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Abstract

A stationary random graph is a random rooted graph whose distribution is invariant under
re-rooting along the simple random walk. We adapt the entropy technique developed for Cayley
graphs and show in particular that stationary random graphs of subexponential growth are
almost surely Liouville, that is, admit no non constant bounded harmonic function. Applications
include the uniform infinite planar quadrangulation and long-range percolation clusters.

1 Introduction

A stationary random graph (G, ρ) is a random rooted graph whose distribution is invariant
under re-rooting along a simple random walk started at the root ρ (see Section 1.1 for a precise
definition). The entropy technique and characterization of the Liouville property for groups of
or homogeneous graphs [15, 17, 18] are adapted to this context. In particular we have

Theorem 1.1. Let (G, ρ) be a stationary random graph of subexponential growth in the sense
that

n−1E
[

log
(
#BG(ρ, n)

)]
−→
n→∞

0, (1)

then (G, ρ) is almost surely Liouville.

Recall that a function from the vertices of a graph to R is harmonic if and only if the value
of the function at a vertex is the average of the value over its neighbors, for all vertices of the
graph. We call graphs admitting no non constant bounded harmonic functions Liouville. In the
case of graphs of bounded degree, Corollary 3.5 characterize stationary non-Liouville random
graphs as those on which the simple random walk is ballistic.

The motivation of this work lies in the study of the Uniform Infinite Planar Quadrangulation
(abbreviated by UIPQ) introduced in [19] (following the pionneer work of [2]). The UIPQ is
a random infinite planar graph whose faces are all squares which is stationary. This object is
very natural and of special interest for understanding two dimensional quantum gravity and has
triggered a lot of work, see e.g. [2, 3, 11, 21, 24]. One of the fundamental questions regarding
the UIPQ, is to decide recurrence or transience. Unfortunately, the degrees in the UIPQ are
not bounded thus the techniques of [8] fail to apply. Nevertheless it has been conjectured in [2]
that the UIPQ is a.s. recurrent. We come close by proving below, as an application of Theorem
1.1

Corollary 1.2. The Uniform Infinite Planar Quadrangulation is almost surely Liouville.

Another application concerns a question of Berger [9] proving that certain long range per-
colation clusters are Liouville (see Section 5.2).

The notion of stationary random graph generalizes the concept of Cayley and transitive graph
where the homogeneity of the graph is replaced by a invariant distribution along the simple
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random walk. This notion is very closely related to the ergodic theory notions of unimodular
random graphs (see [1] for a survey) and measured equivalence relations see e.g. [16]. Roughly
speaking, unimodular random graphs of [1] correspond, after biasing by the degree of the root,
to stationary and reversible random graphs (see Definition 1.3). Using ideas from measured
equivalence relations theory we are able to prove (Theorem 4.4) that if a stationary random
graph of bounded degree (G, ρ) is non reversible then the simple random walk on G is ballistic,
thus improving Theorem A of [25] and extending [26] in the case of transitive graphs.

The paper is organized as follows. The remaining of this section is devoted to a formal
definition of stationary and reversible random graphs. Section 2 links these concepts to previous
works on unimodular random graphs and measured equivalence relations. The entropy technique
is developed in Section 3. In Section 4 we explore under which conditions a stationary random
graph is not reversible. The last section is devoted to applications and open problems.

Acknowledgments : We are grateful to Pierre Pansu, Frederic Paulin and Damien Gaboriau
for many stimulating discussions on measured equivalence relations. We also deeply thank
Russell Lyons for comments on a early version of this work.

1.1 Definitions

A graph G = (V(G),E(G)) is a pair of sets, V(G) representing the set of vertices and E(G) the
set of (unoriented) edges. We allow multiple edges and loops. In the following all the graphs
considered are connected and locally finite. Two vertices x, y ∈ V(G) linked by an edge are
called neighbors in G and we write x ∼ y. The degree deg(x) of x is the number of neighbors
of x in G. For any pair x, y ∈ G, the graph distance dGgr(x, y) is the minimal length of a path
joining x and y in G. For every r ∈ Z+, the ball of radius r around x in G is the subgraph
of G spanned by the vertices at distance less than or equal to r from x in G, it is denoted by
BG(x, r).

A rooted graph is a pair (G, ρ) where ρ ∈ V(G) is called the root vertex. An isomorphism
between two rooted graphs is a graph isomorphism that maps the roots of the graphs. Let G• be
the set of isomorphism classes of locally finite rooted graphs (G, ρ), endowed with the distance
dloc defined by

dloc

(
(G1, ρ1), (G2, ρ2)

)
= inf

{
1

r + 1
: r > 0 and BG1(ρ1, r) ' BG2(ρ2, r)

}
,

where ' stands for the rooted graph equivalence. With this topology, G• is a Polish space (see
[8]). Similarly, we define G•• (resp. ~G) be the set of isomorphism classes of bi-rooted graphs
(G, x, y) that are graphs with two distinguished ordered points (resp. graphs (G, (xn)n>0) with
an semi-infinite path), where the isomorphisms considered have to map the two distinguished
points (resp. the path). These two sets are equipped with variants of the distance dloc and are
Polish with the induced topology. Formally elements of G•,G•• and ~G are equivalence classes of
graphs, but we will not distinguish between graphs and their equivalence classes and we use the
same terminology and notation. One way to bypass this identification is to choose once for all
a canonical representant in each class, see [1, Section 2].

