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KRALL-JACOBI COMMUTATIVE ALGEBRAS OF PARTIAL

DIFFERENTIAL OPERATORS

PLAMEN ILIEV

Abstract. We construct a large family of commutative algebras of partial
differential operators invariant under rotations. These algebras are isomor-
phic extensions of the algebras of ordinary differential operators introduced
by Grünbaum and Yakimov corresponding to Darboux transformations at one
end of the spectrum of the Jacobi recurrence operator. The construction is
based on a new proof of their results which leads to a more detailed description
of the one-dimensional theory. In particular, our approach establishes a con-
jecture by Haine concerning the explicit characterization of the Krall-Jacobi
algebras of ordinary differential operators.
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1. Introduction

It is practically impossible to list the numerous applications of Jacobi polyno-
mials which were introduced more than 150 years ago as solutions of the hypergeo-
metric equation [10]. In 1938, Krall [13] studied the general problem of classifying
orthogonal polynomials which are eigenfunctions of a higher-order differential oper-
ator and solved it completely for operators of order 4, thus extending the classical
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orthogonal polynomials [14]. In the last century, different solutions of Krall’s prob-
lem were constructed, see for instance [11, 12, 15, 19] and the references therein.

More recently, new techniques have emerged in the literature inspired by the bis-
pectral problem [2]. The most general result concerning the Krall problem appeared
not long ago in the beautiful work of Grünbaum and Yakimov [5] who constructed
a large family of solutions to a differential-difference bispectral problem, containing
as special or limiting cases all previously known solutions. Their approach is based
on a very subtle application of the Darboux transformation [1], one of the basic
tools in the theory of solitons [16]. The construction naturally leads to a com-
mutative algebra of ordinary differential operators diagonalized by the generalized
Jacobi polynomials, which we call the Krall-Jacobi algebra.

In the present paper we discuss an extension of the above theory within the
context of operators invariant under rotations. First, we give a new proof of the
results in [5], which shows that if we iterate the Darboux transformation at one end
of the spectrum of the Jacobi recurrence operator, then the Krall-Jacobi commu-
tative algebra of differential operators is contained in an associative algebra with
two generators which have natural multivariate extensions. This fact does not seem
to follow easily even from the explicit formulas in [11] for the minimal operator in
the Krall-Jacobi algebra in the case of a single Darboux transformation. Our proof
is based on the approach used in [8, 9] to establish the bispectrality for rank-one
commutative algebras of difference or q-difference operators. The main difficulty
here is to evaluate certain discrete integrals (or sums) involving the Jacobi poly-
nomials, which were trivial integrals involving exponents in the rank-one case. As
another corollary of our construction we establish Conjecture 3.2 on page 161 in
[6] for the Krall-Jacobi algebra, which gives an explicit characterization of the iso-
morphic (dual) algebra of eigenfunctions. Our techniques allow also to obtain an
explicit eigenbasis of polynomials for the multivariate Krall-Jacobi algebras of par-
tial differential operators in terms of the quantities used to describe the sequence
of one-dimensional Darboux transformations and the spherical harmonics.

The paper is organized as follows. In Section 2 we introduce the Jacobi polyno-
mials and the corresponding recurrence and differential operators. In Section 3 we
review briefly the sequence of Darboux transformations from the Jacobi operator.
In Section 4 we present the new proof of the results in [5] together with the addi-
tional properties of the Krall-Jacobi algebra mentioned above. We give a detailed
proof for the case needed for the multivariate extension (i.e. Darboux transforma-
tions at one end of the spectrum), but we indicate the necessary modifications for
Darboux transformations at both ends in Remark 4.6. In Section 5 we define the
multivariate Krall-Jacobi algebras of partial differential operators and we write an
explicit basis in the space of polynomials in several variables. In the last section we
illustrate the constructions in the paper with the simplest possible example which
leads to a multivariate analog of Krall polynomials [14].

2. Jacobi polynomials and operators

Throughout the paper we denote by pα,βn (z) the Jacobi polynomials normalized
as follows

pα,βn (z) = (−1)n
(α+ β + 1)n

n!
F (−n, n+ α+ β + 1, β + 1; z), (2.1)
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where F stands for Gauss’ 2F1 hypergeometric function and (a)n is the the shifted
factorial (a)0 = 1, (a)n = a(a+1) · · · (a+n−1) for n > 0. Besides the orthogonality
on [0, 1] with respect to the measure (1 − z)αzβdz the Jacobi polynomials are
eigenfunctions of the second-order differential operator

Bα,β(z, ∂z) = z(z − 1)∂2z + (z(α+ β + 2)− (β + 1))∂z (2.2)

with eigenvalue
λα+β
n = n(n+ α+ β + 1), (2.3)

i.e. we have
Bα,β(z, ∂z)p

α,β
n (z) = λα+β

n pα,βn (z). (2.4)

In order to simplify the notation, we shall write λn instead of λα+β
n unless we need

to use different values for the parameters and the explicit dependence on α + β is
important.

Since any family of orthogonal polynomials satisfies a three-term recurrence re-
lation, the polynomials pα,βn (z) are also eigenfunctions for a second-order difference
operator acting on the discrete variable n. More precisely, if we denote by En the
customary shift operator acting on functions of a discrete variable n by

Enfn = fn+1,

then
Lα,β(n,En)p

α,β
n (z) = zpα,βn (z), (2.5)

where Lα,β(n,En) is the second-order difference operator

Lα,β(n,En) = AnEn +BnId + CnE
−1
n , (2.6)

with coefficients

An =
(n+ 1)(n+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
(2.7a)

Cn =
(n+ α)(n+ α+ β)

(2n+ α+ β)(2n+ α+ β + 1)
(2.7b)

Bn = 1−An − Cn. (2.7c)

Here and later we assume that pα,βn (z) = 0 for n < 0. Equivalently, if we think of
pα,βn (z) as the semi-infinite vector

[pα,β0 (z), pα,β1 (z), pα,β2 (z), . . . ]t,

then Lα,β(n,En) can be represented by the tridiagonal semi-infinite (Jacobi) matrix

Lα,β(n,En) =











B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .











