ON THE VOLUME FORMULAS FOR A SPHERICAL TETRAHEDRON

JUN MURAKAMI

Abstract

The present paper gives two concrete formulas for the volume of an arbitrary spherical tetrahedron, which is in a 3 -dimensional spherical space of constant curvature +1 . One formula is given in terms of edge lengths, and another one is given in terms of dihedral angles.

Introduction

The calculation of the volume of an arbitrary tetrahedron in a 3 -space of non-zero constant curvature is rather hard, and the first result is given by [2] in 1999 for hyperbolic tetrahedra. The papers [6] and [5] gave another formulas for hyperbolic tetrahedra, which are implicitly based on the quantum $6 j$-symbol. Moreover, it was stated in [6] that an adequate analytic continuation of the obtained formula also applicable for a spherical tetrahedron. But, the formula is given by multi-valued functions, and it is not described which stratum we should select for actual computation. On the other hand, volumes of spherical tetrahedra of special shapes are given by many people from old times, and the most recent work is [3], which gives a formula for a spherical tetrahedron having a small symmetry.

In the present paper, volume formulas for a spherical tetrahedron T of general shape are given in Theorems 1 and 2. The formula in Theorem 1 is given in terms of dihedral angles, and the formula in Theorem 2 is given in terms of edge lengths. These formulas are obtained by improving those in [6], 5], and, by using the Schläfli differential equality, it is shown that the new formulas actually give the volume of T modulo $2 \pi^{2}$. Please note that $2 \pi^{2}$ is the volume of S^{3} with radius 1 , which is the universal cover of any 3 -dimensional spherical space of constant curvature +1 . Since T can be included in a 3 -dimensional hemisphere, the volume of T is less than π^{2} and so we can compute the volume of T actually from the formulas in Theorems 1 and 2.

1. Volume formulas

1.1. Volume formula in terms of dihedral angles. Let T be a spherical tetrahedron and $\theta_{1}, \theta_{2}, \cdots, \theta_{6}$ be its dihedral angles at edges $e_{1}, e_{2}, \cdots, e_{6}$ given in Figure 1. We assume that $0<\theta_{j}<\pi$ for $j=1,2, \cdots, 6$. Let $a_{1}=e^{i \theta_{1}}, a_{2}=e^{i \theta_{2}}, \cdots, a_{6}=e^{i \theta_{6}}$, and

[^0]

Figure 1. Edges of T

$$
\begin{aligned}
& L\left(a_{1}, a_{2}, \cdots, a_{6}, z\right)= \\
& \begin{aligned}
& \frac{1}{2}\left(\operatorname{Li}_{2}(z)+\mathrm{Li}_{2}\left(a_{1}^{-1} a_{2}^{-1} a_{4}^{-1} a_{5}^{-1} z\right)+\operatorname{Li}_{2}\left(a_{1}^{-1} a_{3}^{-1} a_{4}^{-1} a_{6}^{-1} z\right)+\operatorname{Li}_{2}\left(a_{2}^{-1} a_{3}^{-1} a_{5}^{-1} a_{6}^{-1} z\right)\right. \\
&- \operatorname{Li}_{2}\left(-a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} z\right)-\operatorname{Li}_{2}\left(-a_{1}^{-1} a_{5}^{-1} a_{6}^{-1} z\right)-\operatorname{Li}_{2}\left(-a_{2}^{-1} a_{4}^{-1} a_{6}^{-1} z\right) \\
&\left.-\operatorname{Li}_{2}\left(-a_{3}^{-1} a_{4}^{-1} a_{5}^{-1} z\right)+\sum_{j=1}^{3} \log a_{j} \log a_{j+3}\right)
\end{aligned}
\end{aligned}
$$

where $\mathrm{Li}_{2}(z)$ is the dilogarithm function defined by the analytic continuation of the following integral:

$$
\begin{equation*}
\mathrm{Li}_{2}(x)=-\int_{0}^{x} \frac{\log (1-t)}{t} d t \quad \text { for a real number } x<1 \tag{1.1}
\end{equation*}
$$

The analytic continuation of the right-hand side integral defines a multi-valued complex function $\operatorname{li}_{2}(z)$, and let $\operatorname{Li}_{2}(z)$ be the principal branch of $\mathrm{li}_{2}(z)$ which is the analytic continuation of (1.1) on the region $\mathbb{C} \backslash\{x \in \mathbb{R} \mid x \geq 1\}$. We also fix the principal branch of the \log function as usual by the branch cut along the negative real axis.

