
ar
X

iv
:1

01
1.

25
85

v1
  [

m
at

h.
G

R
] 

 1
1 

N
ov

 2
01

0

ON THIN-COMPLETE IDEALS OF SUBSETS OF GROUPS

TARAS BANAKH AND NADYA LYASKOVSKA

Abstract. Let F =
⋃

F∈F PG ⊂ PG be a left-invariant lower family of sub-
sets of a group G. A subset A ⊂ G is called F-thin if xA ∩ yA ∈ F for any
distinct elements x, y ∈ G. The family of all F-thin subsets of G is denoted
by τ(F). If τ(F) = F , then F is called thin-complete. The thin-completion

τ∗(F) of F is the smallest thin-complete subfamily of PG that contains F .
Answering questions of Lutsenko and Protasov, we prove that a set A ⊂ G

belongs to τ∗(G) if and only if for any sequence (gn)n∈ω of non-zero elements
of G there is n ∈ ω such that

⋂

i0,...,in∈{0,1}

g
i0
0

· · · ginn A ∈ F .

Also we prove that for an additive family F ⊂ PG its thin-completion τ∗(F)
is additive. If the group G is countable and torsion-free, then the completion
τ∗(FG) of the ideal FG of finite subsets of G is coanalytic and not Borel in
the power-set PG endowed with the natural compact metrizable topology.

1. Introduction

This paper was motivated by problems posed by Ie. Lutsenko and I.V. Protasov
in the preliminary version of the paper [5] devoted to relatively thin sets in groups.

Following [4], we say that a subset A of a group G is thin if for any distinct
points x, y ∈ G the intersection xA ∩ yA is finite. In [5] (following the approach of
[1]) Lutsenko and Protasov generalized the notion of a thin set to that of F -thin
set where F is a family of subsets of G. By PG we shall denote the Boolean algebra
of all subsets of the group G.

We shall say that a family F ⊂ PG is

• left-invariant if xF ∈ F for all F ∈ F and x ∈ G, and
• lower if

⋃

F∈F PF ⊂ F ;
• additive if A ∪B ∈ F for all A,B ∈ F ;
• an ideal if F is lower and additive.

Let F ⊂ PG be a left-invariant lower family of subsets of a group G. A subset
A ⊂ G is defined to be F-thin if for any distinct points x, y ∈ G we get xA∩yA ∈ F .
The family of all F -thin subsets of G will be denoted by τ(F). It is clear that τ(F)
is a left-invariant lower family of subsets of G and F ⊂ τ(F). If τ(F) = F , then
the family F will be called thin-complete.

Let τ∗(F) be the intersection of all thin-complete families F̃ ⊂ PG that contain
F . It is clear that τ∗(F) is the smallest thin-complete family containing F . This
family is called the thin-completion of F .
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The family τ∗(F) has an interesting hierarchic structure that can be described
as follows. Let τ0(F) = F and for each ordinal α put τα(F) be the family of all sets
A ⊂ G such that for any distinct points x, y ∈ G we get xA ∩ yA ∈

⋃

β<α τβ(F).
So,

τα(F) = τ(τ<α(F)) where τ<α(F) =
⋃

β<α

τβ(F).

By Proposition 3 of [5], τ∗(F) =
⋃

α<|G|+
τα(F).

The following theorem (that will be proved in Section 3) answers the problem
of combinatorial characterization of the family τ∗(F) posed by Ie. Lutsenko and
I.V. Protasov. Below by e we denote the neutral element of the group G.

Theorem 1.1. Let F ⊂ PG be a left-invariant lower family of subsets of a group
G. A subset A ⊂ G belongs to the family τ∗(F) if and only if for any sequence
(gn)n∈ω ∈ (G \ {e})N there is a number n ∈ ω such that

⋂

k0,...,kn∈{0,1}

gk0
0 · · · gkn

n A ∈ F .

We recall that a family F ⊂ PG is called if {A ∪B : A,B ∈ F} ⊂ F . It is clear
that the family FG of finite subsets of a group G is additive. If G is an infinite
Boolean group, then the family τ∗(FG) = τ(FG) is not additive, see Remark 2 in
[5]. For torsion-free groups the situation is totally diferent:

Theorem 1.2. For a torsion-free group G and a left-invariant ideal F ⊂ PG the
family τ<α(F) is additive for any limit ordinal α. In particular, the thin-completion
τ∗(F) of F is an ideal in PG.

We define a subset of a group G to be ∗-thin if its belongs to the thin-completion
τ∗(FG) of the family FG of all finite subsets of the group G. By Proposition 3 of
[5], for each countable group G we get τ∗(FG) = τ<ω1(FG). It is natural to ask if
the equality τ∗(FG) = τ<α(FG) can happen for some cardinal α < ω1. If the group
G is Boolean, then the answer is affirmative: τ∗(F) = τ1(F) according to Theorem
1 of [5]. The situation is different for non-torsion groups:

Theorem 1.3. If an infinite group G contains an abelian torsion-free subgroup
H of cardinality |H | = |G|, then τ∗(FG) 6= τα(FG) 6= τ<α(FG) for each ordinal
α < |G|+.

Theorems 1.2 and 1.3 will be proved in Sections 4 and 6, respectively. In Section 7
we shall study the Borel complexity of the family τ∗(FG) for a countable group G.
In this case the power-set PG carries a natural compact metrizable topology, so we
can talk about topological properties of subsets of PG.

