
Influence of electron-hole drag on conductivity of neutral and gated graphene 
I. I. Boiko1

Institute of Semiconductor Physics, NAS of Ukraine, 45, pr. Nauky, 03028, Kiev, Ukraine 

(Dated: November 4, 2010) 

Conductivity of monolayer and two-layer graphene is considered with due regard for mutual drag of band elec-

trons and holes. Search of contribution of the drag in conductivity shows that this effect can sufficiently influ-

ence on mobility of carriers, which belong to different groups and have different drift velocities. In two-layer 

system the mutual drag can even change the direction of partial current in separate layer. 
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Introduction 

 The great interest now exists to systems of 2D-carriers with Dirac-like dispersion law (see 
Refs. [1] − [4]):   
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Physical properties of such systems are substantially distinct on that for the systems with parabolic 

dispersion law. The most surprising point is real possibility to realize a substantially two-

dimensional system at elevated temperature. 

 In general case conductivity of graphene is bipolar. For neutral graphene Fermi-level Fε  lays 

exactly in the point 0=ε ; so hole and electron densities are equal: 
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It follows from here at : . Therefore, neutral graphene can 

be considered as a semimetal with extremely small number of mobile carriers. 
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 Microscopic velocities of electrons and holes are equal also:     
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 If Fermi-level is shifted by applying of some bias voltage V ,to a gate,  we obtain n-graphene 

or p-graphene with the density of basic carriers (a  = e or h)    
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level of degeneracy) . Let 21 )/( hFaa veVn −= π VVa 10= ; then . This density is 

rather high in comparison with the density of carriers in neutral graphene. 
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1. Kinetic equation 

1. 1. General form of quantum kinetic equation  

 Kinetic equation for the density matrix of carriers of a-type at arbitrary quantum numbers 

presentation has the form (see. Refs. [5] and [6]) 
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In uniform space the density matrix is diagonal one: . For applied electrical 

field 
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−=)()(ϕ .                    

 The total collision integral  for mobile a-carriers in A-state is the sum of collision inte-

grals concerning as external scattering system (S) as mobile carriers of other types: 
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The value is a screened potential for external scattering system (impurities, phonons et al);  )(Sϕ
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1.2.  Two-dimensional quantum kinetic equation in ⊥k
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In uniform two-dimensional space the natural basis is set of plane waves, and corresponding 

quantum numbers are wave-vectors yyxx kekek rrr
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 As total, the quantum kinetic equation (1.1) takes the form of integro-differential equation. For 
stationary case  
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Here and in the following equations the symbols  a , b = e  or h ; 0<−= eee and . 0>= eeh
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where (see Eqs. (1.3) and (1.4)) 
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In these expressions the contribution of two-dimensional band carriers in screening is considered as 

negligible in comparison with dielectric constant of crystal lattice Lε .  

 
2. Balance equations 

 
Apply to both sides of Eq. (1.6) the operator 
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The expression, obtained by this way, is exact first momentum of quantum kinetic equation in space 

of plane wave vectors. It has the meaning of a balance equation for dynamic and dissipative forces, 

applied to the band particles from a-group: 
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 In Eq. (2.2) the first term is the dynamical force, acting on charged carriers from the side of 

applied electrical field, the second term is the friction force from the side of an external scattering 

system, the last term is the summarized friction force, concerning other band carriers and applied to 

the mobile carriers of a-group . As far as 0),( =⊥
aaF

r
, one can consider ),( baF⊥

r
as a force of the inter-

group drag. 

 Farther we use the model nonequilibrium distribution functions (see Refs. [5], [6]) : 
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Here  is transverse bias voltage applied to the graphene layer with the help of some gate system 

(see, for instance, Fig. 1). The function  contains a vector 
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meaning of that becomes evident after calculation of the averaged velocity of a-particles: 
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 is the drift velocity for the group of a-particles. The total density of a current 

in bipolar graphene is  
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   For elastic and isotropic scattering 
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     If the considered carriers and two-dimensional scattering system are separated in space on 

some distance , one has to introduce in Eqs. (2.3), (2.4), (2.9), (2.10) and (2.13) the factor 

 under the sign of integral over 

l
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 Combining Eqs. (2.2) and (2.8), we obtain the system of vector equations (here 
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One can see from here that in absence of a mutual drag ( 0=ξ ) the values and are re-

verse mobilities of electrons and holes. In the last two equations the terms, containing the factor 
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represent the electron-hole drag directly.  

3. Interaction with scattering system 

 To calculate the values  we have at first to construct the correlator .  )(aβ ⊥〉〈 qS r
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Therefore, for neutral graphene (Va =0)  
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Thus the value   is proportional to the square of  temperature. )(
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 For monopolar graphene, where , the mobility is inverse proportional to the 
square of gate voltage:  
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 If neutral impurities are arranged in a plane, separated of graphene plane on the distance  l , 
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3.2. Charged impurities 

 For charged impurities, arranged in graphene plane (see Eqs. (A4) and  (2.13)), 
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One can see from this formula that the values are equal for electrons and holes and do not de-

pend on temperature and gate voltage. If two-dimensional set of charged impurities is separated 

from graphene on a distance l , where 
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3.3. Longitudinal acoustic phonons 

 Due to the strong inequality  we can use the form (A5) in the limit  Then at svF >> .0/ →Fvs
TkB<<ωh  

322
,

2 / seTkBAqph ρϕ ω Ξ=〉〈 ⊥v  .                             (3.9) 
With the help of Eqs. (2.10) and (3.9) we obtain: 

)(
4

32

2
)(
)( a

F

BAa
ph v

Tk
se

κ
ρπ

β Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Ξ
=

h
  ;  

∫

∫
∞

−

∞
−

−+

−+−
=Ω

0

1

0

25

)]exp(1[

)]exp(1)[exp(
)(

κκκκ

κκκκκκ
κ

d

d

a

aa

a  .      (3.10) 

Here  .  Therefore, for neutral graphene , for monopolar 

grapheme . 
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3.4. Drag-factor 
 

 For neutral graphene we use for calculations the Eq. (2.9) directly. For two-layer graphene 

structure we use Eq. (2.9), modified by the factor )2exp( lq⊥−  under the sign of integral over ⊥qr . 

