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Time-dependent occupation numbers in reduced-density-matrix functional theory:

Correlation-induced oscillations
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We prove that if the two-body terms in the equation of motion for the one-body reduced density
matrix are approximated at each instant of time from ground-state functionals, the eigenvalues of
the one-body reduced density matrix (occupation numbers) are time independent. This deficiency
is related to the inability of such an approximation to account for relative phases that accumulate in
the two-body reduced density matrix as time passes. We derive an exact differential equation giving
the functional dependence of these phases in an interacting Landau-Zener model and study their
behavior in short-time and long-time regimes. In the long-time regime, the occupation numbers
display correlation-induced oscillations and the memory dependence assumes a simple form.

PACS numbers: 31.15.ee,31.50.Gh,71.15.Mb

The effective single-particle scheme in reduced-density-
matrix functional theory [1] (RDMFT) differs from the
Kohn-Sham equations [2] of density functional theory
and the Hartree-Fock equations in that essentially all or-
bitals have fractional (0 < ni < 1) as opposed to inte-
ger occupation numbers. The freedom to occupy orbitals
fractionally is helpful in correctly describing static cor-
relation, a notoriously difficult problem in density func-
tional theory. Static correlation is generally related to
the multiconfigurational character of the wave function.
Limiting oneself to integer occupation numbers amounts
to trying to describe certain observables of a multicon-
figurational state, such as energy or density, with only
a single configuration (Slater determinant). As a con-
sequence, the orbitals can lose any resemblance to the
optimal orbitals for describing the wave function, the so-
called natural orbitals [3]. In dynamical problems, the
time dependence of the occupation numbers represents
changes in the degree and character of correlation [4].
Changes in the occupation numbers have been shown to
be crucial for describing double excitations [5–7].
In RDMFT, the wave function is interpreted as a

functional of the one-body reduced density matrix (one-

matrix) γ(1, 1′; t) = 〈Ψ(t)|ψ̂†(1′)ψ̂(1)|Ψ(t)〉 (1 = r1, σ1).
The equation of motion is (in units |e| = ~ = m = c = 1)

i∂tγ̂ =
[1

2
(p̂− Â)2 + v̂, γ̂

]

+ û (1)

where v̂ and Â describe time-dependent external electro-
magnetic fields and

〈1|û|1′〉 = 2

∫

d2 [vC(1, 2)− vC(1
′, 2)] Γ(12, 1′2; t), (2)

Γ(12, 1′2′; t) = 1
2 〈Ψ(t)|ψ̂†(1′)ψ̂†(2′)ψ̂(2)ψ̂(1)|Ψ(t)〉 is the

two-body reduced density matrix (two-matrix) and vC is
the Coulomb potential. Equation (1) can be closed by
interpreting the two-matrix as a functional of the one-
matrix. In fact, it follows [8, 9] from the Runge-Gross

theorem [10], or its extension to include vector potentials
[11, 12], that there exists an exact two-matrix functional
Γ([γ]; t). In general Γ([γ]; t) has a functional dependence
on γ(t′) for all t′ ≤ t. Instead of propagating the one-
matrix directly, it is often more convenient to propagate
its eigenfunctions and eigenvalues, called natural orbitals
and occupation numbers, respectively, according to the
equations [8, 13, 14]

i |φ̇k〉 =
[1

2
(p̂− Â)2 + v̂ + v̂ee

]

|φk〉 , (3)

ṅk = −i 〈φk |û|φk〉 = 4 Im
∑

ijl

ΓijklVklij (4)

where the dot represents time derivative, vee,jk =
〈φj |v̂ee|φk〉 = ujk/(nk − nj) (j 6= k), and Γijkl and Vijkl
are the two-matrix and Coulomb integral, respectively,
in the basis of natural orbitals.
In this letter, we report three fundamental results con-

cerning the time dependence of the occupation numbers:
(i) we prove that the occupation numbers are time in-
dependent when the exact functional Γ([γ]; t) is approx-
imated by the adiabatic extension of any ground-state
(gs) functional Γ[γ], (ii) for the generic crossing of two
single-particle levels coupled by interactions, a general-
ization of the Landau-Zener (LZ) model, we find exact
expressions for all the degrees of freedom of Γ([γ]; t), and
(iii) we identify oscillations in the occupation numbers
with frequency of the order of the correlation energy. Re-
sult (i) was stated in Ref. 15 (see also Ref. 8); however,
the arguments given to support the statement are incor-
rect [16]. Memory-dependent approximations for Γ([γ]; t)
are needed to capture the effects of nonadiabatic transi-
tions on the occupation numbers, and (ii) and (iii) pro-
vide important exact results in an interacting LZ model.
If the external driving via v(r, t) and A(r, t) is slow,