We define an auxiliary parameter z_{0} as follows:

$$
\begin{equation*}
z_{0}=\frac{-q_{1}+\sqrt{q_{1}^{2}-4 q_{0} q_{2}}}{2 q_{2}} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{0}=a_{1} a_{4}+a_{2} a_{5}+a_{3} a_{6}+a_{1} a_{2} a_{6}+a_{1} a_{3} a_{5}+a_{2} a_{3} a_{4}+a_{4} a_{5} a_{6}+a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}, \\
& q_{1}=-\left(a_{1}-a_{1}^{-1}\right)\left(a_{4}-a_{4}^{-1}\right)-\left(a_{2}-a_{2}^{-1}\right)\left(a_{5}-a_{5}^{-1}\right)-\left(a_{3}-a_{3}^{-1}\right)\left(a_{6}-a_{6}^{-1}\right), \\
& q_{2}=a_{1}^{-1} a_{4}^{-1}+a_{2}^{-1} a_{5}^{-1}+a_{3}^{-1} a_{6}^{-1}+a_{1}^{-1} a_{2}^{-1} a_{6}^{-1}+a_{1}^{-1} a_{3}^{-1} a_{5}^{-1}+ \\
& \qquad a_{2}^{-1} a_{3}^{-1} a_{4}^{-1}+a_{4}^{-1} a_{5}^{-1} a_{6}^{-1}+a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1} a_{5}^{-1} a_{6}^{-1} .
\end{aligned}
$$

Then z_{0} is a solutions of

$$
\begin{equation*}
\exp \left(2 z \frac{\partial L}{\partial z}\right)=1 \tag{1.3}
\end{equation*}
$$

where

$$
\exp \left(2 z \frac{\partial L}{\partial z}\right)=\frac{\left(a_{1} a_{2} a_{3}+z\right)\left(a_{1} a_{5} a_{6}+z\right)\left(a_{2} a_{4} a_{6}+z\right)\left(a_{3} a_{4} a_{5}+z\right)}{(1-z)\left(a_{1} a_{2} a_{4} a_{5}-z\right)\left(a_{1} a_{3} a_{4} a_{6}-z\right)\left(a_{2} a_{3} a_{5} a_{6}-z\right)} .
$$

Now we state the main result of this paper.

Theorem 1. Let T be a spherical tetrahedron with edge lengths $\theta_{1}, \theta_{2}, \cdots, \theta_{6}$ for edges $e_{1}, e_{2}, \cdots e_{6}$ given in Figure 1. Let $a_{j}=e^{i \theta_{j}}$ for $j=1,2, \cdots, 6$ and let $\operatorname{Vol}(T)$ be the volume of T. Then

$$
\operatorname{Vol}(T)=-\operatorname{Re}\left(L\left(a_{1}, a_{2}, \cdots, a_{6}, z_{0}\right)\right)-\pi\left(\arg \left(-q_{2}\right)-\frac{1}{2} \sum_{j=1}^{6} \theta_{j}\right)-\frac{3}{2} \pi^{2} \bmod 2 \pi^{2}
$$

where $\operatorname{Re}(z)$ is the real part of z and q_{2} is given in (1.2).
1.2. Volume formula in terms of edge lengths. Let T be a spherical tetrahedron with edge lengths $l_{1}, l_{2}, \cdots, l_{6}$ at the edges $e_{1}, e_{2}, \cdots e_{6}$ given in Figure [1. Let $b_{j}=e^{i l_{j}}$ for $j=1,2, \cdots, 6$ and $\widetilde{L}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, z\right)=L\left(-b_{4}^{-1},-b_{5}^{-1},-b_{6}^{-1},-b_{1}^{-1},-b_{2}^{-1},-b_{3}^{-1}, z\right)$. Then the following formula holds.

