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Abstract

We present a generalization of the construction of graphs by Lubotzky, Phillips and
Sarnak in their celebrated article “Ramanujan graphs” [32]. The new approach consists in
using octonion algebras rather than quaternions. A key tool is the existing result of the
unique factorization of integral octonions. The families obtained by this mean present not
only the same spectral property that make them good expanders, but also show a larger
girth, yielding a new record for regular graphs.

1 Introduction

Ramanujan graphs and expanders. Given a k-regular undirected graph Gn,k of size n, the
eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λn−1 of the adjacency matrix of Gn,k, are real (it is a symmetric
matrix) and satisfy |λi| ≤ k. Moreover, λ0 = k and if the graph is connected, then λ1 < k.
The graph is bipartite if and only if λn−1 = −k. The graph G is a Ramanujan graph if all its
eigenvalues distinct from ±k are in the interval [−2

√
k − 1, 2

√
k − 1]. Ramanujan graphs are

in a sense (asymptotically) extremal graphs with respect to the second largest eigenvalue in
absolute value because of the following lower bound due to Alon and Boppana [1]

lim
n

λ(Gn,k) ≥ 2
√
k − 1,

where λ(Gn,k) denotes the second largest eigenvalue in absolute value of Gn,k.
The fact that λ(Gn,k) is so small implies many other properties since they are then good

expander graphs. Graphs with large expansion have proved to be a quite useful object in various
domains ranging from mathematics and computer science to physics, see the survey [23] which
depicts some of these applications. Random k-regular graphs are known to typically meet
such a behavior (see for instance [8] and [42] for the first existence results of good expanders
obtained by probabilistic arguments). However, even if this kind of probabilistic argument
shows the existence of graphs with large expansion, it does not provide explicit examples of
graphs which are good expanders. The approach consisting in generating a graph randomly
and then checking whether or not it has large expansion is considered to be impracticable: even
checking a weak form of expansion turns out to be coNP-complete [6]. It has been observed
that this problem can be circumvented by relating the expansion properties to the spectral
gap (that is λ0 − λ1) or to λ(Gn,k), see for instance [1]: the expansion coefficient can be
lower bounded by an increasing function of the spectral gap or λ(Gn,k). Since these spectral
quantities can be computed efficiently with an arbitrary precision, this gives an efficient method
for obtaining graphs displaying at least a certain amount of expansion. Up to now, this spectral
method has proved to be the best method for certifying a rather large expansion. Ramanujan
graphs represent here the graphs with the best certified expansion properties known. At the
moment, Ramanujan graphs have been superseded only in one case, namely for the expansion
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of small subsets of vertices [29]: graphs obtained by the zigzag product [52] have a better
certified expansion in this case. The guaranteed expansion obtained by taking Ramanujan
graphs together with the aforementioned spectral lower bound on the expansion is not as large
as the one known for random graphs, however it is generally sufficient and satisfactory for many
applications.

Obtaining explicit infinite families of Ramanujan graphs of a given degree has been quite
a breakthrough in spectral graph theory. The first constructions of this kind were obtained
by Lubotzky-Philips-Sarnak [32] and Margulis [35]. They were followed by the constructions
of [43, 10, 37, 28] for instance. From them, Ramanujan graphs have been obtained for all degrees
k of the form k = q + 1 where q is any prime power.

Graphs of large girth. Besides their expansion property, the Ramanujan graphs constructed
in [32, 35, 10, 37] presented another breakthrough. They had a large girth (the girth being the
smallest size of its cycles) and improved significantly the narrow knowledge on this matter. Let
us mention (see for instance [2, p.154]) the following upper bound for the girth,

for k ≥ 3, any k-regular graph G verifies: girth(G) ≤ 2 logk−1 |G|, (1)

where |G| denotes the number of vertices of G and girth(G) is the girth G. This bound motivates
the following definition of Biggs [3]. A family {Gi}i of k-regular graphs is of large girth if and
only if there exists some positive constant γ such that for any graph in this family we have

girth(Gi) ≥ γ logk−1 |Gi|. (2)

For a long time, the best result in this direction was the non constructive result of Erdős and
Sachs [18] and its improvements by Sauer and Walther (for more details see [7, p. 107]) which
showed the existence of families of graphs with γ = 1. The first explicit constructions were
obtained by Margulis [34] but achieved constants γ which were strictly smaller than 1. Proving
that there exist families of graphs with a value of γ greater than 1 was finally obtained in [51]
for a family of graphs of degree k = 3 suggested by [5], by showing that for these graphs the
following inequality holds

girth(Gi) >
4

3
logk−1 |Gi| − 2.

As suggested by [20], large girth needs not be an unusual property for some families of graphs,
but those with a constant γ > 1 tends to be very seldom 1. The bipartite Ramanujan graphs
constructed in [32, 35] also achieved the constant γ = 4

3 but this time for all degrees of the form
k = p + 1, where p is a prime number strictly greater than 2 (originally, only for the primes
p ≡ 1 (mod 4), and for any odd primes, see [13]). Ramanujan graphs of degree 3 which achieved
γ = 4

3 were obtained afterwards in [10]. Moreover, Morgenstern in [37] finally obtained infinite
families of Ramanujan graphs achieving γ = 4

3 for all degrees of the form k = q + 1 where q is
any prime power. These Ramanujan constructions do not only overcome the γ = 1 barrier, they
are also explicit which is essential for applications. It should also be mentioned that a quite
different graph construction has been proposed in [30] for degrees of the form k = q where q is
a prime power, and where it has been shown that it contains connected components Gi which
satisfy the inequality

girth(Gi) ≥
4

3
logk(k − 1)|Gi|,

which is slightly worse than the constant γ = 4
3 achieved in the aforementioned articles but

achieves it asymptotically as the degree k goes to infinity.

1To quote [20], “it is a miracle that the lower bound constant 4
3
is greater than 1” (see for example Conjecture

5 in their paper)
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Our contribution. One of the main result of our paper is to obtain families of graphs which
improve upon γ = 4

3 in (2). We give here a construction of infinite families of regular graphs
for degrees of the form k = p3 + 1, where p is any odd prime, for which

girth(Gi) ≥
12

7
logk−1 |Gi| − 2 logp 2.

We also prove that these graphs are Ramanujan. These graphs exist for all sizes of the form
n = q7 − q3, where q is any odd prime satisfying q > p.

The idea underlying our construction is to replace in the Ramanujan graph construction
of Lubotzky-Philipps-Sarnak & Margulis the quaternions by octonions. unique factorization
property, that is available for integral octonions since the work of Rehm [44]. The Ramanujan
graphs of [32, 35] built upon quaternions can be described as Cayley graphs on groups. This is
no more the case for our construction on octonions. These graphs have a description in terms
of Cayley graphs on loops, the non-associative counterpart of groups.

Comments. The property of large girth, besides its own theoretical interest, can be applied
to LDPC codes. This approach was pioneered by Margulis in [34], where he gave the first
constructive example of a family of LDPC codes of unbounded minimum distance by providing
explicit families of regular graphs of large girth. Such a property is quite useful in this context
for several reasons:
(i) Tanner gave in [48] a construction of codes based on graphs together with a lower bound on
the code minimum distance growing exponentially with the girth;
(ii) these LDPC codes are decoded with the help of iterative decoding algorithms working on
a certain graph associated to the code construction and the performance of such algorithms
is known to deteriorate in the presence of small cycles. This phenomenon is related to the
fact that these iterative decoding algorithms compute symbol probabilities conditioned on an
exponentially large (in the number of iterations) number of received symbols as long as the
number of iterations is smaller than half the girth [19], but that does not hold anymore for a
larger number of iterations.

Lower bounds on the code minimum distance and the number of errors which can be decoded
with iterative decoding algorithms can also be obtained from lower bounds on the expansion [46,
47]. It makes sense in this context to use graphs which are at the same time of large girth and
good expanders. The Ramanujan graphs proposed by [32, 35] are very good candidates for
this. This was suggested in [45], see also [31]. It should also be mentioned that there is one
particular LDPC code family where both properties of being Ramanujan and having a large
girth can be used together, namely for cycle codes which were introduced in [21], where it can
be proved (see [49]) that regular cycle codes obtained from the constructions of Ramanujan
graphs given in [32, 35, 37] correct the largest possible fraction of errors. It should be pointed
out here that the approach used in [49] could also be applied to the Ramanujan graphs based on
octonions given here and that the larger girth of our construction compared to the constructions
of [32, 35, 37] would lead to improved upper bounds on the probability of error after decoding.

Cayley graphs are usually thought to require groups. This is absolutely not necessary, much
weaker algebraic structures like quasi-groups are sufficient. For a modern treatment, see [39]
and references therein. The algebraic non-associative structures arisen from octonion algebras
are well-known, and have the strong property of being Moufang loops. It is tempting to think
that these would constitute the first algebraic construction of expanders not based on a group.
But we do not know whether there exist groups on top of which these graphs could be Cayley
graphs. We did not even prove that they are vertex-transitive, which is a stricly weaker property
than being a Cayley graph on a group.
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2 Preliminaries on octonions

All the material on octonions required for this construction is contained in the article of
Rehm [44], where a more substantial bibliography can be found. A good complementary mate-
rial is Ch.9 of [11]. For convenience, we define and cite the main theorems along with setting
notation.

Octonions We denote by O(R) (or simply by O when the meaning of R is clear from the
context) the octonion algebra over a ring R, that is the 8-dimensional R-module with canonical
basis denoted by 1, i, j, k, t, it, jt, kt, usually referred as the unit bases. Here we will choose
R = Z,Q,Fp. A unit basis x 6= 1 verifies x2 = −1. Here 1, i, j, k is the usual quaternion basis
and satisfies

i2 = j2 = k2 = −1, ij = k. (3)

The conjugate of an octonion α = a0 + a1i+ · · ·+ a7kt is α
def
= 2a0 − α. It is a (ring) antiauto-

morphism of O, that is a bijection O that satisfies for any α, β in O:

1̄ = 1

α+ β = α+ β

αβ = βα. (4)

If we let the quaternion algebra H be the R-module with basis 1, i, j, k, then the octonions can
be viewed as O = H + Ht. The multiplication of octonions is completely determined by the
multiplication of quaternions and the rule

(α1 + α2t)(β1 + β2t) = α1β1 − β̄2α2 + (β2α1 + α2β̄1)t (5)

for α1, α2, β1, β2 ∈ H. It is easy to check that the multiplication of octonions is not associa-
tive. For instance, if we define a triad to be a set of 3 elements among the seven unit bases
{i, j, ij, t, it, jt, kt}, then it is well known (Cf. [12]) that among the 35 possible triads, only 7 are
associative, namely:

i, j, k , i, t, it , j, t, jt , k, t, kt, and k, jt, it , j, it, kt , i, kt, jt. (6)

Each of these associative triads generates, with the additional basis unit 1, a quaternion sub-
algebra. Octonion algebras are never associative but are alternative algebras:

(alternative algebra identities) (αα)β = α(αβ) and β(αα) = (βα)α. (7)

These 2 conditions are equivalent to the fact that the trilinear map called associator [a, b, c] =
a(bc)− (ab)c is alternating. It follows that octonion algebras verify the Artin theorem:

Theorem 1 (Artin) In an alternative algebra, any two elements generate an associative sub-
algebra.

In our case, we will often use the following corollary

Corollary 1 Let α, β be elements of O(Q). Then

(αβ)β̄ = α(ββ̄), α(ᾱβ) = (αᾱ)β. (8)
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Octonions are endowed with a norm N , that is a quadratic form. Here, the associated
bilinear map will be:

〈 a0 + a1i+ · · · + a7kt , b0 + b1i+ · · ·+ b7kt 〉 = a0b0 + · · ·+ a7b7.

Hence, the norm is here simply a sum of 8 squares. It can be defined equivalently by N(α) = αᾱ.
The important property is its multiplicativity: N(αβ) = N(α)N(β) for any octonions α and β.
This follows directly from Theorem 1 and the antiautomorphism property (4)

N(αβ) = (αβ)αβ = (αβ)(βα) = α(ββ̄)ᾱ = N(β)αᾱ = N(α)N(β).

Let O(R)⋆ denote the set of invertible octonions. Clearly, if α is invertible, then α−1 =
N(α)−1α. It follows that:

O(R)⋆ = {α ∈ O(R) | N(α) ∈ R⋆}.

Loops. The set of invertible elements in an alternative ring is a Moufang loop (Cf. [9, p. 254]
and [11, p. 87-88]). Recall that

Definition 1 (loop) A loop is a set L with a binary operation ∗, such that
(i) for each a and b in L, there exist unique elements x and y in L such that: a ∗ x = b and
y ∗ a = b;
(ii) there exists a unique element e such that x ∗ e = x = e ∗ x for all x in L.

It follows that every element of a loop has a unique left and right inverse. A loop where the
right and left inverses coincide is an inverse loop. We denote in this case by x−1 the unique
element such that x ∗ x−1 = x−1 ∗ x = e. A Moufang loop is a loop satisfying one of the three
equivalent following identities:

Moufang identities:
(αβα)γ = α((βα)γ)
(αβ)(γα) = α(βγ)α
((βα)γ)α = β(αγα)

(9)

It is straightforward to check that a Moufang loop is an inverse loop [11, Ch. 7] or [9, Lemma 2A
and 2B, p. 292].

Unique factorization As for integers (and Gauß integers, and integral quaternions), the
first step toward a factorization property is an Euclidean division2. In the quaternions case,
unlike what happens with ordinary integers and Gauss integers, two integral quaternions whose
norms have a common divisor do not necessarily have a common divisor which is an integral
quaternion (consider for instance 2 and 1 + i + j + k). Hurwitz noticed that it is possible to
obtain a satisfactory arithmetic of quaternions by considering instead quaternions with integer
or half integer coordinates [24, 25], and his result was fully understood after Dickson [16]
and his concept of maximal arithmetic (also called a maximal order). Recall here that an
arithmetic (or an order) for a ring R which is a finite-dimensional algebra over the rational
number field Q, is at the same time a subring of R and a finitely generated Z-module which
spans R over Q. It is maximal if is not contained in a larger arithmetic. For octonions, there
are 7 distinct maximal arithmetics which were identified by Coxeter [12]. They allow as in the
case of Hurwitz quaternions to obtain a set of octonions which obey the essential divisibility

2or that the class number of ideals is equal to 1. But for constructive purposes, the Eulidean division is
essential, and anyway, there is no concept of class number in octonion rings.
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properties of ordinary integers. Each of them is related to one associative triad in (6). While for
quaternions the Euclidean algorithm can then be directly initiated to obtain left and right gcds,
the lack of associativity of octonions complicates the matter. Rehm [44, Prop. 4.1], obtained
a kind of distortion of the Euclidean algorithm, by using only the alternative property (7).
With clever counting arguments, unique factorization follows in a similar fashion to integral
quaternions, except that of course some bracketing must be specified.

The result of Rehm is stated in the Coxeter maximal arithmetic CO associated to the asso-
ciative triad i, j, k. Defining h = 1

2 (i+ j+ k+ t), CO is the Z-module with basis 1, i, j, k, h, ih, jh, kh
(Cf. [12, p 567]). It contains strictly O(Z) (and the 6 other maximal arithmetics associated to
the 6 other triads are isomorphic to this one). Therein, there are not only 16 units as in O(Z)
but rather 240. Since

ih =
1

2
(−1− j+ k+ it)

jh =
1

2
(−1 + i− k+ jt)

kh =
1

2
(−1− i+ j− kt)

it is straightforward to check that

Lemma 1 CO is the set of octonions of the form 1
2(a0+a1i+a2j+a3k+a4t+a5it+a6jt+a7kt)

where the ai’s are integers which satisfy

(a0, a1, a2, a3) ≡ (a4, a5, a6, a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 0 (mod 2),

(a0, a1, a2, a3) ≡ (1− a4, 1− a5, 1 − a6, 1− a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 1 (mod 2).