one might attempt an adiabatic extension approximation
(AEA) in which the gs functional Γ[γ] evaluated at the in-
stantaneous γ(t) is used in place of the functional Γ([γ]; t)
in Eqs. (3) and (4). However, it was realized [4, 8, 13] that
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when the AEA is applied to the available approximate
Hartree-Fock-type gs functionals, the occupation num-
bers remain constant in time because the right-hand-side
of Eq. (4) vanishes. This left open the possibility that
time-dependent occupation numbers could be obtained
from a gs functional of a more general form [4, 8, 13].

One might suppose that neglecting the time depen-
dence of the the occupation numbers would be a good ap-
proximation in the adiabatic regime, where indeed their
time derivatives are very small. While this is often true,
it is not always the case. Even external driving that is
too slow to cause nonadiabatic transitions can lead to
significant net changes in the occupation numbers if it
acts for a long enough time. Therefore, the AEA is not a
valid adiabatic approximation because it is inconsistent
with the adiabatic theorem [17]. Since in the adiabatic
regime the evolving wave function must remain close to
the instantaneous ground state, an alternative adiabatic
approximation was proposed [14], in which the orbitals
satisfy Eq. (3) while the occupation numbers are obtained
on-the-fly from the constrained minimization of the gs en-
ergy functional Ev[γ] with v = v(t). This approximation
respects the adiabatic theorem and describes fairly well
the lowest-order nonadiabatic effects.

In cases where the occupation numbers deviate greatly
from their instantaneous gs values, it becomes preferable
to propagate Eq. (4). Alternatively, one can step up in
the hierarchy of equations of motion and propagate the
two-matrix. Semiclassical propagation of the many-body
density matrix has also been proposed [18] as a way to ob-
tain time-dependent occupation numbers. With regard
to the design of functionals Γ([γ]; t) capable of changing
the occupation numbers, it is important to know whether
the failure of the AEA is due to the restrictive form of
the gs functionals to which it was applied or whether it is
inherent to the AEA itself. We shall now prove that the
occupation numbers are always constant in the AEA.

Consider a system in its ground state at t = t0 that
experiences the external driving v(r, t) and A(r, t) for
t ≥ t0. If we exclude external driving that turns on dis-
continuously, then ˙̂γ(t0) = 0 because the system is in a
stationary state at t = t0. This implies |φ̇k(t0)〉 = 0
and ṅk(t0) = 0. We can immediately conclude that
ṅk = 0 for all time because within the AEA the right-
hand side of Eq. (4) at time t can be understood as an
expression calculated for a system in a ground state with
the one-matrix γ(t) (provided γ(t) remains ensemble v-
representable). This expression must vanish since the
ground state is a stationary state. In other words, in the
AEA the right-hand side of Eq. (4) is an instantaneous
functional of γ by virtue of Gilbert’s extension [1] of the
Hohenberg-Kohn theorem; this functional is equal to the
ṅk of the unique gs density matrix corresponding to that
γ; all such ṅk vanish due to stationarity; hence, also the
functional must vanish. Our assumption that the exter-
nal driving does not turn on in a discontinuous manner

is consistent with the physically important case that the
one-matrix is an analytic function of time.
Note that the above arguments would not be valid if

the external driving v(r, t) or A(r, t) were to appear ex-
plicitly in Eq. (4), as γ(t) is generally the ground state of
a system with different potentials, v′(r) and A′(r), which
would result in a mismatch. Accordingly, this line of ar-
gument does not apply to the orbital equation, revealing
a dichotomy of the degrees of freedom that is a key fea-
ture of RDMFT. The occupation numbers are driven not
by the external fields directly but by changes in the in-
ternal correlation of the system.
What is the gs Γ[γ] missing? For two-electron singlet