Theorem 2. For a spherical tetrahedron T as above,

$$
\begin{aligned}
& \operatorname{Vol}(T)=\operatorname{Re}\left(\widetilde{L}\left(b_{1}, b_{2}, \cdots, b_{6}, \widetilde{z}_{0}\right)\right)+\pi \arg \left(-\widetilde{q}_{2}\right) \\
&-\left.\sum_{j=1}^{6} l_{j} \frac{\partial \operatorname{Re}\left(\widetilde{L}\left(b_{1}, b_{2}, \cdots, b_{6}, \widetilde{z}_{0}\right)\right)}{\partial l_{j}}\right|_{z=\widetilde{z}_{0}}-\frac{1}{2} \pi^{2} \bmod 2 \pi^{2},
\end{aligned}
$$

where \widetilde{z}_{0} and \widetilde{q}_{2} are obtained from z_{0} and q_{2} in (1.2) by substituting $-b_{j \pm 3}^{-1}$ to a_{j} for $j=1$, $2, \cdots, 6$.

2. Proof of the formulas

2.1. Gram matrices. Let T be a spherical tetrahedron with dihedral angles $\theta_{1}, \cdots, \theta_{6}$ as before. Let G be the Gram matrix of T defined by

$$
G=\left(\begin{array}{cccc}
1 & -\cos \theta_{1} & -\cos \theta_{2} & -\cos \theta_{6} \\
-\cos \theta_{1} & 1 & -\cos \theta_{3} & -\cos \theta_{5} \\
-\cos \theta_{2} & -\cos \theta_{3} & 1 & -\cos \theta_{4} \\
-\cos \theta_{6} & -\cos \theta_{5} & -\cos \theta_{4} & 1
\end{array}\right)
$$

An actual computation shows that the discriminant in (1.2) is give by

$$
\begin{equation*}
q_{1}^{2}-4 q_{0} q_{2}=16 \operatorname{det} G, \tag{2.1}
\end{equation*}
$$

which is positive since T is spherical. It is known (see, e.g. [1]) that

$$
\cos l_{j}=\frac{c_{p q}}{\sqrt{c_{p p} c_{q q}}}
$$

and so we have

$$
\begin{equation*}
\exp \left(2 i l_{j}\right)=\frac{2 c_{p q}^{2}-c_{p p} c_{q q}+2 i c_{p q} \sqrt{\operatorname{det} G} \sin \theta_{j}}{c_{p p} c_{q q}} \tag{2.2}
\end{equation*}
$$

by using the formula (5.1) in [7] that is $c_{p q}^{2}-c_{p p} c_{q q}=-\operatorname{det} G \sin ^{2} \theta_{j}$. Here p and q denote the row and column of $G=\left(g_{a b}\right)$ such that $g_{p q}=-\cos \theta_{j}$, and $c_{a b}$ is the cofactor of G, i.e. $c_{a b}=(-1)^{a+b} \operatorname{det} G_{a b}$ where $G_{a b}$ is the submatrix obtained from G by deleting its a-th row and b-th column.
2.2. Some functions and their properties. Before proving the formulas, we introduce some functions and investigate their properties. Let T be a tetrahedron, $\theta_{1}, \theta_{2}, \cdots, \theta_{6}$ be its dihedral angles at edges $e_{1}, e_{2}, \cdots, e_{6}$ as before, and

$$
\begin{aligned}
D_{s}=\{ & \left(\theta_{1}, \theta_{2}, \cdots, \theta_{6}\right) \in(0, \pi)^{6} \subset \mathbb{R}^{6} \mid \\
& \left.\quad \theta_{1}, \theta_{2}, \cdots, \theta_{6} \text { correspond to the dihedral angles of a spherical tetrahedron }\right\} .
\end{aligned}
$$

Let $a_{j}=e^{i \theta_{j}}$ for $j=1,2, \cdots, 6$,

$$
\begin{aligned}
& \Delta_{0}(x, y, z)=-\frac{1}{4}\left(\operatorname{Li}_{2}\left(-x y^{-1} z^{-1}\right)+\mathrm{Li}_{2}\left(-x^{-1} y z^{-1}\right)+\mathrm{Li}_{2}\left(-x^{-1} y^{-1} z\right)+\mathrm{Li}_{2}(-x y z)\right) \\
& \Delta\left(a_{1}, a_{2}, \cdots, a_{6}\right)= \\
& \Delta_{0}\left(a_{1}, a_{2}, a_{3}\right)+\Delta_{0}\left(a_{1}, a_{5}, a_{6}\right)+\Delta_{0}\left(a_{2}, a_{4}, a_{6}\right)+\Delta_{0}\left(a_{3}, a_{4}, a_{5}\right)-\frac{1}{2} \sum_{j=1}^{6}\left(\log a_{j}\right)^{2} \\
& \quad U\left(a_{1}, a_{2}, \cdots, a_{6}, z\right)=L\left(a_{1}, a_{2}, \cdots, a_{6}, z\right)+\Delta\left(a_{1}, a_{2}, \cdots, a_{6}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
V\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) & = \\
& -U\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, z_{0}\right)+\pi i\left(\log z_{0}-\sum_{j=1}^{6} \log a_{j}\right)-\frac{13}{6} \pi^{2} .
\end{aligned}
$$