Theorem 1.4. For a countable group G and a countable ordinal α the family
τα(FG) is Borel while the family τ∗(FG) = τ<ω1(FG) is coanalytic. If G contains
an element of infinite order, then the space τ∗(FG) is coanalytic but not analytic.

2. Preliminaries on well-founded posets and trees

In this section we collect the neccessary information on well-founded posets and
trees. A poset is an abbreviation from a partially ordered set. A poset (X,≤) is
well-founded if each subset A ⊂ X has a maximal element a ∈ A (this means that
each element x ∈ A with x ≥ a is equal to a). In a well-founded poset (X,≤)
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to each point x ∈ X we can assign the ordinal rankX(x) defined by the recursive
formula:

rankX(x) = sup{rankX(y) + 1 : y > x}

where sup ∅ = 0. The ordinal rank(X) = sup{rankX(x) + 1 : x ∈ X} is called the
rank of the poset X .

A tree is a poset (T,≤) with the smallest element ∅T such that for each t ∈ T
the lower set ↓t = {s ∈ T : s ≤ t} is well-ordered in the sense that each subset
A ⊂ ↓t has the smallest element. A branch of a tree T is any maximal linearly
ordered subset of T . If a tree is well-founded, then all its branches are finite.

A subset S ⊂ T of a tree is called a subtree if it is a tree with respect to the
induced partial order. A subtree S ⊂ T is lower if S = ↓S = {t ∈ T : ∃s ∈ T t ≤ s}.

All trees that appear in this paper are (lower) subtrees of the tree X<ω =
⋃

n∈ω Xn of finite sequences of a set X . The tree X<ω carries the following partial
order:

(x0, . . . , xn) ≤ (y0, . . . , ym) iff n ≤ m and xi = yi for all i ≤ n.

The empty sequence s∅ ∈ X0 is the smallest element (the root) of the tree X<ω.
For a finite sequence s = (x0, . . . , xn) ∈ X<ω and an element x ∈ X by ŝ x =
(x0, . . . , xn, x) we denote the concatenation of s and x. So, ŝ x is one of |X | many
immediate successors of s. The set of all branches ofX<ω can be naturally identified
with the countable power Xω. For each branch s = (sn)n∈ω ∈ Xω and n ∈ ω by
s|n = (s0, . . . , sn−1) we denote the initial interval of length n.

Let Tr ⊂ PX<ω denote the family of all lower subtrees of the tree X<ω and
WF ⊂ Tr be the subset consisting of all well-founded lower subtrees of X<ω.

In Section 7 we shall exploit some deep facts about the descriptive properties
of the sets WF ⊂ Tr ⊂ PX<ω for countable set X . In this case the tree X<ω is
countable and the power-set PX<ω carries a natural compact metrizable topology

of the Tychonov power 2X
<ω

. So, we can speak about topological properties of the
subsets WF and Tr of the compact metrizable space PX<ω .

We recall that a topological spaceX is Polish ifX is homeomorphic to a separable
complete metric space. A subset A of a Polish space X is called

• Borel if A belongs to the smallest σ-algebra that contains all open subsets
of X ;

• analytic if A is the image of a Polish space P under a continuous map
f : P → A;

• coanalytic if X \A is analytic.

By Souslin’s Theorem 14.11 [3], a subset of a Polish space is Borel if and only if
it is both analytic and coanalytic. By Σ1

1 and Π1
1 we denote the classes of spaces

homeomorphic to analytic and coanalytic subsets of Polish spaces, respectively.
A coanalytic subset X of a compact metric space K is called Π1

1-complete if
for each coanalytic subset C is the Cantor cube 2ω there is a continuous map
f : 2ω → K such that f−1(X) = C. It follows from the existence of a coanalytic
non-Borel set in 2ω that each Π1

1-complete set X ⊂ K is non-Borel.
The following deep theorem is classical and belongs to Lusin, see [3, 32.B,35.23].

Theorem 2.1. Let X be a countable set.

(1) The subspace Tr is closed (and hence compact) in PX<ω .
(2) The set of well-founded trees WF is Π1

1-complete in Tr. In particular, WF

is coanalytic but not analytic (and hence not Borel).
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(3) For each ordinal α < ω1 the subset WFα = {T ∈ WF : rank(T ) ≤ α} is
Borel in Tr.

(4) Each analytic subspace of WF lies in WFα for some ordinal α < ω1.

3. Combinatorial characterization of ∗-thin subsets

In this section we prove Theorem 1.1. Let F ⊂ PG be a left-invariant lower
family of subsets of a group G. The theorem 1.1 trivially holds if F = PG (which
happens if and only if G ∈ F). So, it remains to consider the case G /∈ F . Let e
be the neutral element of G and G◦ = G \ {e}. We shall work with the tree G<ω

◦

discussed in the preceding section.
Let A be any subset of G. To each finite sequence s ∈ G<ω

◦ assign the set As ⊂ G,
defined by induction: A∅ = G and Aŝ x = As ∩ xAs and for s ∈ G<ω

◦ and x ∈ G◦.
Repeating the inductive argument of the proof of Proposition 2 [5], we can obtaine
the following direct description of the sets As:

Claim 3.1. For every sequence s = (g0, . . . , gn) ∈ G<ω
◦

As =
⋂

k0,...,kn∈{0,1}

gk0
0 · · · gkn

n A.

The set
TA = {s ∈ G<ω

◦ : As /∈ F}

is a subtree of G<ω
◦ called the τ-tree of the set A.