states, it has been shown [14] that the phases between the
configurations that compose the wave function must dif-
fer from their gs values in order to obtain time-dependent
occupation numbers in Eq. (4). Generally these relative
configuration phases strongly influence phases in Γ. The
AEA fails to generate time-dependent occupation num-
bers because, being based solely on the gs functional Γ[γ],
it cannot change the two-matrix phases away from their
gs values. For two-electron singlet states, there is a one-
to-one correspondence between the configuration phases
and the phases in Γ. This is apparent from the Löwdin-
Shull wave function [19]

|ΨLS〉 = 1√
2
e−iµ

∑

k

e−i2ζk
√
nk |k↑k↓〉, (5)

where |k↑ k↓〉 is the Slater determinant of φk↑ and φk↓
and we have made explicit the configuration phases 2ζk.
The ζk influence the phases in Γ as seen in the expression
Γijkl =

1
2e

i2(ζk−ζi)
√
ninkδijδkl. We shall now study how

the two-matrix phases evolve in time in a generic model.
Interacting Landau-Zener model.—We consider two in-

teracting electrons occupying two single-particle levels
whose bare energies cross linearly in time. We consider
only the sector of singlet states, so the dimension of the
relevant Hilbert subspace is three. The model is a gen-
eralization of the LZ problem and represents a typical
correlated avoided crossing that one encounters in many-
electron systems. Occupation numbers vary most rapidly
near such avoided crossings. A many-electron system can
be mapped onto this model by allowing effective time-
dependent parameters. The Hamiltonian with the most
general one-body and two-body interactions is

Ĥ =
1

2
~V · ~̂σ + Û + Ŵ , (6)

where ~̂σ =
∑

σ(ĉ
†
1σ, ĉ

†
2σ)~σ

(

ĉ1σ
ĉ2σ

)

, Û = U1ĉ
†
1↑ĉ1↑ĉ

†
1↓ĉ1↓+

U2ĉ
†
2↑ĉ2↑ĉ

†
2↓ĉ2↓, and Ŵ = (W1 − iW2)c

†
1↑c

†
1↓c2↓c2↑ +

(W1 + iW2)c
†
2↑c

†
2↓c1↓c1↑. The spin-summed one-matrix

in this model is simply a 2 × 2 Hermitian matrix
γ = I + ~γ · ~σ with ~γ = A(sin θ cosϕ, sin θ sinϕ, cos θ)
in spherical coordinates. The natural orbitals are
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φa = (cos(θ/2)e−iϕ/2, sin(θ/2)eiϕ/2)T and φb =
(− sin(θ/2)e−iϕ/2, cos(θ/2)eiϕ/2)T and have occupation
numbers na = 1 + A and nb = 1 − A. Eqs. (3) and (4)
become

iφ̇k =
(1

2
~V · ~σ + vee

)

φk (7)

Ȧ = − i

2
(uaa − ubb). (8)

In Eq. (7), vee is the contribution of the two-body inter-
actions Û and Ŵ to the effective single-particle Hamil-
tonian. In the natural orbital basis, its off-diagonal ele-
ments are given by vee,ab = −uab/2A, while its diagonal
elements are indeterminant and irrelevant because the
phases of the natural orbitals are undefined. Direct cal-
culation with a wave function of the form in Eq. (5) gives

uab = U(1 +Be−i2ζ) sin θ cos θ +∆UA sin θ

− |W |(1 +Be−i2ζ) sin θ cos θ cos(2ϕ− ω)

− i|W |(1−Be−i2ζ) sin θ sin(2ϕ− ω), (9)

where B =
√
1−A2, |W |e−iω = W1 − iW2, U = (U1 +

U2)/2, ∆U = (U1 −U2)/2 and ζ = ζa − ζb is the relative
configuration phase. The diagonal elements of u enter in
Eq. (8). We find uaa = −ubb and

uaa = −iUB sin2 θ sin 2ζ − i2|W |B cos θ sin(2ϕ− ω)

× cos 2ζ − i|W |B(1 + cos2 θ) cos(2ϕ− ω) sin 2ζ.

The dynamical equation for ζ can be readily obtained
by transforming the Schrödinger equation to the basis
{

|a↑a↓〉, 1√
2
(|a↑b↓〉 − |a↓b↑〉), |b↑b↓〉

}

. We find

ζ̇ =
1

A
~V · ~γ +

U

2

A

B
sin2 θ cos 2ζ +∆U cos θ +

|W |
2

A

B

× (1 + cos2 θ) cos(2ϕ− ω) cos 2ζ − |W |A
B

cos θ

× sin(2ϕ− ω) sin 2ζ − ϕ̇ cos θ. (10)

This can also be derived from the stationarity of the
quantum action S[Ψ] =

∫

dt〈Ψ|H − i∂t|Ψ〉 w.r.t. to A.