Lemma 2.1. The function $\Delta\left(a_{1}, a_{2}, \cdots, a_{6}\right)$ is analytic on D_{s} and the imaginary part of $4 a_{j} \frac{\partial \Delta}{\partial a_{j}}$ is given by

$$
\operatorname{Im}\left(4 a_{j} \frac{\partial \Delta}{\partial a_{j}}\right)=-2 \pi
$$

Proof. We show for the case $j=1$. For the function Δ,

$$
a_{1} \frac{\partial \Delta}{\partial a_{1}}=a_{1} \frac{\partial \Delta_{0}\left(a_{1}, a_{2}, a_{3}\right)}{\partial a_{1}}+a_{1} \frac{\partial \Delta_{0}\left(a_{1}, a_{5}, a_{6}\right)}{\partial a_{1}}-\log a_{1}
$$

and

$$
\begin{aligned}
& a_{1} \frac{\partial \Delta_{0}\left(a_{1}, a_{p}, a_{q}\right)}{\partial a_{1}} \\
& \quad \frac{1}{4}\left(\log \left(1+\frac{a_{1}}{a_{p} a_{q}}\right)-\log \left(1+\frac{a_{p}}{a_{1} a_{q}}\right)-\log \left(1+\frac{a_{q}}{a_{1} a_{p}}\right)+\log \left(1+a_{1} a_{p} a_{q}\right)\right)
\end{aligned}
$$

for $\{p, q\}=\{2,3\},\{5,6\}$. The imaginary part $\operatorname{Im} \log \left(1+e^{i l}\right)$ is given by

$$
\operatorname{Im} \log \left(1+e^{i \theta}\right)= \begin{cases}\frac{\theta}{2} & \text { if }-\pi<\theta<\pi \\ \frac{\theta}{2}-\pi & \text { if } \pi<\theta<3 \pi\end{cases}
$$

Since $\theta_{1}, \theta_{p}, \theta_{q}$ are dihedral angles at the three edges having a vertex in common, they satisfy $0<\theta_{1}+\theta_{p}-\theta_{q}, \theta_{1}-\theta_{p}+\theta_{q},-\theta_{1}+\theta_{p}+\theta_{q}<\pi$ and $\pi<\theta_{1}+\theta_{p}+\theta_{q}<3 \pi$. Hence $\Delta_{0}\left(a_{1}, a_{p}, a_{q}\right)$ is analytic on D_{s} and we have

$$
\operatorname{Im}\left(a_{1} \frac{\partial \Delta_{0}\left(a_{1}, a_{p}, a_{q}\right)}{\partial a_{1}}\right)=\frac{\theta_{1}}{2}-\frac{\pi}{4}, \quad \operatorname{Im}\left(4 a_{1} \frac{\partial \Delta}{\partial a_{1}}\right)=-2 \pi
$$

Moreover, Δ is analytic on D_{s} because none of the imaginary parts of the \log terms of Δ attains π nor $-\pi$ on D_{s}.

Lemma 2.2. The function $L\left(a_{1}, a_{2}, \cdots, a_{6}, z_{0}\left(a_{1}, a_{2}, \cdots, a_{6}\right)\right)$ is analytic on D_{s}, and so $U\left(a_{1}, a_{2}, \cdots, a_{6}, z_{0}\left(a_{1}, a_{2}, \cdots, a_{6}\right)\right)$ is analytic on D_{s}.

Proof. We know that $\left|z_{0}\right|<1$ because, for q_{0}, q_{1}, q_{2} in (1.2), q_{1} and $q_{0} q_{2}$ are positive real numbers, and $q_{1}^{2}-4 q_{0} q_{2}$ is also a positive real number by (2.1). This means that, for $w \in \mathbb{C}$ with $|w|=1$ and $w \neq 1,\left|w z_{0}\right|<1$ and $w z_{0}$ does not meet the branch cut $\{x \in \mathbb{R} \mid x \geq 1\}$ of Li_{2}. Therefore, all the dilog terms of L are analytic on D_{s}.