Given an octonion α = a0 + a1i + . . . + a7kt ∈ O(Q)⋆, we say that it is positive and write
α > 0 if and only if the smallest i such that ai 6= 0 is > 0. Let p be an odd prime number.
Related to unique factorization, we define (Cf. [44, Prop. 5.6]):

P(p)
def
= {α ∈ O(Z) : α > 0 , N(α) = p , α− 1 ∈ 2CO} (10)

Rehm also proved that |P(p)| = p3 + 1 (Cf. [44, Prop. 6.4]). The main result of him in [44],
that is fundamental in the present work is the following:

Theorem 2 [44] Let α ∈ CO be primitive, that is the gcd of its coefficients in any Z-basis is 1.
Suppose that N(α) = p1 · · · ps where the pi’s are prime integers, not necessarily distinct. There
exist a unique ǫ ∈ C⋆

O and unique πi ∈ P(pi) for i = 1, . . . , s, such that:

α =
(
· · · (ǫπ1π2)π3 · · ·

)
πs,

with ǫ ∈ C⋆
O and πi ∈ P(pi).

Remark: This writing depends heavily on the order in which the factorization sequence p1 · · · ps
of N(α) is chosen.

3 Arithmetic construction of the infinite (p3 + 1)-regular tree

Overview of the whole construction. Similarly to [32, 35, 10, 37], our Ramanujan graph
construction can be decomposed in two steps.
1. The first step consists of constructing the (p3 + 1)-regular infinite tree in an arithmetic way
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by using octonions.
2. Finite Ramanujan graphs are derived from this tree by taking suitable finite quotients of this
tree which do not create small cycles.

We will detail the first step in this section. It will also turn out that our construction has a
description in terms of Cayley graphs defined over loops. This will be explained in Section 4.

Several useful lemmas on the factorization of octonions of norm pt. The main
ingredients used for the construction are the unicity of factorization property of Theorem 2 and
considering products of elements of CO of the following form

(

. . .
(
(

︸ ︷︷ ︸

open brackets

ǫα1)α2

)
α3 · · ·

)

αℓ,

where ǫ ∈ C⋆
O, αi ∈ CO − C⋆

O and αi 6= αi+1 for i = 1, . . . , ℓ − 1. We say that such products
are irreducible products. This terminology comes from the fact that products of elements of CO
which are not irreducible can be simplified by using Corollary 1 of Artin’s theorem. We also
use the following lemma.

Lemma 2 Any irreducible product (. . . ((ǫπ1)π2)π3 · · · )πt of an invertible element ǫ in C⋆
O and

elements π1, . . . , πt of P(p) is primitive.

Proof: We proceed by contradiction and consider an irreducible product α of an invertible
element and elements of P(p) of minimal length which is not primitive. We may write this
element as α = βπ, where β is a primitive irreducible product of an invertible element and
elements of P(p) and π is an element of P(p). For an element γ of CO, let us denote by c(γ)
the content of γ, which is the largest integer dividing γ (it is also the greatest common divisor
of the coefficients of γ in some Z basis of CO). We obviously have

c(α)|c(απ̄) (11)

because the coefficients of απ̄ are integer linear combinations of the coefficients of α in a Z

basis. Since απ̄ = (βπ)π̄ = β(ππ̄) = pβ by Corollary 1, we obtain that c(απ̄) = p. This
together with (11) implies that c(α) = p and that p divides α. We may therefore write α as
α = γp = γ(π̄π) = (γπ̄)π (by using Corollary 1 again) for some γ ∈ CO. Therefore β = γπ̄. γ
is necessarily primitive, since β is primitive. By Theorem 2, we can write γ as an irreducible
product of a unit ǫ and elements π1, . . . , πs of P(p):

γ = (. . . ((ǫπ1)π2) · · · )πs.

This implies that β is of the form

β = ((. . . (ǫπ1)π2 · · · )πs)π̄.

This is an irreducible product, for if πs were equal to π, β would be divisible by p and would
not be primitive. From Theorem 2 applied to β, we know that this is the only way we can write
β as an irreducible product, and therefore that the product α is necessarily of the form

α = βπ = (((. . . ((ǫπ1)π2) · · · )πs)π̄)π,

which contradicts the assumption on its irreducibility. 2
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Proposition 1 Any element α ∈ O(Z) of norm N(α) = pt and with α ≡ 1 mod 2CO, can be
uniquely written as:

α = ±ps((. . . (α1α2) · · ·αt−2s−1)αt−2s,

where ((. . . (α1α2) · · ·αt−2s−1)αt−2s is an irreducible product with elements αi ∈ P(p).

Proof: First of all, let us assume that there exist an non-negative integer s, an ǫ in C⋆
O and

elements π1, . . . , πu such that α can be written as an irreducible product

α = ps
(
. . . ((ǫα1)α2)α3 · · ·

)
αu. (12)

By taking norms on both sides, we see that u = t− 2s. Moreover, by Lemma 2, the irreducible
product

(
. . . ((ǫα1)α2)α3 · · ·

)
αu is primitive. Therefore ps is necessarily the largest power of

p which divides α. We choose now s like this, and since p−sα is in O(Z) and is primitive, we
can apply Rehm’s theorem to it and write p−sα =

(
. . . ((ǫα1)α2) · · ·

)
αt−2s, with ǫ ∈ C⋆

O and
αi ∈ P(p). In other words α can be written in the form given in (12). The unicity of this
form follows from the discussion above and the unicity of the decomposition of p−sα ensured
by Theorem 2.

The invertible element ǫ is necessarily in O(Z). Let us assume that this is not true, ǫ ∈
C⋆
O −O(Z). Let us first prove the following

“a ∈ CO −O(Z) and b ∈ 1 + 2CO implies ab ∈ CO −O(Z)”.

Notice that a has necessarily in the 1, i, j, k, t, it, jt, kt basis at least one coordinate which is of
the form m

2 where m is an odd integer. Write now ab = a(1 + 2c) = a + 2ac for some c ∈ CO.
But 2ac is in O(Z), which implies that ab has some coordinate of the form m

2 + n, where n is
some integer. This shows that ab is not in O(Z) and finishes the proof of the aforementioned
property.

When we apply this property recursively to ǫα1, (ǫα1)α2, . . . ,
(
· · · ((ǫα1)α2) · · ·

)
αt−2s, we

see that they are all in CO −O(Z), and therefore so is also α = ps
(
· · · ((ǫα1)α2) · · ·

)
αt−2s. This

is a contradiction, because α is in 1 + 2CO and hence also in O(Z).
Therefore, ǫ is among the 16 units of O(Z)⋆. By using Corollary 1, it is straightforward to

check that we can write ǫ as

ǫ = ps−t
(
. . . ((αᾱt−2s)ᾱt−2s−1) · · ·α2

)
ᾱ1

The set 1 + 2CO is stable by multiplication, therefore
(
. . . ((αᾱt−2s)ᾱt−2s−1) · · ·α2

)
ᾱ1 belongs

to 1+ 2CO and so does ǫ. We conclude the proof by observing that the only invertible elements
in O(Z)⋆ which are also in 1 + 2CO are ±1. 2

The construction of the infinite tree This lemma has a simple corollary, namely that all
irreducible products (. . . (α1α2) · · ·αs−1)αs of elements of P(p) are different. These will be the
vertices of a tree we want to build.

Definition 2 Let Λ be the set of all irreducible products with elements in P(p) (with the con-
vention that the void product belongs to it and is equal to 1).

Let T be the infinite graph with:

• vertex set Λ;
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• edge set defined as follows. By Proposition 1, any vertex can be viewed in a unique way
as a irreducible product (. . . (α1α2) · · ·αs−1)αs where the αi’s belong to P(p). There is
an edge between (. . . (α1α2) · · ·αs−1)αs and vertices of the set

{(. . . (α1α2) · · · )αs−1} ∪ {((. . . (α1α2) · · ·αs−1)αs)π : π ∈ P(p)− {ᾱs}}

By the convention that the void product is equal to 1, the vertex 1 is linked with all
vertices labelled by π, for π ∈ P(p).

It is clear by construction of the graph that T is the infinite (p3 + 1)-regular tree.

Cayley graphs on loops Let us give an interpretation of this arithmetic construction of the
(p3+1)-regular tree in terms of a Cayley graph on a loop, which is a slight generalization of the
usual Cayley graph definition (see for instance [39]).

Definition 3 (directed/undirected Cayley graph on a loop) Let L be a loop and S be a

generating set for it. The directed Cayley graph
−−→
Cay(L,S) has for vertices the elements of L

and for edges {(l, ls), l ∈ L, s ∈ S}. The undirected Cayley graph Cay(L,S) is obtained from−−→
Cay(L,S) by replacing each directed edge (l, ls) by an undirected edge {l, ls}. Equivalently, there
is an edge between l and l′ if and only if there exists s in S such that either l′ = ls or l = l′s.

For the usual Cayley graph on a group, the undirected version is a |S|-regular graph without
self-loops3 if and only if S = S−1 and 1 /∈ S. There is a generalization of this property for Cayley
graphs on loops.

Proposition 2 [38, Theorem 8] Cay(L,S) is a |S|-regular graph without loops iff
(i) ∀ l ∈ L, l 6∈ lS,
(ii) l ∈ (ls)S for any s ∈ S.

Note that if L is a Moufang loop, then this is equivalent to 1 6∈ S and S−1 = S, as in a
group. Cayley graphs on groups are of course vertex transitive, this is not necessarily the case
for Cayley graphs defined on loops. The problem is that left multiplication by a loop element
does not necessarily yield a graph automorphism because of the lack of associativity. Indeed,
any regular graph can be realized as Cayley graph on a certain loop [38].

To view the tree T as a Cayley graph on a loop, we endow the vertex set Λ with the following
operation

Definition 4 Let α, β be two elements of Λ. By Proposition 1 these vertices can be written in
a unique way as irreducible products over P(p), α = (. . . (α1α2) · · · )αs, β = (. . . (β1β2) · · · )βt.
By using Proposition 1 again, there exists a unique irreducible product γ on P(p) such that
αβ = ±pℓγ, with N(γ) = ps+t−2ℓ, that is γ is an irreducible product of length s + t − 2ℓ. We
define

α ∗ β def
= γ.

Proposition 3 The set Λ endowed with the multiplicative law ∗, is a Moufang loop generated
by P(p).

3 a self-loop, that is an edge with the same origin and extremity, should not be confused with the meaning of
a loop here, i.e. a weaker algebraic structure than a group.
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Proof: Clearly 1 ∗ α = α ∗ 1 = α for any α ∈ Λ.
Let α be some element of Λ. It belongs to 1 + 2CO and is primitive by Lemma 2. This

is therefore also the case for ᾱ. By Proposition 1 we know that either ᾱ or −ᾱ belongs to
Λ. If α ∈ Λ, then since αᾱ = ps where ps = N(α), we get α ∗ ᾱ = 1. The case −α ∈ Λ is
treated similarly. This shows that Λ is a loop. It remains to show that ∗ satisfies the Moufang
identities (9).

The following equalities come from the definition of ∗:

(α ∗ (β ∗ α)) ∗ γ = (α ∗ (p−s1βα)) ∗ γ,
= p−s1(p−s2α(βα)) ∗ γ
= p−s1−s2p−s3(α(βα))γ

for some non-negative integers s1, s2 and s3. From the Moufang identities (9), (α(βα))γ =
α((βα)γ), it comes that (α ∗ (β ∗ α)) ∗ γ = α ∗ ((β ∗ α) ∗ γ). 2

With this definition, it is straightforward to check that the one to one mapping between
elements of Λ and their representation as irreducible products of elements of P(p) gives an
isomorphism between T and Cay(Λ,P(p)).

Proposition 4 The following graph isomorphism holds:

T ≃ Cay(Λ,P(p)).

4 Obtaining finite graphs from T by reducing Λ modulo another

prime q

Reducing to finite graphs Basically, finite graphs are obtained from the arithmetic con-
struction of T by reducing the octonions in Λ modulo another prime q. For reasons which will
appear later on we also assume that q is chosen to be greater than p. Notice that we obtain in
this way elements in O(Fq)

⋆, because the norm of elements of Λ is a power of p which is therefore
invertible modulo q. Let us denote by τq the reduction modulo q map τq : O(Z) → O(Fq). By
the definition of the profuct ∗, the following holds:

τq(α ∗ β) = τq(ǫp
−sαβ) = τq(ǫp

−s)τq(α)τq(β), (13)

for some nonnegative integer s and ǫ ∈ {−1, 1}. We note that τq(ǫp
−s) is in F⋆

q, identified as a
subset of O(Fq)

⋆. Subset that appears to be precisely the center Z of O(Fq)
⋆, as can easily be

checked. It follows that the two elements τq(α ∗ β) and τq(α)τq(β) differs only by an element
in the center. Therefore, they yield the same element in the quotient loop O(Fq)

⋆/Z. In other
word, the map

µq : Λ → O(Fq)
⋆/Z,

α 7→ τq(α)Z.

is a loop homomorphism. Indeed, Equality (13) clearly implies µq(α ∗ β) = µq(α)µq(β). In
addition, since O(Fq)

⋆ is a Moufang loop, O(Fq)
⋆/Z is itself a Moufang loop. We have proved:

Lemma 3 The map µq is a homomorphism of Moufang loops.

Our graphs will be defined as Cay(Im µq, µq(P(p)) when these graphs are bipartite or by
double covers of this Cayley graphs (which are therefore bipartite) when this is not the case.
The reason for this is that bipartite graphs have only even cycles and we have in the case of
Cay(Im µq, µq(P(p)) a very good lower bound on the size of cycles of even length, but the lower
bound on cycles of odd length is only half the aforementioned bound.
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Determining Im µq. Let us bring in M1 and Mp the subloops of O(Fq)
⋆ consisting of in-

vertible elements of norm 1 for M1, and of norm Let Zp
def
= {±ps, s = 0, 1, . . . , q − 2} and

Z1
def
= {−1, 1}. Since Z1 ⊂ Zp ⊂ F⋆

q we can embed the corresponding quotient loops in O(Fq)
⋆/Z

as follows
M1/Z1 →֒ Mp/Zp →֒ O(Fq)

⋆/Z
aZ1 7→ aZp

bZp 7→ bZ
(14)

Via these embeddings, they can be identified as subloops of O(Fq)
⋆/Z. By a result of Paige [41,

Theorem 4.1] M1/Z1 is a simple Moufang loop, and an index 2 normal subloop4 of O(Fq)
⋆/Z

(in total analogy with PGL2(Fq) and PSL2(Fq)). It follows that Mp/Zp = M1/Z1 or O(Fq)
⋆/Z

(Cf. Corollary 2 for an answer to this issue).

Lemma 4 (the image of µq) We have Im µq = Mp/Zp.

Proof: Every elements of Λ has a norm a power of p, so the inclusion Im µq ⊂ Mp/Zp is clear.
To obtain the other inclusion, we first show that for any element α = a0+a1i+ . . .+a7kt ∈ O(Z)
such that N(α) ≡ pr (mod q) for some integer r, there exists an element β = b0+b1i+. . .+b7k ∈
1 + 2CO such that
(i) ai ≡ bi (mod q),
(ii) N(β) = pℓ for some integer ℓ.

To prove this claim we use as in [32, Prop. 3.3], a result of Malyshev on the number of
solutions of integral definite-positive quadratic forms [33]. This result can be described as
follows. Let f(x1, . . . , xn) be a quadratic form in n ≥ 4 variables with integral coefficients
and discriminant d. Let m be an integer prime to 2d. Malyshev proved that there exists
some constant depending on f , K(f) such that for any N ≥ K(f), N generic for f (that is
f ≡ N (mod r) has at least one solution for every r), gcd(m, 2Nd) = 1 and for which there
exist integers ai such that gcd(a1, . . . , an,m) = 1, f(a1, . . . , an) ≡ N (mod m), then there are
integers b1, . . . , bn such that
(i) bi ≡ ai (mod m),
(ii) f(b1, . . . , bn) = N . Let us first assume that p ≡ 1 (mod 4). We apply the aforementioned

result of Malyshev to f(x0, . . . , x7)
def
= x20 +4(x21 + · · ·+ x27). This is an integral positive definite

quadratic form. The discriminant of f , d = 27, verifies gcd(2dpℓ, q) = 1 for any ℓ. There are
obviously integers (a′0, . . . , a

′
7) such that f(a′0, . . . , a

′
7) ≡ pr (mod q) by the assumption on α (by

taking a′0 = a0 and a′i ≡ 2−1ai (mod q) for i ∈ {1, . . . , 7}), and such that gcd(a′0, . . . , a
′
7, q) = 1.