. (2.8)

In view of equations (2.4) and (2.5) we can say that the polynomials pα,βn (z) solve
a differential-difference bispectral problem.

Using the explicit formula (2.1) one can easily check that the Jacobi polynomials
satisfy the following differential-difference equation

[2z∂z + (α+ β)](pα,βn (z)− pα,βn−1(z)) = (2n+ α+ β)(pα,βn (z) + pα,βn−1(z)). (2.9)

The above formula will be a key ingredient in the computation of “discrete integrals”
involving the Jacobi polynomials, which are analogous to standard (continuous)
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integrals of products of polynomials and exponents. This is the first place where
the particular normalization of pα,βn (z) is very important.

3. Discrete Darboux transformations

Recall that the lattice version of the Darboux transformation [16] of an operator
(matrix) L0 at z amounts to performing an upper-lower factorization of L0 − zId
and to producing a new matrix by exchanging the factors. In this section, following
[5], we describe the result of k successive Darboux transformations starting from
L0 = Lα,β(n,En) at z = 1 for α ∈ N and k ≤ α:

L0 = Id + P0Q0 y L1 = Id +Q0P0 = Id + P1Q1 y · · ·

Lk−1 = Id +Qk−2Pk−2 = Id + Pk−1Qk−1 (3.1)

y L̂ = Lk = Id +Qk−1Pk−1.

From (3.1) it follows that

L̂Q = QL0 (3.2)

and

(L0 − Id)k = PQ, (3.3)

where P = P0P1 · · ·Pk−1 and Q = Qk−1Qk−2 · · ·Q0. The above formulas imply
that

ker(Q) ⊂ ker((L0 − Id)k) and L0(ker(Q)) ⊂ ker(Q). (3.4)

Conversely, one can show that if (3.4) holds then there exists a difference operator

L̂ such that (3.2) holds and this operator is obtained by a sequence of Darboux
transformations as in (3.1).

Note that, up to a factor, the lower-triangular matrix Q is uniquely determined

by its kernel, i.e. if {ψ
(j)
n }k−1

j=0 is a basis for ker(Q) then

(Qf)n = gnWrn(ψ
(0)
n , ψ(1)

n , . . . , ψ(k−1)
n , fn), (3.5)

for an appropriate function gn. We use Wrn to denote the discrete Wronskian (or
Casorati determinant):

Wrn(g
(1)
n , g(2)n , . . . , g(k)n ) = det(g

(i)
n−j+1)1≤i,j≤k.

Combining the above remarks, we see that the sequence of Darboux transformations
(3.1) for L0 = Lα,β(n,En) is characterized by choosing a basis for ker(Q) satisfying

(Lα,β(n,En)− Id)ψ(0)
n = 0 and (Lα,β(n,En)− Id)ψ(j)

n = ψ(j−1)
n for j = 1, . . . , k−1.

(3.6)
For i ∈ {0, 1}, j ∈ {0, 1, . . . , k − 1} we define

φ1,jn =
(−1)j(n+ 1)j(−n− α− β)j

j!(1 − α)j
, (3.7a)

φ2,jn =
(−1)j(n+ 1)α(n+ β + 1)α(−n)j(n+ α+ β + 1)j

j!α!(1 + α)j(1 + β)α
. (3.7b)

One can show that the functions φi,jn are linearly independent (as functions of n)
and

(Lα,β(n,En)− Id)φi,0n = 0, for i = 1, 2

(Lα,β(n,En)− Id)φi,jn = φi,j−1
n , for j = 1, . . . , k − 1, i = 1, 2.
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Thus, we can write the functions ψ
(j)
n as a linear combination of φi,jn as follows

ψ(j)
n =

j
∑

l=0

(aj−lφ
1,l
n + bj−lφ

2,l
n ).

If b0 = 0 then ψ
(0)
n = a0 6= 0, i.e. we can take ψ

(0)
n = 1 and one can check that L1

in (3.1) coincides (up to a conjugation) with Lα−1,β(n,En). Therefore the operator

L̂ = Lk can be obtained by a sequence of k − 1 Darboux transformations starting
from Lα−1,β(n,En). Thus we can assume that b0 6= 0, hence we can take b0 = 1.

Since Q depends only on the space span{ψ
(0)
n , ψ

(1)
n , . . . , ψ

(k−1)
n }, and not on the

choice of the specific basis, we can can take bj = 0 for j > 0. Thus we shall
consider a basis for ker(Q) of the form

ψ(j)
n =

j
∑

l=0

aj−lφ
1,l
n + φ2,jn , (3.8)

depending on α ∈ N, β and k free parameters a0, a1, . . . , ak−1. We shall also
normalize the matrix Q by taking gn = 1 in (3.5). Finally, we denote by qn(z) the
polynomials defined by

qn(z) = Q(pα,βn (z)) = Wrn(ψ
(0)
n , ψ(1)

n , . . . , ψ(k−1)
n , pα,βn (z)), (3.9)

which depend on the free parameters α ∈ N, β and a = (a0, a1, . . . , ak−1).

Remark 3.1. To simplify the notation we omit the explicit dependence of the

parameters α, β and a in the functions ψ
(j)
n and qn(z). When these parameters are

needed, we shall write ψ
(j);α,β;a
n (z) and qα,β;an (z).

Remark 3.2. From (2.5) and (3.2) it follows that

L̂(n,En)qn(z) = zqn(z). (3.10)

It is easy to see that the off-diagonal entries of the matrix L̂(n,En) are nonzero
and therefore, by Favard’s theorem, there exists a unique (up to a multiplicative
constant) moment functional M for which {qn(z)}

∞
n=0 is an orthogonal sequence,

i.e.