The exact energy is E[Ψ] = ~V · ~γ + U [Ψ] +W [Ψ] with

U [Ψ] =
U

2
(1 + cos2 θ)− U

2
B sin2 θ cos 2ζ +∆UA cos θ,

W [Ψ] =
|W |
2

sin2 θ cos(2ϕ− ω) + |W |B cos θ sin(2ϕ− ω)

× sin 2ζ − |W |
2
B(1 + cos2 θ) cos(2ϕ− ω) cos 2ζ.

and i
∫

dt〈Ψ|Ψ̇〉 =
∫

dt(µ̇+Aζ̇ +Aϕ̇ cos θ). The gs Berry

phase, −i
∫

dt〈Ψ0|Ψ̇0〉 = −
∫

dtAϕ̇ cos θ, depends only
on the one-matrix variables (A, θ, ϕ). This expression
gives a clear illustration of how interactions reduce the
Berry phase with respect to its bare noninteracting value

−
∫

dtϕ̇ cos θ via the factor A in the integrand. The one-
matrix vector ~γ is similar to a pseudospin vector except
its modulus A is less than 1 due to electronic correlations.
Equations (7), (8) and (10) are a closed set of equations

that describe the time evolution of |Ψ〉. In RDMFT, the
configuration phase ζ is interpreted as a functional of γ—
in the present case, the set of variables (A, θ, ϕ). Since for

a fixed initial state the mapping ~V (t) → ~γ(t) is generally
invertible, the memory-dependent functional ζ([γ]; t) is
given uniquely by the solution of Eq. (10). One possible
adiabatic approximation is to set ζ to its instantaneous
gs value on the right-hand side of Eq. (10). The first five
terms are then seen to be ∂Ev[γ]/∂A, and the last term
comes from the gs Berry phase. In the case of linear-
time external driving ~V = (V1, 0, t/τ), we now consider
the short-time and long-time regimes of a system that
starts in the ground state.
Short-time regime.—The stationary conditions imply

γ̇(t0) = 0 and ζ̇(t0) = 0. The lowest nonvanishing time-
derivative at the initial time is ϕ̈(t0) = V̇3(t0). This in-
duces the following nonvanishing third time-derivatives:

...
ϕ = ϕ̈

[

V⊥ cot θ sin(ϕ− ϕV ) + 2|W |B
A

cos(2ϕ− ω) sin 2ζ

+ 2|W |1 +B cos 2ζ

A
cos θ sin(2ϕ− ω)

]

,

...
θ = −ϕ̈

[

V⊥ cos(ϕ− ϕV ) + |W |B
A

sin 2θ sin(2ϕ− ω)

× sin 2ζ + 2|W |1−B cos 2ζ

A
sin θ cos(2ϕ− ω)

]

,

...
ζ = −ϕ̈

[

V⊥ sin θ sin(ϕ− ϕV ) + |W |A
B
(1 + cos2 θ)

× sin(2ϕ− ω) cos 2ζ + 2|W |A
B

cos θ cos(2ϕ− ω) sin 2ζ
]

− ...
ϕ cos θ,

where V⊥ ≡
√

V 2
1 + V 2

2 and ϕV ≡ tan−1(V2/V1). The
lowest nonvanishing time-derivative of A is A(4) =
(∂Ȧ/∂θ)

...
θ + (∂Ȧ/∂ϕ)

...
ϕ + (∂Ȧ/∂ζ)

...
ζ . The configura-

tion phase and the occupation numbers change even
more slowly if |W | = 0, for then the stationary con-
dition ∂E/∂ϕ = 0 implies ϕ = ϕV + π so that

...
ϕ =...

ζ = 0 and ∂Ȧ/∂θ = 0. Thus, the lowest nonvanishing
time-derivative of A is the fifth time-derivative, and the
changes proceed via V̇3 → ϕ̈→ ...

