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In this paper, we study the ordinary backfitting and smooth back-
fitting as methods of fitting additive quantile models. We show that
these backfitting quantile estimators are asymptotically equivalent to
the corresponding backfitting estimators of the additive components
in a specially-designed additive mean regression model. This implies
that the theoretical properties of the backfitting quantile estimators
are not unlike those of backfitting mean regression estimators. We
also assess the finite sample properties of the two backfitting quan-
tile estimators.

1. Introduction. Nonparametric additive models are powerful techniques
for high-dimensional data. They enable us to avoid the curse of dimensional-
ity and estimate the unknown functions in high-dimensional settings at the
same accuracy as in univariate cases. In the mean regression setting, there
have been many proposals for fitting additive models. These include the ordi-
nary backfitting procedure of Buja, Hastie and Tibshirani (1989), whose the-
oretical properties were studied later by Opsomer and Ruppert (1997) and
Opsomer (2000), the marginal integration technique of Linton and Nielsen
(1995), and the smooth backfitting of Mammen, Linton and Nielsen (1999),
Mammen and Park (2006) and Yu, Park and Mammen (2008). It is widely
accepted that the marginal integration method still suffers from the curse
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of dimensionality since it does not produce rate-optimal estimates unless
smoothness of the regression function increases with the number of additive
components. On the contrary, the ordinary backfitting and smooth backfit-
ting are known to achieve the univariate optimal rate of convergence under
certain regularity conditions.

In this paper, we are concerned with nonparametric estimation of addi-
tive conditional quantile functions. Conditional quantile estimation is also
a very useful tool for exploring the structure of the conditional distribu-
tion of a response given a predictor. A collection of conditional quantiles,
when graphed, give a picture of the entire conditional distribution. It can be
used directly to construct conditional prediction intervals. Also, it may be a
basis for verifying the presence of conditional heteroscedasticity; see Furno
(2004), for example. Various other applications of conditional quantile es-
timation may be found in Yu, Lu and Stander (2003). In the nonadditive
setting, there have been many proposals for this problem, which include the
work by Jones and Hall (1990), Chaudhuri (1991), Yu and Jones (1998) and
Lee, Lee and Park (2006). There have been also some proposals for additive
quantile regression. Fan and Gijbels (1996) provided a direct extension of the
ordinary backfitting method to quantile regression, but without discussing
its statistical properties. Lu and Yu (2004) gave a heuristic discussion of the
asymptotic limit of a backfitting local linear quantile estimator. Horowitz
and Lee (2005) studied an extension of the two-stage procedure of Horowitz
and Mammen (2004) to quantile regression. Their estimator is a one-step
kernel smoothing iteration of an orthogonal series estimator.

The main theme of this paper is to discuss the statistical properties of
the ordinary and smooth backfitting methods in additive quantile regression.
The methods are difficult to analyze since there exists no explicit definition
for the ordinary backfitting estimator and, for both estimators, the objective
functions defining the estimators are not differentiable. We borrow empir-
ical process techniques to tackle the problem. In particular, we devise a
theoretical mean regression model by using a Bahadur representation for
the sample quantiles. We show that the least squares ordinary and smooth
backfitting estimators in this theoretical mean regression model are asymp-
totically equivalent to the corresponding quantile estimators in the original
model. This makes the theoretical properties of the two backfitting quantile
estimators well understood from the existing theory for the corresponding
least squares backfitting mean regression estimators. The theory was con-
firmed by a simulation study. Also, it was observed in the simulation study
that the smooth backfitting estimator outperformed the ordinary backfitting
estimator in additive quantile regression.

The paper is organized as follows. In the next section, the ordinary and
smooth backfitting methods for additive quantile regression are introduced
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and their theoretical properties are provided. In Section 3, some computa-
tional aspects of the smooth backfitting method are discussed. The simula-
tion results for the finite sample properties of the two backfitting methods
are presented in Section 4. Technical details are given in Section 5.

2. Main results. It is assumed for one-dimensional response variables Y 1,
. . . , Y n that

Y i =m0 +m1(X
i
1) + · · ·+md(X

i
d) + εi, 1≤ i≤ n.(2.1)

Here, εi are error variables, m1, . . . ,md are unknown functions from R to
R satisfying

∫

mj(xj)wj(xj)dxj = 0 for some weight functions wj , m0 is
an unknown constant, and Xi = (Xi

1, . . . ,X
i
d) are random design points in

R
d. Throughout the paper, we assume that (Xi, εi) are i.i.d. and that Xi

j
takes its values in a bounded interval Ij . Furthermore, it is assumed that
the conditional α-quantile of εi given Xi equals zero. This model excludes
interesting auto-regression models, but it simplifies our asymptotic analysis.
We expect that our results can be extended to dependent observations under
mixing conditions.

The ordinary backfitting estimator is based on an iterative algorithm. The
estimate of mj is updated by the following equation:

m̂BF
j (xj) = argmin

θ∈Θ

n
∑

i=1

τα

(

Y i − θ− m̂BF
0 −

d
∑

ℓ=1, 6=j

m̂BF
ℓ (Xi

ℓ)

)

(2.2)
×Kj,hj

(xj ,X
i
j).

Here, τα is the so called “check function” defined by τα(u) = u{α−I(u < 0)},
and Kj,g are kernel functions with bandwidth g; see the assumptions below.
To simplify the mathematical argumentation, the minimization in (2.2) runs
over a compact set Θ. It is assumed that all values of the function mj lie in
the interior of Θ. As in the case of mean regression, the ordinary backfitting
estimator is not defined as a solution of a global minimization problem.

The smooth backfitting estimator is also based on an iterative algorithm.
The estimate of mj is updated by the following integral equation:

m̂SBF
j (xj) = argmin

θ∈Θ

n
∑

i=1

∫

τα

(

Y i − θ− m̂SBF
0 −

d
∑

ℓ=1, 6=j

m̂SBF
ℓ (xℓ)

)

(2.3)
×
∏

ℓ=1, 6=j

Kℓ,hℓ
(xℓ,X

i
ℓ)dxℓ ·Kj,hj

(xj ,X
i
j),

where the integration is over the support of (Xi
1, . . . ,X

i
j−1,X

i
j+1, . . . ,X

i
d).

This is an iterative scheme for obtaining m̂SBF
j , j = 0,1, . . . , d, which mini-
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mize

n
∑

i=1

∫

τα

(

Y i − m̂SBF
0 −

d
∑

j=1

m̂SBF
j (xj)

)

(2.4)
×K1,h1(x1,X

i
1) · · ·Kd,hd

(xd,X
i
d)dx1 · · ·dxd,

where the integration is over the support of Xi. The minimizations or iter-
ations are done under the constraints

∫

Ij

m̂l
j(xj)wj(xj)dxj = 0, j = 1, . . . , d and l=BF,SBF(2.5)

for some weight functions wj . One may take unknown weight functions such
as the marginal densities of Xj and use consistent estimators of them as
the weight functions wj in the integrals (2.5). But this would lead to more
complicated bias calculation.

We compare our model (2.1) with the following theoretical model. For
i= 1, . . . , n, let Z1, . . . ,Zn be one-dimensional variables such that

Zi =m0 +m1(X
i
1) + · · ·+md(X

i
d) + ηi.(2.6)

Here, the constantm0, the functionsm1, . . . ,md and the covariates Xi
1, . . . ,X

i
d

are those in (2.1). The error variables ηi are defined by

ηi =−
I(εi ≤ 0)−α

fε|X(0|Xi)
,

where fε|X is the conditional density of ε given X . This definition is moti-
vated from the Bahadur representation of sample quantiles [Bahadur (1966)].
For an independent sample of ε1, . . . , εn with densities fi and α-quantiles be-
ing equal to 0, the Bahadur expansion states that the αth sample quantile
θ̂α of ε1, . . . , εn is asymptotically equivalent to the weighted average

∑n
i=1 fi(0)η

i

∑n
i=1 fi(0)

,

where ηi =−{I(εi ≤ 0)−α}fi(0)
−1. Thus, the estimator θ̂α is asymptotically

equivalent to the minimizer of

θ→
n
∑

i=1

fi(0)(η
i − θ)2.

This consideration suggests that the ordinary and smooth backfitting es-
timators defined at (2.2) and (2.3), respectively, may be approximated well
by the corresponding weighted local least squares estimators in the model
(2.6). Note that the model (2.6) is an additive model with errors ηi having
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conditional mean zero given the covariates Xi. Thus, the weighted ordi-
nary backfitting estimators m̂∗,BF

j in this model are defined by the following
iterations:

m̂∗,BF
j (xj) = argmin

θ∈Θ

n
∑

i=1

{

Zi − θ− m̂∗,BF
0 −

d
∑

ℓ=1, 6=j

m̂∗,BF
ℓ (Xi

ℓ)

}2

× fε|X(0|Xi)Kj,hj
(xj,X

i
j)

(2.7)

=

n
∑

i=1

{

Zi − m̂∗,BF
0 −

d
∑

ℓ=1, 6=j

m̂∗,BF
ℓ (Xi

ℓ)

}

fε|X(0|Xi)Kj,hj
(xj ,X

i
j)

×

{

n
∑

i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j)

}−1

.