M(qnqm) = 0, for n 6= m and M(q2n) 6= 0. (3.11)

More precisely, one can show that there exist constants u0, u1, . . . , uk−1 such that
the moment functional M is given by the weight distribution

w(z) = (1− z)α−kzβ +

k−1
∑

j=0

ujδ
(j)(z − 1), (3.12)

where δ is the Dirac delta function. The parameters uj correspond to a different
parametrization of the Darboux transformation (3.1). The proof of this statement
is well known and we omit the details. We refer the reader to [4, Theorem 2, p. 287]
where a similar result was proved for Laguerre polynomials.

4. The commutative algebras Aα,β;a and Dα,β;a

In this section we prove that the polynomials qn(z) are eigenfunctions for the
operators in a commutative algebra of differential operators.
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4.1. Statement of the main one-dimensional theorem. In order to formulate
the precise statement let us denote

D1 = z∂z and D2 = z∂2z + (β + 1)∂z, (4.1)

and let Dβ denote the associative algebra generated by D1 and D2, i.e.

Dβ = R〈D1,D2〉. (4.2)

It is easy to see that

[D2,D1] = D2. (4.3)

Next we set

τn = Wrn(ψ
(0)
n , ψ(1)

n , . . . , ψ(k−1)
n ) (4.4)

where the functions ψ
(j)
n are given in (3.8). Here we use the same convention as in

Remark 3.1 and we omit the explicit dependence of the parameters α, β and a. Note
that τn defined above and λn defined in (2.3) are polynomials of n. In fact, one can

show that up to a simple factor, τn belongs to R[λα+β
n−(k−1)/2] = R[λα+β−k+1

n ], where

λsn = n(n+ s+ 1). One simple way to see this is to use the involution introduced
in [5] which characterizes the subring R[λsn] in R[n]. For s ∈ R we define I(s) on
R[n] by

I(s)(n) = −(n+ s+ 1).

Then clearly I(s)(λsn) = λsn hence every polynomial of λsn is invariant under the
action of I(s). Conversely, if p ∈ R[n] is invariant under I(s), then p ∈ R[λsn].

Note also that the functions φi,jn are invariant under I(α+β), and therefore ψ
(j)
n

in (3.8) are also invariant under I(α+β). From this it follows that I(α+β−k+1) will
reverse the order of the rows in the determinant in equation (4.4), leading to

I(α+β−k+1)(τn) = (−1)k(k−1)/2τn.

The last formula shows that if k ≡ 0, 1 mod 4, then τn ∈ R[λn−(k−1)/2]. Otherwise,
τn is divisible by (2n+α+β−k+2) = λn−k/2+1−λn−k/2 and the quotient belongs
to R[λn−(k−1)/2]. Summarizing these observations we see that

τn = ǫ(k)n τ̄(λn−(k−1)/2),

where τ̄ is a polynomial and

ǫ(k)n =

{

1 if k ≡ 0, 1 mod 4

λn−k/2+1 − λn−k/2 if k ≡ 2, 3 mod 4.
(4.5)

For n,m ∈ Z and for a function fs defined on Z it will be convenient to use the
following notation

∫ n

m

fsdµd(s) =











∑n
s=m+1 fs if n > m

0 if n = m

−
∑m

s=n+1 fs if n < m.

Thus
∫ n

m

fsdµd(s) = fn +

∫ n−1

m

fsdµd(s) for every n ∈ Z. (4.6)
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We denote by Aα,β;a the algebra of all polynomials f such that f(λn−k/2) −
f(λn−k/2−1) is divisible by τn−1 in R[n]:

Aα,β;a =

{

f ∈ R[t] :
f(λn−k/2)− f(λn−k/2−1)

τn−1
∈ R[n]

}

. (4.7)

Remark 4.1. It is not hard to see that Aα,β;a contains a polynomial of every
degree greater than deg(τ̄ ). Indeed, notice that for every r ∈ R[t] there exists
r̄ ∈ R[t] such that

r(λn)− r(λn−1)

λn − λn−1
= r̄(λn−1/2).

Conversely, for every polynomial r̄ there exists a polynomial r such that the above
equation holds. Moreover, up to an additive constant, r is uniquely determined by

r(λn) =

∫ n

0

(λs − λs−1)r̄(λs−1/2)dµd(s) =

∫ n−1

−1

(λs+1 − λs)r̄(λs+1/2)dµd(s).

If r̄ 6= 0 then deg(r) = deg(r̄)+ 1. Thus, for every g ∈ R[t] and c ∈ R we can define
f ∈ Aα,β;a by

f(λn−k/2) =

∫ n

0

ǫ(k+2)
s g(λs−(k+1)/2)τs−1dµd(s) + c.

Conversely, to every f ∈ Aα,β;a there correspond unique g ∈ R[t] and c ∈ R, so
that the above equation holds.

The main result in this section is the following theorem.

Theorem 4.2. For every f ∈ Aα,β;a there exists Bf = Bf (D1,D2) ∈ Dβ such that

Bfqn(z) = f(λn−k/2)qn(z). (4.8)

Thus, Dα,β;a = {Bf : f ∈ Aα,β;a} is a commutative subalgebra of Dβ, isomorphic

to Aα,β;a.

4.2. Auxiliary facts. For the proof of the above theorem we shall need several
lemmas. First we formulate a discrete analog of a lemma due to Reach [17].

Lemma 4.3. Let f
(0)
n , f

(1)
n , . . . , f

(k+1)
n be functions of a discrete variable n. Fix

n1, n2, . . . , nk+1 ∈ Z and let

Fn =

k+1
∑

j=1

(−1)k+1+jf (j)
n

∫ n

nj

f (0)
s Wrs(f

(1)
s , . . . , f̂ (j)

s , . . . , f (k+1)
s )dµd(s), (4.9)

with the usual convention that the terms with hats are omitted. Then

Wrn(f
(1)
n , . . . , f (k)

n , Fn) =

∫ n−1

nk+1

f (0)
s Wrs(f

(1)
s , . . . , f (k)

s )dµd(s)

×Wrn(f
(1)
n , . . . , f (k+1)

n ).

