ⊂ fµ(R1). So, fµ(R1) ∩ S1 6= ∅ and,

by the construction of S1, this intersection satisfies the transversality
condition of Markov partitions. Thus P is a Markov partition for ΛR.

�

We can associate to fµ : ΛR → ΛR a subshift of finite type as follows.
We consider the Markov partition P = {P1, . . . , Ps+`} as above and we
define a transition matrix Aµ = (aij)(s+`)×(s+`) for fµ taking

aij =

{
1, if fµ(Pi) ∩ Pj 6= ∅;
0, if fµ(Pi) ∩ Pj = ∅

for i, j ∈ {1, . . . , s+ `}. In this way we obtain a topological conjugacy
between the systems fµ : ΛR → ΛR and the subshift of the finite type
σAµ : ΣAµ → ΣAµ , where ΣAµ ⊂ Σs+`. The transition matrix Aµ has
the following form

aij =


Hij, if 1 ≤ i, j ≤ s;
1, if i = 1, j = s+ 1 or i = s+ `, j = s;
1, if j = i+ 1 for s+ 1 ≤ i ≤ s+ `− 1;
0, in other cases.

where Hµ = (Hij)s×s is the transition matrix of fµ : Λi0(µ) → Λi0(µ)
which is irreducible, because fµ|Λi0 (µ) is topologically transitive (see the
next section).

3. Proof of Theorem 1

Let fµ be the one parameter family as in the theorem 1. In the
previous section we constructed a Markov partition for the subsystem
fµ|ΛR , for µ ≥ 0. By means of this Markov partition, one may give a
conjugacy between such invariant subsystem fµ|Λi0 (µ) and the dynamics
of a subshift of finite type.
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Let Aµ be the transition matrix of fµ|ΛR , for µ > 0 small enough.
Recall that h(fµ) = log λµ where λµ is the largest eigenvalue of Aµ. By
construction of Markov partition in the previous section, we conclude
that

Aµ =



 Hµ




1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · 1




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




. (3.1)

The following proposition asserts that the largest eigenvalue of the
matrix Aµ is strictly bigger than the largest eigenvalue of the matrix
A0 = H0. From this proposition we can conclude that the entropy of
the system fµ|Λi0 (µ) is bigger than the entropy of f0|Λi0 .

Proposition 3.1. Let Aµ as defined above. If λµ is the largest eingen-
value of Aµ in modulus, then for any µ > 0 near to zero, λµ > λ0.

Proof. To proof the proposition we use Perron and Frobenius theorem.

Theorem 3.2 (Perron-Frobenius, [4]). Every non-negative s×s matrix
A has a non-negative eigenvector, AU = λU , with the property that the
associated λ is equal to the spectral radius |λ|max. If the matrix A is
irreducible, then there is just one non-negative eigenvector up to mul-
tiplication by positive constant, and this eigenvector is strictly positive.
Furthermore, the maximal eigenvalue λ′ of every principal minor (of
order less than s) of A satisfies λ′ ≤ λ. If A is irreducible, then λ′ � λ.

To use this theorem we need the matrix Aµ be irreducible, that is,

for any pair i, j there is some power n(i, j) of Aµ such that A
n(i,j)
µ > 0.

It is easy to see that Aµ is irreducible. Indeed, irreducibility is sat-
isfied by the rectangles Ri’s because the system fµ|Λi0 (µ) is transitive.

Since for each Sj, the iterated f `−j(Sj) intersects Rs and the iterated
f j(R1) intersects Sj, we obtain the desired property for all elements of
P .