Lemma 2.3. The differential $\frac{\partial U}{\partial z}$ satisfies $\left.z_{0} \frac{\partial U}{\partial z}\right|_{z=z_{0}}=\pi i$.
Proof. Since $\frac{\partial U}{\partial z}=\frac{\partial L}{\partial z}$ and z_{0} is a solution of the equation (1.3), $\left.z_{0} \frac{\partial U}{\partial z}\right|_{z=z_{0}}=k \pi i$ for some integer constant k because U is analytic on D_{s} by the above lemma. Let $T_{\frac{\pi}{2}}$ be the regular spherical tetrahedron with edge lengths $\pi / 2$. Then $a_{j}=i, z_{0}=(i+1) / 2$ and

$$
\left.z_{0} \frac{\partial U}{\partial z}\right|_{z=z_{0}}=\frac{1}{2}\left(-4 \log \frac{1-i}{2}+4 \log \frac{1+i}{2}\right)=\pi i
$$

Hence $\left.z_{0} \frac{\partial U}{\partial z}\right|_{z=z_{0}}=\pi i$ for all the spherical tetrahedron.
Now, we show the following proposition for V corresponding to the Schläfli differential equality.

Proposition 2.4. The function V satisfies $\frac{\partial V}{\partial \theta_{j}}=l_{j} / 2$ for $j=1,2, \cdots, 6$.
Proof. Let $\varphi=\exp \left(4 a_{1} \frac{\partial \Delta}{\partial a_{1}}\right)$ and $\psi=\exp \left(\left.2 a_{1} \frac{\partial L}{\partial a_{1}}\right|_{z=z_{0}}\right)$, then

$$
\begin{gathered}
\varphi=\frac{\left(a_{1}+a_{2} a_{3}\right)\left(a_{1} a_{2} a_{3}+1\right)\left(a_{1}+a_{5} a_{6}\right)\left(a_{1} a_{5} a_{6}+1\right)}{\left(a_{1} a_{2}+a_{3}\right)\left(a_{1} a_{3}+a_{2}\right)\left(a_{1} a_{5}+a_{6}\right)\left(a_{1} a_{6}+a_{5}\right)}, \\
\psi=\frac{\left(a_{1} a_{2} a_{4} a_{5}-z_{0}\right)\left(a_{1} a_{3} a_{4} a_{6}-z_{0}\right)}{a_{4}\left(a_{1} a_{2} a_{3}+z_{0}\right)\left(a_{1} a_{5} a_{6}+z_{0}\right)} .
\end{gathered}
$$

An actual computation and (2.2) shows that

$$
\left.\exp \left(4 a_{1} \frac{\partial U}{\partial a_{1}}\right)\right|_{z=z_{0}}=\varphi \psi^{2}=\frac{2 c_{12}^{2}-c_{11} c_{22}+2 i c_{12} \sqrt{\operatorname{det} G} \sin \theta_{1}}{c_{11} c_{22}}=\exp \left(2 l_{1} i\right)
$$

Hence we get $\left.a_{1} \frac{\partial U}{\partial a_{1}}\right|_{z=z_{0}}=i\left(l_{1}+k \pi\right) / 2$ for some integer constant k because U is analytic on D_{s} by Lemma 2.2, For the tetrahedron $T_{\frac{\pi}{2}}$ given in the proof of Lemma 2.3, $l_{1}=\pi / 2$
and $\left.a_{1} \frac{\partial U}{\partial a_{1}}\right|_{z=z_{0}}=-3 \pi i / 4$, which means that $k=-2$ and $\left.a_{1} \frac{\partial U}{\partial a_{1}}\right|_{z=z_{0}}=i\left(l_{1}-2 \pi\right) / 2$. According to $\frac{\partial U}{\partial \theta_{1}}=i a_{1} \frac{\partial U}{\partial a_{1}}$, we have

$$
\begin{equation*}
\left.\frac{\partial U}{\partial \theta_{1}}\right|_{z=z_{0}}=\frac{1}{2}\left(2 \pi-l_{1}\right) \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{1}}\left(-U\left(a_{1}, \cdots, a_{6}, z_{0}\left(a_{1}, \cdots, a_{6}\right)\right)+\pi i\left(\log z_{0}-\sum_{j=1}^{6} \log a_{j}\right)\right)= \\
& \frac{l_{1}}{2}-\left.\frac{\partial z_{0}}{\partial \theta_{1}} \frac{\partial U}{\partial z}\right|_{z=z_{0}}+\pi i \frac{\partial z_{0}}{\partial \theta_{1}} \frac{1}{z_{0}}
\end{aligned}
$$