(4.10)

The above lemma was used in [8] to give an alternative proof of a theorem in
[7] that rank-one commutative rings of difference operators with unicursal spectral
curves are bispectral. Similar argument was used also in [9] for rank-one commuta-
tive rings of q-difference operators. Since the application in our case is very subtle
and we need different elements of the proof, we briefly sketch it below.
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Proof of Lemma 4.3. Note that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(1)
n f

(2)
n . . . f

(k+1)
n

f
(1)
n−1 f

(2)
n−1 . . . f

(k+1)
n−1

...
...

...

f
(1)
n−k+1 f

(2)
n−k+1 . . . f

(k+1)
n−k+1

f
(1)
n−l f

(2)
n−l . . . f

(k+1)
n−l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, for every l = 0, 1, . . . , k − 1.

Expanding the above determinant along the last row we obtain

k+1
∑

j=1

(−1)k+1+jf
(j)
n−lWrn(f

(1)
n , . . . f̂ (j)

n , . . . , f (k+1)
n ) = 0 for l = 0, . . . , k − 1. (4.11)

Using (4.6) and (4.11) we see that for l = 0, . . . , k − 1 we have

Fn−l =

k+1
∑

j=1

(−1)k+1+jf
(j)
n−l

∫ n

nj

f (0)
s Wrs(f

(1)
s , . . . , f̂ (j)

s , . . . , f (k+1)
s )dµd(s), (4.12)

and

Fn−k =

k+1
∑

j=1

(−1)k+1+jf
(j)
n−k

∫ n

nj

f (0)
s Wrs(f

(1)
s , . . . , f̂ (j)

s , . . . , f (k+1)
s )dµd(s)

− f (0)
n Wrn(f

(1)
n , . . . , f (k+1)

n ).

(4.13)

If we plug (4.12) and (4.13) in Wrn(f
(1)
n , . . . , f

(k)
n , Fn), then most of the terms cancel

by column elimination and we obtain (4.10). �

Remark 4.4. We list below important corollaries from the proof of Lemma 4.3.
(i) Note that the right-hand side of (4.10) does not depend on the integers n1, n2 . . . , nk.
Moreover, if change nk+1 then only the value of

∫ n−1

nk+1

f (0)
s Wrs(f

(1)
s , . . . , f (k)

s )dµd(s)

will change by an additive constant, which is independent of n and f
(k+1)
n . Thus,

instead of (4.9) we can write

Fn =
k+1
∑

j=1

(−1)k+1+jf (j)
n

∫ n

f (0)
s Wrs(f

(1)
s , . . . , f̂ (j)

s , . . . , f (k+1)
s )dµd(s),

leaving the lower bounds of the integrals (sums) blank and we can fix them at
the end appropriately. This would allow us to easily change the variable, without
keeping track of the lower end.

(ii) From (4.11) it follows that for every l = 0, 1 . . . , k − 1 we can write Fn also as

Fn =

k+1
∑

j=1

(−1)k+1+jf (j)
n

∫ n+l

f (0)
s Wrs(f

(1)
s , . . . , f̂ (j)

s , . . . , f (k+1)
s )dµd(s),

and changing the variable in the discrete integral we obtain

Fn =

k+1
∑

j=1

(−1)k+1+jf (j)
n

∫ n

f
(0)
s+lWrs(f

(1)
s+l, . . . , f̂

(j)
s+l, . . . , f

(k+1)
s+l )dµd(s).
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(iii) Suppose now that k is even. Using (ii) with l = k/2− 1 we have

Fn =

k+1
∑

j=1

(−1)k+1+jf (j)
n

∫ n

f
(0)
s+k/2−1Wrs(f

(1)
s+k/2−1, . . . , f̂

(j)
s+k/2−1, . . . , f

(k+1)
s+k/2−1)dµd(s).

(4.14)
Let us consider the sum consisting of the first k integrals:

F (k)
n =

k
∑

j=1

(−1)k+1+jf (j)
n

∫ n

f
(0)
s+k/2−1Wrs(f

(1)
s+k/2−1, . . . , f̂

(j)
s+k/2−1, . . . , f

(k+1)
s+k/2−1)dµd(s).

Expanding each Wronskian determinant along the last column we can write F
(k)
n

as a sum of k terms F
(k,m)
n , each one involving as integrand one of the functions

f
(k+1)
s+m , where m = −k/2,−k/2 + 1, . . . , k/2 − 1. We can use (4.11) once again,

this time for the functions f
(0)
n , f

(1)
n , . . . , f

(k)
n (i.e. omitting f

(k+1)
n ), to change s as

follows:

• If m ≥ 0 we can replace n with n −m in the upper limit of the integral,
or equivalently, if we keep the upper limit of the integral to be n, we can

replace s by s − m in the integrand. Thus F
(k,m)
n will have f

(k+1)
s as

integrand (and the integration goes up to n).

• If m ≤ −1 we can replace s by s−m − 1, thus F
(k,m)
n will have f

(k+1)
s−1 as

integrand (and the integration goes up to n).

This means that we can rewrite F
(k)
n as sums of integrals, and the integrands can be

combined in pairs (corresponding tom and (−m−1) form = 0, 1, . . . , k/2) involving

f
(k+1)
s and f

(k+1)
s−1 . Explicitly, we can write F

(k)
n , as a sum of terms which, up to a

sign, have the form

f (1)
n

∫ n
[

f
(0)
s−m+k/2−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(2)
s+k/2−m−1 . . . f

(k)
s+k/2−m−1

f
(2)
s+k/2−m−2 . . . f

(k)
s+k/2−m−2

...
...

f̂
(2)
s . . . f̂

(k)
s

...
...

f
(2)
s−k/2−m . . . f

(k)
s−k/2−m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f (k+1)
s

− f
(0)
s+m+k/2−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(2)
s+k/2+m−1 . . . f

(k)
s+k/2+m−1

f
(2)
s+k/2+m−2 . . . f

(k)
s+k/2+m−2

...
...

f̂
(2)
s−1 . . . f̂

(k)
s−1

...
...

f
(2)
s−k/2+m . . . f

(k)
s−k/2+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f
(k+1)
s−1

]

dµd(s),

(4.15)
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for m = 0, 1, . . . , k/2. For simplicity, we wrote explicitly only the terms with f
(1)
n

in front of the integral, but we have also similar expressions obtained by replacing

the roles of f
(1)
n and f

(j)
n for every j = 2, . . . , k.

