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ON THE VOLUME FORMULAS FOR A SPHERICAL TETRAHEDRON

JUN MURAKAMI

Abstract. The present paper gives two concrete formulas for the volume of an arbitrary
spherical tetrahedron, which is in a 3-dimensional spherical space of constant curvature
+1. One formula is given in terms of edge lengths, and another one is given in terms of
dihedral angles.

Introduction

The calculation of the volume of an arbitrary tetrahedron in a 3-space of non-zero

constant curvature is rather hard, and the first result is given by [2] in 1999 for hyperbolic

tetrahedra. The papers [6] and [5] gave another formulas for hyperbolic tetrahedra, which

are implicitly based on the quantum 6j-symbol. Moreover, it was stated in [6] that an

adequate analytic continuation of the obtained formula also applicable for a spherical

tetrahedron. But, the formula is given by multi-valued functions, and it is not described

which stratum we should select for actual computation. On the other hand, volumes of

spherical tetrahedra of special shapes are given by many people from old times, and the

most recent work is [3], which gives a formula for a spherical tetrahedron having a small

symmetry.

In the present paper, volume formulas for a spherical tetrahedron T of general shape

are given in Theorems 1 and 2. The formula in Theorem 1 is given in terms of dihedral

angles, and the formula in Theorem 2 is given in terms of edge lengths. These formulas are

obtained by improving those in [6], [5], and, by using the Schläfli differential equality, it is

shown that the new formulas actually give the volume of T modulo 2 π2. Please note that

2 π2 is the volume of S3 with radius 1, which is the universal cover of any 3-dimensional

spherical space of constant curvature +1. Since T can be included in a 3-dimensional

hemisphere, the volume of T is less than π2 and so we can compute the volume of T

actually from the formulas in Theorems 1 and 2.

1. Volume formulas

1.1. Volume formula in terms of dihedral angles. Let T be a spherical tetrahedron

and θ1, θ2, · · · , θ6 be its dihedral angles at edges e1, e2, · · · , e6 given in Figure 1. We

assume that 0 < θj < π for j = 1, 2, · · · , 6. Let a1 = eiθ1 , a2 = eiθ2 , · · · , a6 = eiθ6 , and
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Figure 1. Edges of T
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1

2

(
Li2(z) + Li2(a

−1
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5 z) +

3∑

j=1

log aj log aj+3

)
,

where Li2(z) is the dilogarithm function defined by the analytic continuation of the fol-

lowing integral:

(1.1) Li2(x) = −
∫ x

0

log(1− t)

t
dt for a real number x < 1.

The analytic continuation of the right-hand side integral defines a multi-valued complex

function li2(z), and let Li2(z) be the principal branch of li2(z) which is the analytic

continuation of (1.1) on the region C \ {x ∈ R | x ≥ 1}. We also fix the principal branch

of the log function as usual by the branch cut along the negative real axis.

We define an auxiliary parameter z0 as follows:

(1.2) z0 =
−q1 +

√
q21 − 4 q0 q2
2 q2

,

where

q0 = a1 a4 + a2 a5 + a3 a6 + a1 a2 a6 + a1 a3 a5 + a2 a3 a4 + a4 a5 a6 + a1 a2 a3 a4 a5 a6,

q1 = −(a1 − a−1
1 )(a4 − a−1

4 )− (a2 − a−1
2 )(a5 − a−1

5 )− (a3 − a−1
3 )(a6 − a−1

6 ),

q2 = a−1
1 a−1

4 + a−1
2 a−1

5 + a−1
3 a−1

6 + a−1
1 a−1

2 a−1
6 + a−1

1 a−1
3 a−1

5 +

a−1
2 a−1

3 a−1
4 + a−1

4 a−1
5 a−1

6 + a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 .

Then z0 is a solutions of

(1.3) exp

(
2 z

∂L

∂z

)
= 1,

where

exp

(
2 z

∂L

∂z

)
=

(a1 a2 a3 + z) (a1 a5 a6 + z) (a2 a4 a6 + z) (a3 a4 a5 + z)

(1− z) (a1 a2 a4 a5 − z) (a1 a3 a4 a6 − z) (a2 a3 a5 a6 − z)
.