Now choose ℓ such that pℓ ≥ K(f) and pℓ ≡ pr (mod q). It is straightforward to check that pℓ

is generic for f (this follows from the fact that pℓ ≡ 1 (mod 4)). Therefore there exist integers
(b′0, . . . , b

′
7) satisfying

b′20 + 4b′21 + · · ·+ 4b′27 = pℓ.

This implies the existence of the aforementioned octonion β of norm equal to pℓ which is
congruent to pr modulo q by setting b0 = b′0, bi = 2b′i for i ∈ {1, . . . , 7}. This octonion belongs
to 1 + 2CO since b0 ≡ 1 (mod 2).

Now, let us consider the remaining case p ≡ 3 (mod 4). We can use the same proof as before
for the case where ℓ is even, since in this case pℓ ≡ 1 (mod 4). In the case of an odd ℓ, pℓ is no
more generic for f , indeed f(x0, . . . , x7) ≡ pℓ (mod 4) has no solution: this equation reduces to
x20 ≡ 3 (mod 4) which has no solution. In order to treat this case we consider another quadratic
form, namely

f(x0, . . . , x7)
def
= 4(x20 + x21 + x22 + x23 + x24) + x25 + x26 + x27. (15)

4From Corollary of Lemma 3.4 of [41], since q > p is an odd prime.
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This time pℓ is generic for f . Moreover a solution in Z8 of the equation f(x0, . . . , x7) = pℓ gives
an element β = 2x0+2x1i+2x2j+2x3k+2x4t+x5it+x6jt+x7kt of norm pℓ. Let us show that
β is also in 1+2CO. By reducing Equation (15) modulo 4, we obtain x25+x26+x27 ≡ 3 (mod 4),
hence:

x5 ≡ x6 ≡ x7 ≡ 1 (mod 2).

The element β−1
2 = 2x0−1

2 + x1i+ x2j+ x3k+ x4t+
x5
2 it+

x6
2 jt+

x7
2 kt is therefore in CO by using

the characterization of CO provided by Lemma 1.
Summing up the whole discussion we obtain in both cases an element β in 1 + 2CO of norm

pℓ. By applying Proposition 1 to it, we can write β as

β = ǫpsγ

for some non-negative integer s, ǫ in {−1, 1} and γ in Λ. Since τq(α) = τq(β) we have that
τq(β) ∈ τq(α)Zp and therefore τq(γ) ∈ τq(α)Zp. In other words, τq(α)Zp ∈ Im µq. 2

Since M1/Z1 is of index 2 in O(Fq)
⋆/Zp, the image loop µq

(
Λ
)
= Mp/Zp is either equal to

M1/Z1 or O(Fq)
⋆/Z. A direct consequence is:

Corollary 2 If
(
p
q

)

= 1, then Im µq = M1/Z1.

Else, when
(
p
q

)

= −1, Im µq = O(Fq)
⋆/Z.

Proof: The loop homomorphism O(Fq)
⋆ → Z/2Z, α 7→

(
N(α)
q

)

, regarding the definition of Z,

factorizes into this homomorphism: ε : O(Fq)
⋆/Z → Z/2Z. Its kernel contains M1/Z1.

Besides, for π ∈ P(p), µq(π) is mapped by ε to 1 or -1 in Z/2Z, according to the sign of
(
p
q

)

. This shows that if
(
p
q

)

= −1, then µq (P(p)) ⊂ O(Fq)
⋆/Z − M1/Z1. From Lemma 4,

we know that M1/Z1 ( Mp/Zp = Im µq, from which follows Im µq = O(Fq)
⋆/Z by Paige’s

theorem.
On the contrary, when

(
p
q

)

= 1, then µq

(
P(p)

)
⊂ ker ε. The multiplicativity of the

Legendre symbol shows that Im µq ⊂ ker ε. It comes, with Lemma 4, M1/Z1 ⊂ Mp/Zp =
Im µq ( O(Fq)

⋆/Z, and Im µq = M1/Z1 by Paige’s theorem. 2

What is ker µq ? By definition, kerµq = {α ∈ Λ | τq(α) ∈ Z}. Write α = a0+a1i+ · · ·+a7kt.
This means that q|ai for i = 1, . . . , 7, and N(α) ∈ F⋆

q. This last condition is already verified for
elements of Λ. If we denote Λ(q) = kerµq, this gives:

ker µq
def
= Λ(q) = {α ∈ Λ s.t q|a1, . . . , q|a7}, and then Λ/Λ(q) ≃ O(Fq)

⋆/Z. (16)

Definition and properties of Xp,q and Yp,q. As mentioned before our finite Ramanujan
graphs will be obtained as Cayley graphs defined over loops.

Definition 5 We define S (p, q)
def
= µq

(
P(p)

)
. If

(
p
q

)

= −1 let Xp,q be the Cayley graphs

Cay
(
O(Fq)

⋆/Z,S (p, q)
)
, and if

(
p
q

)

= 1, let Yp,q be the Cayley graph Cay
(
M1/Z1,S (p, q)

)
.

We have |O(Fq)
⋆/Z| = q7 − q3 [44, Lemma 3.2]. It follows that |Xp,q| = q7 − q3 and

|Yp,q| = 1
2 (q

7 − q3).

Lemma 5 The graphs Xp,q and Yp,q are connected.
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Proof: The set P(p) generates Λ as a loop. The proof of Corollary 2 showed that S (p, q)

generates M1/Z1 if
(
p
q

)

= 1, and O(Fq)
⋆/Z if

(
p
q

)

= −1. It follows that the graphs Xp,q and

Yp,q are all connected. 2

Before giving the degree regularity of these graphs, we recall that |P(p)| = p3 + 1 by [44,
Proposition 6.4].

Proposition 5 The graphs Xp,q and Yp,q are p3 + 1-regular.

Proof: First let us show that |S (p, q)| = |P(p)| = p3+1. Suppose that two distinct elements π
and π′ in P(p) give the same element in O(Fq)

⋆/Z through µq. The equality τq(π)Z = τq(π
′)Z

is equivalent to µq(π ∗ π′) ∈ ker µq = Λ(q). By Equation (16), taking norm gives an equation of
the form p2 = a20+ q2x2, for an a0 and x. If x 6= 0, then p2 ≥ q2, excluded since p < q. If x = 0,
then π ∗ π′ ∈ Z, that is π = π′, also excluded. Finally, µq(π) = µq(π

′) is impossible if π 6= π′.
To prove that they are |S (p, q)|-regular, we must show that S (p, q) satisfies the hypotheses

of Proposition 2, as aforementioned. We already know that if π ∈ P(p) then its inverse for
∗ is π and is in P(p). Hence, P(p)−1 = P(p) for ∗, and since µq is an homomorphism by
Lemma 3 also holds S (p, q)−1 = S (p, q). Last, 1Z 6∈ S (p, q), else there would be a π ∈ P(p)
that would also be in Λ(q), by Equation (16), that is easily checked to be impossible. 2

Proposition 6 The graphs Xp,q are bipartite, and the graphs Yp,q are not.

Proof: First, assume that
(
p
q

)

= −1 (this concerns Xp,q). Consider the partition A ∪ B =

O(Fq)
⋆/Z of the set of vertices of Xp,q:

A = M1/Z1 and B = O(Fq)
⋆/Z −M1/Z1.

Let v ∈ A be a vertex with v = µq(α), and let w = µq(β) be a neighbor of v. By construction
of Cayley graphs, there exists π ∈ P(p), such that µq(α ∗ π) = µq(α)µq(π) = µq(β). This leads
to: (

N(β)

q

)

=

(
N(α)p

q

)

=

(
p

q

)

= −1,

since v ∈ A implies
(
N(α)
q

)

= 1. This means that w ∈ B. In the same way any neighbor x of

w is in A, so the graph is bipartite.

Now assume that
(
p
q

)

= 1 (this concerns the graphs Yp,q). As seen above, a bipartition

A ∪ B of the set of vertices M1/Z1 would imply a non trivial loop homomorphism:

M1/Z1 → Z/2Z.

The kernel of it would consist of a non trivial normal subloop of M1/Z1, excluded since M1/Z1

is simple by Paige’s theorem. 2

It is interesting to consider the bipartite double cover of Yp,q when
(
p
q

)

= 1, especially for

the treatment of the girth in the next section. Recall here that the double cover of a graph G
with vertex set V and edge set E is the graph with vertex set V ′ = V × {0, 1} and there is
an edge between (x, b) and (x′, b′) if and only if {x, x′} ∈ E and b′ 6= b. The double cover is a
bipartite graph and is connected if and only if G is not bipartite.

Definition 6 When
(
p
q

)

= −1, we define Xp,q as the bipartite double cover of Yp,q.

It follows that |Xp,q| = q7 − q3 for any primes 2 < p < q.
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5 Bound on the girth

The result hereunder establishes a new lower bound on the maximal girth of regular graphs.

Theorem 3 For all couples (p, q) of odd primes such that p < q, denoting k = p3+1, we have:
(i) that the girth of Xp,q, which we denote by girth(Xp,q), satisfies

girth(Xp,q) ≥
12

7
logk−1 |Xp,q| − 2 logp 2.

The constant 12
7 is the largest possible.

(ii) For the non-bipartite graphs Yp,q (defined when
(
p
q

)

= 1), the inequality

girth(Yp,q) ≥
6

7
logk−1 |Xp,q| − logp 2 =

6

7
logk−1 |Yp,q| −

5

7
logp 2

holds.

The proof of this theorem follows an approach similar to the one used in [32, 35] for the
lower bound, and [35, 4] for the tightness of this bound. However compared to the Ramanujan
graphs based on quaternions there is an additional difficulty. The former are Cayley graphs on
groups, they are vertex transitive and it is therefore enough to lower bound the size of a cycle
starting at the 1 vertex (1 stands here for the identity in the loop). We do not know whether
our construction is vertex transitive or not, however it is enough to study the cycles starting at
the 1 vertex in our case too. This is a consequence of the following result.

Lemma 6 Given α in Λ, there is a one-one correspondence between:
(a) the closed paths without backtracking of length t′ starting at the vertex µq(α), and
(b) the irreducible products in Λ of length t′ belonging to the kernel Λ(q) of µq.

Proof: A closed path of length t′ without backtracking starting at µq(α) corresponds to an
irreducible product in Λ, of length t′, with letters denoted by β1, . . . , βt′ ∈ P(p) such that:

∀2 ≤ i ≤ t′−1, µq ((. . . (α ∗ β1) ∗ · · · ) ∗ βi+1) 6= µq ((. . . (α ∗ β1) ∗ · · · ) ∗ βi−1) , (no backtracking)

and if γ
def
=

(
. . . (α ∗ β1) ∗ · · ·

)
∗ βt′ , then µq(α) = µq(γ) (closed path).

We must show that the irreducible product β
def
= (· · · (β1β2) · · · )βt′ is in Λ(q). By Corollary 1,

γβt′ =
(
· · · (αβ1) · · · βt−1)βt′

)
βt′ =

(
· · · (αβ1) · · · βt′−1

)
(βt′βt′) = p

(
· · · (αβ1) · · ·

)
βt′−1.

By induction it arrives γβ = pt
′

α, or γ ∗ β = α, or µq(γ)µq(β) = µq(α). But by assumption,
µq(γ) = µq(α), which implies µq(β) = 1Z, since O(Fq)

⋆/Z is a loop. Equivalently, β ∈ ker µq =
Λ(q), and hence β as well, as can be easily checked.

Reciprocally, let us consider an irreducible product γ in Λ(q) of t′ elements γ1, . . . , γt′ in
P(p). Let:

δ
def
=

(
(. . . (αγ1) · · · γt′−1

)
γt′ .

As seen above, δ ∗ γ = α. It follows that µq(δ ∗ γ) = µq(δ)µq(γ). By assumption, µq(γ) = 1.Z,
therefore we also have µq(γ) = 1.Z. So µq(α) = µq(α ∗γ). This corresponds to a path of length
t′, without backtracking, starting at µq(α). 2

The second lemma gives a tight lower bound on the size of irreducible products in Λ of even
length that belong to Λ(q). This yields therefore a tight lower bound on the size of cycles of
even length in the graphs Xp,q or Yp,q.
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Lemma 7 Given t > 0, there exists an irreducible product in Λ(q) of length 2t if and only if
2pt > q2.

Proof: Let β ∈ Λ(q) be as in the statement. It can be written as β = b0 + q(b1i + · · · + b7kt)
where the bi’s are integer coefficients. Moreover, N(β) = p2t gives:

b20 + q2(b21 + · · ·+ b27) = p2t. (17)

At least one bi (with i > 0) is non zero, else β = b0 would yield an irreducible product of length
0, in contradiction with the assumption t > 0. This implies p2t ≡ b20 (mod q)2, or equivalently
pt ≡ ±b0 (mod q)2. We observe that b20 < p2t, so |b0| < pt, and pt = ±b0 +mq2, for a positive
integer m. This implies

p2t = (pt −mq2)2 + q2(b21 + · · · + b27)

= p2t − 2mq2pt +m2q4 + q2(b21 + · · ·+ b27)

⇔ 2mpt −m2q2 = b21 + · · ·+ b27. (18)

Then it follows that 2pt−mq2 > 0. This is because at least one bi (with i > 0) is different from
0, achieving the first part of the proof.

Reciprocally, if m is such that 2pt > mq2, then 2mpt −m2q2 can be represented by a sum
of seven squares: 2mpt −m2q2 = a21 + · · ·+ a27. We choose a0 = pt −mq2, and notice that:

a0 ≡ a20 (mod 2)

≡ p2t − q2(a21 + . . .+ a27) (mod 2)

≡ 1 + a1 + . . . + a7 (mod 2) (19)

This implies that among the 8 integers {a0 − 1, a1, a2, . . . , a7}, the number of odd ones is even,
as well as is the number of even ones. Therefore, after eventually performing a permutation
of the set {a1, . . . , a7}, we can always assume that the two subsets {a0 − 1, a1, a2, a3} and
{a4, a5, a6, a7} contains the same number of odd and even integers. Moreover the permutation
can also be chosen so that the following congruence is verified:

(a0 − 1, a1, a2, a3) ≡ (a4, a5, a6, a7) (mod 2)

With the congruence (19), this shows that the octonion a0 − 1 + a1i + · · · + a7kt verifies the
conditions of Lemma 1 and that it belongs to 2CO. Finally the octonion a0+qa1i+ · · ·+qa7kt ∈
1 + 2CO, hence is in Λ(q), since its norm is equal to p2t by construction. 2

Using both lemmas together we obtain

Proposition 7 The length of the smallest closed non backtracking walk of even length in Xp,q

or in Yp,q is equal to 2⌈2 logp q − logp 2⌉
Proof: Such a walk of length 2t exists if and only if there exists an irreducible product of
length 2t which belongs to Λ(q) by Lemma 6. Using now Lemma 7, we know that such a
product exists if and only if 2pt > q2. The smallest t which satisfies this inequality is clearly
equal to ⌈2 logp q − logp 2⌉. 2

We can now prove Theorem 3.
Proof: (of Theorem 3) The first part of (i) is a consequence of the fact that Xp,q is bipartite,
therefore any cycle it contains is of even length. We can apply now Proposition 7 and lower
bound the length of such a cycle by 2⌈2 logp q − logp 2⌉. Hence

girth(Xp,q) = 2⌈2 logp q − logp 2⌉ = 2

⌈
6

7
logp3 q

7 − logp 2

⌉

≥ 12

7
logk−1(q

7 − q3)− 2 logp 2,
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and the first part of (i) follows. The optimality of the constant 12
7 follows at once from the fact

that

girth(Xp,q) = 2⌈2 logp q − logp 2⌉ = (1 + o(1))
12

7
logp3(q

7 − q3) = (1 + o(1))
12

7
logk−1 |Xp,q|

as q tends to infinity.