θ → ζ(4) → A(5).
Long-time regime.— For simplicity, we now consider

the case U1 = U2 and W = 0. In the asymptotic limit
t → ∞, ~γ displays multiple oscillations with frequencies
Ωij ≡ Ei − Ej , where Ei are the adiabatic energy lev-

els. As the driving vector ~V diverges linearly as t → ∞,
the frequencies also diverge linearly. In contrast, the oc-
cupation numbers oscillate with the constant frequency
Ω32−Ω21 = 2U , as seen in Fig. (1). The exact asymptotic
behavior of A(t) is

A(t) =

√

A
2
+∆2 cos

[

2Ut− (Θ32 −Θ21)
]

, (11)
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FIG. 1: Time dependence of A and ζ for |W | = 0, U1 = U2 =

3/2, t0 = −4 and linear-time driving ~V = (−2, 0, 4t).

where A
2 ≡ γ23,∞+2|c2|2(|c1|2+|c3|2), ∆2 ≡ 4|c1||c2|2|c3|,

Θij ≡ Arg(ci/cj) and ci are the coefficients in the expan-
sion |Ψ〉 =

∑

i ciexp[−i
∫

dt(Ei − i〈Φi|∂tΦi〉)]|Φi〉 over
the adiabatic eigenstates |Φi〉. We have also defined
γ3,∞ ≡ γ3(∞) = const. As t → ∞, ϕ has a compo-
nent that grows quadratically in time, i.e., ϕ ∼ t2/2τ ,
which implies ~γ rotates more and more rapidly around
the south pole of the Bloch sphere. Hence, any terms in
the dynamical equations containing periodic functions of
ϕ quickly average to zero. Dropping such terms, we find

Ȧ = −UB sin2 θ sin 2ζ (12)

ζ̇ = −U 1 +B cos ζ

A
cos2 θ +

U

2

A

B
sin2 θ cos 2ζ. (13)

Although θ appears in these equations, it can be elimi-
nated in favor of A by means of the asymptotic relation-
ship γ3,∞ = A cos θ. Therefore, the equations for A and ζ
are decoupled from those for the orbital variables θ and
ϕ. Eqs. (12) and (13) can be expressed in the form of
Hamilton’s canonical equations,

Ȧ = −∂U [Ψ]

∂ζ
(14)

ζ̇ =
∂U [Ψ]

∂A
, (15)

where A and ζ appear as conjugate variables. Eqs. (14)
and (15) are integrable because U∞ ≡ limt→∞ U [Ψ] is
a conserved quantity. Integrability has important conse-
quences for memory dependence. Since U∞ is a constant
of the motion, it can be expressed as a function of A, ζ
and γ3,∞. Hence, there is an instantaneous relationship
between A and ζ in the asymptotic limit. It is, explicitly,

cos 2ζ =
2A2

(

1− U∞

U

)

− (A2 − γ23,∞)√
1−A2(A2 − γ23,∞)

. (16)

The constant γ3,∞ contains information about the non-
adiabatic transitions that occurred near t = 0. Therefore,
the γ-dependence of the functional ζ([γ]; t) separates into
two distinct types: (i) an ultra-local (instantaneous) de-
pendence on A(t) and (ii) an ultra-nonlocal dependence
on γ(t) near t = 0 that enters only through the constant
γ3,∞. In the asymptotic regime, the γ3,∞ dependence
can be treated as initial-state dependence. If Eqs. (14)
and (15) were nonintegrable, we expect the functional
ζ([γ]; t) would have more complex memory dependence.

The asymptotic ζ(t) described by Eqs. (16) and (11) is
a linearly decreasing function with superimposed nonlin-
ear oscillations. The slope ∼ −U corresponds to the fre-
quency of the correlation-induced oscillations in A(t), as
seen in Fig. (1). The sudden positive jumps in ζ are due
to the term ϕ̇ cos θ, which comes from the Berry phase.
It is strongly peaked because when ~γ passes close to the
south pole, ϕ̇ is large. The south pole (γ3 = −1) corre-
sponds to full occupancy (ni↑ + ni↓ = 2) of site 2.

Conclusions.—We have proved that approximations
for Γ([γ]; t) going beyond the adiabatic extension of the gs
Γ[γ] are required to achieve time-dependent occupation
numbers in the self-consistent propagation of the one-
matrix equation of motion. The gs Γ[γ] lacks dynamical
phases present in the exact Γ([γ]; t). The correlated LZ
problem studied here provides important insights into the
behavior of these phases in many-body systems.
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