Theorem 3.2. A set A ⊂ G belongs to the family τα(F) for some ordinal α if and
only if its τ-tree TA is well-founded and has rank(TA) ≤ α+ 1.

Proof. By induction on α. Observe that A ∈ τ0(F) = F if and only if TA = {s∅}
if and only if rank(TA) = 1. So, Theorem holds for α = 0.

Assume that for some ordinal α > 0 and any ordinal β < α we know that
a set A ⊂ G belongs to τβ(G) if and only if TA is a well-founded tree of rank
rank(TA) ≤ β + 1. Given a subset A ⊂ G we should show that that A ∈ τα(F)
if and only if its τ -tree TA is well-founded and rank(TA) ≤ α + 1. This is clear if
A ∈ F . So we assume that A /∈ F .

First assume that A ∈ τα(F). Then for every x ∈ G◦ there is an ordinal βx < α
such that A ∩ xA ∈ τβx(F). By the inductive assumption, the τ -tree TA∩xA is
well-founded and has rank(TA∩xA) ≤ βx + 1.

Since A /∈ F , each point x ∈ G◦ = G1
◦ considered as the sequence (x) ∈ G1 of

length 1 belongs to the τ -tree TA of the set A. So we can consider the upper set
TA(x) = {s ∈ TA : s ≥ x} and observe that the subtree TA(x) of TA is isomorphic
to the τ -tree TA∩xA of the set A ∩ xA and hence rank(TA(x)) = rank(TA∩xA) ≤
βx + 1 ≤ α. It follows that

rank(TA) = rankTA
(s∅) + 1 =

(

sup
x∈G◦

(rankTA
(x) + 1)

)

+ 1 =

= ( sup
x∈G◦

rankTA(x)) + 1 ≤
(

sup
x∈G◦

(βx + 1)) + 1 ≤ α+ 1.

Now assume conversely that the τ -tree TA of A is well-founded and rank(TA) ≤
α + 1. Since rank(TA) = rankTA

(s∅) + 1 =
(

supx∈G◦

(rankTA
(x) + 1)

)

+ 1, we
conclude that for each x ∈ G◦ we get

rank(TA(x)) = rankTA
(x) + 1 = βx + 1
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for some ordinal βx < α. Since the subtree TA(x) = TA ∩ ↑x is isomorphic to
the τ -tree TA∩xA of the set A ∩ xA, we conclude that TA∩xA is well-founded and
has rank(TxA∩A) = rank(TA(x)) = rankTA

(x) + 1 = βx + 1. Then the inductive
assumption guarantees that A ∩ xA ∈ τβx(F) ⊂ τ<α(F) and then A ∈ τα(F) by
the definition of the family τα(F). �

As a corollary of Theorem 3.2, we obtain the following characterization proved
in [5]:

Corollary 3.3. A subset A ⊂ G belongs to the family τn(F) for some n ∈ ω if
and only if for each sequence (gi)

n
i=0 ∈ Gn

◦ we get
⋂

k0,...,kn∈{0,1}

gk0
0 · · · gkn

n A ∈ F .

Theorem 3.2 also implies the following explicit description of the family τ∗(F),
which was announced in Theorem 1.1:

Corollary 3.4. For a subset A ⊂ G the following conditions are equivalent:

(1) A ∈ τ∗(F);
(2) the τ-tree TA of A is well-founded;
(3) for each sequence (gn)n∈ω ∈ Gω

◦ there is n ∈ ω such that (g0, . . . , gn) /∈ TA;
(4) for each sequence (gn)n∈ω ∈ Gω

◦ there is n ∈ ω such that
⋂

k0,...,kn∈{0,1}

gk0
0 · · · gkn

n A ∈ F .

4. Additivity of the families τ<α(F)

In this section we shall prove Theorem 1.2. Let G be an infinite group and e be
the neutral element of G.

For a natural number m let 2m denote the finite cube {0, 1}m. For vectors
g = (g1, . . . , gm) ∈ (G \ {e})m and x = (x1, . . . , xm) ∈ 2m let

gx = gx1
1 · · · gxm

m ∈ G.

A function f : 2m → G to a group G will be called cubic if there is a vector
g = (g1, . . . , gm) ∈ (G \ {e})m such that f(x) = gx for all x ∈ 2m.

Lemma 4.1. If the group G is torsion-free, then for every n ∈ N, m > (n − 1)2,
and a cubic function f : 2m → G we get |f(2m)| > n.

Proof. Assume conversely that |f(2m)| ≤ n. Consider the set B = {(k1, . . . , km) ∈
2m :

∑m
i=1 ki = 1} having cardinality |B| = m > (n − 1)2. Since e /∈ f(B), we

conclude that |f(B)| ≤ |f(2m)| − 1 ≤ n − 1 and hence |f−1(y)| ≥ n for some
y ∈ f(B). Let By = f−1(y) and observe that f(2m) ⊃ {e, y, y2, . . . , y|By|} and thus
|f(2m)| ≥ |By|+ 1 ≥ n+ 1, which contradicts our assumption. �

For every n ∈ N let c(n) be the smallest number m ∈ N such that for each cubic
function f : 2m → G we get |f(2m)| > n. It is easy to see that c(n) ≥ n. On the
other hand, Lemma 4.1 implies that c(n) ≤ (n− 1)2 + 1 if G is torsion-free.