Let (G, ρ) be rooted graph, for x ∈ V(G) we denote the law of the simple random walk
(Xn)n>0 on G starting from x by PGx and its expectation by EGρ . It is easy to check that when

(G, ρ) is an equivalence class of rooted graphs the distribution of (G, (Xn)n>0) ∈ ~G is well-
defined. We speak of “the simple random walk of law PGρ conditionally on (G, ρ)”. It is easy to
check that all the quantities we will use in the paper do not depend of a choice of a representant
of (G, ρ).

A random rooted graph (G, ρ) is a random variable taking values in G•. In this work we
will use P and E for the probability and expectation referring to the underlying random graph.
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If conditionally on (G, ρ), (Xn)n>0 is the simple random walk started at ρ, we denote the
distribution of (G, (Xn)n>0) ∈ ~G by P, and by E the respective expectation.

Definition 1.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let (Xn)n>0 be
the simple random walk on G starting from ρ. The graph (G, ρ) is called stationary if

(G, ρ) = (G,Xn) in distribution, for all n > 1, (2)

or equivalently for n = 1. In words a stationary random graph is a random rooted graph whose
distribution is invariant under re-rooting along a simple random walk on G. Furthermore, (G, ρ)
is called reversible if

(G,X0, X1) = (G,X1, X0) in distribution. (3)

Clearly any reversible random graph is stationary.

Example 1. Any Cayley graph rooted at any vertex is stationary and reversible. Any transitive
graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary. For examples of
transitive graphs which are not reversible, see [6, Examples 3.1 and 3.2]. E.g. the “grandfather”
graph (see Fig. below) is a transitive (hence stationary) graph which is not reversible.

If conditionally on (G, ρ), (Xn)n!0 is the simple random walk started at ρ, we denote the
distribution of (G, (Xn)n!0) ∈ "G by P, and by E the respective expectation.

Definition 1.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let (Xn)n!0 be
the simple random walk on G starting from ρ. The graph (G, ρ) is called stationary if

(G, ρ) = (G,Xn) in distribution, for all n ! 1, (2)

or equivalently for n = 1. In words a stationary random graph is a random rooted graph whose
distribution is invariant under re-rooting along a simple random walk on G. Furthermore, (G, ρ)
is called reversible if

(G,X0,X1) = (G,X1,X0) in distribution. (3)

Clearly any reversible random graph is stationary.

Example 1. Any Cayley graph rooted at any vertex is stationary and reversible. Any transitive
graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary. For examples of
transitive graphs which are not reversible, see [6, Examples 3.1 and 3.2]. E.g. the “grandfather”
graph (see Fig. below) is a transitive (hence stationary) graph which is not reversible.

∞

Fig.: The “grandfather” graph is obtained from the 3-regular tree by choosing a point at
Infinity that orientates the graph and adding all the edges from grand sons to grand-father.

Example 2. [8, Section 3.2] Let G be a finite connected graph. Pick a vertex ρ ∈ V(G) with a
probability proportional to its degree (normalized by

∑
u∈V(G) deg(u)). Then (G, ρ) is a reversible

random graph.

Example 3 (Augmented Galton-Watson tree). Consider two independent Galton-Watson trees
with offspring distribution (pk)k!0. Link the roots vertices of the two trees by an edge and root
the obtained graph at the root of the first tree. The resulting random rooted graph is stationary
and reversible, see [22, 23, 16].

2 Connections with other notions

As we will see, the concept of stationary random graph can be linked to various notions. In the
context of bounded degree, stationary random graphs generalize unimodular random graphs [1].
Stationary random graphs are closely related to graphed equivalence relation with an harmonic
measure, see [25]. We however think that the probabilistic Definition 1.3 is more natural and
shed some additional light on the concept.
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2.1 Ergodic theory

We formulate the notion of stationary random graphs in terms of ergodic theory. We can define
the shift operator θ on ~G by θ

(
(G, (xn)n>0)

)
=
(
G, (xn+1)n>0

)
, and the projection π : ~G → G•

by π
(
(G, (xn)n>0)

)
= (G, x0).

Recall from the last section that if P is the law of (G, ρ) we write P for the distribution
of (G, (Xn)n>0) where (Xn)n>0 is the simple random walk on G starting at ρ. The following
proposition is a straightforward translation of the notion of stationary random graph into an
θ-invariant probability measure on ~G.

Proposition 2.1. Let P a probability measure on G• and P the associated probability measure
on ~G. Then P is stationary if and only if P is invariant under θ.

As usual, we will say that P (and by extension P or directly (G, ρ)) is ergodic if P is ergodic
for θ. Proposition 2.1 enables us to use all the powerful machinery of ergodic theory in the
context of stationary random graphs. For instance, the classical theorems on the range and
speed of a random walk on a group are valid:

Theorem 2.2. Let (G, ρ) be a stationary and ergodic random graph. Conditionally on (G, ρ)
denote (Xn)n>0 the simple random walk on G starting from ρ. Set Rn = #{X0, . . . , Xn} and
Dn = dGgr(X0, Xn) for the range and distance from the root of the random walk at time n. There
exists a constant s > 0 such that we have the following almost sure and L1 convergence for P,

Rn
n

a.s. L1

−→
n→∞

P

(⋂

i>1
{Xi 6= ρ}

)
, (4)

Dn

n

a.s. L1

−→
n→∞

s. (5)

Remark 2.3. In particular a stationary and ergodic random graph is transient if and only if
the range of the simple random walk on it grows linearly.