(iv) Finally if k is odd, we shall use (ii) with l = (k − 1)/2 and l = (k − 3)/2 and
write Fn as the average of these two sums. Then we can apply the same procedure

that we used in (iii) to write F
(k)
n as sums of integrals, whose integrands can be

combined in pairs involving f
(k+1)
s and f

(k+1)
s−1 .

The second important ingredient needed for the proof of Theorem 4.2 is the
following lemma.

Lemma 4.5. For r(n) ∈ R[n] there exists B̄ ∈ Dβ such that
∫ n

−1

[r(s)pα,βs (z)− r(−s− α− β)pα,βs−1(z)]dµd(s) = B̄pα,βn (z). (4.16)

Proof. Let us rewrite r(n) as a polynomial of 2n+ α+ β, i.e. we set

r(n) = r̄(2n+ α+ β).

Then r(−n−α− β) = r̄(−(2n+α+ β)). Thus, it is enough to show that for every
j ∈ N0 there is B̄j ∈ Dβ such that

(2n+ α+ β)j
(

pα,βn (z) + (−1)j+1pα,βn−1(z)
)

= B̄j

(

pα,βn (z)− pα,βn−1(z)
)

. (4.17)

Indeed, if (4.17) holds then
∫ n

−1

(2s+ α+ β)j
(

pα,βs (z) + (−1)j+1pα,βs−1(z)
)

dµd(s)

= B̄j

∫ n

−1

(pα,βs (z)− pα,βs−1(z))dµd(s)

= B̄jp
α,β
n (z),

giving the proof when r̄(t) = tj , hence for arbitrary polynomials by linearity. When
j is odd, (4.17) follows immediately from (2.9) and the definition of Dβ , see equa-
tions (4.1)-(4.2). The case j = 0 is obvious and therefore it remains to prove the
statement when j > 0 is even. Note that (2n+α+β) = λn−λn−1. Thus (4.17) for
j even will follow if we can show that there exist operators B̄′, B̄′′ ∈ Dβ such that

(λn + λn−1)
(

pα,βn (z)− pα,βn−1(z)
)

= B̄′
(

pα,βn (z)− pα,βn−1(z)
)

(4.18a)

and

λnλn−1

(

pα,βn (z)− pα,βn−1(z)
)

= B̄′′
(

pα,βn (z)− pα,βn−1(z)
)

. (4.18b)

Using (4.1) we see that the Jacobi operator Bα,β(z, ∂z) defined in (2.2) belongs to
Dβ since

Bα,β(z, ∂z) = D2
1 + (α+ β + 1)D1 −D2. (4.19)

From equations (2.4) and (2.9) we find

λn−1p
α,β
n (z)− λnp

α,β
n−1(z) =(λn−1 − λn)

(

pα,βn (z) + pα,βn−1(z)
)

+ λnp
α,β
n (z)− λn−1p

α,β
n−1(z)

=B̄′′′
(

pα,βn (z)− pα,βn−1(z)
)

,
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where B̄′′′ = Bα,β(z, ∂z)− 2D1 − (α+ β) ∈ Dβ . Using the above equation together
with (2.4) we obtain

(λn + λn−1)
(

pα,βn (z)− pα,βn−1(z)
)

=λnp
α,β
n (z)− λn−1p

α,β
n−1(z)

+ λn−1p
α,β
n (z)− λnp

α,β
n−1(z)

=B̄′
(

pα,βn (z)− pα,βn−1(z)
)

,

where B̄′ = Bα,β(z, ∂z) + B̄′′′ ∈ Dβ proving (4.18a). Similarly,

λnλn−1

(

pα,βn (z)− pα,βn−1(z)
)

=Bα,β(z, ∂z)
(

λn−1p
α,β
n (z)− λnp

α,β
n−1(z)

)

=B̄′′
(

pα,βn (z)− pα,βn−1(z)
)

,

where B̄′′ = Bα,β(z, ∂z)B̄
′′′ ∈ Dβ, establishing (4.18b) and completing the proof.

�

4.3. Proof of the main one-dimensional theorem. We are now ready to give
the proof of Theorem 4.2. Let f ∈ Aα,β;a. Using Remark 4.1 we know that, up to
an additive constant, we have

f(λn−k/2) =

∫ n−1

−1

ǫ
(k+2)
s+1 g(λs−(k−1)/2)τsdµd(s).

We apply Lemma 4.3 and Remark 4.4 (i) with

f (0)
n = ǫ

(k+2)
n+1 g(λn−(k−1)/2)

f (j)
n = ψ(j−1)

n for j = 1, 2, . . . , k

f (k+1)
n = pα,βn (z).

Using equations (3.9) and (4.4) we see that the right-hand side of (4.10) is equal
to (f(λn−k/2) + c)qn(z), where c is a constant (independent of n and z). The main
point now is to show that if we choose appropriately the integers nj in Lemma 4.3,
then there exists a differential operator Bf ∈ Dβ such that

Fn = Bf (qn(z)). (4.20)

Suppose first that k is even and let us write Fn as explained in Remark 4.4 (iii).
From Remark 4.1 it follows that the integral in the last term in the sum (4.14)
representing Fn is an element of R[λn]. Therefore, using (2.4) and (4.19) we see
that the last term in this sum is of the form Bpα,βn (z) for some operator B ∈ Dβ.

