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MANIN’S CONJECTURE FOR A QUARTIC DEL PEZZO
SURFACE WITH A; SINGULARITY AND FOUR LINES

by

Pierre Le Boudec

Abstract. — We give a proof of Manin’s conjecture for a quartic del Pezzo surface
split over Q and having a singularity of type A3 and containing exactly four lines.

Résumé. — Nous donnons une preuve de la conjecture de Manin pour une surface
de del Pezzo de degré quatre déployée sur Q, ayant une singularité de type A3 et
contenant exactement quatre droites.
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1. Introduction

Manin’s conjecture (see [FMT89]) gives a precise description of the distribution
of rational points of bounded height on singular del Pezzo surfaces. More precisely,
let V- C P™ be such a surface, U be the open subset formed by deleting the lines from
V and

Nuu(B) = #{zeU(Q), H(x)< B},
where H : P*"(Q) — R, is the exponential height defined by
H(zo:...:2y) = max{|z;,0<i<n},

for (zo, ..., x,) € Z"*? satisfying the condition ged(zo, . .., 2n) = 1. If V denotes the
minimal desingularization of V' and pg; the rank of the Picard group of V, then it is
expected that

(1.1) Nuu(B) = cvuBlog(B)’v (1 +0(1)),

where cy g is a constant which is expected to follow Peyre’s prediction [Pey95|.
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Singular del Pezzo surfaces are classified by their degrees, their singularity types
and the number of lines they contain. Two surfaces are said to have the same singu-
larity type if they have the same number of singularities and if their Dynkin diagrams
match up. We are interested here in singular del Pezzo surfaces of degree four, their
classification can be found in the work of Coray and Tsfasman [CT88]. Up to iso-
morphism over Q, there are fifteen types of such surfaces (see the table in [Bro07,
sectionl.2]). Here is a quick overview of the results already obtained towards a proof
of Manin’s conjecture for all singular quartic del Pezzo surfaces split over Q. The
conjecture is already known to hold for nine of these fifteen types. Using techniques
coming from harmonic analysis on adelic groups and studying the height Zeta function

Zun(s) = Y, H(@x)™,

zeU(Q)

Batyrev and Tschinkel have proved it for toric varieties [BT98] (which covers the
three types 4A1, 2A1 + A and 2A; 4+ Aj3) and Chambert-Loir and Tschinkel have
proved it for equivariant compactifications of vector groups [CLT02| (which covers
the type Ds). Note that for the Dy surface, la Bretéche and Browning have obtained
this result independently [BBO7]. Finally, the conjecture has been obtained for five
other singularity types, the type D4 by Derenthal and Tschinkel [DT07], the type
A, + Aj; by Derenthal [Der09], the type A4 by Browning and Derenthal [BD09] and
the types 3A; and A+ Az by the author [LB10]. These proofs are very different from
those using the fact that the varieties considered are equivariant compactifications of
algebraic groups. They all use a lift to universal torsors. This consists in defining a
bijection between the set of the points to be counted on U and some integral points on
an affine variety of higher dimension (which is equal to eight for quartic surfaces). Note
that Derenthal has calculated the equations of the universal torsors for all singular
quartic del Pezzo surfaces in his thesis [Der|. This can also be achieved using only
elementary techniques, see section [Bl for an example.

Our aim is to prove Manin’s conjecture for another surface split over @, having
singularity type Az and containing exactly four lines. Such a surface V C P* can be
defined as the intersection of the two following quadrics

Tox1 — x% =0,
(o + 1 + x3)x3 — X224 = 0.

The lines on V are given by x; = zo = 3 = 0 and x; = 292 = xg + 1 + 3 = 0 for
i € {0,1} and the unique singularity is (0: 0:0:0: 1). We see that V is actually
split over Q and thus, if V denotes the minimal desingularization of V', the Picard
group of V has rank py; = 6. Define the open subset U and the quantity Ny, u(B)
as explained above. In section [B] we define a bijection between the set of the points
to be counted on U and certain integral points of an open subset of the affine variety
embedded in A ~ SpecQ[n1,...,n7, a1, az, ay] defined by

inening +nsan —neas = 0,
MemEnEne + mrag —naay = 0.