Also, the weighted smooth backfitting estimators m̂∗,SBF
j in the model (2.6)

are defined by

m̂∗,SBF
j (xj) = m̃∗,SBF

j (xj)− m̂∗,SBF
0

(2.8)

−

d
∑

ℓ=1, 6=j

∫

m̂∗,SBF
ℓ (xℓ)

f̂w
Xj ,Xℓ

(xj , xℓ)

f̂w
Xj

(xj)
dxℓ,

where

m̃∗,SBF
j (xj) = n−1

n
∑

i=1

Zifε|X(0|Xi)Kj,hj
(xj ,X

i
j)f̂

w
Xj

(xj)
−1,

f̂w
Xj

(xj) = n−1
n
∑

i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j),

f̂w
Xj ,Xℓ

(xj, xℓ) = n−1
n
∑

i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j)Kℓ,hℓ

(xℓ,X
i
ℓ)

are weighted modifications of the marginal Nadaraya–Watson estimator and
the kernel estimators of the one- and two-dimensional marginal densities of
X , respectively. The latter two are in fact kernel estimators of

fw
Xj

(xj) =

∫

fε|X(0|x)fX(x)dx−j = fε,Xj(0, xj),

fw
Xj ,Xℓ

(xj, xℓ) =

∫

fε|X(0|x)fX(x)dx−(j,ℓ) = fε,Xj,Xℓ
(0, xj , xℓ),

respectively, where x−j = (x1, . . . , xj−1, xj+1, . . . , xd)
⊤ and x−(j,ℓ) is a vector

that has elements xl with 1≤ l≤ d and l 6= j, ℓ.
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Our first result (Proposition 2.1) shows that each application of the up-
dating equations (2.7) and (2.8) in the theoretical model (2.6), respectively,
lead to asymptotically equivalent results with those at (2.2) and (2.3) in
the original model (2.1). In the next step, we will apply Proposition 2.1
for iterative applications of the backfitting updates. We will show that the
asymptotic equivalence remains to hold for iterative applications of the back-
fitting procedures as long as the number of iterations is small enough. By
extending the results for backfitting and smooth backfitting estimators in
mean regression, we will use this fact to get our main result (Theorem 2.2).
The latter states an asymptotic normality result for the ordinary and smooth
backfitting quantile estimators in additive models. Its proof is based on an
argument that carries an asymptotic normality result in mean regression
over to quantile regression.

We now introduce assumptions that guarantee asymptotic equivalence
between the mean and the quantile backfitting estimators after one cycle of
update. Further assumptions that are needed for iterative updates will be
given after Proposition 2.1. For simplicity, we state Proposition 2.1 and its
conditions only for the updates of the first additive component. In abuse of
notation, we denote the estimators of the components mj,2≤ j ≤ d, at the
preceding iteration step, by m̂l

2, . . . , m̂
l
d, where l stands for BF, SBF, ∗,BF

or ∗,SBF. The updates of the first component that are obtained by plugging
these estimators into (2.2), (2.3), (2.7) and (2.8), respectively, are denoted

by m̂BF
1 , m̂SBF

1 , m̂∗,BF
1 and m̂∗,SBF

1 . Thus, for simplicity of notation, we use
the same kind of symbol for the updates (j = 1) and for the inputs of the
backfitting algorithms (2≤ j ≤ d).

We make the following assumptions:

(A1) The d-dimensional vector Xi has compact support I = I1 × · · · × Id
for bounded intervals Ij = [aj , bj] and its density fX is continuous and
strictly positive on I .

(A2) There exist constants CK ,CS > 0 such that for all xj ∈ Ij , 1≤ j ≤ d,
the kernels Kj,g(xj, ·) are positive, bounded by CKg−1, have bounded
support ⊂ [x−CSg,x+CSg], and are Lipschitz continuous with Lips-
chitz constant bounded by CKg−2. The weight functions wj are bounded
functions with wj(xj)≥ 0 for xj ∈ Ij and

∫

wj(xj)dxj > 0.
(A3) The conditional density fε|X(0|x) of ε given X = x is bounded away

from zero and infinity for x ∈ I . Furthermore, it satisfies the following
uniform Lipschitz condition:

|fε|X(e|x)− fε|X(0|x)| ≤C1|e|

for x ∈ I and for e in a neighborhood of 0 with a constant C1 > 0 that
does not depend on x.

(A4) The bandwidths h1, . . . , hd are of order n−1/5.
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Assumptions (A1)–(A4) are standard smoothing assumptions. In partic-
ular, (A2) is fulfilled for convolution kernels with an appropriate boundary
correction.

For the properties of the updated estimators, the estimators at the pre-
ceding iteration step need to fulfill certain regularity conditions. We will
proceed with the following assumptions that are stated for some constants
0< ρ≤ 1, ∆1,∆2,∆3 > 0 and 0≤ ξ ≤ (1 + ρ)∆1.

(A5) For j = 2, . . . , d, it holds for l=BF and l= SBF that

sup
aj+CShj≤xj≤bj−CShj

|m̂l
j(xj)−mj(xj)|=OP (n

−(4+4ρ)/(10+15ρ)−∆1),

sup
aj≤xj≤bj

|m̂l
j(xj)−mj(xj)|=OP (n

−[(4+4ρ)/(10+15ρ)−∆1]/2).

(A6) There exist random functions g2, . . . , gd with derivatives that fulfill the
Lipschitz condition

|g′j(xj)− g′j(x
∗
j)| ≤C|xj − x∗j |

ρnξ

for j = 2, . . . , d and xj , x
∗
j ∈ Ij . Furthermore, these functions satisfy

sup
aj≤xj≤bj

|m̂l
j(xj)− gj(xj)|=OP (n

−2/5−∆2)

for l=BF and l= SBF.
(A7) For j = 2, . . . , d, it holds for l=BF and l= SBF that

sup
aj+CShj≤xj≤bj−CShj

|m̂l
j(xj)− m̂∗,l

j (xj)|=OP (n
−2/5−∆3),

sup
aj≤xj≤bj

|m̂l
j(xj)− m̂∗,l

j (xj)|=OP (n
−1/5−∆3).

We briefly comment on the assumptions (A5)–(A7). A more detailed dis-
cussion is given after Theorem 2.2. Assumption (A5) requires suboptimal
rates for the preceding estimators that are plugged in for the update of
the first component. Assumption (A6) states that the class of possible re-
alizations of the preceding estimators is not too rich. We assume that the
preceding estimators are in a neighborhood of the class of functions with
Lipschitz continuous derivatives. Other classes could be used but for a Lips-
chitz class it is relatively easy to check if a function belongs to it. Note that
we do not assume that the quantile estimator itself has a smooth deriva-
tive. In general, such an assumption does not hold because quantile kernel
estimators are not smooth. Assumption (A7) is very natural. It states that
the estimators that are plugged into the updating equation of the quantile
model and of the mean regression model differ only by second order terms.
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Without this assumption, it cannot be expected that the updated estimators
differ also only by second order terms. We will see below that this assump-
tion is automatically fulfilled if we apply Proposition 2.1 for an analysis of
iterative applications of the backfitting algorithms. In the assumptions (A5)
and (A7), if one replaces the interior region [aj + CShj , bj − CShj ] by the
whole range [aj , bj] and if one uses boundary corrected kernels, then one
can also replace in Proposition 2.1 the suprema over the interior region by
those over the whole range, and the estimators achieve the rate n−2/5 at the
boundary, too.

Proposition 2.1. Under the assumptions (A1)–(A7), it holds for the
updated estimators with l=BF and with l= SBF that for some δ > 0

sup
a1+CSh1≤x1≤b1−CSh1

|m̂l
1(x1)− m̂∗,l

1 (x1)|=OP (n
−2/5−δ),

sup
a1≤x1≤b1

|m̂l
1(x1)− m̂∗,l

1 (x1)|=OP (n
−1/5−δ).

The additional factor n−δ allows an iterative application of the propo-
sition. This has an important implication. We recall that the backfitting
algorithms for mean regression have a geometric rate of convergence. In
particular, in the case of smooth backfitting, only square integrability for
the initial estimator is required for the algorithm to achieve the geometric
rate of convergence, see Theorem 1 of Mammen, Linton and Nielsen (1999).