To prove (ii), notice that the double cover graph of Yp,q is equal to Xp,q by definition and
that the length of the smallest cycle of the double cover is at most twice the length of a cycle
in Yp,q, therefore

girth(Xp,q) ≤ 2 girth(Yp,q).

and (ii) follows immediately. 2

6 Spectral estimate

The proof that the graph families presented here are Ramanujan follows the proof technique of
Lubotzky Phillips and Sarnak in [32, § 4]. Basically their approach can be summarized as this.

(i) A classical graph spectral argument is first used to relate the number of cycles of a certain
length without backtracking to the spectrum of the graph.

(ii) In the particular case of the Ramanujan family based on quaternions of [32], the number of
cycles without backtracking can be related to the number of integer solutions of a certain
quadratic equation in 4 variables. In our case, a similar result holds with a quadratic
diophantine equation in 8 variables.

(iii) The number of solutions of the quadratic equation is estimated through modular forms
considerations. Basically, it can be expressed as a sum of a Fourier coefficient of an
Eisenstein series and one of a cusp form, both of weight 2. The Fourier coefficient of the
Eisenstein series can be computed explicitly, whereas the Fourier coefficient of the cusp
form is upper-bounded by deep results proving the Ramanujan-Petersson conjectures for
modular forms of weight 2 (using here Eichler and Igusa results [17, 26] relating such a
conjecture to the Riemann hypothesis for algebraic curves on finite fields which was proved
by Weil [50]). In our case, we relate the number of integer to the estimation of Fourier
coefficients of weight 4, where we rely instead on the more general Deligne’s proof [14, 15]
of the Ramanujan-Petersson conjectures for modular forms of even weight, which was
obtained by proving Riemann’s hypothesis for varieties over finite fields.

With the same approach we obtain the following theorem.

Theorem 4 The graphs Xp,q are Ramanujan.

Remarks:

1. We consider here in a unified way the case where Xp,q is a Cayley graph over the Moufang

loop O(Fq)/Z (which corresponds to the case
(
p
q

)

= −1) and where Xp,q is the double

cover of Yp,q (i.e.
(
p
q

)

= 1).

2. This will allow for instance to obtain as a direct corollary (see Corollary 3) that the Yp,q’s
are also Ramanujan.
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Step 1: relating the graph spectrum to the numbers of non-backtracking cycles.
We recall that if A is the adjacency matrix of a graph, then Aℓ is the matrix whose i, j-entry is
the number of paths of length ℓ between the vertices labeled i and j. Assume that the graph
is regular of valency k. The sequence of matrices (Bℓ)ℓ∈N defined by the order 2 recurrence
relation (Cf. [13, 1.4.1 Lemma]):

B0 = Id, B1 = A, B2 = A2 − kId, Bℓ = ABℓ−1 − (k − 1)Bℓ−2, for ℓ ≥ 3,

counts the number of paths without backtracking of length ℓ between two vertices. We recall
that a path (x0, x1, . . . , xℓ) is said to be without backtracking if and only if xi−1 6= xi+1 for
any i ∈ {1, . . . , ℓ − 1}. The Chebychev polynomials (of the second kind) Um(X), defined by

Um(cos θ) = sin(m+1)θ
sin θ , verify an order 2 recurrence relation as well:

Um(X) = 2XUm−1(X) − Um−2(X).

Hence, it is possible to link the Bℓ and the Um in the following way. Defining matrices (Tm)m∈N,

Tm
def
=

∑

0≤ℓ≤m
2

Bm−2ℓ, (20)

comes (Cf. [13, 1.4.5 Proposition]):

Tm = (k − 1)m/2Um

(
A

2
√
k − 1

)

. (21)

Suppose that the graph whose adjacency matrix is A has vertex set V , that |V | = n. Let
λ0 = k ≥ λ1 ≥ · · · ≥ λn−1 the eigenvalues of this graph. Given a vertex x ∈ V , let fℓ,x be
the number of closed paths of length ℓ without backtracking starting at x. By definition of
the matrices (Bℓ)ℓ∈N, fℓ,x is the entry of the diagonal element of Bℓ labeled by the vertex x.
By taking the trace of the matrix Tm using Equation (21) and Equation (20) comes (Cf. [13,
1.4.6 Theorem]):

∑

x∈V

∑

0≤ℓ≤m
2

fm−2ℓ,x = (k − 1)m/2
n−1∑

j=0

Um

(
λj

2
√
k − 1

)

. (22)

We go back now to the graphs Xp,q, so that the size is n = q7−q3 and the valency is k = p3+1.
We differ now slightly from the proof given in [13]. It is not clear that these graphs are vertex

transitive as was the case for the Ramanujan graphs of [32, 35] (these graphs were constructed
as Cayley graphs on groups, and were therefore vertex-transitive). In our case, we obtain that
fℓ,x is independent of the vertex x in a different way by a reformulation of Lemma 6:

Lemma 8 For the graphs Xp,q, the number fℓ,x is independent of the vertex x. When ℓ is
even, this number is equal to the number of irreducible products (. . . (α1α2) · · · )αs of length ℓ
such that (. . . (α1α2) · · · )αs ∈ Λ(q).

Proof: If ℓ is odd, then fℓ,x is equal to zero for every x because Xp,q is bipartite. If ℓ is even,
the statement given is a straightforward consequence of Lemma 6 and the very definition of

Xp,q in terms of a Cayley graph over O(Fq)
⋆/Z (when

(
p
q

)

= −1) or in terms of a double cover

of a Cayley graph over M1/Z1 (when
(
p
q

)

= 1). 2

With this lemma, we denote fℓ,x simply by fℓ. The degree of the graphs Xp,q is k = p3 +1,
therefore Equation (22) becomes (Cf. [13, 1.4.7 Corollary]):

n
∑

0≤ℓ≤m
2

fm−2ℓ = p3m/2
n−1∑

j=0

Um

(
λj

2p3/2

)

. (23)
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Step 2: Expressing the number fℓ of non-backtracking cycles of length ℓ in terms of
the number of solutions of certain quadratic diophantine equations. To start with,
let us introduce briefly some preliminary materials. Given a positive definite quadratic form R,
anf for t ∈ N fixed, let

NR(t)
def
=

{
x = (x0, . . . , x7) ∈ Z8 : R(x) = t

}
, and nR(t) = |NR(t)|. (24)

We consider now the positive definite quadratic form

Q(x) = x20 + q2(x21 + · · · + x27).

For a ∈ {0, 1}8, let us define also the sets

Ea

def
=

{
x ∈ Z8 : Q(x) = t , x ≡ a (mod 2)

}

and for i ∈ {0, 1, . . . , 7}:

Fi
def
=

{
x = (x0, . . . , x7) ∈ Z8 : Q(x) = t , xi ≡ 0 (mod 2)

}
.

In the light of the property of Lemma 1 verified by elements in Λ, the relevant quantity to
consider is not the whole number of integer solutions nQ(t) of Q = t, but the following:

Definition 7 Let rQ(t) denotes the number of solutions of Q(x) = t with x = (x0, . . . , x7) ∈ Z8

and satisfying

(x0, x1, x2, x3) ≡ (1− x4, x5, x6, x7) (mod 2) if x0 + x1 + x2 + x3 ≡ 1 (mod 2),

(x0, x1, x2, x3) ≡ (x4, 1− x5, 1− x6, 1− x7) (mod 2) if x0 + x1 + x2 + x3 ≡ 0 (mod 2).

Indeed, this quantity verifies:

Lemma 9 Let m be a non-negative even integer. The following equality holds:

rQ(p
m) = 2

∑

0≤ℓ≤m
2

fm−2ℓ.

Proof: We already know from Lemma 6 that fm−2ℓ counts the number of irreducible products
in Λ(q) of length m−2ℓ. Let α = a0+a1i+ · · ·+a7kt be such an irreducible product. It belongs
to Λ(q) ⊂ 1 + 2CO therefore, from Lemma 1

(a0, a1, a2, a3) ≡ (1− a4, a5, a6, a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 1 (mod 2),

(a0, a1, a2, a3) ≡ (a4, 1− a5, 1− a6, 1 − a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 0 (mod 2).

And moreover, ai = qa′i for some integers a′i and for 1 ≤ i ≤ 7. Hence, N(α) = pm−2ℓ =
Q(a0, a

′
1, . . . , a

′
7). This α gives two solutions contributing to rQ(p

m), namely±(a0p
ℓ, a′1p

ℓ, . . . , a′7p
ℓ).

Conversely, a solution (x0, . . . , x7) contributing to rQ(p
m) above yields an element β =

x0 + q(x1i + · · · + x7kt) ∈ 1 + 2CO of norm N(β) = pm. That is, β verifies the conditions of
Proposition 1 and there exists a unique irreducible product β′ ∈ Λ such that β = ±pℓβ′. It is
easily verified that β′ is also in Λ(q). Since, N(β′) = p2m−ℓ, this is a contribution to fm−2ℓ. 2

The next step is to relate rQ(t) to the whole number of integer solutions nQS
(t) of certain

quadratic equations QS defined hereunder. Indeed, these nQS
(t) can be estimated sharply (see

the next step), whereas it is not the case for the partial number of solutions rQ(t).
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Definition 8 Given a subset S ⊂ {0, 1, . . . , 7}, we define the following quadratic form

QS(x0, . . . , x7)
def
= φS(0)x

2
0 + q2

∑

1≤i≤7

φS(i)x
2
i ,

where φS(i) = 4 if i ∈ S and 1 otherwise.

It is not difficult to see that nQS
(t) has the following interpretation in terms of the number of

integer solutions of Q(x) = t:

nQS
(t) =

∣
∣{x = (x0, . . . , x7) ∈ Z8 : Q(x) = t , xi ≡ 0 (mod 2) if i ∈ S}

∣
∣ . (25)

With the help of the definition above, now we can prove that:

Lemma 10 There exist integers aS for S ranging over all subsets of {0, . . . , 7} such that

rQ(t) =
∑

S

aSnQS
(t).

Proof: Let A be the set of a = (ai)0≤i≤7 ∈ {0, 1}8 satisfying

(a0, a1, a2, a3) = (1− a4, a5, a6, a7) if a0 + a1 + a2 + a3 ≡ 1 (mod 2),

(a0, a1, a2, a3) = (a4, 1− a5, 1− a6, 1− a7) if a0 + a1 + a2 + a3 ≡ 0 (mod 2).

By definition of Ea, we clearly have:

rQ(t) =
∑

a∈A
|Ea|. (26)

Next, we show that for any a ∈ {0, 1}8 there is a family of integers (uS)S⊂{0,...,7} such that

|Ea| =
∑

S⊂{0,...,7}
uSnQS

(t). (27)

The above plugged in Equation (26) will prove the lemma. To do so, notice that:

Ea =
⋂

i:ai=0

Fi ∩
⋂

i:ai=1

(NQ − Fi), (28)

where NQ denotes the set NQ(t) of (24). This follows directly from the definitions of these sets.

. For b = 0 or 1, let us define Sb
def
= {i : ai = b}. Let also G be the set ∩i:ai=0Fi. Equation (28)

can be rewritten as:

Ea =
⋂

i∈S0

Fi ∩
⋂

i∈S1

(NQ − Fi) = G ∩
(

NQ −
⋃

i∈S1

Fi

)

= G−
(

G ∩
⋃

i∈S1

Fi

)

.

The last equality is justified by the inclusion G ⊂ NQ. We now take cardinal:

|Ea| = |G| −

∣
∣
∣
∣
∣
∣

G ∩
⋃

i∈S1

Fi

∣
∣
∣
∣
∣
∣

= |G| −

∣
∣
∣
∣
∣
∣

⋃

i∈S1

G ∩ Fi

∣
∣
∣
∣
∣
∣

= |G| −
∑

T⊆S1

(−1)|T |−1

∣
∣
∣
∣
∣
G ∩

⋂

i∈T
Fi

∣
∣
∣
∣
∣

(by the inclusion/exclusion principle)

=

∣
∣
∣
∣
∣
∣

⋂

i∈S0

Fi

∣
∣
∣
∣
∣
∣

−
∑

T⊆S1

(−1)|T |−1

∣
∣
∣
∣
∣
∣

⋂

i∈T∪S0

Fi

∣
∣
∣
∣
∣
∣

= nQS0
(t)−

∑

T⊆S1

(−1)|T |−1nQT∪S0
(t) (by using (25))
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This proves Equality (27), which is sufficient to conclude the proof as already mentionned. 2

We assume from now on that m is even, say m = 2ℓ. Equality (23) is then rewritten as:

rQ(p
2ℓ) =

2p3ℓ

n

n−1∑

j=0

Um

(
λj

2p3/2

)

. (29)

For every 0 ≤ j ≤ n−1, there exists a unique θj ∈ [3i2 ln p, 0]∪[0, π]∪[π, π+ 3i
2 ln p] ⊂ C such that:

λj = 2p3/2 cos θj (precisely, θj ∈ [0, π] if |λj | ≤ 2p3/2, θj ∈ [3i2 ln p, 0) for 2p3/2 < λj ≤ p3+1 and

θj ∈ (π, π + 3i
2 ln p] for −p3 − 1 ≤ λj < −2p3/2). Recall that λ0 = p3 + 1 and since the graphs

are bipartite λn−1 = −p3 − 1, so θ0 = 3i
2 ln p and θn−1 = π + 3i

2 ln p. As a consequence, the
graphs are Ramanujan if and only if the θj’s are real for 1 ≤ j ≤ n− 1, which will be proved in
the 3rd step below.

By coming back to the definition of Chebychev polynomials, Equality (29) becomes:

rQ(p
2ℓ) =

2p3ℓ

n

n−1∑

j=0

sin(2ℓ+ 1)θj
sin θj

. (30)

With the aforementioned values for θ0 and θn−1, namely θ0 =
3i
2 ln p and θn−1 = π + 3i

2 ln p, we
check that:

rQ(p
2ℓ) =

4

n

1− p3(2ℓ+1)

1− p3
+

2p3ℓ

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

. (31)

Step 3: Using modular forms techniques to estimate rQ(p
m). Similarly to [32], let us

bring in the Theta series:

ΘS(z)
def
=

∞∑

k=0

nQS
(k)e2iπkz . (32)

By using classical results about Theta series (see for instance [36, §4.9.5] or [40, Chapter VI-3]),
we obtain

Lemma 11 ΘS(z) is a modular form5 of weight 4 for Γ(16q2).

Γ(16q2) denotes here the group of matrices

Γ(16q2) =

{(
a b
c d

)

∈ SL2(Z) :

(
a b
c d

)

≡
(
1 0
0 1

)

(mod 16q2)

}

.

The modular forms ΘS can be decomposed in a unique way as a sum of a linear combination
of Eisenstein series ES(z) =

∑∞
k=0 ek,Se

2iπkz and a cusp form CS(z) =
∑∞

k=1 ck,Se
2iπkz of weight

4 for Γ(16q2) (see [22, article 24, Satz 1. II] for instance), i.e ΘS(z) = ES(z) + CS(z). We can
therefore write by using Lemma 10

∑

S⊆{0,...,7}
aS

(
ep2ℓ,S + cp2ℓ,S

)
=

4

n

1− p3(2ℓ+1)

1− p3
+

2p3ℓ

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

. (33)

The central argument for estimating accurately rQ(p
2ℓ) is that the Fourier coefficients of a cusp

form C(z) =
∑∞

k=1 cke
2iπkz of weight 4 satisfy for every ǫ > 0:

|ck| = Oǫ(k
3/2+ǫ) as k → ∞. (34)

5Actually, ΘS(z) even belongs to Γ0(16q
2) as is readily checked from [36]. However, this allows us to make

directly use of certain results related to Γ16q2 as will appear later on.

20



This comes from the proof of the Ramanujan conjecture for cusp forms of even weight obtained
by using the work of Ihara [27], which reduced the proof of the conjecture to the Riemann
hypothesis for varieties over finite field which was later settled by Deligne in [14, 15].