The universal torsor corresponding to our present problem actually has five equations
and can be embedded in A'* ~ SpecQ[n1,...,n7, a1, a2, az,as] but we will neither
use these three other equations nor the variable 3. Let us insist on the fact that it is
the first time that Manin’s conjecture is proved for a split singular quartic del Pezzo
surface whose universal torsor has several equations. Our result is the following.
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Theorem 1. — As B tends to +00, we have the estimate

Nyu(B) = cv.uBlog(B)® (1 +0 (@)) )

where cy g agrees with Peyre’s prediction.

Since py = 6, this estimate proves that V satisfies Manin’s conjecture. Let us
note here that Derenthal has proved that V' is not toric [Der06}, Proposition 12] and
Derenthal and Loughran have proved that it is not an equivariant compactification
of G2 [DL10], so theorem [ does not follow from the general results [BT98| and
[CLTO02]. In view of this result, there are only five types of surfaces in the list of
fifteen for which we still do not know if Manin’s conjecture holds.

It is worth pointing out that the summations over the variables ny,...,n7 could
have been carried out studying a certain Dirichlet series in two variables linked to
the height Zeta function of the surface and using a tauberian theorem. The error
term coming from these summations might have certainly been improved to B~ for
some § > 0. However, being unable to get a better error term than Blog(B)? for the
summations over oy, o and ay, the author has chosen not to take this path. This
latter error term therefore seems to be the only reason why a proof of a meromorphic
continuation of the height Zeta function of the surface on the left of £(s) = 1 is hard
to attain.

In the following section, we prove several lemmas about summations of arithmetic
functions. The next two sections are respectively devoted to the calculations of the
universal torsor and of Peyre’s constant. Finally, the last section is dedicated to the
proof of theorem [Il

It is a great pleasure for the author to thank his supervisor Professor de la Breteche
both for his encouragement and his advice during this work.

This work has received the financial support of the ANR PEPR (Points Entiers
Points Rationnels).

2. Arithmetic functions

We need to introduce the following collection of arithmetic functions

cw=" T (1-1).  wm-T(1-55).

pln pln
p#£2

ﬁw:ﬂﬁ—%) Mm‘ﬂo+mm)
pF#2

We can note here that if n is odd then ¢°(n)¢’(n) = ¢*(n) and if n is even then
©°(n)¢’ (n) = 2¢*(n). Moreover, for a,b > 1, we define

Yap(n) = {‘PO(ng(a,n))—l if ged(n,b) = 1,

0 otherwise,

and

G (n) = ¢°(ged(a,n)) et (n)p* (ged(a,n)) " if ged(n,b) = 1,
ab\M) = 0 otherwise.

Finally, for § > 0, we set 0_5(n) = >y, k9.
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Lemma 1. — Let § > 0. We have the estimate
> Yapn) = V(a,b)X + 05 (X°0_s(ab)),

n<X
where
¢’ (a)
" (ged(a, b))
Proof. — We start by calculating the Dirichlet convolution of v, ; with the Mobius
function pu.

\I](aab) = (P*(b)

(wa,b * ,u)(n) = Zwa,b(n/d)u(d)
d|n
=TT e 0) = ta (0" 71)) -
p¥[In

But 94,(1) =1 and for all v > 1

(1-1/(p—1)"" ifpla,p#2and ptb,
1 if p£2,p1ab,

1 if p=2,21b,

0 if p|b.

Yab (P7) = tap(p) =

Thus, we easily obtain

u(n) Hp\gcd(a,n),pfb (=1/(p—2)) if n|aband (21n or 2|b),
0 otherwise.

(wa,b * /L)(?’L) = {

Let us now write ¥qp = (g, * pt) * 1, we get

D tan(n) = DD (Gapp)(d)

n<X n<X dln
“+o0
= § "/’ab*ﬂ E L.
d=1 k<X/d

Let § > 0. Let us replace the inner sum of the right-hand side by X/d + O (X°/d?)
and use |(Yap * p)(n)] <1, we get

Z' wab*ﬂ < U_é(ab).

We have proved that

Jr
a.b *
D tap(n) = XY (Wa “ ) 4 0 (X%0_s(ab).
n<X d=1

Finally, a straigthforward calculation gives

B () I ()

plb

which concludes the proof. O



MANIN’S CONJECTURE FOR A SINGULAR QUARTIC DEL PEZZO SURFACE 5

Lemma 2. — Let § > 0. We have the estimate
S wyn) = V(a,b)X + 05 (X0 5(b)),
n<X

where

b 2)—1
Yy = L@ T
@0 = Shaam” Vi
Proof. — We proceed exactly as for the proof of lemma [l Let
1 -1
f(n) = un) H - H 5

plnptab P pl ged(a,n) oo
P#2 P#2

A calculation provides
f(n) if 24 n or 2|b,
(W * 1) (n) =< f(n)/2 if 2|n and 21 ab,
0 otherwise.