Suppose one chooses square integrable functions, say m̂
BF,[0]
2 , . . . , m̂

BF,[0]
d as

the starting value in the algorithm for the backfitting quantile estimator
and that one runs a cycle of backfitting iterations (2.2) for j = 1, . . . , d.

Then we get updates m̂
BF,[l]
2 , . . . , m̂

BF,[l]
d with l = 1 and after further cycles

with l > 1. (Note that by construction of the backfitting estimator we do

not need a pilot version of m
BF,[0]
1 .) Then, one can think of running the

backfitting mean regression algorithm (2.7) with the same initial estima-

tors m̂
BF,[0]
2 , . . . , m̂

BF,[0]
d in parallel with the backfitting quantile regression

algorithm (2.2). This results in updates m̂
∗,BF,[l]
2 , . . . , m̂

∗,BF,[l]
d for l ≥ 1. In

the proof of our next theorem, we will see that after l cycles of the two

parallel iterations, the difference m̂
BF,[l]
j − m̂

∗,BF,[l]
j is of order OP (n

−2/5−δ)

in the interior, and of order OP (n
−1/5−δ) at the boundaries. This holds as

long as l ≤ Citer logn with Citer small enough. On the other hand, we will
show that m̂

∗,BF,[Citer logn]
j is asymptotically equivalent to the limit of the

backfitting algorithm m̂
∗,BF,[∞]
j , if Citer is large enough. If the pilot esti-

mators m̂
BF,[0]
2 , . . . , m̂

BF,[0]
d are accurate enough, then the constant Citer can

be chosen such that both requirements are fulfilled. This will allow us to
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get the asymptotic limit distribution of m̂
∗,BF,[Citer logn]
j , and thus that of

m̂
BF,[Citer logn]
j .
Similar findings also hold for the smooth backfitting estimator. We denote

the starting values by m̂
SBF,[0]
2 , . . . , m̂

SBF,[0]
d and the updates by m̂

SBF,[l]
2 , . . . ,

m̂
SBF,[l]
d or m̂

∗,SBF,[l]
2 , . . . , m̂

∗,SBF,[l]
d , respectively.

The following theorem summarizes our discussion. For the theorem, we
need the following additional assumptions:

(A8) There exist constants cK ,CD > 0, C ′
S ≥ 0 such that for aj + C ′

Shj ≤

xj , uj ≤ bj −C ′
Shj it holds that Kj,hj

(xj , uj) = h−1
j K[h−1

j (xj −uj)] for

a functionK with
∫

K(v)dv = 1 and
∫

vK(v)dv = 0. For all xj , uj ∈ Ij ,
1 ≤ j ≤ d, the kernels Kj,g(xj, uj) have a second derivative w.r.t. xj
that is bounded by CDg

−3 and they fulfill
∫

Kj,g(xj , vj)dvj ≥ cK and
∫

Kj,g(vj , uj)dvj = 1.
(A9) The function fw

Xk|Xj
(xk|xj) ≡ fw

Xj ,Xk
(xj , xk)/f

w
Xj

(xj) has a second

derivative w.r.t. xj that is bounded over xj ∈ Ij , xk ∈ Ik, 1≤ j, k ≤ d,
k 6= j.

The last condition in (A8) implies that the one-dimensional kernel den-
sity estimators integrate to one and that they are equal to the correspond-
ing marginalization of higher-dimensional product-kernel density estimators.
This assumption simplifies bias calculation of the backfitting estimators.

Theorem 2.2. Assume that (A1)–(A4), (A8) and (A9) hold, and that

(A5) and (A6) are satisfied by m̂BF
j = m̂

BF,[0]
j and m̂SBF

j = m̂
SBF,[0]
j (j =

2, . . . , d) with ξ,∆2,∆3,
2
5 −

1+ρ
2+3ρ

4
5 −∆1 > 0 small enough. Then, we get for

m̂l,iter
j = m̂

l,[Citer logn]
j with an appropriate choice of Citer =Citer,l (l=BF and

l= SBF) that for aj < xj < bj
√

nhj[m̂
l,iter
j (xj)−mj(xj)− h2jβj(xj)]

→N

(

0,
α(1−α)

fε,Xj(0, xj)
2
fXj(xj)

∫

K2(u)du

)

in distribution, where βj(xj) = β∗
j (xj)−

∫

β∗
j (uj)wj(uj)duj , β

∗
j (xj) = h−2

j ×

m′
j(xj)

∫

(uj − xj)Kj,hj
(xj , uj)duj + µ2,K

1
2m

′′
j (xj) + µ2,Kβ∗∗

j (xj), µ2,K =
∫

v2K(v)dv and (β∗∗
1 , . . . , β∗∗

d ) is a tuple of functions that minimizes

∫

[

d
∑

j=1

(

m′
j(xj)

∂fε,X(0, x)/∂xj
fε,X(0, x)

− β∗∗
j (xj)

)

]2

fε,X(0, x)dx.
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Note that the first term in the definition of β∗
j is of order n1/5 at the

boundary but vanishes in the interior of Ij . Because of the norming with the
weight function wj , the bias function βj is shifted from β∗

j by
∫

β∗
j (uj)wj(uj)duj .

One can estimate the bias and the variance terms because they only require
two-dimensional objects if one calculates them with the backfitting algo-
rithms.

We now come back to discussion of the assumptions (A5)–(A7). Assump-
tion (A5) allows that the starting estimators have a suboptimal rate. In
particular, it requires that the starting estimators are consistent. For exam-
ple, one could use here orthogonal series estimators, smoothing splines or
sieve estimators. In the simulations, we got good results by using constant
functions as starting values, that is, functions that are not consistent. For
backfitting mean regression, it is known that every starting value works. Be-
cause of the nonlinearity of quantile regression, we do not expect that such a
result can be proved for quantile regression. In our result, we did not specify
the required rate for the pilot estimator. But, if one does this, we conjecture
that one can get the statement of Theorem 2.2 with pilot estimators that
have much slower rates. For such a theorem, one has to prove a modifica-
tion of Proposition 2.1 with the following statement: for the estimators at
the preceding stage of the backfitting algorithms, less accurate error bounds
would suffice to get that the difference between the backfitting estimators
m̂1 and m̂∗

1 at the current stage of the algorithm is of higher order than the
accuracy of the preceding estimators. This would allow one to weaken the
assumptions on the rate of the starting estimators.

Assumption (A7) is not required for Theorem 2.2. This is because run-
ning the iterative algorithms (2.7) and (2.8) is only imaginary and in the
proof we choose to use the same starting values as in the real iterative al-
gorithms (2.2) and (2.3), respectively. Thus, (A7) is automatically satisfied
at the beginning of the iterations. Proposition 2.1 tells us that the updated
estimators also fulfill (A7). This holds with the same rate but with mul-
tiplicative factors. For this reason, after L backfitting cycles the difference
between the mean regression and the quantile regression estimators is not of

order (C × L)n−2/5−δ , but of order CLn−2/5−δ , for some δ > 0, C > 1. For
a number of iterations, Citer logn such that Citer logC < δ this is of order
o(n−2/5).

Compared with the results for mean regression backfitting estimators, our
results for quantile estimation are weaker in two aspects. First, we need ini-
tial estimators that are consistent, whereas in mean regression one can start
with arbitrary initial values. This restriction comes from the nonlinearity of
the quantile functional. Second, we put restrictions on the number of itera-
tion steps. It must be of logarithmic order with a factor that is not too small
and not too large. When letting run the two parallel backfitting procedures
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for mean and quantile regression, we were not able to control in the proof the
difference between the two outcomes if the number of iterations is too large.
We conjecture that both restrictions are necessary only for technical reasons
in our approach for the proof. In our simulation, we started with noncon-
sistent pilot estimators and we let the algorithms run until the outcomes
were stabilized. According to our experience in the simulation, there seemed
practically no advantage in limiting the number of iterations and there was
also no problem when starting the algorithm with initial estimators that
were far away from the corresponding underlying regression functions.

A natural extension of our results is to study local polynomial quantile
estimators. This can be done along the lines of this paper by putting smooth-
ness restrictions also on the higher order terms of the local polynomial fit.
This can be done relatively easily for local polynomial smooth backfitting.
For local polynomial ordinary backfitting, it would require also essentially
new theoretical results for mean regression. We do not follow this line in this
paper.