Since $\left.\frac{\partial U}{\partial z}\right|_{z=z_{0}}=i \pi / z_{0}$ by Lemma 2.3, we get $\frac{\partial V}{\partial \theta_{1}}=l_{1} / 2$.
2.3. Proof of the formula in terms of dihedral angles. We first give a formula by complex analytic functions.

Proposition 2.5. Let T be a spherical tetrahedron with dihedral angles $\theta_{1}, \theta_{2}, \cdots, \theta_{6}$ for edges $e_{1}, e_{2}, \cdots e_{6}$ as in Figure 1. Let $a_{j}=e^{i \theta_{j}}$ for $j=1,2, \cdots, 6$ as before and let $\operatorname{Vol}(T)$ be the volume of T. Then

$$
\operatorname{Vol}(T)=V\left(a_{1}, a_{2}, \cdots, a_{6}\right) \quad \bmod 2 \pi^{2} .
$$

Proof. For the tetrahedron $T_{\frac{\pi}{2}}$ in the proof of Lemma [2.3, we have $a_{j}=i, z_{0}=\frac{1+i}{2}$ and $V(i, i, i, i, i, i, i)=\pi^{2} / 8=\operatorname{Vol}\left(T_{\frac{\pi}{2}}\right)$. Because V is analytic on some neighborhood N of $T_{\frac{\pi}{2}}$ in D_{s}, two functions V and Vol are identical on N by Proposition 2.4 and Schäfli's formlua. Moreover, $\operatorname{Vol}(T)$ is analytic on D_{s} and so it is given by an adequate analytic continuation of V. We already showed in previous lemmas that all the terms in V except $\pi i \log z_{0}$ are analytic on D_{s}, and the analytic continuation of $\pi i \log z_{0}$ is $\pi i \log z_{0}+2 k \pi^{2}$ for some integer k. Hence we get the proposition.

Proof of Theorem 1. We prove Theorem 1 by investigating the real part of V. For $\theta \in[0,2 \pi] \subset \mathbb{R}$, the real part of $\operatorname{Li}_{2}\left(e^{i \theta}\right)$ is given by $\operatorname{Re}\left(\operatorname{Li}_{2}\left(e^{i \theta}\right)\right)=\operatorname{Re}\left(\operatorname{Li}_{2}\left(e^{-i \theta}\right)\right)=$ $\theta^{2} / 4-\pi \theta / 2+\pi^{2} / 6$. Substituting this to each dilog functions of $\operatorname{Re}\left(\Delta\left(a_{1}, a_{2}, \cdots, a_{6}\right)\right)$, we get $\operatorname{Re}\left(\Delta\left(a_{1}, a_{2}, \cdots, a_{6}\right)\right)=-2 \pi^{2} / 3+\sum_{j=1}^{6} \pi \theta_{j} / 2$. We also know that $\operatorname{Im} \log z_{0}=$ $-\arg \left(-q_{2}\right)$ since the numerator of z_{0} in (1.2) is a negative real number. Hence we get Theorem 1 from Proposition 2.5.

Remark 2.6. The function V is non-continuous at the points where the values of q_{2} are positive real numbers.
2.4. Proof of the formula in terms of edge lengths. We use the notations in Subsection 2.2.
Proof of Theorem 2. Let $\theta_{1}, \theta_{2}, \cdots, \theta_{6}$ be the dihedral angles at the edges e_{1}, e_{2}, \cdots, e_{6} of T and let T^{*} be the dual tetrahedron of T given in p. 294 of [4]. Then the dihedral angles of T^{*} are $\pi-l_{4}, \pi-l_{5}, \pi-l_{6}, \pi-l_{1}, \pi-l_{2}, \pi-l_{3}$ and the edge length of T^{*} are $\pi-\theta_{4}, \pi-\theta_{5}, \pi-\theta_{6}, \pi-\theta_{1}, \pi-\theta_{2}, \pi-\theta_{3}$. The relation of volumes of T and T^{*} is give in p. 294 of [4] as follows:

$$
\operatorname{Vol}(T)+\operatorname{Vol}\left(T^{*}\right)+\frac{1}{2} \sum_{j=1}^{6} l_{j}\left(\pi-\theta_{j}\right)=\pi^{2}
$$