Since the remaining sum 2p3ℓ

n

∑n−2
j=1

sin(2ℓ+1)θj
sin θj

is clearly of the form o(p6ℓ) as m tends to

infinity, it follows from the upper-bound (34) and from Equation (33) that

∑

S⊆{0,...,7}
aSep2ℓ,S =

4

n

1− p3(2ℓ+1)

1− p3
+ o

(
p6ℓ

)
. (35)

Following [32], we observe now that the sum of the Fourier coefficients
∑

S⊆{0,...,7} aSep2ℓ,S
are exactly equal to the right-hand side without remainder term, by using the fact that the
coefficients ek of any linear combination E(z) =

∑∞
k=0 eke

2iπkz of Eisenstein series of weight 4
for Γ(N) are of the form

ek =
∑

d|k
d3F (d) (36)

for some periodic function F : N → C of period N (see for instance [40, Proposition 17, Chapter
IV]). We invoke now a slight variation of [32, Lemma 4.4]:

Lemma 12 Let G : N → C be periodic and satisfy
∑

d|pm
d3G(d) = o(p3m) as m → ∞

then ∑

d|pm
d3G(d) = 0 for all m.

Proof: Let um
def
=

∑

d|pm d3G(d), then

G(pm) =
um − um−1

p3m
=

um
p3m

− um−1

p3(m−1)p3
. (37)

We notice now that the right-hand-side term um

p3m
− um−1

p3(m−1)p3
tends to 0 as m goes to infinity.

G is periodic, therefore G(pm) = 0 for all m. 2

By noticing that
4

n

1− p3(2ℓ+1)

1− p3
=

∑

d|p2ℓ

4

n
d3,

writing that
∑

S⊆{0,...,7}
aSep2ℓ,S =

∑

d|p2ℓ
d3F (d)

for some periodic function F : N → C of period 16q2, and using Equation (36), we obtain that

∑

S⊆{0,...,7}
aSep2ℓ,S − 4

n

1− p3(2ℓ+1)

1− p3
=

∑

d|pm
d3

(

F (d)− 4

n

)

.

From Equation (35) we see that we can apply Lemma 12 to
∑

S⊆{0,...,7} aSep2ℓ,S − 4
n
1−p3(2ℓ+1)

1−p3

and obtain
∑

S⊆{0,...,7}
aSep2ℓ,S =

4

n

1− p3(2ℓ+1)

1− p3
. (38)
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This reduces Equation (33) to

∑

S⊆{0,...,7}
aScp2ℓ,S =

2p3ℓ

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

.

and by using the upperbound (34) we finally obtain

2

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

= Oǫ(p
2ℓε).

Suppose that there is some λj 6∈ [−2p3/2, 2p3/2] with j ∈ {1, . . . , n − 2}, or equivalently
that there is some θj which is not real. There exists a unique 0 < tj < 1 such that either
θj =

3i
2 tj ln p or θj = π+ 3i

2 tj ln p. Consider the index j of this kind which maximizes |λj |. It is
straightforward to check that

2

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

=
2|{i : |λi| = |λj|}|

n
p3ℓtj

1− p−3tj(2ℓ+1)

1− p−3tj
(1 + o(1))

as ℓ goes to infinity. If ε is small enough, the right-hand term can not be upper-bounded by

O(p2ℓε) and therefore the same thing holds for 2
n

∑n−2
j=1

sin(2ℓ+1)θj
sin θj

. So for 1 ≤ j ≤ n− 2, the θj ’s

are real, or equivalently the λj ’s are in [−2p3/2, 2p3/2]. This proves that the graphs Xp,q are
Ramanujan.

Corollary 3 For p < q such that
(
p
q

)

= 1, the graphs Yp,q are also Ramanujan.

Proof: Let µ0 ≥ · · · ≥ µn−1 be the spectrum of Yp,q. The equality µ0 = p3 + 1 holds. The
graphs are not bipartite by Proposition 6 so there is the inequality µn−1 > −p3 − 1. The
spectrum of the bipartite double cover Xp,q of Yp,q is given by ±µ0, . . . ,±µn−1, counted with
multiplicities. But the graphs Xp,q are Ramanujan, that implies µj ≤ 2p3/2 for j 6= 0. That is
Yp,q are also Ramanujan. 2

Conclusions

The contributions of this work are twofold. First, the girth problem consisting of finding for an
infinite growing family of k-regular graphs {Gn} what is the largest constant

γ({Gn}) def
= lim

n→∞
inf

{
girth(Gn)

logk−1 |Gn|

}

reduces now to 12
7 ≤ γ ≤ 2, for the values of k = p3 + 1, p an odd prime. This is a clear

improvement on the 25 years old result 4
3 ≤ γ ≤ 2.

Second, this is the first construction of Cayley expanders non explicitely based on a group.
However, as already mentionned in introduction, we stress that the graphs presented here may
be Cayley graphs on groups. The question is then which groups ? A weaker open problem is the
vertex-transitivity of these graphs. In any case, it might be interesting to pursue further research
toward expansion properties in non-associative algebraic structures. Indeed, the expansion
property of Cayley graphs on groups has been thoroughly studied recently. Similar questions
arise for loops.
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In addition, it may be interesting to carry over the construction of Morgenstern [37] based
on quaternions over function fields, to octonions. There would be indeed a hope to build
Ramanujan graphs of girth 12

7 logk−1 n for various degrees k, not of the form k = p3 + 1, p is
prime.

To conclude, let us recall that the graphs constructed here display other properties shared by
all Ramanujan graphs, namely a small diameter D satisfying D ≤ 2 logd−1 n+O(1) and in the

non bipartite case, an independence number i verifying i ≤ 2
√
d−1
d n and therefore a chromatic

number χ of the form χ ≥ d
2
√
d−1

.
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Abstract

We present a generalization of the construction of graphs by Lubotzky, Phillips and
Sarnak in their celebrated article “Ramanujan graphs” [32]. The new approach consists in
using octonion algebras rather than quaternions. A key tool is the existing result of the
unique factorization of integral octonions. The families obtained by this mean present not
only the same spectral property that make them good expanders, but also show a larger
girth, yielding a new record for regular graphs.

1 Introduction

Ramanujan graphs and expanders. Given a k-regular undirected graph Gn,k of size n, the
eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λn−1 of the adjacency matrix of Gn,k, are real (it is a symmetric
matrix) and satisfy |λi| ≤ k. Moreover, λ0 = k and if the graph is connected, then λ1 < k.
The graph is bipartite if and only if λn−1 = −k. The graph G is a Ramanujan graph if all its
eigenvalues distinct from ±k are in the interval [−2

√
k − 1, 2

√
k − 1]. Ramanujan graphs are

in a sense (asymptotically) extremal graphs with respect to the second largest eigenvalue in
absolute value because of the following lower bound due to Alon and Boppana [1]

lim
n

λ(Gn,k) ≥ 2
√
k − 1,

where λ(Gn,k) denotes the second largest eigenvalue in absolute value of Gn,k.
The fact that λ(Gn,k) is so small implies many other properties since they are then good

expander graphs. Graphs with large expansion have proved to be a quite useful object in various
domains ranging from mathematics and computer science to physics, see the survey [23] which
depicts some of these applications. Random k-regular graphs are known to typically meet
such a behavior (see for instance [8] and [42] for the first existence results of good expanders
obtained by probabilistic arguments). However, even if this kind of probabilistic argument
shows the existence of graphs with large expansion, it does not provide explicit examples of
graphs which are good expanders. The approach consisting in generating a graph randomly
and then checking whether or not it has large expansion is considered to be impracticable: even
checking a weak form of expansion turns out to be coNP-complete [6]. It has been observed
that this problem can be circumvented by relating the expansion properties to the spectral
gap (that is λ0 − λ1) or to λ(Gn,k), see for instance [1]: the expansion coefficient can be
lower bounded by an increasing function of the spectral gap or λ(Gn,k). Since these spectral
quantities can be computed efficiently with an arbitrary precision, this gives an efficient method
for obtaining graphs displaying at least a certain amount of expansion. Up to now, this spectral
method has proved to be the best method for certifying a rather large expansion. Ramanujan
graphs represent here the graphs with the best certified expansion properties known. At the
moment, Ramanujan graphs have been superseded only in one case, namely for the expansion
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of small subsets of vertices [29]: graphs obtained by the zigzag product [52] have a better
certified expansion in this case. The guaranteed expansion obtained by taking Ramanujan
graphs together with the aforementioned spectral lower bound on the expansion is not as large
as the one known for random graphs, however it is generally sufficient and satisfactory for many
applications.

Obtaining explicit infinite families of Ramanujan graphs of a given degree has been quite
a breakthrough in spectral graph theory. The first constructions of this kind were obtained
by Lubotzky-Philips-Sarnak [32] and Margulis [35]. They were followed by the constructions
of [43, 10, 37, 28] for instance. From them, Ramanujan graphs have been obtained for all degrees
k of the form k = q + 1 where q is any prime power.

Graphs of large girth. Besides their expansion property, the Ramanujan graphs constructed
in [32, 35, 10, 37] presented another breakthrough. They had a large girth (the girth being the
smallest size of its cycles) and improved significantly the narrow knowledge on this matter. Let
us mention (see for instance [2, p.154]) the following upper bound for the girth,

for k ≥ 3, any k-regular graph G verifies: girth(G) ≤ 2 logk−1 |G|, (1)

where |G| denotes the number of vertices of G and girth(G) is the girth G. This bound motivates
the following definition of Biggs [3]. A family {Gi}i of k-regular graphs is of large girth if and
only if there exists some positive constant γ such that for any graph in this family we have

girth(Gi) ≥ γ logk−1 |Gi|. (2)

For a long time, the best result in this direction was the non constructive result of Erdős and
Sachs [18] and its improvements by Sauer and Walther (for more details see [7, p. 107]) which
showed the existence of families of graphs with γ = 1. The first explicit constructions were
obtained by Margulis [34] but achieved constants γ which were strictly smaller than 1. Proving
that there exist families of graphs with a value of γ greater than 1 was finally obtained in [51]
for a family of graphs of degree k = 3 suggested by [5], by showing that for these graphs the
following inequality holds

girth(Gi) >
4

3
logk−1 |Gi| − 2.

As suggested by [20], large girth needs not be an unusual property for some families of graphs,
but those with a constant γ > 1 tends to be very seldom1. The bipartite Ramanujan graphs
constructed in [32, 35] also achieved the constant γ = 4

3 but this time for all degrees of the form
k = p + 1, where p is a prime number strictly greater than 2 (originally, only for the primes
p ≡ 1 (mod 4), and for any odd primes, see [13]). Ramanujan graphs of degree 3 which achieved
γ = 4

3 were obtained afterwards in [10]. Moreover, Morgenstern in [37] finally obtained infinite
families of Ramanujan graphs achieving γ = 4

3 for all degrees of the form k = q + 1 where q is
any prime power. These Ramanujan constructions do not only overcome the γ = 1 barrier, they
are also explicit which is essential for applications. It should also be mentioned that a quite
different graph construction has been proposed in [30] for degrees of the form k = q where q is
a prime power, and where it has been shown that it contains connected components Gi which
satisfy the inequality

girth(Gi) ≥
4

3
logk(k − 1)|Gi|,

which is slightly worse than the constant γ = 4
3 achieved in the aforementioned articles but

achieves it asymptotically as the degree k goes to infinity.

1 To quote [20], “it is a miracle that the lower bound constant 4
3
is greater than 1” (see for example Conjecture

5 in their paper)
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Our contribution. One of the main result of our paper is to obtain families of graphs which
improve upon γ = 4

3 in (2). We give here a construction of infinite families of regular graphs
for degrees of the form k = p3 + 1, where p is any odd prime, for which

girth(Gi) ≥
12

7
logk−1 |Gi| − 2 logp 2.

We also prove that these graphs are Ramanujan. These graphs exist for all sizes of the form
n = q7 − q3, where q is any odd prime satisfying q > p.

The idea underlying our construction is to replace in the Ramanujan graph construction of
Lubotzky-Philipps-Sarnak & Margulis the quaternions by octonions. An important tool to build
these graphs is a unique factorization property, that is available for integral octonions since the
work of Rehm [44]. The Ramanujan graphs of [32, 35] built upon quaternions can be described
as Cayley graphs on groups. This is no more the case for our construction on octonions. These
graphs have a description in terms of Cayley graphs on loops, the non-associative counterpart
of groups.

Comments. The property of large girth, besides its own theoretical interest, can be applied
to LDPC codes. This approach was pioneered by Margulis in [34], where he gave the first
constructive example of a family of LDPC codes of unbounded minimum distance by providing
explicit families of regular graphs of large girth. Such a property is quite useful in this context
for several reasons:
(i) Tanner gave in [48] a construction of codes based on graphs together with a lower bound on
the code minimum distance growing exponentially with the girth;
(ii) these LDPC codes are decoded with the help of iterative decoding algorithms working on
a certain graph associated to the code construction and the performance of such algorithms
is known to deteriorate in the presence of small cycles. This phenomenon is related to the
fact that these iterative decoding algorithms compute symbol probabilities conditioned on an
exponentially large (in the number of iterations) number of received symbols as long as the
number of iterations is smaller than half the girth [19], but that does not hold anymore for a
larger number of iterations.

Lower bounds on the code minimum distance and the number of errors which can be decoded
with iterative decoding algorithms can also be obtained from lower bounds on the expansion [46,
47]. It makes sense in this context to use graphs which are at the same time of large girth and
good expanders. The Ramanujan graphs proposed by [32, 35] are very good candidates for
this. This was suggested in [45], see also [31]. It should also be mentioned that there is one
particular LDPC code family where both properties of being Ramanujan and having a large
girth can be used together, namely for cycle codes which were introduced in [21], where it can
be proved (see [49]) that regular cycle codes obtained from the constructions of Ramanujan
graphs given in [32, 35, 37] correct the largest possible fraction of errors. It should be pointed
out here that the approach used in [49] could also be applied to the Ramanujan graphs based on
octonions given here and that the larger girth of our construction compared to the constructions
of [32, 35, 37] would lead to improved upper bounds on the probability of error after decoding.

Cayley graphs are usually thought to require groups. This is absolutely not necessary, much
weaker algebraic structures like quasi-groups are sufficient. For a modern treatment, see [39]
and references therein. The algebraic non-associative structures arisen from octonions algebra
are well-known, and have the strong property of being Moufang loops. It is tempting to think
that these would constitute the first algebraic construction of expanders not based on a group.
But we do not know whether there exist groups on top of which these graphs could be Cayley
graphs. We did not even prove that they are vertex-transitive, which is a stricly weaker property
than being a Cayley graph on a group.
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2 Preliminaries on octonions

All the material on octonions required for this construction is contained in the article of
Rehm [44], where a more substantial bibliography can be found. A good complementary mate-
rial is Ch.9 of [11]. For convenience, we define and cite the main theorems along with setting
notation.

Octonions We denote by O(R) (or simply by O when the meaning of R is clear from the
context) the octonion algebra over a ring R, that is the 8-dimensional R-module with canonical
basis denoted by 1, i, j, k, t, it, jt, kt, usually referred as the unit bases. Here we will choose
R = Z,Q,Fp. A unit basis x 6= 1 verifies x2 = −1. Here 1, i, j, k is the usual quaternion basis
and satisfies

i2 = j2 = k2 = −1, ij = k. (3)

The conjugate of an octonion α = a0 + a1i+ · · ·+ a7kt is α
def
= 2a0 − α. It is a (ring) antiauto-

morphism of O, that is a bijection O that satisfies for any α, β in O:

1̄ = 1

α+ β = α+ β

αβ = βα. (4)

If we let the quaternion algebra H be the R-module with basis 1, i, j, k, then the octonions can
be viewed as O = H + Ht. The multiplication of octonions is completely determined by the
multiplication of quaternions and the rule

(α1 + α2t)(β1 + β2t) = α1β1 − β̄2α2 + (β2α1 + α2β̄1)t (5)

for α1, α2, β1, β2 ∈ H. It is easy to check that the multiplication of octonions is not associa-
tive. For instance, if we define a triad to be a set of 3 elements among the seven unit bases
{i, j, ij, t, it, jt, kt}, then it is well known (Cf. [12]) that among the 35 possible triads, only 7 are
associative, namely:

i, j, k , i, t, it , j, t, jt , k, t, kt, and k, jt, it , j, it, kt , i, kt, jt. (6)

Each of these associative triads generates, with the additional basis unit 1, a quaternion sub-
algebra. Octonion algebras are never associative but are alternative algebras:

(alternative algebra identities) (αα)β = α(αβ) and β(αα) = (βα)α. (7)

These 2 conditions are equivalent to the fact that the trilinear map called associator [a, b, c] =
a(bc)− (ab)c is alternating. It follows that octonion algebras verify the Artin theorem:

Theorem 1 (Artin) In an alternative algebra, any two elements generate an associative sub-
algebra.