3. Numerical implementation. In practical implementations of the smooth
backfitting method, one may approximate the integral at (2.3) by Monte
Carlo integration. This can be done in several ways. In one version, one gen-
erates (U j

2 , . . . ,U
j
d ) for 1≤ j ≤M from a (d−1)-variate uniform distribution

on I2 × · · · × Id. Then an approximation of m̂SBF
1 (x1) may be obtained by

m̂SBF
1 (x1)≈ argmin

θ∈Θ

n
∑

i=1

M
∑

j=1

τα(Yi − θ− m̂SBF
0 − m̂SBF

2 (U j
2 )− · · · − m̂SBF

d (U j
d ))

×K1,h1(x1,X
i
1)K2,h2(U

j
2 ,X

i
2) · · ·Kd,hd

(U j
d ,X

i
d).

In practical implementation, the values U j
k can be chosen from a finite grid

of equidistant points. Then the algorithm has to update the function values
of the additive components on this grid.

In another version, one generates independent Uℓ,i,j for ℓ= 2, . . . , d, i =
1, . . . , n, j = 1, . . . , J , where Uℓ,i,j has density Kℓ,hl

(·,Xi
ℓ). Again, in practical

implementation, the values of these random variables can be chosen from a
finite grid of equidistant points. Then the smooth backfitting estimator at
x1 is calculated by

m̂SBF
1 (x1)≈ argmin

θ∈Θ

n
∑

i=1

J
∑

j=1

τα(Yi − θ− m̂SBF
0 − m̂SBF

2 (U2,i,j)

− · · · − m̂SBF
d (Ud,i,j))K1,h1(x1,X

i
1).

This means that the smooth backfitting estimator can be calculated by an
algorithm that is designed for the ordinary backfitting with sample (Yi,X

i
1,
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U2,i,j, . . . ,Ud,i,j) for i = 1, . . . , n and j = 1, . . . , J . In this case, the speed of
the algorithm for the smooth backfitting behaves as that for the ordinary
backfitting with sample size Jn.

In the last algorithm, the values Uℓ,i,j could be replaced by deterministic
choices such that for fixed i and ℓ the probability density Kℓ,hℓ

(·,Xi
ℓ) put

equal mass between neighbored points of Uℓ,i,j, that is,

∫ Uℓ,i,j

−∞
Kℓ,hℓ

(xℓ,X
i
ℓ)dxℓ = j/(J + 1), j = 1, . . . , J.

Suppose that Kℓ,hℓ
(·, z) is symmetric about z. Then the algorithm calculates

the ordinary backfitting estimates when J = 1, since in that case Uℓ,i,1 =Xi
ℓ .

It also approximates the smooth backfitting estimates as J →∞. Thus, there
exists a broad band of compromises between the ordinary backfitting and
the smooth backfitting for intermediate choices of J .

4. Simulation study. In this section, we illustrate the asymptotic equiv-
alence asserted in Proposition 2.1. We compared the numerical properties of
the ordinary backfitting (BF) and the smooth backfitting (SBF) estimators
defined at (2.2) and (2.3) with their theoretical mean regression versions
defined at (2.7) and (2.8), respectively.

In the simulation, we considered the following model:

Y i = f1(X
i
1) + f2(X

i
2) + f3(X

i
3) + {σ1(X

i
1) + σ2(X

i
2) + σ3(X

i
3)}U

i,

where U i are i.i.d. N(0,1), f1(x1) = x31, f2(x2) = sin(πx2), f3(x3) = 2 ×
exp(−16x23), σ1(x1) = cos(x1), σ2(x2) = exp(x2) and σ3(x3) = exp(x3). With
this model, the centered version of the jth additive component of the α-
quantile function equals

mj(xj ;α) = cj + fj(xj) + σj(xj)Φ
−1(α),

where Φ−1(α) is the α-quantile of the standard normal distribution and cj is
the constant that makes Emj(X

1
j ;α) = 0. We considered two different cases

for the distribution ofXi. One was the case where the components ofXi were
independent. In this case, Xi were generated fromN3(0, J) truncated outside
[−1,1]3, where J denotes the identity matrix of dimension d= 3. This means
the density of Xi was fX(x) = ϕ(x)I(x ∈ [−1,1]3)/

∫

[−1,1]3 ϕ(z)dz, where ϕ

denotes the density function of N3(0, J). The second was the case where the
components of Xi were correlated. In this case, Xi ∼ N3(0, V ) truncated
outside [−1,1]3, where V ≡ (vij) has vii = 1 and vij = 0.9 for i 6= j. Because
of the truncation, the actual correlation equals 0.644. The sample sizes were
n= 200 and n= 500. These relatively large sample sizes were considered to
let the asymptotic results in Section 2 be well in effect.
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Table 1

Mean integrated squared errors of the estimators

Sample Distribution

size of X Method α= 0.2 α= 0.5 α= 0.8

n= 200 Uncorrel. BF 0.09345 0.07457 0.08770
BF∗ 0.09585 0.07512 0.08208
SBF 0.08818 0.07039 0.08209
SBF∗ 0.09436 0.07455 0.07937

Correl. BF 0.09043 0.07165 0.08382
BF∗ 0.09864 0.07539 0.08276
SBF 0.08555 0.06712 0.07937
SBF∗ 0.09136 0.07140 0.08412

n= 500 Uncorrel. BF 0.05240 0.04020 0.04881
BF∗ 0.04959 0.04121 0.04729
SBF 0.04905 0.03827 0.04557
SBF∗ 0.05045 0.04178 0.04896

Correl. BF 0.05463 0.04182 0.05094
BF∗ 0.05137 0.04305 0.05312
SBF 0.05186 0.03983 0.04743
SBF∗ 0.05496 0.04221 0.05296

Note: BF∗ denotes the theoretical mean regression ordinary backfitting estimator, and
SBF∗ denotes the theoretical mean regression smooth backfitting estimator.

Implementation of the ordinary and smooth backfitting methods requires

optimization involving the nonsmooth function τα. For this, we used R func-

tion rq() in the library quantreg. For the smooth backfitting, we discretized

the integrals on a fine grid in [−1,1]3. We used

Kj,g(x,u) =

[
∫

K

(

x− u

g

)

dx

]−1

K

(

x− u

g

)

,(4.1)

whereK is Epanechinikov kernel given byK(u) = (3/4)(1−u2)I[−1,1](u). For

the bandwidths, we took h1 = h2 = h3 = h for simplicity. Normalization was

done in each iteration so that
∫

m̂j(xj)f̂Xj(xj)dxj = 0. Note that we used

estimates of fXj in the normalization, instead of fixed weight functions which

we considered in our theoretical development for simplicity. Using a different

weight function changes the estimator only by an additive constant. To get

the density estimates f̂Xj , we used the same kernel K and the bandwidth h

that we employed for quantile estimation. We chose the initial estimates in

the iterative algorithms (2.2), (2.3), (2.7) and (2.8) to be zero. It was found

that the algorithms converged with this initial choice in all cases.
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Table 1 show Monte Carlo estimates, based on 200 pseudo-samples, of the
mean integrated squared errors,

MISE =E

∫

{m̄1(x1)+m̄2(x2)+m̄3(x3)−m1(x1)−m2(x2)−m3(x3)}
2fX(x)dx,

where fX is the density function of Xi, and m̄j represents m̂BF
j , m̂SBF

j ,

m̂∗,BF
j or m̂∗,SBF

j . For each estimator, its MISE was estimated by ISE =
∑200

r=1 ISEr/200, where ISEr is the value of the integrated squared error
∫

{m̄1(x1) + m̄2(x2) + m̄3(x3)−m1(x1)−m2(x2)−m3(x3)}
2fX(x)dx

for the rth sample. We computed the estimates of the additive regression
function with bandwidths on a grid in [0.1,1.5]. The values for m̂BF and
m̂∗,BF reported in the table are for the bandwidths that gave optimal per-
formance of m̂BF, and likewise those for m̂SBF and m̂∗,SBF are for the band-
widths that gave optimal performance of m̂SBF. In most cases, the estimated
MISE was minimized around h = 0.5 when n = 200, and around h = 0.4
when n = 500. This is roughly consistent with the theory that the size of
the optimal bandwidth equals n−1/5 for univariate smoothing, according to
which the ratio of the optimal bandwidths for n= 200 and n= 500 equals
(500/200)1/5 ≈ 1.20.

To compare m̂BF and m̂SBF with their theoretical mean regression coun-
terparts m̂∗,BF and m̂∗,SBF, we find that the two corresponding MISE values
are very close, and that in most cases the differences get smaller as n in-
creases. This supports our theory presented in Section 2. In the table, we
also find that the size of the estimated MISE for n= 500 is nearly half of the
corresponding value for n = 200. This supports the fact that the ordinary
and smooth backfitting estimators enjoy the univariate rate of convergence
n−4/5 in MISE, since (500/200)4/5 ≈ 2.08.

According to Table 1, the MISE values of the estimators at α = 0.5 are
always smaller than those at α= 0.2 and α= 0.8. Note that, in Theorem 2.2,
fw
Xj

(xj) is nothing else than the joint density of (ε,Xj) at the point (0, xj).