Now we state the main result of this paper.
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Theorem 1. Let T be a spherical tetrahedron with edge lengths θ1, θ2, · · · , θ6 for edges

e1, e2, · · · e6 given in Figure 1. Let aj = eiθj for j = 1, 2, · · · , 6 and let Vol(T ) be the

volume of T . Then

Vol(T ) = −Re(L(a1, a2, · · · , a6, z0))− π

(
arg(−q2)−

1

2

6∑

j=1

θj

)
− 3

2
π2 mod 2 π2,

where Re(z) is the real part of z and q2 is given in (1.2).

1.2. Volume formula in terms of edge lengths. Let T be a spherical tetrahedron with

edge lengths l1, l2, · · · , l6 at the edges e1, e2, · · · e6 given in Figure 1. Let bj = ei lj for

j = 1, 2, · · · , 6 and L̃(b1, b2, b3, b4, b5, b6, z) = L(−b−1
4 ,−b−1

5 ,−b−1
6 ,−b−1

1 ,−b−1
2 ,−b−1

3 , z).

Then the following formula holds.

Theorem 2. For a spherical tetrahedron T as above,

Vol(T ) = Re
(
L̃(b1, b2, · · · , b6, z̃0)

)
+ π arg(−q̃2)

−
6∑

j=1

lj
∂ Re

(
L̃(b1, b2, · · · , b6, z̃0)

)

∂lj

∣∣∣∣∣
z=z̃0

− 1

2
π2 mod 2 π2,

where z̃0 and q̃2 are obtained from z0 and q2 in (1.2) by substituting −b−1
j±3 to aj for j = 1,

2, · · · , 6.

2. Proof of the formulas

2.1. Gram matrices. Let T be a spherical tetrahedron with dihedral angles θ1, · · · , θ6
as before. Let G be the Gram matrix of T defined by

G =




1 − cos θ1 − cos θ2 − cos θ6
− cos θ1 1 − cos θ3 − cos θ5
− cos θ2 − cos θ3 1 − cos θ4
− cos θ6 − cos θ5 − cos θ4 1


 .

An actual computation shows that the discriminant in (1.2) is give by

(2.1) q21 − 4 q0 q2 = 16 detG,

which is positive since T is spherical. It is known (see, e.g. [1]) that

cos lj =
cpq√
cpp cqq

and so we have

(2.2) exp(2 i lj) =
2 c2pq − cpp cqq + 2 i cpq

√
detG sin θj

cpp cqq

by using the formula (5.1) in [7] that is c2pq−cpp cqq = − detG sin2 θj. Here p and q denote

the row and column of G = (gab) such that gpq = − cos θj , and cab is the cofactor of G, i.e.

cab = (−1)a+b detGab where Gab is the submatrix obtained from G by deleting its a-th

row and b-th column.
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2.2. Some functions and their properties. Before proving the formulas, we introduce

some functions and investigate their properties. Let T be a tetrahedron, θ1, θ2, · · · , θ6 be
its dihedral angles at edges e1, e2, · · · , e6 as before, and

Ds = {(θ1, θ2, · · · , θ6) ∈ (0, π)6 ⊂ R
6 |

θ1, θ2, · · · , θ6 correspond to the dihedral angles of a spherical tetrahedron}.

Let aj = eiθj for j = 1, 2, · · · , 6,

∆0(x, y, z) = −1

4

(
Li2(−x y−1 z−1) + Li2(−x−1 y z−1) + Li2(−x−1 y−1 z) + Li2(−x y z)

)
,

∆(a1, a2, · · · , a6) =

∆0(a1, a2, a3) + ∆0(a1, a5, a6) + ∆0(a2, a4, a6) + ∆0(a3, a4, a5)−
1

2

6∑

j=1

(
log aj)

2,

U(a1, a2, · · · , a6, z) = L(a1, a2, · · · , a6, z) + ∆(a1, a2, · · · , a6),
and

V (a1, a2, a3, a4, a5, a6) =

− U(a1, a2, a3, a4, a5, a6, z0) + π i

(
log z0 −

6∑

j=1

log aj

)
− 13

6
π2.

Lemma 2.1. The function ∆(a1, a2, · · · , a6) is analytic on Ds and the imaginary part of

4aj
∂∆
∂aj

is given by

Im

(
4 aj

∂∆

∂aj

)
= −2 π.