Proof. The two statements are straightforward adaptations of [12]. See also [1, Proposition
4.8].

2.2 Unimodular random graphs

The Mass-Transport Principle has been introduced by Häggström in [14] to study percolation
and was further developed in [6]. A random rooted graph (G, ρ) obeys the Mass-Transport
principle (abbreviated by MTP) if for every Borel positive function F : G•• → R+ we have

E


 ∑

x∈V(G)

F (G, ρ, x)


 = E


 ∑

x∈V(G)

F (G, x, ρ)


 . (6)

The name comes from the interpretation of F as an amount of mass sent from ρ to x in G: the
mean amount of mass that ρ receives is equal to the mean quantity it sends. The MTP holds
for a great variety of random graphs, see [1] were the MTP is extensively studied.

Definition 2.4. [1, Definition 2.1] If (G, ρ) satisfies (6) it is called unimodular (See [1] for
explanation of the terminology).

Let us detail the link between unimodular random graphs and reversible random graphs.
Suppose that F : G•• → R+ is a Borel positive function such that

F (G, x, y) = F (G, x, y)1x∼y. (7)
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Applying the MTP to a unimodular random graph (G, ρ) with the function F we get

E

[∑

x∼ρ
F (G, ρ, x)

]
= E

[∑

x∼ρ
F (G, x, ρ)

]
,

or equivalently

E

[
deg(ρ)

1

deg(ρ)

∑

x∼ρ
F (G, ρ, x)

]
= E

[
deg(ρ)

1

deg(ρ)

∑

x∼ρ
F (G, x, ρ)

]
.

In other words, if (G̃, ρ̃) is distributed according to (G, ρ) biased by deg(ρ) (assuming that
E [deg(ρ)] < ∞) and if conditionally on (G̃, ρ̃), X1 is a one-step simple random walk starting
on ρ̃ in G̃ then we have the following equality in distribution

(G̃, ρ̃,X1)
(d)
= (G̃,X1, ρ̃). (8)

The graph (G̃, ρ̃) is thus reversible hence stationary. Reciprocally, if (G̃, ρ̃) is reversible we
deduce that the graph (G, ρ) obtained after biasing by deg(ρ)−1 obeys the MTP with functions
of the form F (G, x, y)1x∼y. By [1, Proposition 2.2] this is sufficient to imply the full mass
transport principle. Let us sum-up.

Proposition 2.5. There is a correspondence between unimodular random graphs such that the
expectation of the degree of the root is finite and reversible random graphs:

(G, ρ) unimodular and E[deg(ρ)] <∞
bias by deg(ρ)

�
bias by deg(ρ)−1

(G, ρ) reversible.

2.3 Measured equivalence relations

Let (B,µ) be a standard Borel space with a probability measure µ and let E ⊂ B2 be a sym-
metric Borel set. We denote the smallest equivalence relation containing E by R. Under mild
assumptions (see below) the triple (B,µ,E) is called a measured graphed equivalence relation.
The set E induces a graph structure on B by setting x ∼ y ∈ B if (x, y) ∈ E or (y, x) ∈ E. For
x ∈ B, one can interpret the equivalence class of x as a graph with the edge set given by E,
which we root at the point x. If x is sampled according to µ, any measured graphed equivalence
relation can be seen as a random rooted graph.
Here are the mild conditions to require for (B,µ,E) to be a measured graphed equivalence relation. We

suppose that R ⊂ B2 is Borel, that each equivalence class is at most countable and that the R-satured

of any Borel set of µ measure zero is still of µ measure zero. We also assume that the applications

o : (x, y) ∈ E 7→ x ∈ B and r : (x, y) ∈ E 7→ (y, x) ∈ E are Borel and that #o−1(x) is finite for µ-almost

every x. We can define a probability measure ν on E by ν(f) =
∫
B
dµ(x) 1

#o−1(x)

∑
x∼y f((x, y)). If ν

is in the same class as its push-forward r∗ν by r then the triple (B,µ,E) is called a measured graphed

equivalence relation.

Reciprocally, the set G• can be equipped with a natural symmetric Borel set E where
((G, ρ), (G′, ρ′)) ∈ E if (G, ρ) and (G′, ρ′) represent the same isomorphism class of non-rooted
graph but rooted at two different neighbor vertices. Denote R the smallest equivalence rela-
tion on G• that contains E. Thus a random rooted graph (G, ρ) of distribution P gives rise to
(G•,P, E) which, under slight assumptions on (G, ρ) is a MGEQ.

Remark however that the measured graphed equivalence relation we obtain with this pro-
cedure can have a graph structure on equivalence classes very different from the graph (G, ρ).
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Consider for example the (random) graph Z2 rooted at (0, 0). Since Z2 is a transitive graph, the
measure obtained on G• by the above procedure is concentrated on the singleton corresponding
to the isomorphism class of (Z2, (0, 0)). There are two ways to bypass this difficulty: consider-
ing rigid graphs (that are graphs without non trivial isomorphisms see [16, Section 1E]) or add
independent uniform labels ∈ [0, 1] on the graphs (see [1, Example 9.9]). Both procedures yield
a MGEQ whose graph structure is that of (G, ρ).