In our case, we will often use the following corollary

Corollary 1 Let α, β be elements of O(Q). Then

(αβ)β̄ = α(ββ̄), α(ᾱβ) = (αᾱ)β. (8)
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Octonions are endowed with a norm N , that is a quadratic form. Here, the associated
bilinear map will be:

〈 a0 + a1i+ · · · + a7kt , b0 + b1i+ · · ·+ b7kt 〉 = a0b0 + · · ·+ a7b7.

Hence, the norm is here simply a sum of 8 squares. It can be defined equivalently by N(α) = αᾱ.
The important property is its multiplicativity: N(αβ) = N(α)N(β) for any octonions α and β.
This follows directly from Theorem 1 and the antiautomorphism property (4)

N(αβ) = (αβ)αβ = (αβ)(βα) = α(ββ̄)ᾱ = N(β)αᾱ = N(α)N(β).

Let O(R)⋆ denote the set of invertible octonions. Clearly, if α is invertible, then α−1 =
N(α)−1α. It follows that:

O(R)⋆ = {α ∈ O(R) | N(α) ∈ R⋆}.

Loops. The set of invertible elements in an alternative ring is a Moufang loop (Cf. [9, p. 254]
and [11, p. 87-88]). Recall that

Definition 1 (loop) A loop is a set L with a binary operation ∗, such that
(i) for each a and b in L, there exist unique elements x and y in L such that: a ∗ x = b and
y ∗ a = b;
(ii) there exists a unique element e such that x ∗ e = x = e ∗ x for all x in L.

It follows that every element of a loop has a unique left and right inverse. A loop where the
right and left inverses coincide is an inverse loop. We denote in this case by x−1 the unique
element such that x ∗ x−1 = x−1 ∗ x = e. A Moufang loop is a loop satisfying one of the three
equivalent following identities:

Moufang identities:
(αβα)γ = α((βα)γ)
(αβ)(γα) = α(βγ)α
((βα)γ)α = β(αγα)

(9)

It is straightforward to check that a Moufang loop is an inverse loop [11, Ch. 7] or [9, Lemma 2A
and 2B, p. 292].

Unique factorization As for integers (and Gauß integers, and integral quaternions), the
first step toward a factorization property is an Euclidean division2. In the quaternions case,
unlike what happens with ordinary integers and Gauss integers, two integral quaternions whose
norms have a common divisor do not necessarily have a common divisor which is an integral
quaternion (consider for instance 2 and 1 + i + j + k). Hurwitz noticed that it is possible to
obtain a satisfactory arithmetic of quaternions by considering instead quaternions with integer
or half integer coordinates [24, 25], and his result was fully understood after Dickson [16]
and his concept of maximal arithmetic (also called a maximal order). Recall here that an
arithmetic (or an order) for a ring R which is a finite-dimensional algebra over the rational
number field Q, is at the same time a subring of R and a finitely generated Z-module which
spans R over Q. It is maximal if is not contained in a larger arithmetic. For octonions, there
are 7 distinct maximal arithmetics which were identified by Coxeter [12]. They allow as in the
case of Hurwitz quaternions to obtain a set of octonions which obey the essential divisibility

2or that the class number of ideals is equal to 1. But for constructive purposes, the Eulidean division is
essential, and anyway, there is no concept of class number in octonion rings.
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properties of ordinary integers. Each of them is related to one associative triad in (6). While for
quaternions the Euclidean algorithm can then be directly initiated to obtain left and right gcds,
the lack of associativity of octonions complicates the matter. Rehm [44, Prop. 4.1], obtained
a kind of distortion of the Euclidean algorithm, by using only the alternative property (7).
With clever counting arguments, unique factorization follows in a similar fashion to integral
quaternions, except that of course some bracketing must be specified.

The result of Rehm is stated in the Coxeter maximal arithmetic CO associated to the asso-
ciative triad i, j, k. Defining h = 1

2 (i+ j+ k+ t), CO is the Z-module with basis 1, i, j, k, h, ih, jh, kh
(Cf. [12, p 567]). It contains strictly O(Z) (and the 6 other maximal arithmetics associated to
the 6 other triads are isomorphic to this one). Therein, there are not only 16 units as in O(Z)
but rather 240. Since

ih =
1

2
(−1− j+ k+ it)

jh =
1

2
(−1 + i− k+ jt)

kh =
1

2
(−1− i+ j− kt)

it is straightforward to check that

Lemma 1 CO is the set of octonions of the form 1
2(a0+a1i+a2j+a3k+a4t+a5it+a6jt+a7kt)

where the ai’s are integers which satisfy

(a0, a1, a2, a3) ≡ (a4, a5, a6, a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 0 (mod 2),

(a0, a1, a2, a3) ≡ (1− a4, 1− a5, 1 − a6, 1− a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 1 (mod 2).

Given an octonion α = a0 + a1i + . . . + a7kt ∈ O(Q)⋆, we say that it is positive and write
α > 0 if and only if the smallest i such that ai 6= 0 is > 0. Let p be an odd prime number.
Related to unique factorization, we define (Cf. [44, Prop. 5.6]):

P(p)
def
= {α ∈ O(Z) : α > 0 , N(α) = p , α− 1 ∈ 2CO} (10)

Rehm also proved that |P(p)| = p3 + 1 (Cf. [44, Prop. 6.4]). The main result of him in [44],
that is fundamental in the present work is the following:

Theorem 2 [44] Let α ∈ CO be primitive, that is the gcd of its coefficients in any Z-basis is 1.
Suppose that N(α) = p1 · · · ps where the pi’s are prime integers, not necessarily distinct. There
exist a unique ǫ ∈ C⋆

O and unique πi ∈ P(pi) for i = 1, . . . , s, such that:

α =
(
· · · (ǫπ1π2)π3 · · ·

)
πs,

with ǫ ∈ C⋆
O and πi ∈ P(pi).

Remark: This writing depends heavily on the order in which the factorization sequence p1 · · · ps
of N(α) is chosen.

3 Arithmetic construction of the infinite (p3 + 1)-regular tree

Overview of the whole construction. Similarly to [32, 35, 10, 37], our Ramanujan graph
construction can be decomposed in two steps.
1. The first step consists of constructing the (p3 + 1)-regular infinite tree in an arithmetic way
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by using octonions.
2. Finite Ramanujan graphs are derived from this tree by taking suitable finite quotients of this
tree which do not create small cycles.

We will detail the first step in this section. It will also turn out that our construction has a
description in terms of Cayley graphs defined over loops. This will be explained in Section 4.

Several useful lemmas on the factorization of octonions of norm pt. The main
ingredients used for the construction are the unicity of factorization property of Theorem 2 and
considering products of elements of CO of the following form

(

. . .
(
(

︸ ︷︷ ︸

open brackets

ǫα1)α2

)
α3 · · ·

)

αℓ,

where ǫ ∈ C⋆
O, αi ∈ CO − C⋆

O and αi 6= αi+1 for i = 1, . . . , ℓ − 1. We say that such products
are irreducible products. This terminology comes from the fact that products of elements of CO
which are not irreducible can be simplified by using Corollary 1 of Artin’s theorem. We also
use the following lemma.

Lemma 2 Any irreducible product (. . . ((ǫπ1)π2)π3 · · · )πt of an invertible element ǫ in C⋆
O and

elements π1, . . . , πt of P(p) is primitive.

Proof: We proceed by contradiction and consider an irreducible product α of an invertible
element and elements of P(p) of minimal length which is not primitive. We may write this
element as α = βπ, where β is a primitive irreducible product of an invertible element and
elements of P(p) and π is an element of P(p). For an element γ of CO, let us denote by c(γ)
the content of γ, which is the largest integer dividing γ (it is also the greatest common divisor
of the coefficients of γ in some Z basis of CO). We obviously have

c(α)|c(απ̄) (11)

because the coefficients of απ̄ are integer linear combinations of the coefficients of α in a Z

basis. Since απ̄ = (βπ)π̄ = β(ππ̄) = pβ by Corollary 1, we obtain that c(απ̄) = p. This
together with (11) implies that c(α) = p and that p divides α. We may therefore write α as
α = γp = γ(π̄π) = (γπ̄)π (by using Corollary 1 again) for some γ ∈ CO. Therefore β = γπ̄. γ
is necessarily primitive, since β is primitive. By Theorem 2, we can write γ as an irreducible
product of a unit ǫ and elements π1, . . . , πs of P(p):

γ = (. . . ((ǫπ1)π2) · · · )πs.

This implies that β is of the form

β = ((. . . (ǫπ1)π2 · · · )πs)π̄.

This is an irreducible product, for if πs were equal to π, β would be divisible by p and would
not be primitive. From Theorem 2 applied to β, we know that this is the only way we can write
β as an irreducible product, and therefore that the product α is necessarily of the form

α = βπ = (((. . . ((ǫπ1)π2) · · · )πs)π̄)π,

which contradicts the assumption on its irreducibility. 2
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Proposition 1 Any element α ∈ O(Z) of norm N(α) = pt and with α ≡ 1 mod 2CO, can be
uniquely written as:

α = ±ps((. . . (α1α2) · · ·αt−2s−1)αt−2s,

where ((. . . (α1α2) · · ·αt−2s−1)αt−2s is an irreducible product with elements αi ∈ P(p).

Proof: First of all, let us assume that there exist an non-negative integer s, an ǫ in C⋆
O and

elements π1, . . . , πu such that α can be written as an irreducible product

α = ps
(
. . . ((ǫα1)α2)α3 · · ·

)
αu. (12)

By taking norms on both sides, we see that u = t− 2s. Moreover, by Lemma 2, the irreducible
product

(
. . . ((ǫα1)α2)α3 · · ·

)
αu is primitive. Therefore ps is necessarily the largest power of

p which divides α. We choose now s like this, and since p−sα is in O(Z) and is primitive, we
can apply Rehm’s theorem to it and write p−sα =

(
. . . ((ǫα1)α2) · · ·

)
αt−2s, with ǫ ∈ C⋆

O and
αi ∈ P(p). In other words α can be written in the form given in (12). The unicity of this
form follows from the discussion above and the unicity of the decomposition of p−sα ensured
by Theorem 2.

The invertible element ǫ is necessarily in O(Z). Let us assume that this is not true, ǫ ∈
C⋆
O −O(Z). Let us first prove the following

“a ∈ CO −O(Z) and b ∈ 1 + 2CO implies ab ∈ CO −O(Z)”.

Notice that a has necessarily in the 1, i, j, k, t, it, jt, kt basis at least one coordinate which is of
the form m

2 where m is an odd integer. Write now ab = a(1 + 2c) = a + 2ac for some c ∈ CO.
But 2ac is in O(Z), which implies that ab has some coordinate of the form m

2 + n, where n is
some integer. This shows that ab is not in O(Z) and finishes the proof of the aforementioned
property.

When we apply this property recursively to ǫα1, (ǫα1)α2, . . . ,
(
· · · ((ǫα1)α2) · · ·

)
αt−2s, we

see that they are all in CO −O(Z), and therefore so is also α = ps
(
· · · ((ǫα1)α2) · · ·

)
αt−2s. This

is a contradiction, because α is in 1 + 2CO and hence also in O(Z).
Therefore, ǫ is among the 16 units of O(Z)⋆. By using Corollary 1, it is straightforward to

check that we can write ǫ as

ǫ = ps−t
(
. . . ((αᾱt−2s)ᾱt−2s−1) · · ·α2

)
ᾱ1

The set 1 + 2CO is stable by multiplication, therefore
(
. . . ((αᾱt−2s)ᾱt−2s−1) · · ·α2

)
ᾱ1 belongs

to 1+ 2CO and so does ǫ. We conclude the proof by observing that the only invertible elements
in O(Z)⋆ which are also in 1 + 2CO are ±1. 2

The construction of the infinite tree This lemma has a simple corollary, namely that all
irreducible products (. . . (α1α2) · · ·αs−1)αs of elements of P(p) are different. These will be the
vertices of a tree we want to build.

Definition 2 Let Λ be the set of all irreducible products with elements in P(p) (with the con-
vention that the void product belongs to it and is equal to 1).

Let T be the infinite graph with:

• vertex set Λ;

8



• edge set defined as follows. By Proposition 1, any vertex can be viewed in a unique way
as a irreducible product (. . . (α1α2) · · ·αs−1)αs where the αi’s belong to P(p). There is
an edge between (. . . (α1α2) · · ·αs−1)αs and vertices of the set

{(. . . (α1α2) · · · )αs−1} ∪ {((. . . (α1α2) · · ·αs−1)αs)π : π ∈ P(p)− {ᾱs}}

By the convention that the void product is equal to 1, the vertex 1 is linked with all
vertices labelled by π, for π ∈ P(p).

It is clear by construction of the graph that T is the infinite (p3 + 1)-regular tree.

Cayley graphs on loops Let us give an interpretation of this arithmetic construction of the
(p3+1)-regular tree in terms of a Cayley graph on a loop, which is a slight generalization of the
usual Cayley graph definition (see for instance [39]).

Definition 3 (directed/undirected Cayley graph on a loop) Let L be a loop and S be a

generating set for it. The directed Cayley graph
−−→
Cay(L,S) has for vertices the elements of L

and for edges {(l, ls), l ∈ L, s ∈ S}. The undirected Cayley graph Cay(L,S) is obtained from−−→
Cay(L,S) by replacing each directed edge (l, ls) by an undirected edge {l, ls}. Equivalently, there
is an edge between l and l′ if and only if there exists s in S such that either l′ = ls or l = l′s.

For the usual Cayley graph on a group, the undirected version is a |S|-regular graph without
self-loops3 if and only if S = S−1 and 1 /∈ S. There is a generalization of this property for Cayley
graphs on loops.

Proposition 2 [38, Theorem 8] Cay(L,S) is a |S|-regular graph without loops iff
(i) ∀ l ∈ L, l 6∈ lS,
(ii) l ∈ (ls)S for any s ∈ S.

Note that if L is a Moufang loop, then this is equivalent to 1 6∈ S and S−1 = S, as in a
group. Cayley graphs on groups are of course vertex transitive, this is not necessarily the case
for Cayley graphs defined on loops. The problem is that left multiplication by a loop element
does not necessarily yield a graph automorphism because of the lack of associativity. Indeed,
any regular graph can be realized as Cayley graph on a certain loop [38].

To view the tree T as a Cayley graph on a loop, we endow the vertex set Λ with the following
operation

Definition 4 Let α, β be two elements of Λ. By Proposition 1 these vertices can be written in
a unique way as irreducible products over P(p), α = (. . . (α1α2) · · · )αs, β = (. . . (β1β2) · · · )βt.
By using Proposition 1 again, there exists a unique irreducible product γ on P(p) such that
αβ = ±pℓγ, with N(γ) = ps+t−2ℓ, that is γ is an irreducible product of length s + t − 2ℓ. We
define

α ∗ β def
= γ.

Proposition 3 The set Λ endowed with the multiplicative law ∗, is a Moufang loop generated
by P(p).

3 a self-loop, that is an edge with the same origin and extremity, should not be confused with the meaning of
a loop here, i.e. a weaker algebraic structure than a group.
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Proof: Clearly 1 ∗ α = α ∗ 1 = α for any α ∈ Λ.
Let α be some element of Λ. It belongs to 1 + 2CO and is primitive by Lemma 2. This

is therefore also the case for ᾱ. By Proposition 1 we know that either ᾱ or −ᾱ belongs to
Λ. If α ∈ Λ, then since αᾱ = ps where ps = N(α), we get α ∗ ᾱ = 1. The case −α ∈ Λ is
treated similarly. This shows that Λ is a loop. It remains to show that ∗ satisfies the Moufang
identities (9).