Now we see that [(1)y, , * p)(n)| < ged(b,n)/n, which easily yields

Jio (¥, * 1)(d)]

o < U_g(b).
d=1
Another straightforward calculation gives
+oo / * d
Z (7/)@71, w)(d) \If’(a,b),
d
d=1
which completes the proof. o

The proof of [LB10, Lemma 5] shows that we have the following result.

Lemma 3. — Let 1 < t; < tg and I = [t1,t2]. Let also g be a function having a
piecewise continuous derivative on I whose sign changes at most Ry(I) times on I.
We have

> Yap(n)gn) = ‘If(a,b)/g(t)dHO(o—a(ab)tSMf(g)),
n€EINZso I
and

S glamen) = ¥(a,b) / g(t)dt + 0 (o5 () Mi(g))

ne€lNZ=o
where M1(g) = (1 + Ry(I))sup,c; g(t)].

We also have the following estimation.

Lemma 4. — With the same notations, if 21 b then

> valna(n) = 5¥(ab) [ o0+ 0 (o-s(abiMi0).

nelNZso
n=0 (mod 2)

In a similar way, if 2|a and 21 b then
/ 1 l 0
S vialaln) = V(@) [ g+ 0 (o-s M)

nelNZso
n=0 (mod 2)
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Proof. — Let us prove the statement for v, 4, it suffices to notice that
+oo
Z wa,b(n) = Z(wa,b * M)(d) Z 1
n<X d=1 k<X/d
n=0 (mod 2) k=0 (mod 2)
—+o0
+ Y @aprw@ Y1,
d=1 k<X/d
d=0 (mod 2) k=1 (mod 2)

and (g * p)(d) =0 for all d =0 (mod 2) since 2t b and therefore

S vt = e (o (5)

n<X d=1

n=0 (mod 2)
We can conclude exactly as in the proof of lemma [Il and finally, as for lemma Bl use
the proof of [LB10, Lemma 5]. The proof for ¢ , is strictly identical, it only uses
the fact that (¢, * p1)(d) = 0 for all d =0 (mod 2) since 2|a and 2 1 b. O

3. The universal torsor

We now proceed to define a one-to-one function between the set of the points
we want to count on U and certain integral points on the affine variety defined in
the introduction. As explained above, the universal torsor of our problem is an
affine variety of dimension 8 embedded in A!l. It has five equations but we will
only deal with ten of the eleven variables and will only make use of two equations
among these five. Our choice of notation might be surprising but it is guided by
our wish to adopt the notation used by Derenthal in [Der| Chapter 6]. Note that if
(o @122 23 x4) € V(Q) then we have (xg : 1 : @2 : 23 : z4) € U(Q) if and only
if xozixoxs # 0. Let (20, 21,22, x3,24) € Zio x 7 such that

Tox1 — z% =0,

(zo + 21 + 23)73 — T24 = 0,
max{|z;|,0 <i < 4} < B and ged(xo, 21, %2, 23,74) = 1. Since x = —x in P*, we can
assume o > 0 which gives x; > 0. Moreover, the application (z2,24) — (—22, —24)
shows that we can also assume z2 > 0 keeping in mind that we need to multiply
our future result by 2. The first equation shows that there is a unique way to write
To = Y12, v1 = yoro and xe = yorwhz) for z{, x|, yo1 > 0 and ged(x),z}) = 1.
The second equation therefore gives

(yor2G + yor1277 + 3)w3 — yorwpah s = 0.

We define yj; = ged(yor, z3) > 0 and write yo1 = yj112 and x3 = yj, x5 with ny > 0
and ged(n2, x4) = 1. We obtain

2 2 INST S v _
(27 + M2y + 25)yn 25 — mrprirs = 0,

and thus 79|y, 2% and it follows n2|yf; since ged(ns, 25) = 1. We can therefore write
Y61 = m2yl for yg; > 0. The equation becomes

12 12 ! 1 A VA
(m2wg + nax + 25)yg 73 — xorirs = 0.