In particular we have the following dictionary between the notions of harmonic MGEQ [25,
Definition 1.11], totally invariant MGEQ [25, Definition 1.12], measure preserving MGEQ [13,
Section 8] or [1, Example 9.9] and the corresponding analogous for random rooted graphs.

measured graphed equivalence relation random rooted graph

harmonic stationary
totally invariant reversible

measure preserving unimodular

3 Liouville property

In this section, we extend a well-known result on groups first proved in [4] relating Poisson
boundary to entropy of a group. Here we adapt the proof of [17, Theorem 1] in the case of
group (see also [18] in the case of homogeneous graphs). We basically follow the argument
using expectation of entropy. The stationarity of the underlying random graph together with
the Markov property of the simple random walk will replace homogeneity of the graph. We
introduce the mean entropy of the random walk and prove some useful lemmas. Then we derive
the main results of this Section.

In the following (G, ρ) is a stationary random graph. Recall that conditionally on (G, ρ), PGx
is the law of the simple random walk (Xn)n>0 on G starting from x ∈ V(G). For every integer
0 6 a 6 b < +∞, the entropy of the simple random walk started at x ∈ V(G) between time a
and b is

Hb
a(G, x) =

∑

xa,xa+1,...,xb

ϕ
(
PGx (Xa = xa, . . . , Xb = xb)

)
,

where ϕ(t) = −t log(t). To simplify notation we write Ha(G, x) = Ha
a (G, x). Since (G, ρ) is a

random graph we set

hba = E
[
Hb
a(G, ρ)

]
and ha = E [Ha(G, ρ)] .

Proposition 3.1. If (G, ρ) is a stationary random graph then (hn)n>0 is a subadditive sequence.

Proof. Let n,m > 0. We have

Hn+m(G, ρ) = −
∑

xn+m

PGρ (Xn+m = xn+m) log
(
PGρ (Xn+m = xn+m)

)
.

Applying Markov property at time n, it comes

Hn+m(G, ρ) =
∑

xn+m

ϕ

(∑

xn

PGρ (Xn = xn)PGxn(Xm = xn+m)

)
.

Since ϕ is concave and ϕ(0) = 0 we deduce that for every x, y > 0 we have φ(x+y) 6 φ(x)+φ(y),
hence we obtain

Hn+m(G, ρ) 6
∑

xn+m

∑

xn

ϕ
(
PGρ (Xn = xn)PGxn(Xm = xn+m)

)

= Hn(G, ρ) +
∑

xn

PGρ (Xn = xn)Hm(G, xn).
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Taking expectations one has using (2)

hn+m 6 hn + E

[∑

xn

PGρ (Xn = xn)Hm(G, xn)

]

= hn + E [Hm(G,Xn)] = hn + hm.

The subadditive lemma then implies that

hn
n
−→
n→∞

h > 0. (9)

This limit is called the mean entropy of the stationary random graph (G, ρ). It plays the role
of the (deterministic) entropy of a random walk on a group. The following theorem generalizes
the well-known connection between Liouville property and entropy.

Theorem 3.2. Let (G, ρ) be a stationary random graph. The following conditions are equivalent:

• the tail σ-algebra associated to the simple random walk on G started from ρ is almost surely
trivial (in particular (G, ρ) is almost surely Liouville),

• the mean entropy h of (G, ρ) is null.

Before doing the proof, we start with a few lemmas.

Lemma 3.3. For every 0 6 a 6 b <∞ we have hba = ha + (b− a)h1.

Proof. Let 0 6 a 6 b <∞. An application of Markov’s property at time a leads to

Hb
a(G, ρ) = −

∑

xa,...,xb

PGρ (Xa = xa, . . . , Xb = xb) log
(
PGρ (Xa = xa, . . . , Xb = xb)

)

= −
∑

xa

PGρ (Xa = xa) log
(
PGρ (Xa = xa)

)
+
∑

xa

PGρ (Xa = xa)H
b−a
1 (G, xa)

Taking expectations we get hba = ha+hb−a1 . An iteration of the argument proves the lemma.

If (G, ρ) is fixed and (Xn)n>0 is distributed according to PGρ , we denote

Fn(G, ρ) = σ(X0, . . . , Xn),

Fn(G, ρ) = σ(Xn, . . .),

F∞(G, ρ) =
⋂

n>0
Fn(G, ρ).

The last σ-algebra consists of tail events. By classical results on entropy theory, for all
k > 0, the conditional entropy H(Fk(G, ρ)|Fn(G, ρ)) increases as n → ∞ and converges to
H(Fk(G, ρ)|F∞(G, ρ)). Furthermore, we have

H(Fk(G, ρ)|F∞(G, ρ)) 6 H(Fk(G, ρ)),

with equality if and only if Fk(G, ρ) and F∞(G, ρ) are independent.