Proof. We show for the case j = 1. For the function ∆,

a1
∂∆

∂a1
= a1

∂∆0(a1, a2, a3)

∂a1
+ a1

∂∆0(a1, a5, a6)

∂a1
− log a1

and

a1
∂∆0(a1, ap, aq)

∂a1
=

1

4

(
log(1 +

a1
ap aq

)− log(1 +
ap
a1 aq

)− log(1 +
aq
a1 ap

) + log(1 + a1 ap aq)

)

for {p, q} = {2, 3}, {5, 6}. The imaginary part Im log(1 + eil) is given by

Im log(1 + eiθ) =





θ

2
if −π < θ < π,

θ

2
− π if π < θ < 3 π.
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Since θ1, θp, θq are dihedral angles at the three edges having a vertex in common, they

satisfy 0 < θ1 + θp − θq, θ1− θp + θq, −θ1 + θp + θq < π and π < θ1+ θp + θq < 3 π. Hence

∆0(a1, ap, aq) is analytic on Ds and we have

Im

(
a1
∂∆0(a1, ap, aq)

∂a1

)
=
θ1
2
− π

4
, Im

(
4 a1

∂∆

∂a1

)
= −2 π.

Moreover, ∆ is analytic on Ds because none of the imaginary parts of the log terms of ∆

attains π nor −π on Ds. �

Lemma 2.2. The function L(a1, a2, · · · , a6, z0(a1, a2, · · · , a6)) is analytic on Ds, and so

U(a1, a2, · · · , a6, z0(a1, a2, · · · , a6)) is analytic on Ds.

Proof. We know that |z0| < 1 because, for q0, q1, q2 in (1.2), q1 and q0q2 are positive

real numbers, and q21 − 4q0q2 is also a positive real number by (2.1). This means that,

for w ∈ C with |w| = 1 and w 6= 1, |w z0| < 1 and w z0 does not meet the branch cut

{x ∈ R | x ≥ 1} of Li2. Therefore, all the dilog terms of L are analytic on Ds. �

Lemma 2.3. The differential ∂U
∂z

satisfies z0
∂U
∂z

∣∣
z=z0

= π i.

Proof. Since ∂U
∂z

= ∂L
∂z

and z0 is a solution of the equation (1.3), z0
∂U
∂z

∣∣
z=z0

= k π i for

some integer constant k because U is analytic on Ds by the above lemma. Let Tπ
2
be the

regular spherical tetrahedron with edge lengths π/2. Then aj = i, z0 = (i+ 1)/2 and

z0
∂U

∂z

∣∣∣∣
z=z0

=
1

2

(
−4 log

1− i

2
+ 4 log

1 + i

2

)
= π i.

Hence z0
∂U
∂z

∣∣
z=z0

= πi for all the spherical tetrahedron. �

Now, we show the following proposition for V corresponding to the Schläfli differential

equality.

Proposition 2.4. The function V satisfies ∂V
∂θj

= lj/2 for j = 1, 2, · · · , 6.

Proof. Let ϕ = exp
(
4 a1

∂∆
∂a1

)
and ψ = exp

(
2 a1

∂L
∂a1

∣∣∣
z=z0

)
, then

ϕ =
(a1 + a2 a3)(a1 a2 a3 + 1)(a1 + a5 a6)(a1 a5 a6 + 1)

(a1 a2 + a3)(a1 a3 + a2)(a1 a5 + a6)(a1 a6 + a5)
,

ψ =
(a1 a2 a4 a5 − z0)(a1 a3 a4 a6 − z0)

a4 (a1 a2 a3 + z0)(a1 a5 a6 + z0)
.

An actual computation and (2.2) shows that

exp

(
4 a1

∂U

∂a1

)∣∣∣∣
z=z0

= ϕψ2 =
2 c212 − c11 c22 + 2 i c12

√
detG sin θ1

c11 c22
= exp(2 l1 i).

Hence we get a1
∂U
∂a1

∣∣∣
z=z0

= i (l1+k π)/2 for some integer constant k because U is analytic

on Ds by Lemma 2.2. For the tetrahedron Tπ
2
given in the proof of Lemma 2.3, l1 = π/2
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and a1
∂U
∂a1

∣∣∣
z=z0

= −3 π i/4, which means that k = −2 and a1
∂U
∂a1

∣∣∣
z=z0

= i (l1 − 2 π)/2.

According to ∂U
∂θ1

= ia1
∂U
∂a1

, we have

(2.3)
∂U

∂θ1

∣∣∣∣
z=z0

=
1

2
(2 π − l1).