Now we can apply the Perron-Frobenius Theorem to the sub-matrix
Aµ,1 of the irreducible transition matrix Aµ, obtained by excluding the
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last line and the last column of Aµ. So we obtain that the largest
eigenvalue λµ of Aµ is strictly bigger than the largest eigenvalue λµ,1
of Aµ,1. Even though Aµ,1 is not necessarily an irreducible matrix, we
can use the Perron-Frobenius theorem again to the sub-matrix Aµ,2,
with largest eigenvalue λµ,2 and obtain that λµ,2 ≤ λµ. We repeat this
process to obtaining the sub-matrix Hµ, whose largest eigenvalue λµ,`
is equal to λ0, because the systems fµ|Λi0 (µ) and f0|Λi0 are topologically
conjugated. Thus we have λµ 	 λ0. �

To conclude the proof of Theorem 1 observe that for all C2-neighbor-
hood V of f = f0 we can take fµ with µ very close to 0 such that
fµ ∈ V and the Proposition 3.1 holds. So, since Λi0 is responsible
for the entropy of f0, h(fµ) ≥ h(fµ|Λi0 (µ)) > h(f0|Λi0 ) = h(f0). Then
h(fµ) 6= h(f0) and thus f0 is a point of entropy variation.

�

4. Proof of Theorem 2

Here we recall some results of Yomdin [15] and Newhouse [8] for the
calculation of the defect of continuity of the entropy function in the
space of Ck-diffeomorphisms. We use their result for maximal invariant
subsets of dynamics.

Let Λf =
⋂
n∈Z f

n(U) be an isolated maximal invariant subset and
r(n, ε, f) denote the maximal cardinality of an (n, ε)−separated subset
of Λf . Denote r(ε, f) = lim supn→∞

1
n
r(n, ε, f). By definition h(f |Λf ) =

limε→0 r(ε, f). We need to find an upper bound for h(f |Λf ) − r(ε, f).
Local entropy turns out to be such upper bound. The local entropy can
be defined for any invariant measure as follows: Take Λ any compact
subset of M and for any x ∈ Λ, ε > 0 let

W s(x, n, ε) := {y ∈M,d(f i(x), f i(y)) ≤ ε for i ∈ [0, n)}.
Let r(n, δ, ε,Λ, x) = max Card(F ) where

F ⊂ Λ ∩W s(x, n, ε)

is (n, δ)−separated. Taking r(n, δ, ε,Λ) = supx∈Λ r(n, δ, ε,Λ, x) we de-
fine

r(ε,Λ) = lim
δ→0

lim sup
n→∞

1

n
log r(n, δ, ε,Λ)

and for any invariant measure µ we define hµloc(ε, f) = limσ→1 infµ(Λ)>σ r(ε,Λ).
Finally define hloc(ε, f) = supµ h

µ
loc(ε, f). Newhouse proved (Theorem

1 of [8]) that:
h(f) ≤ r(ε, f) + hloc(ε, f).

Take any g close to f define Λg :=
⋂
n∈Z g

n(U).
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Proposition 4.1. The map g → h(g|Λg) is upper semicontinuous in
C∞−topology.

Proof. The proof is an adaptation of Newhouse proof. We use that
for any g, h(g|Λg) ≤ r(ε, g|Λg) + hloc(ε, g|Λg) repeating the arguments
of Newhouse. For any C∞ diffeomorphism f and g close enough in
C∞−topology, the local entropy of g is small (This comes from Yomdin
result [15] ) and r(ε, g|Λ(g)) is also upper semicontinuous. More pre-
cisely, Let A be any cover of U with diam(U) ≤ ε then r(ε, g|Λg) ≤
h(A, g) where h(A, g) is the entropy of the covering. It is easy to see
that g → h(A, g) is upper semicontinuous, because it is infimum of
upper semicontinuous functions.

A similar proof to Yomdin Theorem [15] implies

Proposition 4.2. Let f : M → M be Ck e gn → f in Ck topology
then,

lim sup
n→∞

h(gn|Λ(gn)) ≤ h(f |Λ(f)) +
2m

k
R(f), (4.1)

where k ≥ 1, m = dimM e R(f) = lim
n→∞

1

n
log max

x∈M
‖Dfn(x)‖.

The above semi continuity results are key points of the proof of The-
orem 2. So we state our setting again: f : M →M is a diffeomorphism
(Here f stands for f0 in Theorem 2.) such that the homoclinic tangency
O(q) corresponds to the non responsible basic set. The nonwandering

set Ω(f) =
⋃k
i=1 Λi ∪O(q) where q is a tangency corresponding to Λi0 .