Lemma 3.4. For 0 6 k 6 n < +∞ we have E [H(X1, . . . , Xk|Xn, . . . , Xm)] = kh1 +hn−k−hn.
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Proof. We have by definition

H(X1, . . . , Xk|Xn, . . . , Xm)

=
∑

x1,...,xk
xn,...,xm

PGρ (Xi = xi, 1 6 i 6 k and n 6 i 6 m) log

(
PGρ (Xi = xi, 1 6 i 6 k and n 6 i 6 m)

PGρ (Xi = xi, n 6 i 6 m)

)
.

Applying Markov property at time k one gets

= Hk
1 (G, ρ)−Hm

n (G, ρ) +
∑

xk

PGρ (Xk = xk)H
m−k
n−k (G, xk),

and taking expectations the RHS becomes hk1−hmn +hm−kn−k . Lemma 3.3 concludes the proof.

In particular we see that the expected value of H(X1, . . . , Xk|Xn, . . . , Xm) does not depend
upon m (this is also true without taking expectation and follows from Markov property at time
n). If we let m→∞ in the statement of the last lemma, we get by monotone convergence

E [H(Fk(G, ρ)|Fn(G, ρ))] = kh1 + hn−k − hn. (10)

Proof of Theorem 3.2. The equality (10) for k = 1 and the monotonicity of conditional entropy
allow us to deduce that (hn+1 − hn)n>0 is decreasing and converges towards h̃ > 0. By (9) and
Cesaro’s Theorem, we deduce that h̃ = h. Thus sending n → ∞ in (10) we get by monotone
convergence

E [H(Fk(G, ρ)|F∞(G, ρ))] = k(h1 − h).

Comparing the last display with Lemma 3.3 with a = 1 and b = k, it follows by monotonicity of
conditional entropy that h = 0 if and only if almost surely, for all k > 0, F∞(G, ρ) is independent
of Fk(G, ρ). In this case the classical Kolmogorov’s 0 − 1 law implies that F∞(G, ρ) is almost
surely trivial, in particular (G, ρ) is Liouville. This completes the proof of Theorem 3.2.

Proof of Theorem 1.1. Let (G, ρ) be a stationary random graph of subexponential growth that is
E[log(#BG(ρ, n))] = o(n), as n→∞. Thanks to Theorem 3.2, we only have to prove that the
mean entropy of G is zero. But by a classical inequality we have Hn(G, ρ) 6 log(#BG(ρ, n)),
taking expectation and using (9) yields the result.

In the preceding theorem we saw that subexponential growth plays a crucial role. In the case
of transitive or Cayley graphs, all the graphs considered have at most an exponential growth.
But that there are stationary graphs with superexponential growth, here is an example.

Example 4. Considerer an augmented Galton-Watson tree (see Example 3) with offspring
distribution (pk)k>1 such that

∑
k>1 kpk =∞. We have

lim inf
n→∞

E[log (BG(ρ, n))]

n
=∞.

Corollary 3.5. Let (G, ρ) be a stationary and ergodic random graph of degree almost surely
bounded by M > 0. Conditionally on (G, ρ) let (Xn)n>0 be the simple random walk on G
starting from ρ. We denote the speed of the random walk by s and the exponential volume
growth of G by v, namely

s = lim sup
n→∞

n−1E
[
dGgr(X0, Xn)

]
,

v = lim sup
n→∞

n−1E [log(#BG(ρ, n))] .

8



Then the mean entropy h of (G, ρ) satisfies

s2

2
6 h 6 vs.

In particular h = 0 ⇐⇒ s = 0 and if s or v is null then (G, ρ) is almost surely Liouville.

Remark 3.6. This is an extension of the “fundamental inequality” for groups [27, Theorem 1],
see also [18, Theorem 5.3.] for homogeneous graphs.

Proof. For (G, ρ) is ergodic, we know from Theorem 2.2(5) that n−1 dGgr(X0, Xn) converges
almost surely and in L1(P) towards s > 0. In particular for every ε > 0 we have

P
(
(s− ε)n 6 dGgr(X0, Xn) 6 (s+ ε)n

)
−→
n→∞

1. (11)

Lower bound. We have

Hn(G, ρ) >
∑

xn
dGgr(ρ,xn)>(s−ε)n

ϕ(PGρ (Xn = xn))

=
∑

xn
dGgr(ρ,xn)>(s−ε)n

−PGρ (Xn = xn) log
(
PGρ (Xn = xn)

)

At this point we use the Varopoulos-Carne estimates (see [23, Theorem 12.1]), for the probability
inside the logarithm. Hence,

Hn(G, ρ) >
∑

xn
dGgr(ρ,xn)>(s−ε)n

PGρ (Xn = xn) log

(
2
√
M exp

(
−(s− ε)2n

2

))

= log

(
2
√
M exp

(
−(s− ε)2n

2

))
PGρ
(

dGgr(X0, Xn) > (s− ε)n
)
. (12)

Now, we take expectation with respect to E, divide by n and let n → ∞. Using (11) and (9)

we have h > (s−ε)2
2 .

Upper bound. Fix ε > 0. To simplify notation, we write Bs for BG(ρ, (s + ε)n) and Bc
s for

BG(ρ, n)\BG(ρ, (s+ ε)n). We decompose the entropy Hn(G, ρ) as follows

Hn(G, ρ) =
∑

xn∈Bs
ϕ(PGρ (Xn = xn)) +

∑

xn∈Bcs
ϕ(PGρ (Xn = xn))

6
( ∑

xn∈Bs
PGρ (Xn = xn)

)
log

(
#Bs∑

xn∈Bs PGρ (Xn = xn)

)

+


 ∑

xn∈Bcs
PGρ (Xn = xn)


 log

(
#(Bc

s)∑
xn∈Bcs PGρ (Xn = xn)

)
.