The following equalities come from the definition of ∗:

(α ∗ (β ∗ α)) ∗ γ = (α ∗ (p−s1βα)) ∗ γ,
= p−s1(p−s2α(βα)) ∗ γ
= p−s1−s2p−s3(α(βα))γ

for some non-negative integers s1, s2 and s3. From the Moufang identities (9), (α(βα))γ =
α((βα)γ), it comes that (α ∗ (β ∗ α)) ∗ γ = α ∗ ((β ∗ α) ∗ γ). 2

With this definition, it is straightforward to check that the one to one mapping between
elements of Λ and their representation as irreducible products of elements of P(p) gives an
isomorphism between T and Cay(Λ,P(p)).

Proposition 4 The following graph isomorphism holds:

T ≃ Cay(Λ,P(p)).

4 Obtaining finite graphs from T by reducing Λ modulo another

prime q

Reducing to finite graphs Basically, finite graphs are obtained from the arithmetic con-
struction of T by reducing the octonions in Λ modulo another prime q. For reasons which will
appear later on we also assume that q is chosen to be greater than p. Notice that we obtain in
this way elements in O(Fq)

⋆, because the norm of elements of Λ is a power of p which is therefore
invertible modulo q. Let us denote by τq the reduction modulo q map τq : O(Z) → O(Fq). By
the definition of the profuct ∗, the following holds:

τq(α ∗ β) = τq(ǫp
−sαβ) = τq(ǫp

−s)τq(α)τq(β), (13)

for some nonnegative integer s and ǫ ∈ {−1, 1}. We note that τq(ǫp
−s) is in F⋆

q, identified as a
subset of O(Fq)

⋆. Subset that appears to be precisely the center Z of O(Fq)
⋆, as can easily be

checked. It follows that the two elements τq(α ∗ β) and τq(α)τq(β) differs only by an element
in the center. Therefore, they yield the same element in the quotient loop O(Fq)

⋆/Z. In other
word, the map

µq : Λ → O(Fq)
⋆/Z,

α 7→ τq(α)Z.

is a loop homomorphism. Indeed, Equality (13) clearly implies µq(α ∗ β) = µq(α)µq(β). In
addition, O(Fq)

⋆ is a Moufang loop, O(Fq)
⋆/Z is itself a Moufang loop. We have proved:

Lemma 3 The map µq is a homomorphism of Moufang loops.

Our graphs will be defined as Cay(Im µq, µq(P(p)) when these graphs are bipartite or by
double covers of this Cayley graphs (which are therefore bipartite) when this is not the case.
The reason for this is that bipartite graphs have only even cycles and we have in the case of
Cay(Im µq, µq(P(p)) a very good lower bound on the size of cycles of even length, but the lower
bound on cycles of odd length is only half the aforementioned bound.
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Determining Im µq. Let us bring in M1 and Mp the subloops of O(Fq)
⋆ consisting of in-

vertible elements of norm 1 for M1, and of norm a power of p for Mp. Let Zp
def
= {±ps, s =

0, 1, . . . , q − 2} and Z1
def
= {−1, 1}. Since Z1 ⊂ Zp ⊂ F⋆

q we can embed the corresponding
quotient loops in O(Fq)

⋆/Z as follows

M1/Z1 →֒ Mp/Zp →֒ O(Fq)
⋆/Z

aZ1 7→ aZp

bZp 7→ bZ
(14)

Via these embeddings, they can be identified as subloops of O(Fq)
⋆/Z. By a result of Paige [41,

Theorem 4.1] M1/Z1 is a simple Moufang loop, and an index 2 normal subloop4 of O(Fq)
⋆/Z

(in total analogy with PGL2(Fq) and PSL2(Fq)). It follows that Mp/Zp = M1/Z1 or O(Fq)
⋆/Z

(Cf. Corollary 2 for an answer to this issue).

Lemma 4 (the image of µq) We have Im µq = Mp/Zp.

Proof: Every elements of Λ has a norm a power of p, so the inclusion Im µq ⊂ Mp/Zp is clear.
To obtain the other inclusion, we first show that for any element α = a0+a1i+ . . .+a7kt ∈ O(Z)
such that N(α) ≡ pr (mod q) for some integer r, there exists an element β = b0+b1i+. . .+b7k ∈
1 + 2CO such that
(i) ai ≡ bi (mod q),
(ii) N(β) = pℓ for some integer ℓ.

To prove this claim we use as in [32, Prop. 3.3], a result of Malyshev on the number of
solutions of integral definite-positive quadratic forms [33]. This result can be described as
follows. Let f(x1, . . . , xn) be a quadratic form in n ≥ 4 variables with integral coefficients
and discriminant d. Let m be an integer prime to 2d. Malyshev proved that there exists
some constant depending on f , K(f) such that for any N ≥ K(f), N generic for f (that is
f ≡ N (mod r) has at least one solution for every r), gcd(m, 2Nd) = 1 and for which there
exist integers ai such that gcd(a1, . . . , an,m) = 1, f(a1, . . . , an) ≡ N (mod m), then there are
integers b1, . . . , bn such that
(i) bi ≡ ai (mod m),
(ii) f(b1, . . . , bn) = N . Let us first assume that p ≡ 1 (mod 4). We apply the aforementioned

result of Malyshev to f(x0, . . . , x7)
def
= x20 +4(x21 + · · ·+ x27). This is an integral positive definite

quadratic form. The discriminant of f , d = 27, verifies gcd(2dpℓ, q) = 1 for any ℓ. There are
obviously integers (a′0, . . . , a

′
7) such that f(a′0, . . . , a

′
7) ≡ pr (mod q) by the assumption on α (by

taking a′0 = a0 and a′i ≡ 2−1ai (mod q) for i ∈ {1, . . . , 7}), and such that gcd(a′0, . . . , a
′
7, q) = 1.

Now choose ℓ such that pℓ ≥ K(f) and pℓ ≡ pr (mod q). It is straightforward to check that pℓ

is generic for f (this follows from the fact that pℓ ≡ 1 (mod 4)). Therefore there exist integers
(b′0, . . . , b

′
7) satisfying

b′20 + 4b′21 + · · ·+ 4b′27 = pℓ.

This implies the existence of the aforementioned octonion β of norm equal to pℓ which is
congruent to pr modulo q by setting b0 = b′0, bi = 2b′i for i ∈ {1, . . . , 7}. This octonion belongs
to 1 + 2CO since b0 ≡ 1 (mod 2).

Now, let us consider the remaining case p ≡ 3 (mod 4). We can use the same proof as before
for the case where ℓ is even, since in this case pℓ ≡ 1 (mod 4). In the case of an odd ℓ, pℓ is no
more generic for f , indeed f(x0, . . . , x7) ≡ pℓ (mod 4) has no solution: this equation reduces to

4From Corollary of Lemma 3.4 of [41], since q > p is an odd prime.
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x20 ≡ 3 (mod 4) which has no solution. In order to treat this case we consider another quadratic
form, namely

f(x0, . . . , x7)
def
= 4(x20 + x21 + x22 + x23 + x24) + x25 + x26 + x27. (15)

This time pℓ is generic for f . Moreover a solution in Z8 of the equation f(x0, . . . , x7) = pℓ gives
an element β = 2x0+2x1i+2x2j+2x3k+2x4t+x5it+x6jt+x7kt of norm pℓ. Let us show that
β is also in 1+2CO. By reducing Equation (15) modulo 4, we obtain x25+x26+x27 ≡ 3 (mod 4),
hence:

x5 ≡ x6 ≡ x7 ≡ 1 (mod 2).

The element β−1
2 = 2x0−1

2 + x1i+ x2j+ x3k+ x4t+
x5
2 it+

x6
2 jt+

x7
2 kt is therefore in CO by using

the characterization of CO provided by Lemma 1.
Summing up the whole discussion we obtain in both cases an element β in 1 + 2CO of norm

pℓ. By applying Proposition 1 to it, we can write β as

β = ǫpsγ

for some non-negative integer s, ǫ in {−1, 1} and γ in Λ. Since τq(α) = τq(β) we have that
τq(β) ∈ τq(α)Zp and therefore τq(γ) ∈ τq(α)Zp. In other words, τq(α)Zp ∈ Im µq. 2

Since M1/Z1 is of index 2 in O(Fq)
⋆/Zp, the image loop µq

(
Λ
)
= Mp/Zp is either equal to

M1/Z1 or O(Fq)
⋆/Z. A direct consequence is:

Corollary 2 If
(
p
q

)

= 1, then Im µq = M1/Z1.

Else, when
(
p
q

)

= −1, Im µq = O(Fq)
⋆/Z.

Proof: The loop homomorphism O(Fq)
⋆ → Z/2Z, α 7→

(
N(α)
q

)

, regarding the definition of Z,

factorizes into this homomorphism: ε : O(Fq)
⋆/Z → Z/2Z. Its kernel contains M1/Z1.

Besides, for π ∈ P(p), µq(π) is mapped by ε to 1 or -1 in Z/2Z, according to the sign of
(
p
q

)

. This shows that if
(
p
q

)

= −1, then µq (P(p)) ⊂ O(Fq)
⋆/Z − M1/Z1. From Lemma 4,

we know that M1/Z1 ( Mp/Zp = Im µq, from which follows Im µq = O(Fq)
⋆/Z by Paige’s

theorem.
On the contrary, when

(
p
q

)

= 1, then µq

(
P(p)

)
⊂ ker ε. The multiplicativity of the

Legendre symbol shows that Im µq ⊂ ker ε. It comes, with Lemma 4, M1/Z1 ⊂ Mp/Zp =
Im µq ( O(Fq)

⋆/Z, and Im µq = M1/Z1 by Paige’s theorem. 2

What is ker µq ? By definition, kerµq = {α ∈ Λ | τq(α) ∈ Z}. Write α = a0+a1i+ · · ·+a7kt.
This means that q|ai for i = 1, . . . , 7, and N(α) ∈ F⋆

q. This last condition is already verified for
elements of Λ. If we denote Λ(q) = kerµq, this gives:

ker µq
def
= Λ(q) = {α ∈ Λ s.t q|a1, . . . , q|a7}, and then Λ/Λ(q) ≃ O(Fq)

⋆/Z. (16)

Definition and properties of Xp,q and Yp,q. As mentioned before our finite Ramanujan
graphs will be obtained as Cayley graphs defined over loops.

Definition 5 We define S (p, q)
def
= µq

(
P(p)

)
. If

(
p
q

)

= −1 let Xp,q be the Cayley graphs

Cay
(
O(Fq)

⋆/Z,S (p, q)
)
, and if

(
p
q

)

= 1, let Yp,q be the Cayley graph Cay
(
M1/Z1,S (p, q)

)
.
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We have |O(Fq)
⋆/Z| = q7 − q3 [44, Lemma 3.2]. It follows that |Xp,q| = q7 − q3 and

|Yp,q| = 1
2 (q

7 − q3).

Lemma 5 The graphs Xp,q and Yp,q are connected.

Proof: The set P(p) generates Λ as a loop. The proof of Corollary 2 showed that S (p, q)

generates M1/Z1 if
(
p
q

)

= 1, and O(Fq)
⋆/Z if

(
p
q

)

= −1. It follows that the graphs Xp,q and

Yp,q are all connected. 2

Before giving the degree regularity of these graphs, we recall that |P(p)| = p3 + 1 by [44,
Proposition 6.4].

Proposition 5 The graphs Xp,q and Yp,q are p3 + 1-regular.

Proof: First let us show that |S (p, q)| = |P(p)| = p3+1. Suppose that two distinct elements π
and π′ in P(p) give the same element in O(Fq)

⋆/Z through µq. The equality τq(π)Z = τq(π
′)Z

is equivalent to µq(π ∗ π′) ∈ ker µq = Λ(q). By Equation (16), taking norm gives an equation of
the form p2 = a20+ q2x2, for an a0 and x. If x 6= 0, then p2 ≥ q2, excluded since p < q. If x = 0,
then π ∗ π′ ∈ Z, that is π = π′, also excluded. Finally, µq(π) = µq(π

′) is impossible if π 6= π′.
To prove that they are |S (p, q)|-regular, we must show that S (p, q) satisfies the hypotheses

of Proposition 2, as aforementioned. We already know that if π ∈ P(p) then its inverse for
∗ is π and is in P(p). Hence, P(p)−1 = P(p) for ∗, and since µq is an homomorphism by
Lemma 3 also holds S (p, q)−1 = S (p, q). Last, 1Z 6∈ S (p, q), else there would be a π ∈ P(p)
that would also be in Λ(q), by Equation (16), that is easily checked to be impossible. 2

Proposition 6 The graphs Xp,q are bipartite, and the graphs Yp,q are not.

Proof: First, assume that
(
p
q

)

= −1 (this concerns Xp,q). Consider the partition A ∪ B =

O(Fq)
⋆/Z of the set of vertices of Xp,q:

A def
= M1/Z1 and B = O(Fq)

⋆/Z −M1/Z1.

Let v ∈ A be a vertex with v = µq(α), and let w = µq(β) be a neighbor of v. By construction
of Cayley graphs, there exists π ∈ P(p), such that µq(α ∗ π) = µq(α)µq(π) = µq(β). This leads
to: (

N(β)

q

)

=

(
N(α)p

q

)

=

(
p

q

)

= −1,

since v ∈ A implies
(
N(α)
q

)

= 1. This means that w ∈ B. In the same way any neighbor x of

w is in A, so the graph is bipartite.

Now assume that
(
p
q

)

= 1 (this concerns the graphs Yp,q). As seen above, a bipartition

A ∪ B of the set of vertices M1/Z1 would imply a non trivial loop homomorphism:

M1/Z1 → Z/2Z.

The kernel of it would consist of a non trivial normal subloop of M1/Z1, excluded since M1/Z1

is simple by Paige’s theorem. 2

It is interesting to consider the bipartite double cover of Yp,q when
(
p
q

)

= 1, especially for

the treatment of the girth in the next section. Recall here that the double cover of a graph G
with vertex set V and edge set E is the graph with vertex set V ′ = V × {0, 1} and there is
an edge between (x, b) and (x′, b′) if and only if {x, x′} ∈ E and b′ 6= b. The double cover is a
bipartite graph and is connected if and only if G is not bipartite.
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Definition 6 When
(
p
q

)

= −1, we define Xp,q as the bipartite double cover of Yp,q.

It follows that |Xp,q| = q7 − q3 for any primes 2 < p < q.

5 Bound on the girth

The result hereunder establishes a new lower bound on the maximal girth of regular graphs.

Theorem 3 For all couples (p, q) of odd primes such that p < q, denoting k = p3+1, we have:
(i) that the girth of Xp,q, which we denote by girth(Xp,q), satisfies

girth(Xp,q) ≥
12

7
logk−1 |Xp,q| − 2 logp 2.

The constant 12
7 is the largest possible.

(ii) For the non-bipartite graphs Yp,q (defined when
(
p
q

)

= 1), the inequality

girth(Yp,q) ≥
6

7
logk−1 |Xp,q| − logp 2 =

6

7
logk−1 |Yp,q| −

5

7
logp 2

holds.

The proof of this theorem follows an approach similar to the one used in [32, 35] for the
lower bound, and [35, 4] for the tightness of this bound. However compared to the Ramanujan
graphs based on quaternions there is an additional difficulty. The former are Cayley graphs on
groups, they are vertex transitive and it is therefore enough to lower bound the size of a cycle
starting at the 1 vertex (1 stands here for the identity in the loop). We do not know whether
our construction is vertex transitive or not, however it is enough to study the cycles starting at
the 1 vertex in our case too. This is a consequence of the following result.

Lemma 6 Given α in Λ, there is a one-one correspondence between:
(a) the closed paths without backtracking of length t′ starting at the vertex µq(α), and
(b) the irreducible products in Λ of length t′ belonging to the kernel Λ(q) of µq.

Proof: A closed path of length t′ without backtracking starting at µq(α) corresponds to an
irreducible product in Λ, of length t′, with letters denoted by β1, . . . , βt′ ∈ P(p) such that:

∀2 ≤ i ≤ t′−1, µq ((. . . (α ∗ β1) ∗ · · · ) ∗ βi+1) 6= µq ((. . . (α ∗ β1) ∗ · · · ) ∗ βi−1) , (no backtracking)

and if γ
def
=

(
. . . (α ∗ β1) ∗ · · ·

)
∗ βt′ , then µq(α) = µq(γ) (closed path).