Here l is distance between the layers. Assume { } FaB veVTkl h>⋅ ,max  . In monopolar graphene the 

mutual drag of electrons and holes is negligible. For neutral graphene 
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4. Conductivity of neutral graphene 

 Here we assume .  Then  ,   , and one 

obtains from Eqs. (2.14) and (2.15) the system of equations: 
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 It follows from these expressions, that for negligible drag ( 0→ξ ) the value β  is inverse mo-

bility of carriers. For monopolar graphene one has good reason to neglect the drag, then the mobil-

ity 
),(

/1),( hehe βμ = .  

 Solving the system (4.1), (4.2), we find: 

⊥⊥⊥⊥ =
+

=−= EEuu eh
rrrr μ

ξβ 2
1)()( .        (4.3) 

The density of the total current: 
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It is easy to see that for neutral graphene the contribution of electron-hole drag in the mobility μ  is 

determined by the ratio βξ /2 . 

 If external scattering system is created by neutral impurities, then . For 

charged impurities we have .For LA-phonons . 
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4. Conductivity of two-layer graphene 

 
 Two-layer graphene systems are especially interesting. That contain two parallel layers of gra-

phene separated by ultrathin highly insulating dielectric layer (see, as possible example, two-gate 

composition on Fig. 1).  

 
Fig. 1. Controlled two-layer graphene composition. 

 

 The gate voltages  assume sufficiently high and temperature  T  so low, that carriers in 1- 

and 2-graphene can be accepted as high-degenerate (

2,1V

2,1eVTkB << ). Then in consequence with Eq. 

(I.5) the densities of carriers in separate layers are 
2

2,1
1

, )/( hFhe veVn −= π .                                              (5.1) 
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 Represent for an example the charged impurities, disposed in the same planes as graphene, and  

consider here the most actual case 01 >= eVV  and 02 >= hVV  . Then graphene-1 has electron con-

ductivity and graphene-2 has hole conductivity.  

 At high gate voltages the system of equations (2.14) and (2.15) can be written in the following 

form (here ): 0;0;0 ),()()( <<> heeh ξββ
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e
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 The electric field components  and   can have as the same signs as opposite that; both 

.  Then solution of the system (5.3) and (5.4) has the form (here ) 
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It follows from Eqs. (5.1) and (5.5): 
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One can see from these expressions that both currents  and are controlled by two forced 

fields, and , and two gate voltages,    and  . 

)(n
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)( p
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xE1 xE2 eV hV

 If the scattering by charged impurities excels that, related to neutral centers and LA-phonons, 

we can suppose (see Eq. (5.2))  

                                                    .          (5.8)  βββ ==− )()( he

Then the current densities can be represented in the forms 
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Here and are drag-factors, responsible for the electron-hole drag in considered two-layer 

graphene structure. They are 
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In the absence of a dra 0→ξ ) we h 1)(ave: )( =g ( = p . The symmetry of conduc ities 

and )( pσ relatively to the permutation  1 ↔  2  is evident. So it is enough to investigate the 

structure of one d

n DD tiv

rag-factor. 

)(nσ
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     Below Figs. 2 − 4 illustrate dependence of the drag-factor on the value of three controlling 

combinations. If the factor changes the sign, it means that the drag of electrons by holes re-

verses the direction of electron current.   

)(nD

)(nD

 
Fig. 2.  Dependence of the drag-factor  D (n) on the ratio  E 1x / E 2x . a) − V1 / V2 = 1 ; b) − V1 / V2 = 5 ; c) − V1 / V2 = 0.2 ; 

1) − 1.0/ =ξβ  ;   2) − 3/ =ξβ  ; 3) − 20/ =ξβ  . 

 
Fig. 3. Dependence of the drag-factor D (n) on the ratio V1 / V2 .a) − E 1x / E 2x = -10; b) − E 1x / E 2x = 0; c) −E 1x / E 2x =10;  

1) − 1.0/ =ξβ  ;   2) − 3/ =ξβ  ; 3) − 20/ =ξβ  . 

 

Fig. 4. Dependence of the drag-factor D (n)on the ratio ξβ / .a) − E 1x / E 2x = -10; b) − E 1x / E 2x = 0; c) − E 1x / E 2x = 10; 

1) − V1 / V2  = 0.1  ;   2) − V1 / V2  → 0   ; 3) − V1 / V2  = 10 . 

 

 

 

 

 
9



 
10

10 

Appendix  

 As the external scattering system we consider here impurities, distributed uniformly in plane    
z = 0 with the density , and LA-phonons. To calculate the two-dimensional correlator related to 
the plane , we use the formula 
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2
,

2

2
1

ωω ϕ
π

ϕ          (A1) 

and different necessary formulae from Refs. [5] and [6]. 

 The three-dimensional potential of  one “neutral” hydrogen-like impurity is (see Ref. [7]) 
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 After Fourier-transformation one obtains: 
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 For charged impurities  
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 For LA-phonons with dispersion law sq=ω  and for the deformation potential  AΞ
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Here  is the sound velocity and is the stepped function. s )( 222
⊥− qsωϑ
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