Where we used the concavity of ϕ for the inequalities on the sums of the RHS. Using the uniform
bound on the degree, we deduce the crude upper bound #(Bc

s) 6 #BG(ρ, n) 6 Mn. Taking
expectation we obtain using the easy fact that −x log(x) 6 e−1, for x ∈ [0, 1]

hn 6 2e−1 + E [log (#BG(ρ, (s+ ε)n))] + P
(
dGgr(X0, Xn) > (s+ ε)n

)
n log(M).

Divide the last quantities by n and let n→∞, then (9) and (11) show that h 6 (s+ ε)v.
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4 Radon-Nikodym Cocycle

In this part we borrow and reinterpret in probabilistic terms a notion coming from the measured
equivalence relation theory, the Radon-Nikodym cocycle, in order to deduce several properties
of stationary non reversible graphs, (see e.g. [16] for another application). This notion will play
the role of the modular function in transitive graphs, see [26]. In the remaining of this section,
(G, ρ) is a stationary random graph whose degree is almost surely bounded by a constant M > 0.

Conditionally on (G, ρ) of law P, let (Xn)n>0 be a simple random walk of law PGρ . We define
two random variables taking values in G••: (G,X0, X1) of law µ→ and (G,X1, X0) of law µ←. It
is easy to see that under the stationarity assumption, these two random variables are equivalent,
to be more precise, the stationarity implies that (G,X0, X1) and (G,X1, X0) have the same
distribution as (G,X1, X2) and (G,X2, X1) respectively. But X2 = X0 with probability at least
M−1 by the bounded degree hypothesis. Thus the Radon-Nikodym derivative of (G,X1, X0)
with respect to (G,X0, X1), given for any (g, x, y) ∈ G•• such that x ∼ y by

∆(g, x, y) :=
dµ←
dµ→

(g, x, y),

can be chosen such that

M−1 6 ∆(g, x, y) 6M. (13)

Note that the function ∆ is defined up to a set of µ→-measure zero, and in the following we fix
an arbitrary representative satisfying (13) and we keep the notation ∆ for this function. Since ∆
is a Radon-Nikodym derivative we obviously have E[∆(G,X0, X1)] = 1 and Jensen’s inequality
yields

E
[

log
(
∆(G,X0, X1)

)]
6 0, (14)

with equality if and only if ∆(G,X0, X1) = 1 almost surely. In this latter case the two random
variables (G,X0, X1) and (G,X1, X0) have the same law, that is (G, ρ) is reversible.

Lemma 4.1. With the above notation. Let A be a Borel set of G•• of µ→-measure zero. Then for
P almost every rooted graph (g, ρ) and every x, y ∈ V(g) such that x ∼ y we have (g, x, y) /∈ A.

Proof. By stationary, for any n > 0 the variable (G,Xn, Xn+1) has the same distribution as
(G,X0, X1). Thus we have

0 =
∑

n>0
E
[
1(G,Xn,Xn+1)∈A

]
= E

[∑

n>0
1(G,Xn,Xn+1)

]

= E


 ∑

x∼y∈G
1(G,x,y)∈A

(∑

n>0
PGρ (Xn = x,Xn+1 = y)

)
 .

But for any x ∼ y in G, since G is connected, for n big enough the probability that Xn = x
and Xn+1 = y is positive, thus the sum between parentheses in the last display is positive. This
proves the lemma.

Note that we have ∆(g, x, y) = ∆(g, y, x)−1 for µ→-almost every bi-rooted graphs in G••,
so by the above lemma we also have ∆(g, x, y) = ∆(g, y, x)−1 for P-almost every rooted graph
(g, ρ) and every vertices x, y ∈ V(g).
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Lemma 4.2. For P-almost every (g, ρ), an every cycle ρ = x0 ∼ x1 ∼ . . . ∼ xn = ρ in g we
have

n−1∏

i=0

∆(g, xi, xi+1) = 1. (15)

Proof. In the measured equivalence relation theory this proposition is known as the property of
cocycle of the so called Radon-Nikodym derivative of the equivalence relation, see [25, Lemme
1.16]. However we give a probabilistic proof of this fact.
By reversibility of the simple random walk, conditionally on (G, ρ) and on {ρ = X0 = Xn}, the
path (X0, X1, . . . , Xn−1, Xn) has the same distribution as the reversed one (Xn, Xn−1, . . . , X1, X0).
In other words, for any Borel positive function F : R+ → R+ we have

E

[
F

(
n−1∏

i=0

∆(G,Xi, Xi+1)

)
1Xn=X0

]
= E

[
F

(
n−1∏

i=0

∆(G,Xi+1, Xi)

)
1Xn=X0

]

= E

[
F

(
n−1∏

i=0

∆(G,Xi, Xi+1)
−1
)

1Xn=X0

]
.