Thus we can consider the sum F
(k)
n of the first k terms. It is enough to show that

each term of the form (4.15) can be represented as Bpα,βn (z) for some operator B ∈

Dβ. Recall that f
(j)
n ∈ R[λn] and therefore it suffices to show that the integral is of

the form Bpα,βn (z) for B ∈ Dβ (since then we can commute B and f
(1)
n and use (2.4)).

Now we apply Lemma 4.5. To simplify the argument, we shall use the involution
I(α+β−1) which acts on polynomials in R[n] by I(α+β−1)(n) = −(n+ α+ β). Thus
for r(n) ∈ R[n] we have I(α+β−1)(r(n)) = r(−(n + α + β)). Note that for every
l ∈ R we have

I(α+β−1)(λn+l) = λn−l−1.
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Therefore, if we denote by det ′n and det ′′
n the determinants in (4.15), then I(α+β−1)

will reverse the order of the rows, hence

I(α+β−1)(det ′
n) = (−1)(k−1)(k−2)/2 det ′′n.

Since
f
(0)
n±m+k/2−1 = ǫ

(k+2)
n±m+k/2g(λn±m−1/2),

and
I(α+β−1)(g(λn+m−1/2)) = g(λn−m−1/2),

it remains to check that

I(α+β−1)(ǫ
(k+2)
n+m+k/2) = (−1)(k−1)(k−2)/2ǫ

(k+2)
n−m+k/2,

which follows at once from (4.5) by considering the two possible cases k ≡ 0 mod 4
and k ≡ 2 mod 4.

The case when k is odd can be handled in a similar manner, using Remark 4.4
(iv). �

Remark 4.6. If β ∈ N then instead of the Darboux transformations (3.1) at z = 1
we can consider a sequence of Darboux transformations at z = 0. Theorem 4.2 can
directly be applied in this case by replacing z with 1−z and exchanging the roles of
α and β. In particular, the corresponding commutative algebra Dα,β;a constructed

in Theorem 4.2 will be a subalgebra of D̂α = R〈D̂1, D̂2〉, where

D̂1 = (z − 1)∂z and D̂2 = (1− z)∂2z − (α+ 1)∂z.

Finally, if both α and β are positive integers then we can iterate the Darboux
transformation at z = 1 and z = 0 at most α and β times, respectively. In this
case, we need also the functions

ϕ1,j
n =

(−1)nβ!(n+ 1)α(n+ 1)j(−n− α− β)j
j!α!(1 − β)j(n+ 1)β

, (4.21a)

ϕ2,j
n =

(−1)n(n+ 1)α+β(−n)j(n+ α+ β + 1)j
j!(α+ β)!(1 + β)j

, (4.21b)

which are linearly independent and satisfy

Lα,β(n,En)ϕ
i,0
n = 0, for i = 1, 2

Lα,β(n,En)ϕ
i,j
n = ϕi,j−1

n , for 1 < j < β.

Note that if we define

ξn = (−1)n
(n+ 1)β
(n+ 1)α

,

then ξnϕ
i,j
n become polynomials of λn. If we apply k Darboux steps at 1 and l

Darboux steps at 0, then instead of (4.4) we define τn by

τn = (ξn(n+ α− k − l + 2)k+l−1)
l
Wrn(ψ

(0)
n , ψ(1)

n , . . . , ψ(k−1)
n , ψ̂(0)

n , ψ̂(1)
n , . . . , ψ̂(l−1)

n ),

where ψ̂
(j)
n are defined similarly to ψ

(j)
n , using the functions ϕi,j

n . Then Theorem 4.2
holds with Dβ replaced by D = R〈z∂z, ∂z〉, since we need to use now operators from

both algebras Dβ and D̂α. The proof follows along the same lines, using Lemma
4.5 together with the analogous statement concerning the transformations at 0, i.e.

for r(n) ∈ R[n] there exists B̄ ∈ D̂α such that

1

ξn

∫ n

−1

[r(s)ξsp
α,β
s (z)− r(−s− α− β)ξs−1p

α,β
s−1(z)]dµd(s) = B̄pα,βn (z).
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Note that the construction of the operator Bf (D1,D2) in the proof of Theorem
4.2 depends only on equations (2.4), (2.9) and (4.19). For s ∈ N0 let us denote

D2,s = z∂2z + (β + 1)∂z −
s(s+ 2β)

4z
= D2 −

s(s+ 2β)

4z
, (4.22)

and let us define Bα,β,s(z, ∂z) similarly to Bα,β(z, ∂z) using (4.19) with D2 replaced
by D2,s:

Bα,β,s(z, ∂z) = D2
1 + (α+ β + 1)D1 −D2,s. (4.23)

Then it is easy to check that

z−s/2Bα,β,s(z, ∂z)z
s/2 = Bα,β+s(z, ∂z) + λα+β

n+s/2 − λα+β+s
n .

From this relation and (2.4) it follows immediately that

Bα,β,s(z, ∂z)p
α,β+s
n (z)zs/2 = λα+β

n+s/2p
α,β+s
n (z)zs/2. (4.24)

It is also easy to see that

(2z∂z + α+ β)(pα,β+s
n (z)zs/2 + pα,β+s

n−1 (z)zs/2)

= (2(n+ s/2) + α+ β)(pα,β+s
n (z)zs/2 − pα,β+s

n−1 (z)zs/2).
(4.25)

Note also that

[D2,s,D1] = D2,s,

which shows that for every f ∈ Aα,β;a we have a well-defined operator Bf (D1,D2,s).
Comparing equations (2.4), (2.9) and (4.19) with (4.24), (4.25) and (4.23) we obtain
the following corollary of Theorem 4.2.

Proposition 4.7. If we define for s ∈ N0

q̂α,β;an,s (z) = Wrn(ψ
(0);α,β;a
n+s/2 , ψ

(1);α,β;a
n+s/2 , . . . , ψ

(k−1);α,β;a
n+s/2 , pα,β+s

n (z)zs/2), (4.26)

then for every f ∈ Aα,β;a we have

Lf(D1,D2,s)q̂
α,β;a
n,s (z) = f(λα+β

n+(s−k)/2)q̂
α,β;a
n,s (z), (4.27)

where Lf are the operators constructed in Theorem 4.2.