We now see that ged(xo, 21,22, 3, x4) = 1 implies ged(y();, z4) = 1 and thus y{; |x{z)
and x(, =} being coprime, we can write y§;, = mns, x5 = nzzg and ) = maf for
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M, M3, x5, ] > 0. Now we set 25 = a12%, 4 = ayaq with 4 > 0 and ged(af, aq) =1
(we do not prescribe the sign of ay = £+ ged(x¥, 24)). We finally get

2,112 2, 112 Ay ", 1
(mem3zo” + nemizy” + anxg)ry — zoaias = 0.

We observe that since ged(z}, o) = 1, we have af|z(z} and we can write ¥ = nsn7,

xy = nsne and i = nanz, for na,ms,ne, 17 > 0. We have finally obtained

To = mmaninEnG,
1= nimnaning,
T2 = 77%77%77:%77477577677%
T3 = Mn2n3nslran,
Tg4 = 104,
and the equation is
MMENENG + Minening + nsnray — mamgey = 0.

Furthermore, it is easy to see that the coprimality conditions can be summed up by

ged(n3nsne, mmanz) = 1,
ng(U57777772044) = 15
ged(mmanz, cray) = 1.

Since ng and 77 are coprime, we see that the equation is equivalent to the existence
of ay € Z such that

(3.1) nineminT + M50 — Nz 0,
(3.2) MonanEne + nraz —naay = 0.

In a similar way, since 14 and 75 are coprime, we can derive the existence of az € Z
such that

Nam3nsg + mron — s = 0,
Mt 4+ nsas —neas = 0,
TN NenT + Q1o — azay =
As explained above, we will not use these three equations. We define 7(B) as the set

of (N1,Mm2, M3, N4, M5, Ne, N7, A1, A2, Qg) € Z7>0 x 72 satisfying the coprimality conditions
above, the two equations (B and (8:2)) and finally the height conditions

(3.3) mnzn3nzmg < B,
(3.4) nmmnsning < B,
(3.5) mnensnsnzlaa| < B,
(3.6) lonay| < B.

We have proved the following lemma.

Lemma 5. — We have the equality

Nuu(B) = 2#T(B).



8 PIERRE LE BOUDEC

4. Calculation of Peyre’s constant
We calculate the value of the constant cy, g predicted by Peyre. It is defined by
cvir = aV)B(V)wr(V),

where a( ) € Q is the volume of a certain polytope in the cone of effective divisors
of V, B(V) = #H'(Gal(Q/Q), Pics ( )) = 1 since V is split over Q and finally

wn(V) = wmﬂ<1%)6wp,

where wo, and w, are respectively the archimedean and p-adic densities. The work of
Derenthal [Der07] provides the value

~ 1

Furthermore, using [Loul0, Lemma 2.3], we get
wp = 1+ § + i
p P

To calculate weo, We set fi(z) = zox1 — 23, fa(x) = (zo + 21 + 73)23 — X224 and we
parametrize the points of V' by zg, 2 and x3. We have

ofh  9h
det | 9z1  0Oza _ |%o 0
9fz  Ofo T3 —Io
Ox1 Oxy
= —TpT2.
Moreover, x1 = x3/xo and 24 = (23 + 23 + zox3)w3/(T0T2). Since x = —x in P*, we

have

/// d$0d$2d$3
z0,22>0,x0,23/T0,|23], |10+z2+1013||z3|/|z0z2|<1 ZoT2

Define the function
(41) h: (UQ, tr, tg) — max{tG, tr, t7|t7 — t6u2|, |t7 — t6u2||t6 + t7u2|}.

The change of variables given by zg = t%, x9 = tety and x3 = —tr7(t7 — teug) yields
4 / // d’u,gdﬁ7dt6.
te,t7>0,h(uz,t7,t6)<1

5. Proof of the main theorem

5.1. First steps of the proof. — The idea of the proof is to see the equations
BI) and ([B2) as congruences respectively modulo 15 and 74 and then to count the
number of s satisfying these two congruences. In order to do so, we replace the

height conditions ([B.5]) and [B.6]) by

MmN [ninzninr — neaz| < B,

i 05t [ninening — nea| [neminine + nras| < B,
and we carry on denoting them the same way. We note that the equation (B
proves that we necessarily have ged(minz, asng) = 1 since ged(ninz, nsar) = 1. Ex-
actly the same way we get ged(ag,n3ns) = 1 thanks to the equation ([B.2) and
ged(nsns, nacg) = 1. We also have ged(n2,n4) = 1, indeed, if p|n2,ns then B2
gives p|ag since ged(ne, n7) = 1 and then BI)) gives p|ay since ged(na, n5) = 1, which
is impossible because ged(nz, 1) = 1. This new coprimality condition also yields
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ged(ag,na) = 1 since we have ged(n2n3nsne, na) = 1. In a similar way, we finally ob-
tain ged(ag, mame) = 1 and also ged(ng, n7) = 1 and ged(ns, ng) = 1. We can therefore
rewrite the coprimality conditions as