Under our simulation model, the conditional density can be expressed as

fw
Xj

(xj) =

∫

1

σ1(x1) + σ2(x2) + σ3(x3)
φ

(

Φ−1(α)

σ1(x1) + σ2(x2) + σ3(x3)

)

× fX(x)dx−j

for j = 1,2 and 3, where φ denotes the density of the standard normal dis-
tribution. According to Theorem 2.2, this implies that the theoretical value
of the integrated variance increases as α gets away from 0.5. This explains
why we have larger MISE values for α away from 0.5. Similar numerical
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Fig. 1. Normal Q–Q plots for m̂
BF
2 (x) and m̂

SBF
2 (x) based on 200 values computed from

pseudo-samples in the case where x= 0, α= 0.5, n= 200 and the components of Xi were

correlated. The theoretical quantiles are on the horizontal axis and the sample quantiles

are on the vertical axis.
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evidences were also observed by Yu and Jones (1998) and Lee, Lee and Park
(2006).

Figure 1 illustrates the asymptotic normality of m̂BF
j and m̂SBF

j . It depicts

the normal Q–Q plots of the 200 values of m̂BF
2 (x) and m̂SBF

2 (x) at x = 0
when α= 0.5 and n= 200. The figure is for the case where the components
of Xi are correlated. Although it exhibits slight departures from normality
at tails, the figure suggests that the distributions of the estimators get close
to normal even for moderate sample sizes. We obtained other Q–Q plots
that corresponded to other components j, other points x or other quantile
levels α, and also repeated them in other simulation models. They looked
not much different from the case we report here.

Figure 2 illustrates how the four curve estimates m̂BF
j , m̂∗,BF

j , m̂SBF
j and

m̂∗,SBF
j computed from a single typical sample look like. In the top two

panels, the long-dashed and dotted curves, respectively, represent m̂BF
j and

m̂∗,BF
j computed from a sample for which the value of the integrated squared

error
∫

{m̂BF
j (xj)−mj(xj)}

2 dxj

was the median of those values obtained from the 200 pseudo-samples. Sim-
ilarly, the bottom two panels depict m̂SBF

j and m̂∗,SBF
j computed from a

sample that gave the median performance in terms of the integrated squared
error

∫

{m̂SBF
j (xj)−mj(xj)}

2 dxj .

In the figure the solid curves represent the true functions. In comparison
of the pairs, mBF

j versus m̂∗,BF
j and m̂SBF

j versus m̂∗,SBF
j , we find that the

two corresponding curves move together relatively closer than with the true
function, although there are some places where they are more distant in the
case of the backfitting estimator for α = 0.2 (top left panel). The figure is
for the estimates of the second component function when n= 500 and the
components of Xi were correlated. Those for other cases gave similar lesson,
so that are not included here.

One may be also interested in comparing the two backfitting quantile
estimators m̂BF and m̂SBF in terms of MISE. For this, we computed the
standard errors of the differences between the estimated values of MISE
of the respective estimators. In Table 2, we provide the average differences
DIFF and their standard errors calculated by the formula

S.E.=

√

√

√

√

200
∑

r=1

(DIFFr −DIFF)2/(199× 200),
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Fig. 2. Estimates of a component function computed from a sample that gave the median

performance in terms of the integrated squared error of m̂BF
j or m̂

SBF
j , when n= 500 and

the covariates were correlated. Long-dashed and dotted curves in the top two panels are
m̂

BF
j and m̂

∗,BF
j , respectively, and those in the bottom two panels are m̂

SBF
j and m̂

∗,SBF
j .

Left two panels are for the case α= 0.2 and the right are for α= 0.5. Solid curves represent

the true component functions.

where DIFF denotes the average of DIFFr over 200 pseudo-samples, and

DIFFr = (ISE of m̂BF for the rth sample)−(ISE of m̂SBF for the rth sample).

Comparing the two backfitting quantile estimators, we find that the smooth
backfitting estimators have smaller values of the estimated MISE in all cases
than the ordinary backfitting estimators. In particular, all the differences
are statistically significant, exceeding two standard errors. Although not re-
ported in the paper, we also compared the two backfitting quantile estima-
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Table 2

Differences in mean integrated squared errors of BF and SBF estimators

Sample Distribution

size of X α= 0.2 α= 0.5 α= 0.8

n= 200 Uncorrel. 0.00527 0.00418 0.00561
(0.00099) (0.00063) (0.00087)

Correl. 0.00488 0.00453 0.00445
(0.00098) (0.00068) (0.00096)

n= 500 Uncorrel. 0.00335 0.00193 0.00324
(0.00045) (0.00028) (0.00038)

Correl. 0.00277 0.00199 0.00351
(0.00042) (0.00034) (0.00042)

Note: the numbers are averages of (ISE of m̂BF)−(ISE of m̂SBF) over 200 pseudo-samples,
and their standard errors are given in the parentheses.

tors with their oracle versions. An oracle estimator of an additive component
is the one obtained by using true functions for the other components. We
found that in all cases the two backfitting quantile estimators had similar
performance as their oracle versions.

5. Proofs.

5.1. Proof of Proposition 2.1. We only give the proof for the ordinary
backfitting etimator. The proof will be given for a1 +CSn

−1/5 ≤ x1 ≤ b1 −
CSn

−1/5. The proofs for the smooth backfitting estimator and for boundary
points follow by similar arguments. For simplicity of notation, we also assume
that d= 2.

The basic asymptotic argument for a treatment of parametric and non-
parametric quantile estimators is a Bahadur expansion. It states that the
quantile estimator is asymptotically equivalent to a linear statistic, that
is, to a sum of independent variables. This expansion would directly carry
over to our case if the pilot functions (input) of the backfitting algorithms
would be nonrandom. Because this is not the case, we have to generalize
the Bahadur approach. We have to show that the Bahadur expansion holds
uniformly over a class of pilot functions. Furthermore, we have to verify that
the pilot estimators lie in this function class with probability tending to one.
The latter is guaranteed by the assumptions (A5) and (A6). The uniform
expansion is the main step of our proof.

Define

Vi(θ,µ2, x1)

=K1,h1(x1,X
i
1)[τα(Y

i − θ− µ2(X
i
2))− τα(ε

i +m1(X
i
1)−m1(x1))
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− (θ−m1(x1) + µ2(X
i
2)−m2(X

i
2))

× (I(εi +m1(X
i
1)−m1(x1)< 0)−α)].

Let J1 ≡ J1(x1) and J2 ≡ J2(x1) be index sets defined by

J1 = {i : |Xi
1 − x1| ≤Ch1, a2 +CSn

−1/5 ≤Xi
2 ≤ b2 −CSn

−1/5},

J2 = {i : |Xi
1 − x1| ≤Ch1, a2 ≤Xi

2 < a2 +CSn
−1/5 or b2 −CSn

−1/5 <Xi
2 ≤ b2}.

Put

D(θ,µ2, x1)

=
n
∑

i=1

[Vi(θ,µ2, x1)−EXVi(θ,µ2, x1)]

=
∑

i∈J1

[Vi(θ,µ2, x1)−EXVi(θ,µ2, x1)]

+
∑

i∈J2

[Vi(θ,µ2, x1)−EXVi(θ,µ2, x1)]

≡D1(θ,µ2, x1) +D2(θ,µ2, x1),

where EX is the conditional expectation given X = {X1, . . . ,Xn}. Let M1

and M2 denote the numbers of elements of J1 and J2, respectively. These are
random variables. Since h1 is of order n−1/5 and the density fX is strictly
positive on its support, M1 is of order n× n−1/5 = n4/5 and M2 is of order

n×n−1/5×n−1/5 = n3/5. Thus, there exist constants C1 > 0 and C2 > 0 such
that C1n

4/5 ≤M1 ≤ 2C1n
4/5 and C2n

3/5 ≤M2 ≤ 2C2n
3/5 with probability

tending to one.
For a fixed constant D > 0, we now introduce the class Mn of all tuples

of a parameter θ ∈Θ and a function g that fulfills

sup
a2+CSn−1/5≤x2≤b2−CSn−1/5

|g(x2)−m2(x2)| ≤Dn−(1+ρ)/(2+3ρ)4/5−∆1

and whose derivative fulfills a Lipschitz condition of order ρ with Lipschitz
constant C as in (A6).

For j ≥ 0, let Mn(2
−j) denote a grid of points in Mn such that for

every (θ, g) ∈Mn there exists (θ∗, g∗) ∈Mn(2
−j) with |θ∗ − θ| ≤ 2−j and

‖g∗ − g‖∞ ≤ 2−j . Let Nj denote the number of points in the grid Mn(2
−j).