We have displayed all parameters in (4.26) to underline the fact that in the

functions ψ
(j)
n the parameters stay the same, only the variable n is shifted by s/2,

while in pα,βn (z) we change only the parameter β.

5. Krall-Jacobi algebras in higher dimension

In this section we show that the commutative algebra Dα,β;a of ordinary differen-
tial operators constructed in Theorem 4.2 is isomorphic to a commutative algebra
of partial differential operators invariant under rotations which can be diagonalized
in the space of polynomials in d variables.
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5.1. Notations. Let x = (x1, x2, . . . , xd) ∈ R
d, and let P = R[x] = R[x1, x2, . . . , xd]

be the corresponding ring of polynomials in the variables x1, x2, . . . , xd. We denote
by Bd and Sd−1 the unit ball and the unit sphere in R

d:

Bd = {x ∈ R
d : ||x|| ≤ 1}, Sd−1 = {x ∈ R

d : ||x|| = 1}.

In polar coordinates we shall write x = ρx′ where ρ = ||x|| and x′ ∈ Sd−1.

We denote by ∆x =
∑d

j=1 ∂
2
xj

the Laplace operator and by Hl the space of
homogeneous harmonic polynomials of degree l, i.e. the homogeneous polynomials
Y (x) of degree l, satisfying the equation ∆xY (x) = 0. It is well known that the
dimension σl = dimHl is given by

σl =

(

l + d− 1

d− 1

)

−

(

l + d− 3

d− 1

)

.

The restrictions of Y ∈ Hl on S
d−1 are the spherical harmonics. Let ω denote the

Lebesgue measure on Sd−1 and let ωd := ω(Sd−1) = 2πd/2/Γ(d/2). Throughout
the paper, we use {Y l

j (x) : 1 ≤ j ≤ σl} to denote an orthonormal basis for Hl on

Sd−1. Thus, we have

1

ωd

∫

Sd−1

Y l1
j1
(x′)Y l2

j2
(x′)dω(x′) = δl1,l2δj1,j2 . (5.1)

Recall that in polar coordinates we have

∆x = ∂2ρ +
d− 1

ρ
∂ρ +

1

ρ2
∆Sd−1 , (5.2)

where ∆Sd−1 is the Laplace-Beltrami operator on the sphere Sd−1. Since

Y l
j (x) = ρlY l

j (x
′), (5.3)

the polynomials Y l
j (x) satisfy the equation

∆Sd−1Y l
j (x) = −l(l+ d− 2)Y l

j (x). (5.4)

5.2. Construction of the algebra of partial differential operators. To moti-
vate the construction, notice that if we set β = d

2 − 1 and if we replace z ∈ [0, 1] by

ρ ∈ [0, 1], where z = ρ2 then for the Jacobi measure on [0, 1] considered in Section
2 we obtain

(1− z)αzβdz = 2(1− ρ2)αρd−1dρ. (5.5)

Recall that the Jacobi polynomials on Bd are defined as orthogonal polynomials on
Bd with respect to measure dµα(x) = (1−||x||)αdx, see for instance [3, page 38]. If
we use polar coordinates x = ρx′ then, up to a scaling factor, dµα(x) is a product
of the measure in (5.5) on [0, 1] and the surface measure dω(x′) on Sd−1. Note also
that the operators D1 and D2 defined in beginning of Section 4 change as follows:

D1 = z∂z =
1

2
ρ∂ρ

D2 = z∂2z + (β + 1)∂z =
1

4

[

∂2ρ +
d− 1

ρ
∂ρ

]

.

Moreover, in polar coordinates we have

ρ∂ρ =

d
∑

j=1

xj∂xj
= x · ∇x,
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where ∇x is the gradient, while the operator ∂2ρ + d−1
ρ ∂ρ is the radial part of the

Laplace operator ∆x. It is easy to see that the operators 1
2x · ∇x and 1

4∆x satisfy
the commutativity relation

[

1

4
∆x,

1

2
x · ∇x

]

=
1

4
∆x, (5.6)

which combined with (4.3) shows that there is a natural isomorphism between the
algebra Dβ given in (4.2) and the associative algebra generated by 1

2x ·∇x and 1
4∆x

defined by

D1 = z∂z →
1

2
x · ∇x (5.7a)

D2 = z∂2z + (β + 1)∂z →
1

4
∆x. (5.7b)

Thus if we set

Ad(α; a) = Aα,d/2−1;a

we see that the commutative algebra Dα,d/2−1;a defined in Theorem 4.2 is isomor-
phic to a commutative algebra of partial differential operators:

Kd(α; a) =

{

Bf

(

1

2
x · ∇x ,

1

4
∆x

)

: f ∈ Ad(α; a)

}

. (5.8)

The main point now is that we can write a basis for P which diagonalizes the
operators in Kd(α; a), using the functions q̂ defined in Proposition 4.7 and the
spherical harmonics.

Theorem 5.1. For n ∈ N0, i ∈ N0, such that i ≤ n
2 and j ∈ {1, 2, . . . , σn−2i}

define

Qn,i,j(x) = q̂
α,d/2−1;a
i,n−2i (||x||2)Y n−2i

j (x). (5.9)

Then the polynomials {Qn,i,j(x)} form a basis for P and for every f ∈ Ad(α; a) we
have

Bf

(

1

2
x · ∇x ,

1

4
∆x

)

Qn,i,j(x) = f(λ
α+d/2−1
(n−k)/2 )Qn,i,j(x). (5.10)

Proof. The linear independence of Qn,i,j follows easily from (5.1) and the fact that

the polynomials {qα,β;ai,s }i∈N0
are linearly independent. Since

⌊n/2⌋
∑

i=0

σn−2i =

(

n+ d− 1

d− 1

)

= the number of monomials of total degree n,

we see that the polynomials Qn,i,j form a basis for P . It remains to show that they
satisfy (5.10). Using polar coordinates we find

Qn,i,j(x) = q̂
α,d/2−1;a
i,n−2i (ρ2)ρn−2i Y n−2i

j (x′).