)

5.1) ged(ar, mnansnane) = 1
ged(a, mmanansng) = 1,
ged(ag, mmansnans) = 1,
ged(n7, n2nznansne) = 1,
ged(ne, mnanans) = 1,
ged(mna, n3ns) = 1,
ged(nz, mans) = 1.
From now on, we set § = (n1,72,73,M4,75) € Z%, and 0/ = (m,me,77) € ZL,
Consider that ' € Z7 is fixed and is subject to the height condition (Z3), (B4

and the coprimality conditions (B4), (@A), (&8) and (&1). Let N(n', B) be the
number of (ay, as, ay) € Z satisfying the equations B1]), (B:2)), the height conditions

B3) and (36) and finally the coprimality conditions (G.I)), (&.2) and (E3). For

(r1,72,73,74,75) € Q°, we define

n(T11T27T31T41T5) — 1, T2, T3, T4, T

NN N3Ny M5

and we adopt the following notations in order to help in the understanding of the
height conditions,

A, = LLLLY),
Bl/2
Y —AB1301)"
PCYERETPRRY
Bl/2
Y7

nG/2L1/210)

and recalling the definition (LI of the function h, we can sum up all the height

conditions as
a2 N7 T
h| —,—, — < 1.
< A27 Y77 Yvﬁ > =
We also introduce the real-valued functions

g1 (t7;t6)’_>/ dug,
h(u27t7,t6)§1

g2 : (te;m,B) — g1(t7, te)dtr,
t7Y7>1
g3 : (m,B)— ga(te;m, B)dts.
teYo>1
We obviously have
(5.8) 93(n, B) = /// duodtrdts.
teYo>1,t7Y7>1,h(uz,t7,t6)<1

Lemma 6. — We have the bounds

—-1/2,—-1/2

giltr,te) < g e
—1/2
go(te;n, B) < g /2,
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Proof. — The condition |t; — teus||ts + t7uz| < 1 implies that us runs over a range
whose length is < ¢4 Y Qt; /2 which gives the first bound. The second bound is an
immediate consequence of the first since t7 < 1. O

We have the following result.

Lemma 7. — The following estimate holds

As (777 776)
N ,B) = 24 (L 5)omn)+ R, B),
(n',B) oI\ v v, (n') + R(n', B)

where 0 is a certain arithmetic function given in (59) and

> R(n',B) < Blog(B)*.
n’

Let us remove the coprimality conditions (.I) and (B5.2]) employing two Mobius
inversions, we get

N(n',B) = ook Y plka)Sk

k1|nin2manane kalmin2mznsnz

where, with the notations a; = k1) and ay = ksay,

ninemy + nskied — neaz = 0
Skyks = #3(a,al,a2) € Z3, mamEnEne + nras — nakaaly = 0
B3), B8), B3)
Moz = ninaniny (mod kins)
= #Say €Z, nmrag = —mnznne (mod kyns)
B3), B5), B3)
We note that we necessarily have ged(ki,ns) = 1 since ged(ng, mim2man7) = 1 and
ged(ky,mmnang) = 1 since ged(ninana, neaz) = 1. In a similar way, we also have
ged(ky, nensnsnz) = 1. In particular, we see that 7g and 17 are respectively invertible
modulo k17ns and k4ns. We therefore get

N('r]la B) = Z :u(kl) Z :U’(k4)Sk1,k4a
k1|ns kalm
ged(k1,m1m2mane)=1 ged(ka,n2nznsnr)=1

and
ag =g 1771?772772777 (mod k175)
Sk17k4 = #{a2€Z, ax= 77777 77277:%77%776 (HlOd k4774)

B.5), B.9), ©.3)

Furthermore, k1ns and k4ny4 are coprime since nsns and 7114 are coprime thus the
Chinese remainder theorem gives
as = a (mod kikanans) }
S = as € 7, ,
wre = #{er 2 o

for a certain integer a coprime to kiksnans since ged(kikanans, az) = 1. A Mobius
inversion yields

koady = a (mod kikgnans)