For a family F and a natural number n ∈ N, let
∨

n

F = {∪A : A ⊂ F , |A| ≤ n}.
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Lemma 4.2. Let F ⊂ PG be a left-invariant lower family of subsets in a torsion-
free group G. For every n ∈ N we get

∨

n

τ(F) ⊂ τc(n)−1(
∨

m

F)

where m = n2c(n)

.

Proof. Fix any A ∈
∨

n

τ(F) and write it as the union A = A1 ∪ · · · ∪ An of sets

A1, . . . , An ∈ τ(F). The inclusion A ∈ τc(n)−1(
∨

m

F) will follow from Corollary 3.3

as soon as we check that
⋂

x∈2c(n)

gxA ∈
∨

m

F

for each vector g ∈ (G \ {e})c(n). De Morgan’s law guarantees that

⋂

x∈2c(n)

gx · (
n
⋃

i=1

Ai) =
⋃

f∈n2c(n)

⋂

x∈2c(n)

gxAf(x).

So, the proof will be complete as soon as we check that for every function f : 2c(n) →
n the set

⋂

x∈2c(n)

gxAf(x) belongs to F . The vector g ∈ (G\{e})c(n) induces the cubic

function g : 2c(n) → G, g : x 7→ gx. The definition of the function c(n) guarantees
that |g(2c(n))| > n. The function f : 2c(n) → n can be thought as a coloring of
the cube 2c(n) into n colors. Since |g(2c(n))| > n, there are two points y, z ∈ 2c(n)

colored by the same color such that g(y) 6= g(z). Then gy = g(y) 6= g(z) = gz but
f(y) = f(z) = k for some k ≤ n. Consequently,

⋂

x∈2c(n)

gxAf(x) ⊂ gyAk ∩ gzAk ∈ F

because the set Ak ∈ τ(F). �

Now consider the function c : N × ω → ω defined recursively as c(n, 0) = 0 for

all n ∈ N and c(n, k + 1) = c(n)− 1 + c(n2α(n)

, k) for (n, k) ∈ N× ω. Observe that
c(n, 1) = c(n)− 1 for all n ∈ N.

Lemma 4.3. If the group G is torsion-free and F ⊂ PG is a left-invariant ideal,
then

∨

n

τk(F) ⊂ τc(n,k)(F)

for all pairs (n, k) ∈ N× ω.

Proof. By induction on k. For k = 0 the equality
∨

n τ
0(F) = F = τc(n,0)(F) holds

because F is additive.
Assume that Lemma is true for some k ∈ ω. By Lemma 4.2 and by the inductive

assumption, for every n ∈ N we get
∨

n

τk+1(F) =
∨

n

τ(τk(F)) ⊂ τc(n)−1
(

∨

n2c(n)

τk(F)
)

⊂

τc(n)−1(τc(n
2c(n)

,k)(F)) = τc(n)−1+α(n2c(n)
,k)(F) = τc(n,k+1)(F).

�
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Now we are able to present:

Proof of Theorem 1.2. Assume that G is a torsion-free group G and F ⊂ PG is
a left-invariant ideal. By transfinite induction we shall prove that for each limit
ordinal α the family τ<α(F) is additive. For the smallest limit ordinal α = 0 the
additivity of the family τ0(F) = F is included into the hypothesis. Assume that for
some non-zero limit ordinal α we have proved that the families τ<β(F) are additive
for all limit ordinals β < α. Two cases are possible:

1) α = β + ω for some limit ordinal β. By the inductive assumption, the
family τ<β(F) is additive. Then Lemma 4.3 implies that the family τ<α(F) =
τ<ω(τ<β(F)) is additive.

2) α = supB for some family B 6∋ α of limit ordinals. By the inductive as-
sumption for each limit ordinal β ∈ B the family τ<β(F) is additive and then the
union

τ<α(F) =
⋃

β∈B

τ<β(F)

is additive too.
This completes the proof of the additivity of the families τ<α(F) for all limit

ordinals α. Since the torsion-free group G is infinite, the ordinal α = |G|+ is limit
and hence the family τ∗(F) = τ<α(F) is additive. Being left-invariant and lower,
the family τ∗(F) is a left-invariant ideal in PG. �

Remark 4.4. Theorem 1.2 is not true for an infinite Boolean group G. In this case
Theorem 1(2) of [5] implies that τ∗(FG) = τ(FG). Then for any infinite thin subset
A ⊂ G and any x ∈ G\ {e} the union A∪xA is not thin as (A∪xA)∩x(A∪xA) =
A ∪ xA is infinite. Consequently, the family τ∗(FG) = τ(FG) is not additive.

5. h-invariant families of subsets

Let G be a group and h : H → K be an isomorphism between subgroups of G.
A family F of subsets of G is called h-invariant if a subset A ⊂ H belongs to F if
and only if h(A) ∈ F .

Example 5.1. The ideal FZ of finite subsets of the group Z is h-invariant for each
isomorphism hk : Z → kZ, h : x 7→ kx, where k ∈ N.

Proposition 5.2. Let h : H → K be an isomorphism between subgroups of a group
G. For any h-invariant family F ⊂ PG and any ordinal α the family τα(F) is
h-invariant.

Proof. For α = 0 the h-invariance of τ0(F) = F follows from our assumption.
Assume that for some ordinal α we have established that the families τβ(F) are
h-invariant for all ordinals β < α. Then the union τ<α(F) =

⋃

β<α τβ(F) is also
h-invariant.