Where we used the fact that for almost every (g, ρ) and for any x, y ∈ V(G) neighbors, we have
∆(G, x, y) = ∆(G, y, x)−1. Since every cycle x0 ∼ x1 ∼ . . . ∼ xn = x0 has a probability bigger
than M−n to be realized by the simple random walk and because for any fixed graph there are
only countably many cycles we deduce (15).

Thank to the preceding lemma, we can define ∆ for an arbitrary (isomorphism class of)
bi-rooted graph (g, x, y) (see [25, Proof of Theoreme 1.15 ]): let x = x0 ∼ x1 ∼ . . . ∼ xn = y be
a path in g between x and y, finally set

∆(g, x, y) :=
n−1∏

i=0

∆(g, xi, xi+1), (16)

and by convention ∆(g, x, x) = 1. This definition does not depend on the representative bi-
rooted graph nor on the path chosen to go from x to y by the last Lemma and is well founded
for P-almost every graph (g, ρ) and every x, y ∈ V(g). We can now rephrase Theorem 1.15 of
[25].

Theorem 4.3 ([25]). Let (G, ρ) be a stationary ergodic random graph. Assume that (G, ρ) is
non reversible then for almost surely the function

x ∈ V(G) 7→ ∆(G, ρ, x),

is positive harmonic and non constant.

Proof. We follow the proof of [25]. By stationarity of (G, ρ), for any Borel function G• → R+

we have

E [F (G,X0)] = E [F (G,X1)] = E [F (G,X0)∆(G,X0, X1)] .

We deduce that for almost surely we have deg(ρ)−1
∑

ρ∼x ∆(G, ρ, x) = 1. By Lemma 4.1, we
deduce that almost surely, for any x ∈ V(G) we have

1

deg(x)

∑

x∼y
∆(G, x, y) = 1.

11



We deduce from the previous display and the definition of ∆, that x 7→ ∆(G, ρ, x) is almost
surely harmonic. By ergodicity if x 7→ ∆(G, ρ, x) has a positive probability to be non constant
then it is almost surely constant, and this constant equals 1. This case is excluded because
(G, ρ) is non reversible.

Theorem 4.4. Let (G, ρ) be a stationary and ergodic random graph of degree almost surely
bounded by M > 0. If (G, ρ) is non reversible, then the speed (see (5)) of the simple random
walk on (G, ρ) is positive s > 0.

Proof. For (G, ρ) is not reversible, the inequality (14) is not saturated and E[log(∆(G,X0, X1))]
is strictly negative. We consider the random process (log(∆(G,X0, Xn)))n>0. By Proposition
4.2 we almost surely have for all n > 0

log
(
∆(G,X0, Xn)

)
=

n−1∑

i=0

log
(
∆(G,Xi, Xi+1)

)
. (17)

By (13) we have E[| log(∆(G,X0, X1))|] < ∞ and the ergodic theorem implies the following
almost sure and L1 convergence with respect to P

log
(
∆(G,X0, Xn)

)

n
−→
n→∞

E[log(∆(G,X0, X1))]. (18)

By computing ∆(G,X0, Xn) using (16) along a geodesic path from X0 to Xn in G and using
(13) we deduce that a.s. for every n > 0

| log(∆(G,X0, Xn))| 6 log(M) dGgr(X0, Xn).

Thus the convergence (18) shows that the speed of the random walk (Xn)n>0 (see Theorem 2.2)
is positive s > E[log(∆(G,X0, X1))] log(M)−1 > 0, which is the desired result.

Remark 4.5. By Corollary 3.5, subexponential growth in the sense of (1) implies s = 0 for
stationary and ergodic random graphs of bounded degree, so in particular such random graphs
are reversible. This fact should also hold without bounded degree assumption (Russell Lyons,
personal communication).

5 Applications

5.1 Uniform planar quadrangulation

A planar map is an embedding of a planar graph into the two-dimensional sphere seen up to
continuous deformations. A quadrangulation is a planar map whose faces all have degree four.
The Uniform Infinite Planar Quadrangulation (UIPQ) denoted (Q∞, ~e) introduced by Krikun in
[19] is the weak local limit (in a sense related to dloc) of uniform quadrangulations with n faces
with a distinguished oriented edge (see Angel and Schramm [2] for previous work on triangula-
tions). We will not entered the subtilities of planar maps nor in the details of the construction
of the UIPQ and refer to [19, 21, 24] for more details.

The UIPQ is an random infinite map Q∞ of the plane (roughly speaking a embedding of
a planar graph seen up to continuous deformation) given with a distinguished oriented edge ~e.
We can forget the planar structure of the UIPQ and get a random graph that we root at the
origin of ~e, that we denote (Q∞, ρ). One of the main open question about this random infinite
graph is its conformal type, namely is it (almost surely) recurrent or transient. It has been
conjectured in [2] (for the related Uniform Infinite Planar Triangulation) that Q∞ is almost
surely recurrent. It is still an open problem. We provide a step towards recurrence.
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Proof of Corollary 1.2. The random rooted graph (Q∞, ρ) is a stationary random graph. A
proof of this fact can be found in [20, Section 1.3]. By virtue of Theorem 1.1, we just have
to show that (Q∞, ρ) is of subexponential growth. Thanks to [24], we know that the random
infinite quadrangulation investigated in [11] has the same distribution as the UIPQ. Hence, the
main result of [11] can be translated into

E [#BQ∞(ρ, n)] = Θ(n4).