Therefore

∂

∂θ1

(
−U
(
a1, · · · , a6, z0(a1, · · · , a6)

)
+ π i

(
log z0 −

6∑

j=1

log aj

))
=

l1
2
− ∂z0
∂θ1

∂U

∂z

∣∣∣∣
z=z0

+ π i
∂z0
∂θ1

1

z0
.

Since ∂U
∂z

∣∣
z=z0

= i π/z0 by Lemma 2.3, we get ∂V
∂θ1

= l1/2. �

2.3. Proof of the formula in terms of dihedral angles. We first give a formula by

complex analytic functions.

Proposition 2.5. Let T be a spherical tetrahedron with dihedral angles θ1, θ2, · · · , θ6 for

edges e1, e2, · · · e6 as in Figure 1. Let aj = eiθj for j = 1, 2, · · · , 6 as before and let

Vol(T ) be the volume of T . Then

Vol(T ) = V (a1, a2, · · · , a6) mod 2 π2.

Proof. For the tetrahedron Tπ
2
in the proof of Lemma 2.3, we have aj = i, z0 = 1+i

2
and

V (i, i, i, i, i, i, i) = π2/8 = Vol(Tπ
2
). Because V is analytic on some neighborhood N of

Tπ
2
in Ds, two functions V and Vol are identical on N by Proposition 2.4 and Schäfli’s

formlua. Moreover, Vol(T ) is analytic on Ds and so it is given by an adequate analytic

continuation of V . We already showed in previous lemmas that all the terms in V except

πi log z0 are analytic on Ds, and the analytic continuation of πi log z0 is πi log z0+2kπ2

for some integer k. Hence we get the proposition. �

Proof of Theorem 1. We prove Theorem 1 by investigating the real part of V . For

θ ∈ [0, 2 π] ⊂ R, the real part of Li2(e
iθ) is given by Re

(
Li2(e

iθ)
)
= Re

(
Li2(e

−iθ)
)
=

θ2/4 − π θ/2 + π2/6. Substituting this to each dilog functions of Re(∆(a1, a2, · · · , a6)),
we get Re(∆(a1, a2, · · · , a6)) = −2 π2/3 +

∑6
j=1 πθj/2. We also know that Im log z0 =

− arg(−q2) since the numerator of z0 in (1.2) is a negative real number. Hence we get

Theorem 1 from Proposition 2.5. �

Remark 2.6. The function V is non-continuous at the points where the values of q2 are

positive real numbers.
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2.4. Proof of the formula in terms of edge lengths. We use the notations in Sub-

section 2.2.

Proof of Theorem 2. Let θ1, θ2, · · · , θ6 be the dihedral angles at the edges e1, e2, · · · ,
e6 of T and let T ∗ be the dual tetrahedron of T given in p.294 of [4]. Then the dihedral

angles of T ∗ are π − l4, π − l5, π − l6, π − l1, π − l2, π − l3 and the edge length of T ∗ are

π − θ4, π − θ5, π − θ6, π − θ1, π − θ2, π − θ3. The relation of volumes of T and T ∗ is give

in p.294 of [4] as follows:

Vol(T ) + Vol(T ∗) +
1

2

6∑

j=1

lj (π − θj) = π2.

By Theorem 1, we have

Vol(T ∗) = −Re(L̃(b1, b2, · · · , b6, z̃0))−π
(
arg(−q̃2)−

1

2

6∑

j=1

(π − lj)

)
−3

2
π2 mod 2 π2.

Because ∂
∂(π−lj)

U(−b−1
4 ,−b−1

5 ,−b−1
6 ,−b−1

1 ,−b−1
2 ,−b−1

3 , z)
∣∣∣
z=z̃0

=
(
2 π−(π−θj)

)
/2 by (2.3)

and ∂
∂(π−lj)

∆(−b−1
4 ,−b−1

5 ,−b−1
6 ,−b−1

1 ,−b−1
2 ,−b−1

3 , z) = π/2 by Lemma 2.1, we know that

∂L̃
∂lj

∣∣∣
z=z̃0

= −θj/2. Hence

Vol(T ) = Re
(
L̃(b1, b2, · · · , b6, z̃0)

)
+ π arg(−q̃2)

−
6∑

j=1

lj
∂ Re

(
L̃(b1, b2, · · · , b6, z̃0)

)

∂lj

∣∣∣∣∣
z=z̃0

− 1

2
π2 mod 2 π2,

and we get Theorem 2. �
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