Skrks = > ulka)# {0/2 €% @3, G0 }

ka|nin2msnans

' h=ky' d kik
Z (ko) # {ag €Z, C(I?E),(EQ’;E(I)I (mod k1 kanans) }’

k2|n1in2ns3
ged(ka,k1kanans)=1
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since ged(k1kanans, a) = 1. Using the elementary estimate

to —t
#{ne€ZNty,tz),n=a (mod q)} = %—FO(l),
and the change of variable ug — ugAs/ka, we get
b =kyta (mod kiksnans) Aa N7 Ne
Leg, 2= = ——= g (=, Z2)+00).
#{% B.3), B.8) k2k1/<?4774775g1 Y: Ys L

We see that the main term is equal to
A (777 M6 ) /
—ag1 (505 ) 0(),
7747759 Y7 Yo ()

o) = 3 Mgflﬂ 3 MSZL) 3 ugf;z)

k1|ns ka|m k2|n1mzns
ged(k1,min2nane)=1 ged(ka,m2nansn7)=1 ged(kz,k1kanans)=1
. p(k1) p(ka)
= 1727371475 T L .
©" (mn2m3mans) ;Ej T (ks > T (kamn)
1|ns kalm
ged(k1,m2ne6)=1 ged(ka,m2n7)=1

We have removed 174 from the condition over k; and n3ns from the condition over
k4 respectively because ged(ns, mns) = 1 and ged(m,n3ns) = 1. A straightforward
calculation yields, for a,b,c > 1,

3 plk) ©" (ged(a, b)) 11 (1 1 >

T ker(kid) p*(b)¢*(ged(a,b,0)) = N p—1

ged(k,c)=1

Therefore, we have obtained

1
AN -
(5.9) 0n')=61(mms) ] 1 p—1)’
pln1,ptn2nanz

where

01(n,76) = w*(n1n2n3n4n5)w*(ng(nl’n4» #" (ged (s, 15)) 11 (1 1 ).

4 (774) 4 (775) p|n3.pin2nsne

We see that the overall contribution of the error term is
Z ow(ns)gw(m)ow(mmnzns) Z 2w(ns)2w(m)2w(mnzns)y6y7

n,M6,M7 n
= Z 9w (n3) 9w (1) gw(n1n2ms) n(zf&m)
n
< Blog(B)?
which completes the proof of lemma [7
5.2. Summation over 7;. — Our next task is to sum over 77, that is why we have
isolated n7 in 6(n’). In order to do so, we have to distinguish two cases. Let us define

N = {(m,n2.m) € Zo,2 ¢ m or 2Jn2ma}.
It is plain to see that if (1, 72,74) € N or 2|n; then

1 1
| | 1—— = | | 1-—,
p—1 p—1
pln1,ptn2nanz pln1,ptn2nany
p#2
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and this product is equal to 0 otherwise. Furthermore, since 1214 and 17 are coprime,
we see that

]._.[ -1 > _ ©°(m)
p—1 ©°(ged (1, nana))° (ged (1, 17))
P\m@’;?;mm
p

We call N'(n,n6, B) the sum of the main term of N(n’, B) over 77, 17 being subject
to the conditions (34) and (54]). We also use Ni(n,ns, B) and Nj(n,ns, B) to denote
the sums over n; respectively for (n1,72,14) € N and (n1,72,7m4) ¢ N (in the latter
case, the main term vanishes if 2 { 7). We now proceed to prove the following lemma.

Lemma 8. — We have the estimate
AxYr 76
N/(Tla%,B) = g2 (—;ThB 9/1("7)9/2("7’776)+R/(77’776aB);
1475 Ys

where 01(n) and 05(n,ne) are arithmetic functions defined in (@I0) and EII) and
> R'(n,ns,B) < Blog(B)*.