Shub in [13] defined a filtration adapted to a homeomorphism f :
M → M as a sequence ∅ = M0 ⊂ M1 ⊂ · · · ⊂ Mk = M , where each
Mi is a compact C∞−submanifold with boundary of M such that

• dimMi = dimM ;
• f(Mi) ⊂ int(Mi).

Given a filtrationM adapted to f , Kf
i (M) =

⋂
n∈Z f

n(Mi \Mi−1) is
the maximal f -invariant subset of Mi \Mi−1, which is compact. Fur-

thermore, we denote Kf (M) =
⋃k
i=1 K

f
i (M) and for the nonwandering

set Ω(f) we have

Λi = Ω(f) ∩ (Mi \Mi−1).

Proposition 4.3 ([13]). Let M be a filtration adapted to f and U a
neighborhood of Kf (M). Then there exists a C0-neighborhood U of f
in the space of homeomorphisms on M such that, for each g ∈ U , M
is a filtration adapted to g and Kg(M) is contained in U . Moreover,
taking Ui = (Mi \Mi−1) ∩ U , we can choose a neighborhood of U such
that Kg

i (M) ⊂ Ui.
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Suppose that Λi0 is the piece with external homoclinic tangency. By
Palis-Takens [10], for each diffeomorphism with a homoclinic tangency
as above, there exists a filtration M for the decomposition Ω(f) =
Λ1 ∪ Λ2 ∪ · · · ∪ Λk ∪ O(q) such that

(i) Λi =
⋂
n∈Z f

n(Mi \Mi−1), for i 6= i0;
(ii) Λi0 ∪ O(q) =

⋂
n∈Z f

n(Mi0 \Mi0−1).

Consider g a C∞−perturbation of f . As O(q) is the unique orbit of
tangency and all pieces Λi, i 6= i0 are hyperbolic sets then h(f |Λi) =
h(g|Λi), i 6= i0 and using Proposition 4.1 we obtain that h(g|Λi0(g)) ≤
h(f |Λi0(f)) + ε where ε→ 0 as g converges to f and as h(f |Λi0(f)) <
h(f) we conclude that h(f) = h(g).

To prove the second item of Theorem (in Ck−topology), we use
Proposition 4.2. It is enough to consider αk = 2m

k
R(f) and using

filtrations as the proof of the first item of Theorem.
�

5. Proof of theorem 3

To prove Theorem 3 we construct a system with a horseshoe and a ho-
moclinic tangency corresponding to a hyperbolic fixed point outside the
horseshoe. Then we perturb the system in a small neighborhood of the
tangency to create a transversal intersections (using C1-perturbations
“Snake like” as in Newhouse [9]) to obtain a new system with larger
topological entropy.

Consider the system f on the sphere S2 whose orbits follow the merid-
ians from a (the North Pole) to b (the South Pole). Suppose that the
system has a transverse homoclinic point and a homoclinic loop in two
disjoint regions. These regions are sorrounded by meridians. See the
Figure 3. Indeed, fistly consider a system with two homoclinic loop.
By making an small perturbation on one of the homoclinic loops one
obtain a transverse homoclinic orbit and consequently horseshoes.

We suppose this homoclinic loop is associated to a fixed hyperbolic
point p which has derivative with eigenvalues λ(p) = 3 and λ(p)−1 =
3−1. The horseshoe Γ in the first region is a two legs horseshoe, p∞ is
the source which send the orbits to a topological disc Q whose interior
is a trapping neighborhood for Γ. The sink of this horseshoe coincides
with p0. See the figure 4.

Thus the nonwandering set Ω(f) consists of three sinks, a source,
a (isolated) horseshoe and a hyperbolic point on the homoclinic loop.
Then, the topological entropy of f is h(f |Γ) = log 2. Observe that this
horseshoe is responsible
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a

b

c

d

Figure 3. System
with a horseshoe and
a homoclinic loop.

a

b

c

Figure 4. Region
of the horseshoe Γ.

Now we perturb f in the C1-topology to obtain a new system g,
breaking the homoclinic loop. Here we have an interval of tangency
corresponding to the saddle p and can apply Theorem 1.1.