We shall prove that the family τα(F) is h-invariant. Given a set A ⊂ H we need
to prove that A ∈ τα(F) if and only if h(A) ∈ τα(F).

Assume first that A ∈ τα(F). To show that h(A) ∈ τα(F), take any element
y ∈ G\{e}. If y /∈ K, then h(A)∩yh(A) = ∅ ∈ τ<α(F). If y ∈ K, then y = h(x) for
some x ∈ H and then h(A)∩ yh(A) = h(A∩xA) ∈ τ<α(F) since A∩xA ∈ τ<α(F)
and the family τ<α(F) is h-invariant.

Now assume that A /∈ τα(F). Then there is an element x ∈ G \ {e} such that
A ∩ xA /∈ τ<α(F). Since A ⊂ H , the element x must belong to H (otherwise
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A ∩ xA = ∅ ∈ τ<α(F)). Then for the element y = h(x) we get h(A) ∩ yh(A) /∈
τ<α(F) by the h-invariance of the family τ<α(F). Consequently, h(A) /∈ τα(F). �

Corollary 5.3. Let h : H → K be an isomorphism between subgroups of a group
G. For any h-invariant family F ⊂ PG the family τ∗(F) is h-invariant.

Definition 5.4. A left-invariant family F ⊂ PG of subsets of a group G is called

• auto-invariant if F is h-invariant for each injective homomorphism h : G →
G;

• sub-invariant if F is h-invariant for each isomorphism h : H → K between
subgroups K ⊂ H of G.

• strongly invariant if F is h-invariant for each isomorphism h : H → K
between subgroups of G.

It is clear that

auto-invariant ⇒ sub-invariant ⇒ strongly invariant

Remark 5.5. Each auto-invariant family F ⊂ PG, being left-invariant is also
right-invariant.

Proposition 5.2 implies:

Corollary 5.6. If F ⊂ PG is an auto-invariant (sub-invariant, strongly invariant)
family of subsets of a group G, then so are the families τ∗(F) and τα(F) for all
ordinals α.

It is clear that the famly FG of finite subsets of a group G is strongly invariant.
Now we present some natural examples of families, which are not strongly invariant.
Following [2], we call a subset A of a group G

• large if there is a finite subset F ⊂ G with G = FA;
• small if for any large set L ⊂ G the set L \A remains large.

It follows that the family SG of small subsets if G is a left-invariant ideal in PG.
According to [2], a subset A ⊂ G is small if and only if for every finite subset F ⊂ G
the complement G \ FA is large. We shall need the following (probably known)
fact.

Lemma 5.7. Let H be a subgroup of finite index in a group G. A subset A ⊂ H
is small in H if and only if A is small in G.

Proof. First assume that A is small in G. To show that A is small in H , take any
large subset L ⊂ H . Since H has finite index in G, the set L is large in G. Since
A is small in G, the complement L \A is large in G. Conseqeuntly, there is a finite
subset F ⊂ G such that F (L \A) = G. Then for the finite set FH = F ∩H , we get
FH(L \A) = H , which means that L \A is large in H .

Now assume that A is small in H . To show that A is small in G, it suffices to
show that for every finite subset F ⊂ G the complement G \ FA is large in G.
Observe that (G \FA)∩H = H \FHA where FH = F ∩H . Since A is small in H ,
the set H \ FHA is large in H and hence large in G (as H has finite index in G).
Then the set G \ FA ⊃ H \ FHA is large in G too. �

Proposition 5.8. Let G be an infinite abelian group.

(1) If G is finitely generated, then the ideal SG is strongly invariant.
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(2) If G is infinitely generated free abelian group, then the ideal SG is not auto-
invariant.

Proof. 1. Assume that G is a finitely generated abelian group. To show that SG is
strongly invariant, fix any isomorphism h : H → K between subgroups of G and let
A ⊂ H be any subset. The groups H,K are isomorphic and hence have the same
free rank r0(H) = r0(K). If r0(H) = r0(K) < r0(G), then the subgroups H,K
have infinite index in G and hence are small. In this case the inclusions A ∈ SG

and h(A) ∈ SG hold and so are equivalent.
If the ranks r0(H) = r0(K) and r0(G) coincide, then H and K are subgroups of

finite index in the finitely generated group G. By Lemma 5.7, a subset A ⊂ H is
small in G if and only if A is small in H if and only if h(A) is small in the group
h(H) = K if and only if h(A) is small in G.

2. Now assume that G is an infinitely generated free abelian group. Then G is
isomorphic to the direct sum ⊕κ

Z of κ = |G| ≥ ℵ0 many copies of the infinite cyclic
group Z. Take any subset λ ⊂ κ with infinite complement κ \ λ and cardinality
|λ| = |κ| and fix an isomorphism h : G → H of the group G = ⊕κ

Z onto its
subgroup H = ⊕λ

Z. The subgroup H has infinite index in G and hence is small in
G. Yet h−1(H) = G is not small in G, witnessing that the ideal SG of small subsets
of G is not auto-invariant. �

6. Thin-completeness of the families τα(F)

In this section we shall prove that in general the families τα(F) are not thin-
complete. Let us recall that a family F ⊂ PG is called an ideal if G /∈ F and F
is additive and lower. Our principal result is the following theorem that implies
Theorem 1.3 announced in the Introduction.

Theorem 6.1. Let G be a group containing a free abelian subgroup H of cardinality
|H | = |G|. If F is a sub-invariant ideal of subsets of G such that τ(F) ∩ PH 6⊂ F ,
then τ∗(F) 6= τα(F) 6= τ<α(F) for all ordinals α < |G|+.