7,76

First, we estimate the contribution of Nj(n,ns, B), we use lemma[Blto deduce that

AxY7 (776 ) ©°(m)
N/ ) aB = > aB 9 B} \I] )
1(n,m6, B) o 2\ 1(n n6)<p°(gcd(m,772n4)) (171, M2m3M47576 )

Az U
+0 <—Y7606(771772773774775776) sup g1 <t7,— .
475 trYe>1 Ys

Let us estimate the overall contribution of this error term. Use the bound of lemma
for g1 and choose 6 = 1/4. The average order of o_s is O(1) so we see that this
contribution is

A2Y1/2Y3/4 A2Y6Y3/4
Z 071/4(771772773774775776)671/72 < 20*1/4(771772773774775)77
7,76 114757 n 7475
B
< Z 0—1/4(771772773775)m

71,12,13,75
< Blog(B)*,

which is satisfactory. Concerning the main term, we have

¢’ (m)
@ (ged(n1, m2ma))’

U(n1, nensnansne) = @ (N21374M576)

and since (171, 72,m4) € N, we also have

° (1) ¢’ (im) _ " (m)
° (ged(n1,112m4)) ¢ (ged (1, m2n4)) ¢ (ged(n1,m2m4))
These equalities and a short calculation prove that
©°(m
01(n,76) () W (1, 21347576 )

¢° (ged (i, 12m4))
can be rewritten 6} (n)05(n,ns) for

©*(mmn2) ¢*(ged(n3,m5))
©*(mans)  *(ns)
510 Gnm) = s ] (1--2).

*(gcd
©*(ged(n6,m3)) it

(5.10) 0i(n) = @ (mnensnans)e” (n2m3n475)
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We now turn to the estimation of N4(n,ns, B). We only need to sum on the even
77 and so, given the coprimality condition (&4l), n2n3nansns is odd and thus we can
apply lemma @l The error term is the same as the previous one and, in the main
term, there are exactly two differences with the case of N{(n,ns, B). The first is the
factor 1/2 and the second is the fact that here, since (n1,12,74) ¢ N,

°(m) ¢’ (m) _ g )
°(ged(m1,112ma)) ¢ (ged (1, 112m4)) o (ged(n1, n2ma))’
and thus we find exactly the same main term, which completes the proof of lemma
5.3. Summation over 7. — We set
M = {(n3,m2,n5) € Z2,2 1 3 or 2|nans}.

As for the summation over 77, it is clear that if (ns,n2,15) € M or 2|ng then

1 1
| | 1-— | | 1-—,
p—1 p—1
P|n3,ptN2m576 PIn3,pM2m5M6
p#2

and this product is equal to 0 otherwise. Furthermore, since 7275 and 7 are coprime,

we have
11 <1L> ~ e (ged( e

, p—1 135 M215))¢° (ged (113, m6))
p\nsm’;gnsno
P

We need to treat two cases separately depending on whether (ns,72,75) € M or not
(if not, note that the main term vanishes if 2 { ng). Let N(n, B) be the sum of the
main term of N'(n, ng, B) over ng, g satisfying the conditions B3] and (&3] and let
also N1 (n, B) and N3 (n, B) be the sums over 5 respectively for (13,12, 75) € M and
(7735 7727775) ¢ M.

Lemma 9. — We have the estimate
B B
N(n,B) = ((2) 1m93(77,3)9(77)+R(77aB),
where
©*(Mmn2n3nans) . ©*(mne) ©*(n2n3
emn = %w (m213m4715) 2™ (171211475 ) *( ) *( )
o (mnam3nans) ©* (n2ma) @* (N215)

and

> R(n,B) < Blog(B)*.

We first treat the contribution of Ny (n, B), we use lemma [B] to deduce that

AY7Ye / 900(773) /
N ,B _— ’B 9 W )
1(17 ) 75 g3 (,‘7 ) 1(”) o( C]( 3. 72 5)) (773 771772774775)

As5Y-
+O< 2 TYd0_s(mmamans) sup gs (te;n,B))-
N4ns5 teYe>1

We use the bound of lemma [6 for g2 and choose § = 1/4 to estimate the overall
contribution of the error term. Since the average order of o_s is O(1), we obtain that
this contribution is
3/4
> 0_1/4(771772774775)% < > 0-1/4(?71?72?74)%
n M1,M2,7M3,74
< Blog(B)*,
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which is satisfactory. Let us turn to the main term. First, note that

AY7Ys B
mms  pLLLLD’
In addition, we have
* 2)~ ! b
V' (n3,mmenans) = ¢ (mn2nans) ¢(2) ’ (1)

@t (mnznsnans) ¢°(ged(ns, 12ms))”
and since (13, 12, 75) € M, we also have

©°(n3) ¢’ (n3) B ©*(n3)

°(ged(ns, n2ms)) ¢° (ged(ns, m21s)) ¢* (ged(ns, m2ms))”
An easy calculation now yields

/ (T]) 900 (773)
©°(ged(n3; n2ms
We now deal with the estimation of Ny(n, B). We only need to sum on the even
ne and so, given the coprimality condition (5., 7112m475 is odd and moreover since
(n3,m2,m5) & M, we have 2|n3 and thus we can apply lemma [l The error term is

the same as the previous one and, in the main term, there are exactly two differences
with the case of Ny(n, B). The first is the factor 1/2 and the second is that here,

since (13,72, 75) & N,
¢° (n3) ¢’ (n3) P 2 )
¢°(ged(n3, m2ms)) ¢° (ged (13, 12m5)) p*(ged(n3, m215))”
and we finally obtain the same main term, which concludes the proof of lemma

))‘P/(U377I1772774775) = ((2)7'e(n).