Note that Nj =O{exp(2j/(1+ρ)nξ/(1+ρ))}.
We apply the Bernstein inequality. For a sum of r independent random

variables Vi that are absolutely bounded by a constant κ and have finite
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variance bounded by σ2, this inequality states that

P

(∣

∣

∣

∣

∣

r−1/2
r
∑

i=1

(Vi −EVi)

∣

∣

∣

∣

∣

≥ a

)

≤ 2exp

(

−
a2

2aκr−1/2 + 2σ2

)

≤ 2exp

(

−
a

4κr−1/2

)

+ 2exp

(

−
a2

4σ2

)

.

We apply this inequality with a chaining argument for D1(θ,µ,x1) and D2(θ,
µ,x1). In doing this, we take r =M1 (or r =M2, resp.) and P = PX where
PX is the conditional distribution given X = {X1, . . . ,Xn}. Let Jn be chosen
so that 2−Jn ≤ n−2/5−δ ≤ 2−Jn+1 with δ > 0 small enough, see below. Define
γ = 4(1+ ρ)/[5(2+ 3ρ)] and In = {j : j ≤ Jn,Dn−γ−∆1 ≥ 2−j}. Furthermore,
for (θ,µ) ∈ Mn(2

−Jn) choose (θj, µj) ∈ Mn(2
−j) with |θj − θ| ≤ 2−j and

‖µj −µ‖∞ ≤ 2−j . For j = Jn, we choose (θj, µj) = (θ,µ). We do not indicate
the dependence of (θj, µj) on (θ,µ) in the notation. For j ≤ jn = min In,
the grid Mn(2

−j) can be chosen so that it contains only one value of µ.
We assume that this value is equal to µ0 = m2. Furthermore, we choose
θ0 =m1(x1) and we assume w.l.o.g. that the diameter of Θ is less than one.
For j = 0, the grid Mn(2

−j) contains only one value which we choose to be
(θ0, µ0). Then

P
(

sup
(θ,µ)∈Mn(2−Jn )

|D1(θ,µ,x1)|> n−4/5−2δ|X
)

≤ P

(

sup
(θ,µ)∈Mn(2−Jn )

∣

∣

∣

∣

D1(θ
0, µ0, x1)

+
∑

1≤j<jn

D1(θ
j , µ0, x1)−D1(θ

j−1, µ0, x1)

+
∑

jn≤j≤Jn

D1(θ
j, µj, x1)−D1(θ

j−1, µj−1, x1)

∣

∣

∣

∣

> n−4/5−2δ|X

)

.

Let sj be positive numbers (depending on n) such that
∑

1≤j≤Jn
sj ≤ 1/2.

Then the right-hand side of the above inequality is bounded by

P (|D1(θ
0, µ0, x1)|> 2−1n−4/5−2δ |X )

+
∑

1≤j<jn

22j sup
∗

P (|D1(θ
j, µ0, x1)

−D1(θ
j−1, µ0, x1)|> sjn

−4/5−2δ |X )(5.1)



ADDITIVE QUANTILE MODELS 21

+
∑

jn≤j≤Jn

NjNj−1 sup
∗∗

P (|D1(θ
j, µj, x1)

−D1(θ
j−1, µj−1, x1)|> sjn

−4/5−2δ |X ),

where sup∗ and sup∗∗ runs over all (θj, µj) ∈Mn(2
−j) and (θj−1, µj−1) ∈

Mn(2
−j+1) with |θj − θj−1| ≤ 2−j+1 and ‖µj − µj−1‖∞ ≤ 2−j+1.

Using the Bernstein inequality with κ=O(2−jh−1
1 ), σ2 = 2−2jO(n−γ−∆1×

h−2
1 ) and a=M

−1/2
1 nsjn

−4/5−2δc, the last sum in (5.1) can be bounded by
∑

jn≤j≤Jn

[exp(d12
j/(1+ρ)nξ/(1+ρ) − d2sjnn

−4/5−2δ2jh1)

(5.2)
+ exp(d12

j/(1+ρ)nξ/(1+ρ) − d2s
2
jM

−1
1 n2n−8/5−4δ22jnγ+∆1h21)]

for some constants d1, d2 > 0. Choosing sj = (d3 logn)
−1 with d3 large enough,

the sum at (5.2) can be bounded further by

exp(−d4n
d5) + exp(−d6M

−1
1 n4/5+d7),

where d4, . . . , d7 > 0 are some constants. Here, we used that δ > 0 is small
enough. Using similar arguments for the first two terms in (5.1), one can
bound the sum of all three terms in (5.1) by

exp(−d8n
d9),

where d8, d9 > 0 are some constants. This exponential bound entails that for
δ > 0 small enough

sup
(θ,µ2)∈Mn(2−Jn )

x1∈I1

|n−1D1(θ,µ2, x1)|

= sup
(θ,µ2)∈Mn(2−Jn )

x1∈I1

∣

∣

∣

∣

n−1
∑

i∈J1

{Vi(θ,µ2, x1)−EXVi(θ,µ2, x1)}

∣

∣

∣

∣

(5.3)

=OP (n
−4/5−δ).

Similarly, it can be shown that

sup
(θ,µ2)∈Mn(2−Jn )

x1∈I1

|n−1D2(θ,µ2, x1)|

= sup
(θ,µ2)∈Mn(2−Jn )

x1∈I1

∣

∣

∣

∣

n−1
∑

i∈J2

{Vi(θ,µ2, x1)−EXVi(θ,µ2, x1)}

∣

∣

∣

∣

(5.4)

=OP (n
−4/5−δ).
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We now use a Taylor expansion of EXVi(θ,µ2, x1) with respect to θ. Note
that with Ai = εi + m1(X

i
1) − m1(x1) and Bi = Y i − θ − µ2(X

i
2) = εi +

m1(X
i
1)− θ+m2(X

i
2)− µ2(X

i
2)

Vi(θ,µ2, x1) =K1,h1(x1,X
i
1)











0, if Ai,Bi < 0,
0, if Ai,Bi ≥ 0,
Bi, if Ai < 0≤Bi,
−Bi, if Ai ≥ 0>Bi.

For δ1, δ2 > 0 small enough, we get that uniformly for |θ−m1(x1)| ≤ δ1

EXVi(θ,µ2, x1)

= 1
2K1,h1(x1,X

i
1)fε|X(0|Xi){[m2(X

i
2)− µ2(X

i
2)− θ+m1(x1)]

2

+OP (n
−4/5−δ2) +OP (|θ −m1(x1)|

3)},

see (A3). We now apply (5.3), (5.4) and the fact that the change of an
empirical quantile cannot be larger than the largest change of an observation.
We use these results to analyze the update m̂BF

1 (x1) when we plug into

the iteration formula (2.2) of the backfitting estimator a choice of µ2 =
m̂BF

2 that lies in Mn. By a direct argument, it can be shown that with
probability tending to one the resulting value lies in an δ1-neighborhood of
m1(x1). Thus, using the above expansions, we get that, up to terms of order

OP (n
−2/5−δ3) with δ3 > 0 small enough, the resulting value for the update

m̂BF
1 (x1) is equal to the minimum of

θ

n

n
∑

i=1

K1,h1(x1,X
i
1)[I(ε

i +m1(X
i
1)−m1(x1)≤ 0)−α]

+
1

2n

n
∑

i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)[m2(X

i
2)− µ2(X

i
2)− θ+m1(x1)]

2.

The minimum of this expression is equal to

m1(x1)− f̂w
Xj

(xj)
−1 1

n

n
∑

i=1

K1,h1(x1,X
i
1)[I(ε

i +m1(X
i
1)−m1(x1)≤ 0)−α]

+ f̂w
Xj

(xj)
−1 1

n

n
∑

i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)[m2(X

i
2)− µ2(X

i
2)],

where f̂w
Xj

(xj) has been defined after (2.8). We now use that

f̂w
Xj

(xj)
−1 1

n

n
∑

i=1

K1,h1(x1,X
i
1)[I(ε

i +m1(X
i
1)−m1(x1)≤ 0)− I(εi ≤ 0)]
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=m1(x1)− f̂w
Xj

(xj)
−1 1

n

n
∑

i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)m1(X

i
1)

+OP (n
−2/5−δ)

for δ > 0 small enough. This shows that the minimum is equal to

f̂w
Xj

(xj)
−1 1

n

n
∑

i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)[m1(X

i
1) +m2(X

i
2) + ηi]

− f̂w
Xj

(xj)
−1 1

n

n
∑

i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)µ2(X

i
2) +OP (n

−2/5−δ).