From equations (5.2) and (5.4) we see that

∆xQn,i,j(x)

=

[

∂2ρ +
d− 1

ρ
∂ρ −

1

ρ2
(n− 2i)(n− 2i+ d− 2)

]

q̂
α,d/2−1;a
i,n−2i (ρ2)ρn−2i Y n−2i

j (x′).

The proof of (5.10) now follows from Proposition 4.7 upon changing z = ρ2 and
using equations (5.7). �
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6. An explicit example

In this section we illustrate all steps in the paper with the simplest nontrivial
case α = k = 1.

6.1. Krall polynomials. Let us first consider the one-dimensional case which
leads to Krall polynomials [14]. When α = k = 1 the polynomials qn(z) con-
structed in Section 3 are given by the following formula

q1,β;a0

n (z) =

∣

∣

∣

∣

∣

ψ
(0);1,β;a0

n p1,βn (z)

ψ
(0);1,β;a0

n−1 p1,βn−1(z)

∣

∣

∣

∣

∣

, (6.1)

where p1,βn (z) are the Jacobi polynomials in (2.1) and

ψ(0);1,β;a0

n = a0 +
(n+ 1)(n+ β + 2)

β + 1
. (6.2)

For n 6= m they satisfy the orthogonality relation
∫ 1

0

q1,β;a0

n (z)q1,β;a0

m (z)zβdz +
1

a0(β + 1)
q1,β;a0

n (1)q1,β;a0

m (1) = 0. (6.3)

Since k = 1 formula (4.4) shows that τn = ψ
(0);1,β;a0

n = a0 +
(n+1)(n+β+2)

β+1 . From

this and Remark 4.1 it follows that the commutative algebra A1,β;a0 defined in (4.7)
is generated by two polynomials of degrees 2 and 3. A short computation shows
that

A1,β;a0 = R[f2, f3], (6.4)

where

f2(t) = t2 +
1

2
(3 + 4a0 + 4β + 4a0β)t (6.5a)

f3(t) = t3 +
1

4
(1 + 6a0 + 6β + 6a0β)t

2 −
1

16
(21 + 12a0 + 28β + 12a0β + 4β2)t.

(6.5b)

The algebra D1,β;a0 defined in Theorem 4.2 is generated by the operators B2 := Bf2

and B3 := Bf3 of orders 4 and 6 respectively. The operator B2 goes back to the
work of Krall [14]. Using the operators D1 and D2 given in (4.1) we can write B2

as follows:

B2(D1,D2) = D4
1 − 2D2D

2
1 +D2

2 + 2(1 + β)D3
1 − 2βD2D1

+ (1 + 2a0 + 3β + 2a0β + β2)D2
1 − 2(1 + a0 + a0β)D2

+ (1 + β)(β + 2a0(1 + β))D1 −
1

16
(3 + 2β)(3 + 6β + 8a0(1 + β)).

(6.6)

One can write a similar formula for B3. If we denote

as0 =
4a0 + 4a0β + 2βs+ s2

4(1 + β + s)
,

then from formula (6.2) it follows easily that

ψ
(0);1,β;a0

n+s/2 =
1 + β + s

1 + β
ψ
(0);1,β+s;as

0
n ,
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i.e. the functions ψ
(0);1,β;a0

n+s/2 and ψ
(0);1,β+s;as

0
n differ by a factor independent of n.

Therefore for the functions q̂ defined in (4.26) we find

q̂1,β;a0

n,s (z) =
1 + β + s

1 + β
q
1,β+s;as

0
n (z)zs/2.

This combined with (6.3) shows that for n 6= m the functions q̂1,β;a0
n,s (z) satisfy the

orthogonality relation
(

1 +
s2 + 2βs

4a0(β + 1)

)
∫ 1

0

q̂1,β;a0

n,s (z)q̂1,β;a0

m,s (z)zβdz +
1

a0(β + 1)
q̂1,β;a0

n,s (1)q̂1,β;a0

m,s (1) = 0.

(6.7)

6.2. Krall polynomials in higher dimension. Let us consider now x ∈ R
d and

set β = d
2 − 1. Then the algebra Kd(α, a0) defined in (5.8) is generated by the

operators B2

(

1
2x · ∇x ,

1
4∆x

)

and B3

(

1
2x · ∇x ,

1
4∆x

)

which act diagonally on the
basis of polynomials Qn,i,j described in Theorem 5.1. Let us denote by u0 the
constant

u0 =
1

a0(β + 1)
=

2

a0d
.

Then using equations (5.1), (5.4), (5.5) and (6.7) we see that the polynomials Qn,i,j

are mutually orthogonal with respect to the inner product on P defined by

〈f, g〉 =

∫

Bd

f(x)g(x)dx +
u0
2

∫

Sd−1

f(x′)g(x′)dω(x′)

−
u0
4

∫

Bd

(∆Sd−1f(x)) g(x)dx.

(6.8)

The interesting new phenomena in the multivariate case is the fact that even in the
simplest case (α = k = 1), the polynomials are orthogonal with respect to an inner
product involving the spherical Laplacian. In this respect, the multivariate analogs
of Krall polynomials discussed here are related to the so called Sobolev orthogonal
polynomials, see for instance [18] and the references therein. However the appear-
ance of ∆Sd−1 in the inner product defined in (6.8), which comes naturally from
our approach, seems to be new.

It would be interesting to find explicit orthogonality relations for the general
multivariate polynomials Qn,i,j defined in Theorem 5.1. The key step would be to
discover an orthogonality relation similar to (6.7) for the functions q̂α,β;an,s given in
Proposition 4.7.
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[1] G. Darboux, Leçons sur la théorie général des surfaces, Gauthier-Villars (1912).
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