We divide the proof of this theorem in a series of lemmas.

Lemma 6.2. Let h : H → K be an isomorphism between subgroups of a group
G, F be an h-invariant left-invariant monotone family of subsets of G. If a subset
A ⊂ H does not belong to τα(F) for some ordinal α, then for every point z ∈ G\{e}
the set h(A) ∪ zh(A) /∈ τα+1(F).

Proof. Proposition 5.2 implies that h(A) /∈ τα(F). Since

(h(A) ∪ zh(A)) ∩ z−1(h(A) ∪ zh(A)) ⊃ h(A) /∈ τn(F),

the set h(A) ∪ zh(A) /∈ τα+1(F) by the definition of τα+1(F). �

In the following lemma for a subgroup K of a group H by

ZH(K) = {z ∈ H : ∀x ∈ K zx = xz}

we denote the centralizer of K in H .

Lemma 6.3. Let h : H → K be an isomorphism between subgroups K ⊂ H of a
group G such that there is a point z ∈ ZH(K) with z2 /∈ K. Let F ⊂ PG be an
h-invariant left-invariant ideal. If a subset A ⊂ H belongs to the family τα(F) for
some ordinal α, then h(A) ∪ zh(A) ∈ τα+1(F).
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Proof. By induction on α. For α = 0 and A ∈ F the inclusion h(A)∪ zh(A) ∈ F ⊂
τ(F) follows from the h-invariance and the additivity of F .

Now assume that for some ordinal α we have proved that for every β < α
and A ∈ PH ∩ τβ(F) the set h(A) ∪ zh(A) belongs to τβ+1(F). Given any set
A ∈ PH ∩ τα(F), we need to prove that h(A) ∪ zh(A) ∈ τα+1(F). This will
follow as soon as we check that (h(A)∪ zh(A))∩ y(h(A)∪ zh(A) ∈ τα(F) for every
y ∈ G \ {e}.

If y /∈ K ∪ zK ∪ z−1K, then

(h(A) ∪ zh(A)) ∩ y(h(A) ∪ zh(A)) ⊂ (K ∪ zK) ∩ y(K ∪ zK) = ∅ ∈ τα+1(F).

So, it remains to consider the case y ∈ K ∪ zK ∪ z−1K. If y ∈ K, then

(h(A) ∪ zh(A)) ∩ y(h(A) ∪ zh(A)) = (h(A) ∩ yh(A)) ∪ z(h(A) ∩ y h(A)).

Since y ∈ K, there is an element x ∈ H with y = h(x). Since A ∈ τα(F),
A ∩ xA ∈ τβ(F) for some β < α and then

(h(A) ∪ zh(A)) ∩ y(h(A) ∪ zh(A)) = h(A ∩ xA) ∪ zh(A ∩ xA) ∈ τβ+1(F) ⊂ τα(F)

by the inductive assumption. If y ∈ zK, then z2 /∈ K implies that

(h(A) ∪ zh(A)) ∩ y(h(A) ∪ zh(A)) = zh(A) ∩ yh(A) ⊂ zh(A) ∈ τα(F)

by the h-invariance and the left-invariance of the family τα(F), see Proposition 5.2.
If y ∈ z−1K, then by the same reason,

(h(A) ∪ zh(A)) ∩ y(h(A) ∪ zh(A)) = h(A) ∩ yzh(A) ⊂ h(A) ∈ τα(F).

�

Given an isomorphism h : H → K between subgroups K ⊂ H of a group G,
for every n ∈ N define the iteration hn : H → K of the isomorphism h letting
h1 = h : H → K and hn+1 = h ◦ hn for n ≥ 1.

The isomorphism h : H → K will be called expanding if
⋂

n∈N
hn(H) = {e}.

Example 6.4. For every integer k ≥ 2 the isomorphism

hk : Z → kZ, hk : x 7→ kx,

is expanding.

Lemma 6.5. Let h : H → K be an expanding isomorphism between torsion-free
subgroups K ⊂ H of a group G and F be an h-invariant left-invariant ideal of
subsets of G. For any limit ordinal α and family {An}n∈ω ⊂ τ<α(F) of subsets of
the group H, the union A =

⋃

n∈ω hn(An) belongs to the family τα(F).

Proof. First observe that {hn(An)}n∈ω ⊂ τ<α(F) by Proposition 5.2. To show
that A =

⋃

n∈ω hn(An) ∈ τα(F) we need to check that A ∩ xA ∈ τ<α(F) for all
x ∈ G\{e}. This is trivially true if x /∈ H as A ⊂ H . So, we assume that x ∈ H . By
the expanding property of the isomorphism h, there is a number m ∈ ω such that
x /∈ hm(H). Put B =

⋃m−1
n=0 hn(An) and observe that A ∩ xA ⊂ B ∪ xB ∈ τ<α(F)

as τ<α(F) is additive according to Theorem 1.2. �

Lemma 6.6. Assume that a left-invariant ideal F on a group G is h-invariant for
some expanding isomorphism h : H → K between torsion-free subgroups K ⊂ H of
G such that ZK(H) 6⊂ K. If τ(F)∩PH 6⊂ F , then τα(F) 6= τ<α(F) for all ordinals
α < ω1.
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Proof. Fix any point z ∈ ZK(H) \ K. Since H is torsion-free, z2 6= e. Since
the isomorphism h is expanding, z2 /∈ hm(H) for some m ∈ N. Replacing the
isomorphism h by its iterate hm, we lose no generality assuming that z2 /∈ h(H) =
K.