By Theorem 1, we have

$$
\operatorname{Vol}\left(T^{*}\right)=-\operatorname{Re}\left(\widetilde{L}\left(b_{1}, b_{2}, \cdots, b_{6}, \widetilde{z}_{0}\right)\right)-\pi\left(\arg \left(-\widetilde{q}_{2}\right)-\frac{1}{2} \sum_{j=1}^{6}\left(\pi-l_{j}\right)\right)-\frac{3}{2} \pi^{2} \bmod 2 \pi^{2}
$$

Because $\left.\frac{\partial}{\partial\left(\pi-l_{j}\right)} U\left(-b_{4}^{-1},-b_{5}^{-1},-b_{6}^{-1},-b_{1}^{-1},-b_{2}^{-1},-b_{3}^{-1}, z\right)\right|_{z=\tilde{z}_{0}}=\left(2 \pi-\left(\pi-\theta_{j}\right)\right) / 2$ by (2.3) and $\frac{\partial}{\partial\left(\pi-l_{j}\right)} \Delta\left(-b_{4}^{-1},-b_{5}^{-1},-b_{6}^{-1},-b_{1}^{-1},-b_{2}^{-1},-b_{3}^{-1}, z\right)=\pi / 2$ by Lemma 2.1, we know that $\left.\frac{\partial \widetilde{L}}{\partial l_{j}}\right|_{z=\tilde{z}_{0}}=-\theta_{j} / 2$. Hence

$$
\operatorname{Vol}(T)=\operatorname{Re}\left(\widetilde{L}\left(b_{1}, b_{2}, \cdots, b_{6}, \widetilde{z}_{0}\right)\right)+\pi \arg \left(-\widetilde{q}_{2}\right)
$$

$$
-\left.\sum_{j=1}^{6} l_{j} \frac{\partial \operatorname{Re}\left(\widetilde{L}\left(b_{1}, b_{2}, \cdots, b_{6}, \widetilde{z}_{0}\right)\right)}{\partial l_{j}}\right|_{z=\tilde{z}_{0}}-\frac{1}{2} \pi^{2} \bmod 2 \pi^{2}
$$

and we get Theorem 2.

References

1. D. V. Alekseevskij, B. Vinberg and A. S. Solodovnikov, Geometry of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, pp. 1-138.
2. Y. Cho and H. Kim, On the volume formula for hyperbolic tetrahedra, Discrete Comput. Geom. 22 (1999), no. 3, 347-366.
3. A. Kolpakov, A. Mednykh and M. Pashkevich, Volume formula for a \mathbb{Z}_{2}-symmetric spherical tetrahedron through its edge lengths, preprint, arXiv:1007.3948
4. J. Milnor, The Schläfli differential equality. John Milnor Collected Papers Volume 1, Geometry, Publish or Perish Inc., Houston and Texas, 1994, pp. 281-295.
5. J. Murakami and A. Ushijima, A volume formula for hyperbolic tetrahedra in terms of edge lengths. J. Geom. 83 (2005), 153-163.
6. J. Murakami and M. Yano, On the volume of a hyperbolic and spherical tetrahedron. Comm. Anal. Geom. 13 (2005), 379-400.
7. A. Ushijima, A volume formula for generalized hyperbolic tetrahedra. In Non-Euclidean geometries, Math. Appl. (N. Y.) 581, Springer, New York 2006, pp. 249-265.

Department of Mathematics, Faculty of Science and Engineering, Waseda University, 3-4-1 Оhкubo, Shinjuku-ku, Toкyo 169-8555, JAPAN

E-mail address: murakami@waseda.jp

[^0]: 1991 Mathematics Subject Classification. Primary 51M25; Secondary 52A38, 26 B 15.
 Key words and phrases. tetrahedron, volume, spherical space.
 This research was partially supported by Grant-in-Aid for Scientific Research(C) 22540236 from JSPS.