By theorem 1.1 we obtain a diffeomorphism g such that for small ε,
h(g|Λ) ≥ log |λ(p)| − ε. As the tangency for f is associated to a fixed
point and h(g) > h(f) the proof is complete.

6. Proof of Theorem 4

It is well known that topological entropy function f → htop(f) is
a continuous function in C∞ topology for systems defined on a bi-
dimensional compact manifold. Using this observation, our example in
the proof of the second statement of theorem 1 shows that the New-
house perturbation Theorem 1.1 can not be applied in C∞ topology.

7. Lack of lower semi continuity

We exhibit an example of discontinuity (lower semicontinuity) of the
topological entropy in dimension three in C∞ topology . Observe that
in C∞ toplogy the topological entropy if upper semi continuous.

Theorem 7.1. There exists a diffeomorphism on the closed 3-dimensional
ball which is a discontinuity point of the topological entropy in the
C∞−topology.
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Proof. Consider a horseshoe map f : D → D of class C∞, where D is
the unitary disc of R2 as the Picture 5. We divide it in three parts cut
by the lines y = 1

3
and y = −1

3
.

Figure 5. Horseshoe map on the disc.

We will now construct an isotopy which deforms the horseshoe map
to a contraction. Let us produce a family ft as follows. First of all

consider the maps αt : R2 → R2 given by αt(x, y) =
(

2
3
x, (1−t)y− 5

3
t
)

,

with ε0 ≤ t ≤ 1, where ε0 > 0 is small enough such that the range
αε0(D) is under the x−axis. Now define ft = f ◦ αt and note that
for t0 = ε0, the map ft0 is a contraction with a unique fixed point,
which is an attractor. We can assume, unless reparametrization, that
the family ft is defined for t in t ∈ [0, 1] and that f0 = f . Extend this
family for t ∈ [−1, 1] making ft = f−t when t ∈ [−1, 0). Moreover, for
each t ∈ (−1, 1) contract the domain of each ft is defined by decreasing
the radius of D to

√
1− t2, i.e., define a map Ct : D → Dt, where Dt =

{(x, y) : x2+y2 ≤ 1−t2}, given by Ct(x, y) =
(
(
√

1− t2)x, (
√

1− t2)y
)
.

Thus for each t ∈ (−1, 1) define f̃t = C−1
t ◦ ft ◦ Ct.

Now construct a new map G defined on the 3-dimensional disc D3 =
{(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} in the following way: far each 2-
dimensional disc D2

t = {(x, y, z) ∈ D3 : z = t}, for t ∈ (−1, 1), define

F (x, y, z = t) = (f̃t(x, y), t).
Consider now a C∞−flow φ(t, (x, y, z)) on the 3-dimensional disc

D3 = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} with just two singularities: the
north pole N = (0, 0, 1) and the south pole S = (0, 0,−1), and such
that the orbit of each point in D3 \{N,S} has N as α-limit and S as ω-
limit. Moreover, suppose that for each orbit the time t is parametrized
such that each 2-dimensional disc D2

z0
= {(x, y, z) ∈ D3 : z = z0}, for
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Figure 6. Family ft on the disc.

Figure 7. Figure 8.

z0 ∈ (−1, 1), is send in another disc D2
z1

, with z1 < z0. Denote by
φτ : D3 → D3 the time τ diffeomorphism of this flow. It forms an one
parameter family of diffeomorphisms such that in τ = 0 we get the
identity map on D3.

Considere the family of diffeomorphisms Gτ = φτ ◦ F . For τ = 0,
we have that G0 = F , that the disc D2

0 is F -invariant and F |D2
0

=

f . Furthermore, the entropy of f is h(f) = log 2, which implies that
h(F ) ≥ h(F |D2

0
) = log 2. Nevertheless, if τ > 0 is small, the entropy of

Gτ vanishes, because the set Ω(Gτ ) is constituted just by S and N .
In short, we got an arc of diffeomorphisms Gτ such that for each

τ > 0 the entropy of Gτ is zero and for τ = 0 the entropy jumps to
log 2. It proves that the topological entropy is not lower semicontinuous
in G0. �
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