By induction on α < ω1 we shall prove that τα(F) ∩ PH 6= τ<α(F) ∩ PH .
For α = 1 the non-equality τ(F) ∩ PH 6= τ0(F) ∩ PH is included into the

hypothesis. Assume that for some ordinal α < ω1 we proved that τβ(F) ∩ PH 6=
τ<β(F) ∩ PH for all ordinals β < α.

If α = β + 1 is a successor ordinal, then by the inductive assumption we can
find a set A ∈ τβ(F) \ τ<β(F) in the subgroup H . By Lemmas 6.2 and 6.3,
A ∪ zA ∈ τβ+1(F) \ τβ(F) = τα(F) \ τ<α(F) and we are done.

If α is a limit ordinal, then we can find an increasing sequence of ordinals (αn)n∈ω

with α = supn∈ω αn. By the inductive assumption, for every n ∈ ω there is a subset
An ⊂ H with An ∈ ταn+1(F) \ ταn(F). Then we can put A =

⋃

n∈ω hn(An). By
Proposition 5.2, for every n ∈ ω, we get

hn(An) ∈ ταn+1(F) \ ταn(F)

and thus A /∈ ταn(F) for all n ∈ ω, which implies that A /∈ τ<α(F). On the other
hand, Lemma 6.5 guarantees that A ∈ τα(F). �

Lemma 6.7. Assume that a left-invariant ideal F on a group G is h-invariant
for some isomorphism h : H → K between torsion-free subgroups K ⊂ H of G
such that z2 /∈ K for some z ∈ ZK(H). Assume that for an infinite cardinal κ
there are isomorphisms hn : H → Hn, n ∈ κ, onto subgroups Hn ⊂ H such that
F is hn-invariant and Hn · Hm ∩ Hk · Hl = {e} for all indices n,m, k, l ∈ κ with
{n,m} ∩ {k, l} = ∅.

If τ(F) ∩ PH 6⊂ F , then τα(F) 6= τ<α(F) for all ordinals α < κ+.

Proof. By induction on α < κ+ we shall prove that τα(F) ∩ PH 6= τ<α(F) ∩ PH .
For α = 1 the non-equality τ1(F) ∩ PH 6= τ0(F) ∩ PH is included into the

hypothesis. Assume that for some ordinal α < κ+ we proved that τβ(F) ∩ PH 6=
τ<β(F) ∩ PH for all ordinals β < α.

If α = β + 1 is a successor ordinal, then by the inductive assumption we can
find a set A ∈ τβ(F) \ τ<β(F) in the subgroup H . By Lemmas 6.2 and 6.3,
A ∪ zA ∈ τβ+1(F) \ τβ(F) and we are done.

If α is a limit ordinal, then we can fix a family of ordinals (αn)n∈κ with α =
supn∈κ(αn + 1). By the inductive assumption, for every n ∈ κ there is a subset
An ⊂ H such that An ∈ ταn+1(F) \ ταn(F). After a suitable shift, we can assume
that e /∈ An. Since the ideal F is hn-invariant, hn(An) ∈ ταn+1(F) \ ταn(F)
according to Lemma 5.2.

Then the set A =
⋃

n∈ω hn(An) does not belong to τ<α(F). The inclusion A ∈
τα(F) will follow as soon as we check that A∩xA ∈ τ<α(F) for all x ∈ G\{e}. This
is clear if A ∩ xA is empty. If A ∩ xA is not elmpty, then x ∈ hn(An)hm(Am)−1 ⊂
HnHm for some n,m ∈ κ. Taking into account that HnHm ∩ HkHl = {e} for all
k, l ∈ κ \ {n,m} and e /∈ A, we conclude that

A ∩ xA ⊂ hn(An) ∪ hm(Am) ∪ xhn(An) ∪ xhm(Am) ∈ τ<α(F)

as τ<α(F) is additive according to Theorem 1.2. �
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Let us recall that a family F of subsets of a group G is called auto-invariant if
for any injective homomorphism h : G → G a subset A ⊂ G belongs to F if and
only if h(A) ∈ F .

Lemma 6.8. Let G be a free abelian group G and F be an auto-invariant ideal of
subsets of G. If F is not thin-complete, then for each ordinal α < |G|+ the family
τα(F) is not thin-complete.

Proof. Being free abelian, the group G is generated by some linearly independent
subset B ⊂ G. Consider the isomorphism h : G → 3G of G onto the subgroup
3G = {g3 : g ∈ G} and observe that h is expanding and for each z ∈ B we get
z2 /∈ 3G. The ideal F being auto-invariant, is h-invariant. Applying Lemma 6.6, we
conclude that τα(F) 6= τ<α(F) for all ordinals α < ω1. If the group G is countable,
then this is exactly what we need.

Now consider the case of uncountable κ = |G|. Being free abelian, the group
G is isomorphic to the direct sum ⊕κ

Z of κ-many copies of the infinite cyclic
group Z. Write the cardinal κ as the disjoint union κ =

⋃

α∈κ κα of κ many
subsets κα ⊂ κ of cardinality |κα| = κ. For every α ∈ κ consider the free abelian
subgroup Gα = ⊕καZ of G and fix any isomorphism hα : G → Gα. It is clear that
Gα ⊕Gβ ∩Gγ ⊕Gδ = {0} for all ordinals α, β, γ, δ ∈ κ with {α, β} ∩ {γ, δ} = ∅.