5.4. Conclusion. — The aim of the following lemma is to remove the conditions
teYs > 1 and t7Y7 > 1 from the expression (0.8]) of g3 in the main term (i. e. replace
them respectively by tg > 0 and t7 > 0).

Lemma 10. — For Zg, Z7 > 0, we have

(5.12) meas{tg, t7 > 0, h(ug, tr,t6) < 1,t6Z6 < 1} < Zg /2,

(5.13) meas{tg, t7 > 0, h(ug, tr,t6) < 1,t:27 <1} < Z7 /2.
Proof. — These two bounds follow from the bound of lemma [6] for g; and the fact
that h(u2,t7,t6) < 1 implies tg,t7 < 1. [

Now, using the bound (B.I2)), we see that removing the condition t¢Ys > 1 from
the expression of g3 in the main term yields an error term whose overall contribution
is

A V7Y B

4
n 14715 15M2,713574

< Blog(B)",

which is satisfactory. The bound (B.I3]) shows that we have exactly the same conclu-
sion for the condition ¢7Y7 > 1. Finally, we see that we can replace gs(n, B) in our

main term by
/// dUth7dt6 = W;.o
te,tr>0,h(uz, tr,te) <1 4

Using lemma [l we obtain the following lemma.
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Lemma 11. — We have the estimate
1 Woo O(n)
Nuu(B) = (@)7'==B) FURREBVREY (Blog(B)*),
n

where the sum is taken over the n subject to Yg > 1 and Y7 > 1.

We redefine © as being equal to zero if the remaining coprimality conditions (&.0])
and (B5.7)) are not satisfied and we carry on denoting it by ©. Set k = (kq, k2, k3, k4, ks5)
and define, for s € C such that R(s) > 1

(s,s,s,8,s)
nezl, K
I |(© % ) (p*r, ph2, phs pha phs) |
- k1spkas k spkaspkss
p \kezz, prieptetpresptaspis

,pFs, pke, pP )—Oand moreover
ki pha phs

It is easy to see that if k ¢ {0,1}° then (©xp) (p**, p*2
p) (P, p*2, phe, ph phe) < 1/p, so

if exactly one of the k; is equal to 1, then (© x
the local factors F), of F satisfy

1
Fp(s) = 140 <pmin(%(s)+1,2%(s))> ’

This proves that F actually converges in the half-plane R(s) > 1/2, which implies
that © satifies the assumption of lemma [LB10, Lemma 7]. Applying this lemma, we
get

O(n) (©xp)(n) 5 4

G140 >, minm = o| X iy | osB) 0 (ls(B)"),
n 5
Yo, Yr>1 €0

where « is the volume of the polytope defined by t1,ts,t3,t4,t5 > 0 and
t1 + 2ty + 3t + 2t5 < 1,
3ty + 2to +ts + 24 < 1.
A computation using Franz’s additional Maple package [Fra09] provides
1

2160
(5.15) = 2a(V)

and moreover

o =

n(LLLLI) pklpk2pk3pk4pk5

Z (e*u)(n) _ H Z (@*/L)( k1 7pk37pk4,pk5)

neLL,

)5 > O (phr,pk2, phs, ks, ps)

k1 ko ks mkank
N pkrph2pks pkaphs
€z3,

I
~ =
7 N

—_

|
SRR

The remaining coprimality conditions greatly simplify the calculation and we obtain

© (p*r, p2, pks, phs, pks) 1\! 1 6 1
Z k1 pk2 pks pka pks = 1——2 1— - 1_|__+_2 ,
pkipkapksphap > p .

KeZE,
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which gives

6
(5.16) 3 % - g(z)H(11) wp.

: p
neL, p

We complete the proof of theorem [ putting together the equalities (BI4)), (BI5),
(5I6) and lemma [T
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