Hence Jensen’s inequality proves that the UIPQ is of subexponential growth in the sense of (1)
which finishes the proof of the corollary.

This corollary does not use the planar structure of UIPQ but only the invariance with respect
to SRW and the subexponential growth. It is a very robust result, and could be extend e.g. to
the uniform infinite planar triangulation.

5.2 Long range percolation cluster

Consider the graph obtained from Zd by adding edges between vertices x, y ∈ Zd with probability
px,y independent of all other pairs, such that

px,y = β|x− y|−s.

This model is called long range percolation. Berger [9] proved in dimensions d = 1 or d = 2 that
if d < s < 2d, and if there exists an infinite cluster, then this cluster is almost surely transient.
In the same paper the following question (6.3) is addressed:

Question 1. Are there nontrivial harmonic functions on the infinite cluster of long range per-
colation with d < s < 2d ?

We answer negatively this question for bounded harmonic functions.

Proof. First we remark that by a general result (see [1, Example 9.4]), the cluster C∞ containing
0 conditionally on the 0 belonging to an infinite open cluster is a unimodular random graph.
Furthermore, since s > d the expected degree of 0 is finite. Hence, by Proposition 2.5, the
random graph (C̃∞, 0̃) obtained by biasing (C∞, 0) with the degree of 0 is stationary. By Theorem
1.1 it suffices to show that the graph C̃∞ is of subexponential growth in the sense of (1). For that
purpose, we use the estimates given in [10, Theorem 3.1]. If x ∈ Z belongs to the same infinite
cluster as the origin, recall that we denote its graph distance from the origin 0 by dC∞gr (0, x).
Then for each s′ ∈ (d, s) there are constants c1, c2 ∈ (0,+∞) such that, for δ′ = 1/ log2(2d/s

′),

P
(
dC∞gr (0, x) 6 n

)
6 c1

(
ec2n

1/δ′

|x|

)s′
.

In particular, we deduce that

E [#BC∞(0, n)] 6 κ1 exp
(
κ2n

1/δ′
)
, (19)

where κ1 and κ2 are positive constants. Remark that δ′ > 1. Thus we have

E
[

log(#BC̃∞(0̃, n))
]

=
1

E[deg(0)]
E
[

deg(0) log(#BC∞(0, n))
]

6 1

E[deg(0)]

√
E[deg(0)2]E[log2(#BC∞(0, n))], (20)
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by Cauchy-Schwarz inequality. Since s > d it is easy to check that the second moment of deg(0)
is finite. Furthermore, the function x 7→ log2(x) is concave on ]e,∞[ so by Jensen’s inequality
we have

E
[
log2(#BC∞(0, n))

]
6 log2 (E [#BC∞(0, n)] + 2) .

Hence, combining the last display with (19) and (20) we deduce that (C∞, 0) is of subexponential
growth in the sense of (1).

Note that by similar considerations, clusters of any invariant percolation on a group, in
which the clusters have subexponential volume growth are Liouville, see [6] for many examples.
In particular Bernoulli percolation on Cayley graphs of subexponential growth e.g.Zd.

5.3 Planarity

Simply connected planar Riemannian surfaces are either conformal to the Euclidean or to the
hyperbolic plane. Thus are either recurrent for Brownian motion or admit non constant bounded
harmonic functions. The same alternative holds for planar graphs of bounded degree. They are
either recurrent for the simple random walk or admit non constant bounded harmonic function.
The combination of Theorem 1.1 with these results coming from planarity yields:

Corollary 5.1. Let (G, ρ) be a stationary random graph with subexponential growth in the sense
of (1). Suppose furthermore that almost surely (G, ρ) is planar and has bounded degree. Then
(G, ρ) is almost surely recurrent.

Proof. We already know by Theorem 1.1 that (G, ρ) is almost surely Liouville. In [7] it is shown
that a transient planar graph with bounded degree admits non constant bounded harmonic
functions, which ends the proof of the Corollary.

Recurrence. Note that without the bounded degree assumption it is easy to construct
planar transient Liouville graphs, see [7]. However these graphs are not stationary, that leads
us to the following conjecture.

Question 1. We conjecture that the bounded degree assumption in the above corollary can be
removed. That is, a planar stationary random graph with subexponential growth in the sense of
(1) is almost surely recurrent.

Local limit. If a sequence (Gn, ρn) of finite stationary random graphs converge weakly for
dloc towards (G, ρ), we say that (G, ρ) is a local limit of finite stationary graph or local limit in
short. Here are a few questions concerning this class of graphs.

Question 2. Let (G, ρ) be a local limit of finite planar stationary graphs. Is it the case that
(G, ρ) is almost surely amenable? Liouville? has zero speed for SRW? recurrent?

Remark 5.2. There are local limits of finite planar graphs with exponential growth. For example
local limit of full binary trees up to level n with uniform root vertex.

Question 3. Can we characterize the graphs (G, ρ) that are local limit of finite planar graphs?
Are they the reversible, amenable (in the sense of [1, Section 8]) planar graphs?

Extensions.

Question 4. In [5] a generalization of local limits of finite planar graphs to graphs presented
by spheres in Rd was studied. Extend Question 3 to these graphs.
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