Being auto-invariant, the ideal F is hα-invariant for every α ∈ κ. Now it is legal
to apply Lemma 6.7 to conclude that τα(F) 6= τ<α(F) for all ordinals α < κ+. �

Proof of Theorem 6.1. Let F be a sub-invariant ideal of subsets of a group G and
let H ⊂ G be a free abelian subgroup of cardinality |H | = |G|. Assume that
τ(F) ∩ PH 6⊂ F .

Consider the ideal FH = PH ∩ F of subsets of the group H . By transfinite
induction it can be shown that τα(FH) = PH ∩ τα(F) for all ordianls α.

The sub-invariance of F implies the sub-invariance (and hence auto-invariance)
of FH . By Lemma 6.8, we get τα(FH) 6= τ<α(FH) for each α < |H |+ = |G|+.
Then also τ∗(F) 6= τα(F) 6= τ<α(F) for all α < |G|+. �

7. The descriptive complexity of the family τ∗(F)

In this section given a countable groupG and a left-invariant monotone subfamily
F ⊂ PG we study the descriptive complexity of the family τ∗(F), considered as a
subspace of the power-set PG endowed with the compact metrizable topology of the
Tychonov product 2G (we identify PG with 2G by identifying each subset A ⊂ G
with its characteristic function χA : G → 2 = {0, 1}).

Theorem 7.1. Let G be a countable group and F ⊂ PG be a Borel left-invariant
lower family of subsets of G.

(1) For every ordinal α < ω1 the family τα(F) is Borel in PG.
(2) The family τ∗(F) = τ<ω1(F) is coanalytic.
(3) If τ∗(F) 6= τα(F) for all α < ω1, then τ∗(F) is not Borel in PG.

Proof. Let us recall that G◦ = G \ {e}.
In Section 3 to each subset A ⊂ G we assigned the τ -tree

TA = {s ∈ G<ω
◦ : As /∈ F},



ON THIN-COMPLETE IDEALS OF SUBSETS OF GROUPS 13

where for a finite sequence s = (g0, . . . , gn−1) ∈ Gn
◦ ⊂ G<ω

◦ we put

As =
⋂

x0,...,xn−1∈2n

gx0
0 · · · g

xn−1

n−1 A.

Consider the subspaces WF ⊂ Tr of PG<ω
◦

, consisting of all (well-founded) lower

subtrees of the tree G<ω
◦ .

Claim 7.2. The function

T∗ : PG → Tr, T∗ : A 7→ TA

is Borel measurable.

Proof. The Borel measurability of T∗ means that for each open subset U ⊂ Tr the
preimage T−1

∗ (U) is a Borel subset of PG. Let us observe that the topology of the
space Tr is generated by the sub-base consisting of the sets

〈s〉+ = {T ∈ Tr : s ∈ T } and 〈s〉− = {T ∈ Tr : s /∈ T } where s ∈ G<ω
◦ .

Since 〈s〉− = Tr \ 〈s〉+, the Borel masurability of T∗ will follow as soon as we check
that for every s ∈ G<ω

◦ the preimage T−1
∗ (〈s〉+) = {A ∈ PG : s ∈ TA} is Borel.

For this observe that the function

f : PG ×G<ω
◦ → PG, f : (A, s) 7→ As,

is continuous. Here the tree G<ω
◦ is endowed with the discrete topology.

Since F is Borel in PG, the preimage E = f−1(PG \ F) is Borel in PG × G<ω
◦ .

Now observe that for every s ∈ G<ω
◦ the set

T−1
∗ (〈s〉+) = {A ∈ PG : s ∈ TA} = {A ∈ PG : (A, s) ∈ E}

is Borel. �

By Theorem 3.2, τ∗(F) = T−1
∗ (WF) and τα(F) = T−1

∗ (WFα+1) for α < ω1.
Now Theorem 2.1 and the Borel measurablity of the function T∗ imply that the
preimage τ∗(F) = T−1

∗ (WF) is coanalytic while τα(F) = T−1
∗ (WFα+1) is Borel for

every α < ω1, see [3, 14.4].

Now assuming that τα+1(F) 6= τα(F) for all α < ω1, we shall show that
τ∗(F) is not Borel. In the opposite case, τ∗(F) is analytic and then its image
T∗(τ

∗(F)) ⊂ WF under the Borel function T∗ is an analytic subspace of WF, see
[3, 14.4]. By Theorem 2.1(4), T∗(τ

∗(F)) ⊂ WFα+1 for some α < ω1 and thus
τ∗(F) = T−1

∗ (WFα+1) = τα(F), which is a contradiction. �

Theorems 6.1 and 7.1 imply:

Corollary 7.3. For any countable non-torsion group G the ideal τ∗(FG) ⊂ PG is
coanalytic but not analytic.

By [3, 26.4], the Σ1
1-Determinacy (i.e., the assumption of the determinacy of all

analytic games) implies that each coanalytic non-analytic space is Π1
1-complete. By

[6], the Σ1
1-Determinacy follows from the existence of a measurable cardinal. So, the

existence of a measurable cardinal implies that for each countable non-torsion group
G the subspace τ∗(FG) ⊂ PG, being coanalytic and non-analytic, is Π1

1-complete.

Question 7.4. Is the space τ∗(FZ) Π1
1-complete in ZFC?
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