This expansion holds uniformly for x1 ∈ I1 and µ2 ∈Mn.
To complete the proof, we use the fact that, if one replaces in (2.2) or

(2.7) the input function µ2 = m̂BF
2 or µ2 = m̂∗,BF

2 , respectively, by another

function that differs in sup-norm by an amount of order OP (n
−2/5−∆2),

then the resulting estimator changes also at most by an amount of order
OP (n

−2/5−∆2). In particular, if δ <∆2, this implies that

sup
a1+CSn−1/5≤x1≤b1−CSn−1/5

|m̂BF
1 (x1)− m̂∗,BF

1 (x1)|=OP (n
−2/5−δ).

The other statements of Proposition 2.1 can be proved by using similar
arguments.

5.2. Proof of Theorem 2.2. We will prove the theorem for the ordinary
backfitting estimator. A proof for the smooth backfitting estimator follows
along the same lines. We only give an outline of the proof. For simplicity, we
assume that the condition (A6) holds with ρ= 1. Our basic argument runs as

follows. We choose m̂
∗,BF,[0]
j = m̂

BF,[0]
j . By assumption, these starting values

fulfill (A5) and (A6) (with the choice m̂BF
j = m̂

∗,BF,[0]
j = m̂

BF,[0]
j ). Thus, we

can apply Proposition 2.1 and we get that the updates m̂
∗,BF,[1]
j and m̂

BF,[1]
j

fulfill (A7) (with the choices m̂∗,BF
j = m̂

∗,BF,[1]
j and m̂BF

j = m̂
BF,[1]
j ). We will

show below that the updates m̂
∗,BF,[l]
j of the mean regression backfitting

estimator fulfill conditions (A5) and (A6) for all l ≥ 1. With this fact, we
can use an iterative argument. Suppose that we know that (A5)–(A7) hold

for m̂
∗,BF,[l−1]
j and m̂

BF,[l−1]
j . Then with our proof below we get that m̂

∗,BF,[l]
j

fulfills (A5) and (A6). By application of Proposition 2.1, we get that (A7)

holds for m̂
∗,BF,[l]
j and m̂

BF,[l]
j . Thus, m̂

BF,[l]
j lies in a neighborhood of m̂

∗,BF,[l]
j

and (A5) and (A6) also hold for m̂
BF,[l]
j because they are satisfied by m̂

∗,BF,[l]
j .
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The bound for the distance between m̂
∗,BF,[l]
j and m̂

BF,[l]
j adds up. Each

application of Proposition 2.1 adds an additional term. The additional term
increases with l. With a careful analysis of the arguments in the proof of
Proposition 2.1, one gets that the bounds in (A5) and (A6) have to be
multiplied by a factor C l

∗ with a constant C∗ > 1. If l ≤ Citer logn with
Citer > 0 small enough, we get

m̂
BF,[l]
j − m̂

∗,BF,[l]
j = oP (n

−2/5).(5.5)

In the second part of the proof, we will show the asymptotic normality of

m̂
∗,BF,[C logn]
j for C large enough. The minimal sufficient value of C for this

result depends on the rate of convergence of m̂
∗,BF,[0]
j to mj . If this rate is

n−2/5, then it can be made as small as one likes. For slower rates, one needs
larger values of C. If the rate is fast enough, one can choose C <Citer. In this
case, we can apply (5.5) and we get the same asymptotic normality result

for m̂
∗,BF,[Citer logn]
j . This will conclude the proof of Theorem 2.2.

We now prove that the updates m̂
∗,BF,[l]
j fulfill the conditions (A5) and

(A6) for all l≥ 1. For this purpose, we rewrite (2.7) as

m̂
∗,BF,[l]
j (xj)−mj(xj)

= m̃∗,A
j (xj) + m̃∗,B

j (xj) + m̃
∗,C,[l]
j (xj)− m̂∗,BF

0(5.6)

−

d
∑

k=1, 6=j

∫

[m̂
∗,BF,[lk,j]
k (xk)−mk(xk)]f

n,w
Xk|Xj

(xk|xj)dxk,

where lk,j = l+1 for k < j, lk,j = l for k > j, and

m̃∗,A
j (xj) =

n−1
∑n

i=1 fε|X(0|Xi)Kj,hj
(xj ,X

i
j)η

i

f̂w
Xj

(xj)
,

m̃∗,B
j (xj) =

n−1
∑n

i=1 fε|X(0|Xi)Kj,hj
(xj ,X

i
j)[mj(X

i
j)−mj(xj)]

f̂w
Xj

(xj)
,

m̃
∗,C,[l]
j (xj) =−

d
∑

k=1, 6=j

(

n−1
n
∑

i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j)

× [m̂
∗,BF,[lk,j ]
k (Xi

k)−mk(X
i
k)]

)

(f̂w
Xj

(xj))
−1

+
d
∑

k=1, 6=j

∫

[m̂
∗,BF,[lk,j]
k (xk)−mk(xk)]f

n,w
Xk|Xj

(xk|xj)dxk,
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fn,w
Xk|Xj

(uk|xj) =

∫

fε|X(0|u)Kj,hj
(xj , uj)fX(u)du−k

∫

fε|X(0|v)Kj,hj
(xj , vj)fX(v)dv

.

The iteration (5.6) can be analyzed as the smooth backfitting algorithm

in Mammen, Linton and Nielsen (1999). With m̂
∗,BF,[l]
+ (x) = m̂

∗,BF,[l]
1 (x1) +

· · ·+ m̂
∗,BF,[l]
d (xd) and m+(x) =m1(x1) + · · ·+md(xd), we can write a full

cycle of iterations (5.6) as

m̂
∗,BF,[l+1]
+ −m+ = m̃∗,A

⊕ + m̃∗,B
⊕ + m̃

∗,C,[l]
⊕ − m̂∗,BF

0
(5.7)

+ Tn,+(m̂
∗,BF,[l]
+ −m+ − µl) + µl,

where m̃∗,A
⊕ , m̃∗,B

⊕ and m̃
∗,C,[l]
⊕ are some functions, Tn,+ is an operator that

acts on additive mean zero functions in L2(fε|X(0|·)fX(·)), and µl =
∫

(m̂
∗,BF,[l]
+ −

m+)(x)fX(x)fε|X(0|x)dx. We used ⊕ (not +) as subindex in m̃∗,A
⊕ because

it is not the sum of m̃∗,A
j . The operator Tn,+ converges to an operator T+

that is based on an iterative application of the linear transformations for
the additive components gj of an additive function g+:

gj →−

d
∑

k=1, 6=j

∫

gk(xk)f
w
Xk|Xj

(xk|xj)dxk.

More precisely, the kernel function of Tn,+ converges to the kernel function
of T+, with respect to the sup-norm.

Arguing as in the proof of Lemma 1 in Mammen, Linton and Nielsen
(1999), one can show that T+ is a positive self-adjoint operator with operator
norm strictly less than one, ‖T+‖ < 1, and with ‖Tjm‖∞ ≤ D‖m‖2 for a
constant D > 0. Here, Tjm is the jth additive component of T+m. This
gives with constants 0<D′ < 1 and D′′ > 0 for n large enough

‖Tn,+‖<D′.(5.8)

Furthermore, we have

‖Tn,jm‖∞ ≤D′′‖m‖2,(5.9)

where Tn,jm is the jth additive component of Tn,+m. Iterative application
of (5.7) gives

m̂
∗,BF,[l]
+ −m+ = m̂

∗,A,[l]
+ + m̂

∗,B,[l]
+ + m̂

∗,C,[l]
+ − m̂∗,BF

0 + T̄ l
n,+(m̂

∗,BF,[0]
+ −m+),

where T̄n,+ is an extension of Tn,+ to a nonzero mean function by putting
T̄n,+g = Tn,+(g− µg) + µg with µg =

∫

g(x)fX(x)fε|X(0|x)dx, and

m̂
∗,A,[l]
+ =

l−1
∑

r=0

T̄ r
n,+m̃

∗,A
⊕ ,
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m̂
∗,B,[l]
+ =

l−1
∑

r=0

T̄ r
n,+m̃

∗,B
⊕ ,

m̂
∗,C,[l]
+ =

l−1
∑

r=0

T̄ l−r−1
n,+ m̃

∗,C,[r]
⊕ .

Using standard bounds on m̃∗,A
j and m̃∗,B

j , it can be verified that

sup
xj∈Ij ,l≥1

|m̂
∗,A,[l]
j (xj)|=OP (n

−2/5),(5.10)

sup
xj∈Ij ,l≥1

|m̂
∗,B,[l]
j (xj)|=OP (n

−1/5),(5.11)

sup
aj+CShj≤xj≤bj−CShj ,l≥1

|m̂
∗,B,[l]
j (xj)|=OP (n

−2/5),(5.12)

where for an additive function g+ we denote by gj its jth additive compo-
nent.

We now argue that for a constant CT > 0

sup
xj∈Ij ,l≥1

|T̄n,jT̄
l−1
n,+ (m̂

∗,BF,[0]
j −mj)(xj)| ≤CTκn,(5.13)

where

κn = sup
1≤j≤d

[

sup
aj+CShj≤xj≤bj−CShj

|m̂
∗,BF,[0]
j −mj|(xj)

+ n−1/5 sup
aj≤xj≤bj

|m̂
∗,BF,[0]
j −mj|(xj)

]

.

For a proof of this claim, one applies (5.8) and (5.9). Also, we argue that

sup
xj∈I,l≥1

|m̂
C,[l]
j (xj)|= oP (n

−2/5).(5.14)

For a proof of (5.14), we note that

sup
xj∈Ij ,l≥1

|m̃
C,[l]
j (xj)|= oP (n

−2/5).

This follows by empirical process theory. One uses the fact that m̂
∗,BF,[l−1]
k −

mk lies in a class of functions that have second derivatives absolutely bounded
by Cξn

ξ with ξ > 0 being arbitrarily small and constant Cξ depending on ξ.
This can be shown by using that the same bound applies for m̃A

j and m̃B
j ,

and that the kernels of the operators T+ and Tj have an absolutely bounded
second derivative [see (A9)], and then applying an iterative argument.
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The bounds at (5.10)–(5.14) imply that m̂
∗,BF,[l]
j fulfills (A5) uniformly

for l≥ 1. Using the smoothness considerations in the previous paragraph,

we get that m̂
∗,BF,[l]
j fulfills (A6) uniformly for l ≥ 1. Thus, we get by an

iterative application of Proposition 2.1 that (5.5) holds.

It remains to show the asymptotic normality result for m̂BF,iter
j =

m̂
BF,[Citer logn]
j with Citer large enough. Using the above arguments, we have

for Citer large enough that

m̂∗,BF,iter
j (xj)−mj(xj) = m̂

A,[Citer logn]
j (xj) + m̂

B,[Citer logn]
j (xj) + oP (n

−2/5).

We argue that

sup
l≥1

|m̂
A,[l]
j (xj)− m̃A

j (xj)| = oP (n
−2/5),(5.15)

h−2
j m̂

B,[l]
j (xj)→ βj(xj) as l→∞.(5.16)

These two claims imply that

m̂∗,BF
j (xj)−mj(xj) = m̃A

j (xj) + h2jβj(xj) + oP (n
−2/5).

This expansion shows the desired asymptotic limit result by using a standard
smoothing limit result for m̃A

j (xj).

We prove (5.15) and (5.16). Claim (5.15) follows from standard smoothing
theory as in Mammen, Linton and Nielsen (1999). For a proof of (5.16), we

define β
[l]
j (xj) = β∗

j (xj)−
∑d

k=1, 6=j

∫

β
[lk,j ]
k (xk)f

w
Xk|Xj

(xk|xj)dxk with β
[0]
j (xj)≡

0. Similarly, as in (5.7), we can write a full cycle of these iterations as

β
[l+1]
+ = β∗

⊕ + T̄+β
[l]
+ ,(5.17)

where β∗
⊕ is some additive function, β

[l]
+ (x) is equal to β

[l]
1 (x1)+ · · ·+β

[l]
d (xd)

and T̄+ is an extension of T+ defined by T̄+g = T+(g − µg) + µg with µg

defined as above. Note that we get β
[l]
+ =

∑l−1
r=0 T̄

r
+β

∗
⊕. This expansion shows

that

sup
xj∈Ij ,l≥1

|m̂
∗,B,[l]
j (xj)− h2jβ

[l]
j |= oP (n

−1/5),

(5.18)
sup

aj+CShj≤xj≤bj−CShj ,l≥1
|m̂

∗,B,[l]
j (xj)− h2jβ

[l]
j |= oP (n

−2/5).

Furthermore, we get that the term β
[l]
+ −

∑d
j=1[h

−2
j m′

j(xj)
∫

(uj−xj)Kj,hj
(xj ,

uj)duj −µ2,K
1
2m

′′
j (xj)] converges to µ2,Kβ∗∗

+ as l→∞, where (β∗∗
1 , . . . , β∗∗

d )
is the minimizer of

∫

[

d
∑

j=1

(

m′
j(xj)

∂/∂xjfε,X(0, x)

fε,X(0, x)
− β∗∗

j (xj)

)

]2

fε,X(0, x)dx.
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This follows because the updating (5.17) is given by the first-order conditions

of this minimization problem. Together with (5.18), this implies (5.16).

REFERENCES

Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37

577–580. MR0189095

Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models

(with discussion). Ann. Statist. 17 453–555. MR0994249

Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their Bahadur
representation. Ann. Statist. 19 760–777. MR1105843

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chap-

man and Hall, London. MR1383587

Furno, M. (2004). ARCH tests and quantile regressions. J. Stat. Comput. Simul. 74

277–292. MR2059314

Horowitz, J. and Lee, S. (2005). Nonparametric estimation of an additive quantile

regression model. J. Amer. Statist. Assoc. 100 1238–1249. MR2236438

Horowitz, J. and Mammen, E. (2004). Nonparametric estimation of an additive model

with a link function. Ann. Statist. 32 2412–2443. MR2153990
Jones, M. C. and Hall, P. (1990). Mean squared error properties of kernel estimates of

regression quantiles. Statist. Probab. Lett. 10 283–289. MR1069903

Lee, Y. K., Lee, E. R. and Park, B. U. (2006). Conditional quantile estimation by local

logistic regression. J. Nonparametr. Stat. 18 357–373. MR2284188
Linton, O. and Nielsen, J. P. (1995). A kernel method of estimating structured nonpara-

metric regression based on marginal integration. Biometrika 82 93–101. MR1332841

Lu, Z. and Yu, K. (2004). Local linear additive quantile regression. Scand. J. Statist. 31

333–346. MR2087829
Mammen, E., Linton, O. and Nielsen, J. P. (1999). The existence and asymptotic

properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27

1443–1490. MR1742496

Mammen, E. and Park, B. U. (2006). A simple smooth backfitting method for additive

models. Ann. Statist. 34 2252–2271. MR2291499
Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. J. Multivariate

Anal. 73 166–179. MR1763322

Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local

polynomial regression. Ann. Statist. 25 186–211. MR1429922
Yu, K. and Jones, M. C. (1998). Local linear quantile regression. J. Amer. Statist. Assoc.

93 228–237. MR1614628

Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current

research areas. The Statistician 52 331–350. MR2011179

Yu, K., Park, B. U. and Mammen, E. (2008). Smooth backfitting in generalized additive
models. Ann. Statist. 36 228–260. MR2387970

Y. K. Lee

Department of Statistics

Kangwon National University

Chuncheon 200-701

Korea

E-mail: youngklee@kangwon.ac.kr

E. Mammen

Department of Economics

University of Mannheim

68131 Mannheim, L7, 3-5

Germany

E-mail: emammen@rumms.uni-mannheim.de

http://www.ams.org/mathscinet-getitem?mr=0189095
http://www.ams.org/mathscinet-getitem?mr=0994249
http://www.ams.org/mathscinet-getitem?mr=1105843
http://www.ams.org/mathscinet-getitem?mr=1383587
http://www.ams.org/mathscinet-getitem?mr=2059314
http://www.ams.org/mathscinet-getitem?mr=2236438
http://www.ams.org/mathscinet-getitem?mr=2153990
http://www.ams.org/mathscinet-getitem?mr=1069903
http://www.ams.org/mathscinet-getitem?mr=2284188
http://www.ams.org/mathscinet-getitem?mr=1332841
http://www.ams.org/mathscinet-getitem?mr=2087829
http://www.ams.org/mathscinet-getitem?mr=1742496
http://www.ams.org/mathscinet-getitem?mr=2291499
http://www.ams.org/mathscinet-getitem?mr=1763322
http://www.ams.org/mathscinet-getitem?mr=1429922
http://www.ams.org/mathscinet-getitem?mr=1614628
http://www.ams.org/mathscinet-getitem?mr=2011179
http://www.ams.org/mathscinet-getitem?mr=2387970
mailto:youngklee@kangwon.ac.kr
mailto:emammen@rumms.uni-mannheim.de


ADDITIVE QUANTILE MODELS 29

B. U. Park

Department of Statistics

Seoul National University

Seoul 151-747

Korea

E-mail: bupark@stats.snu.ac.kr

mailto:bupark@stats.snu.ac.kr

	1 Introduction
	2 Main results
	3 Numerical implementation
	4 Simulation study
	5 Proofs
	5.1 Proof of Proposition 2.1
	5.2 Proof of Theorem 2.2

	References
	Author's addresses