We must show that the irreducible product β
def
= (· · · (β1β2) · · · )βt′ is in Λ(q). By Corollary 1,

γβt′ =
(
· · · (αβ1) · · · βt−1)βt′

)
βt′ =

(
· · · (αβ1) · · · βt′−1

)
(βt′βt′) = p

(
· · · (αβ1) · · ·

)
βt′−1.

By induction it arrives γβ = pt
′

α, or γ ∗ β = α, or µq(γ)µq(β) = µq(α). But by assumption,
µq(γ) = µq(α), which implies µq(β) = 1Z, since O(Fq)

⋆/Z is a loop. Equivalently, β ∈ ker µq =
Λ(q), and hence β as well, as can be easily checked.

Reciprocally, let us consider an irreducible product γ in Λ(q) of t′ elements γ1, . . . , γt′ in
P(p). Let:

δ
def
=

(
(. . . (αγ1) · · · γt′−1

)
γt′ .
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As seen above, δ ∗ γ = α. It follows that µq(δ ∗ γ) = µq(δ)µq(γ). By assumption, µq(γ) = 1.Z,
therefore we also have µq(γ) = 1.Z. So µq(α) = µq(α ∗γ). This corresponds to a path of length
t′, without backtracking, starting at µq(α). 2

The second lemma gives a tight lower bound on the size of irreducible products in Λ of even
length that belong to Λ(q). This yields therefore a tight lower bound on the size of cycles of
even length in the graphs Xp,q or Yp,q.

Lemma 7 Given t > 0, there exists an irreducible product in Λ(q) of length 2t if and only if
2pt > q2.

Proof: Let β ∈ Λ(q) be as in the statement. It can be written as β = b0 + q(b1i + · · · + b7kt)
where the bi’s are integer coefficients. Moreover, N(β) = p2t gives:

b20 + q2(b21 + · · ·+ b27) = p2t. (17)

At least one bi (with i > 0) is non zero, else β = b0 would yield an irreducible product of length
0, in contradiction with the assumption t > 0. This implies p2t ≡ b20 (mod q2), or equivalently
pt ≡ ±b0 (mod q2). We observe that b20 < p2t, so |b0| < pt, and pt = ±b0 +mq2, for a positive
integer m. This implies

p2t = (pt −mq2)2 + q2(b21 + · · · + b27)

= p2t − 2mq2pt +m2q4 + q2(b21 + · · ·+ b27)

⇔ 2mpt −m2q2 = b21 + · · ·+ b27. (18)

Then it follows that 2pt−mq2 > 0. This is because at least one bi (with i > 0) is different from
0, achieving the first part of the proof.

Reciprocally, if m is such that 2pt > mq2, can be represented by a sum of seven squares:
2mpt −m2q2 = a21 + · · · + a27. We may even choose arbitrarily two of them since any positive
integer is a sum of 5 squares. This will be done as follows. First we choose a0 = pt−mq2. Then
we choose a1, a2 in such a way that their parity is different from the parity of a0. Notice also
that

a0 ≡ a20 (mod 2)

≡ p2t − q2(a21 + . . .+ a27) (mod 2)

≡ 1 + a1 + . . . + a7 (mod 2)

This implies that the number of the ai’s which are odd is also odd. Moreover from the choice
of a1 and a2 we know that if a0 is even then either three, five or seven of the ai’s (with i > 0)
are odd, and if a0 is odd, then either 0, 2 or 4 of the ai’s (with i > 0) are odd. From this, we
deduce that there is a suitable permutation of (a1, . . . , a7), such that
(i) if a0 is even, | {i; 1 ≤ 3, ai is odd} | is odd and a4 is odd (this is possible because in this case
the number of ai’s with i > 0 which are odd is greater than 2)
(ii) if a0 is odd, | {i; 1 ≤ 3, ai is odd} | is even and a4 is even (this is possible because in this
case the number of ai’s with i > 0 which are even is greater than 2).
Therefore there exists a suitable permutation of (a1, . . . , a7) such that

(a4, a5, a6, a7) ≡ (1− a0, a1, a2, a3) (mod 2) and a0 + a1 + a2 + a3 ≡ 1 (mod 2)

This implies by using Lemma 1 that a0 + q(a1i + . . . + a7kt) lies in 1 + 2CO and therefore also
in Λ(q). 2

Using both lemmas together we obtain
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Proposition 7 The length of the smallest closed non backtracking walk of even length in Xp,q

or in Yp,q is equal to 2⌈2 logp q − logp 2⌉

Proof: Such a walk of length 2t exists if and only if there exists an irreducible product of
length 2t which belongs to Λ(q) by Lemma 6. Using now Lemma 7, we know that such a
product exists if and only if 2pt > q2. The smallest t which satisfies this inequality is clearly
equal to ⌈2 logp q − logp 2⌉. 2

We can now prove Theorem 3.
Proof: (of Theorem 3) The first part of (i) is a consequence of the fact that Xp,q is bipartite,
therefore any cycle it contains is of even length. We can apply now Proposition 7 and lower
bound the length of such a cycle by 2⌈2 logp q − logp 2⌉. Hence

girth(Xp,q) = 2⌈2 logp q − logp 2⌉ = 2

⌈
6

7
logp3 q

7 − logp 2

⌉

≥ 12

7
logk−1(q

7 − q3)− 2 logp 2,

and the first part of (i) follows. The optimality of the constant 12
7 follows at once from the fact

that

girth(Xp,q) = 2⌈2 logp q − logp 2⌉ = (1 + o(1))
12

7
logp3(q

7 − q3) = (1 + o(1))
12

7
logk−1 |Xp,q|

as q tends to infinity.

To prove (ii), notice that the double cover graph of Yp,q is equal to Xp,q by definition and
that the length of the smallest cycle of the double cover is at most twice the length of a cycle
in Yp,q, therefore

girth(Xp,q) ≤ 2 girth(Yp,q).

and (ii) follows immediately. 2

6 Spectral estimate

Basically their approach can be summarized as this.

(i) A classical graph spectral argument is first used to relate the number of cycles of a certain
length without backtracking to the spectrum of the graph.

(ii) In the particular case of the Ramanujan family based on quaternions of [32], the number of
cycles without backtracking can be related to the number of integer solutions of a certain
quadratic equation in 4 variables. In our case, a similar result holds with a quadratic
diophantine equation in 8 variables.

(iii) The number of solutions of the quadratic equation is estimated through modular forms
considerations. Basically, it can be expressed as a sum of a Fourier coefficient of an
Eisenstein series and one of a cusp form, both of weight 2. The Fourier coefficient of the
Eisenstein series can be computed explicitly, whereas the Fourier coefficient of the cusp
form is upper-bounded by deep results proving the Ramanujan-Petersson conjectures for
modular forms of weight 2 (using here Eichler and Igusa results [17, 26] relating such a
conjecture to the Riemann hypothesis for algebraic curves on finite fields which was proved
by Weil [50]). In our case, we relate the number of integer to the estimation of Fourier
coefficients of weight 4, where we rely instead on the more general Deligne’s proof [14, 15]
of the Ramanujan-Petersson conjectures for modular forms of even weight, which was
obtained by proving Riemann’s hypothesis for varieties over finite fields.
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With the same approach we obtain the following theorem.

Theorem 4 The graphs Xp,q are Ramanujan.

Remarks:

1. We consider here in a unified way the case where Xp,q is a Cayley graph over the Moufang

loop O(Fq)/Z (which corresponds to the case
(
p
q

)

= −1) and where Xp,q is the double

cover of Yp,q (i.e.
(
p
q

)

= 1).

2. This will allow for instance to obtain as a direct corollary (see Corollary 3) that the Yp,q’s
are also Ramanujan.

Step 1: relating the graph spectrum to the numbers of non-backtracking cycles.
We recall that if A is the adjacency matrix of a graph, then Aℓ is the matrix whose i, j-entry is
the number of paths of length ℓ between the vertices labeled i and j. Assume that the graph
is regular of valency k. The sequence of matrices (Bℓ)ℓ∈N defined by the order 2 recurrence
relation (Cf. [13, 1.4.1 Lemma]):

B0 = Id, B1 = A, B2 = A2 − kId, Bℓ = ABℓ−1 − (k − 1)Bℓ−2, for ℓ ≥ 3,

counts the number of paths without backtracking of length ℓ between two vertices. We recall
that a path (x0, x1, . . . , xℓ) is said to be without backtracking if and only if xi−1 6= xi+1 for
any i ∈ {1, . . . , ℓ − 1}. The Chebychev polynomials (of the second kind) Um(X), defined by

Um(cos θ) = sin(m+1)θ
sin θ , verify an order 2 recurrence relation as well:

Um(X) = 2XUm−1(X) − Um−2(X).

Hence, it is possible to link the Bℓ and the Um in the following way. Defining matrices (Tm)m∈N,

Tm
def
=

∑

0≤ℓ≤m
2

Bm−2ℓ, (19)

comes (Cf. [13, 1.4.5 Proposition]):

Tm = (k − 1)m/2Um

(
A

2
√
k − 1

)

. (20)

Suppose that the graph whose adjacency matrix is A has vertex set V , that |V | = n. Let
λ0 = k ≥ λ1 ≥ · · · ≥ λn−1 the eigenvalues of this graph. Given a vertex x ∈ V , let fℓ,x be
the number of closed paths of length ℓ without backtracking starting at x. By definition of
the matrices (Bℓ)ℓ∈N, fℓ,x is the entry of the diagonal element of Bℓ labeled by the vertex x.
By taking the trace of the matrix Tm using Equation (20) and Equation (19) comes (Cf. [13,
1.4.6 Theorem]):

∑

x∈V

∑

0≤ℓ≤m
2

fm−2ℓ,x = (k − 1)m/2
n−1∑

j=0

Um

(
λj

2
√
k − 1

)

. (21)

We go back now to the graphs Xp,q, so that the size is n = q7−q3 and the valency is k = p3+1.
We differ now slightly from the proof given in [13]. It is not clear that these graphs are vertex

transitive as was the case for the Ramanujan graphs of [32, 35] (these graphs were constructed
as Cayley graphs on groups, and were therefore vertex-transitive). In our case, we obtain that
fℓ,x is independent of the vertex x in a different way by a reformulation of Lemma 6:
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Lemma 8 For the graphs Xp,q, the number fℓ,x is independent of the vertex x. When ℓ is
even, this number is equal to the number of irreducible products (. . . (α1α2) · · · )αs of length ℓ
such that (. . . (α1α2) · · · )αs ∈ Λ(q).

Proof: If ℓ is odd, then fℓ,x is equal to zero for every x because Xp,q is bipartite. If ℓ is even,
the statement given is a straightforward consequence of Lemma 6 and the very definition of

Xp,q in terms of a Cayley graph over O(Fq)
⋆/Z (when

(
p
q

)

= −1) or in terms of a double cover

of a Cayley graph over M1/Z1 (when
(
p
q

)

= 1). 2

With this lemma, we denote fℓ,x simply by fℓ. The degree of the graphs Xp,q is k = p3 +1,
therefore Equation (21) becomes (Cf. [13, 1.4.7 Corollary]):

n
∑

0≤ℓ≤m
2

fm−2ℓ = p3m/2
n−1∑

j=0

Um

(
λj

2p3/2

)

. (22)

Step 2: Expressing the number fℓ of non-backtracking cycles of length ℓ in terms of
the number of solutions of certain quadratic diophantine equations. To start with,
let us introduce briefly some preliminary materials. Given a positive definite quadratic form R,
anf for t ∈ N fixed, let

NR(t)
def
=

{
x = (x0, . . . , x7) ∈ Z8 | R(x) = t

}
, and nR(t) = |NR(t)|. (23)

We consider now the positive definite quadratic form

Q(x) = x20 + q2(x21 + · · · + x27).

For a ∈ {0, 1}8, let us define also the sets

Ea

def
=

{
x ∈ Z8 | Q(x) = t , x ≡ a (mod 2)

}

and for i ∈ {0, 1, . . . , 7}:

Fi
def
=

{
x = (x0, . . . , x7) ∈ Z8 | Q(x) = t , xi ≡ 0 (mod 2)

}
.

In the light of the property of Lemma 1 verified by elements in Λ, the relevant quantity to
consider is not the whole number of integer solutions nQ(t) of Q = t, but the following:

Definition 7 Let rQ(t) denotes the number of solutions of Q(x) = t with x = (x0, . . . , x7) ∈ Z8

and satisfying

(x0, x1, x2, x3) ≡ (1− x4, x5, x6, x7) (mod 2) if x0 + x1 + x2 + x3 ≡ 1 (mod 2),

(x0, x1, x2, x3) ≡ (x4, 1− x5, 1− x6, 1− x7) (mod 2) if x0 + x1 + x2 + x3 ≡ 0 (mod 2).

Indeed, this quantity verifies:

Lemma 9 Let m be a non-negative even integer. The following equality holds:

rQ(p
m) = 2

∑

0≤ℓ≤m
2

fm−2ℓ.
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Proof: We already know from Lemma 6 that fm−2ℓ counts the number of irreducible products
in Λ(q) of length m−2ℓ. Let α = a0+a1i+ · · ·+a7kt be such an irreducible product. It belongs
to Λ(q) ⊂ 1 + 2CO therefore, from Lemma 1

(a0, a1, a2, a3) ≡ (1− a4, a5, a6, a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 1 (mod 2),

(a0, a1, a2, a3) ≡ (a4, 1− a5, 1− a6, 1 − a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 0 (mod 2).

And moreover, ai = qa′i for some integers a′i and for 1 ≤ i ≤ 7. Hence, N(α) = pm−2ℓ =
Q(a0, a

′
1, . . . , a

′
7). This α gives two solutions contributing to rQ(p

m), namely±(a0p
ℓ, a′1p

ℓ, . . . , a′7p
ℓ).

Conversely, a solution (x0, . . . , x7) contributing to rQ(p
m) above yields an element β =

x0 + q(x1i + · · · + x7kt) ∈ 1 + 2CO of norm N(β) = pm. That is, β verifies the conditions of
Proposition 1 and there exists a unique irreducible product β′ ∈ Λ such that β = ±pℓβ′. It is
easily verified that β′ is also in Λ(q). Since, N(β′) = p2m−ℓ, this is a contribution to fm−2ℓ. 2

The next step is to relate rQ(t) to the whole number of integer solutions nQS
(t) of certain

quadratic equations QS defined hereunder. Indeed, these nQS
(t) can be estimated sharply (see

the next step), whereas it is not the case for the partial number of solutions rQ(t).

Definition 8 Given a subset S ⊂ {0, 1, . . . , 7}, we define the following quadratic form

QS(x0, . . . , x7)
def
= φS(0)x

2
0 + q2

∑

1≤i≤7

φS(i)x
2
i ,

where φS(i) = 4 if i ∈ S and 1 otherwise.

It is not difficult to see that nQS
(t) has the following interpretation in terms of the number of

integer solutions of Q(x) = t:

nQS
(t) =

∣
∣{x = (x0, . . . , x7) ∈ Z8 | Q(x) = t , xi ≡ 0 (mod 2) if i ∈ S}

∣
∣ . (24)

With the help of the definition above, now we can prove that:

Lemma 10 There exist integers aS for S ranging over all subsets of {0, . . . , 7} such that

rQ(t) =
∑

S

aSnQS
(t).

Proof: Let A be the set of a = (ai)0≤i≤7 ∈ {0, 1}8 satisfying

(a0, a1, a2, a3) = (1− a4, a5, a6, a7) if a0 + a1 + a2 + a3 ≡ 1 (mod 2),

(a0, a1, a2, a3) = (a4, 1− a5, 1− a6, 1− a7) if a0 + a1 + a2 + a3 ≡ 0 (mod 2).

By definition of Ea, we clearly have:

rQ(t) =
∑

a∈A
|Ea|. (25)

Next, we show that for any a ∈ {0, 1}8 there is a family of integers (uS)S⊂{0,...,7} such that

|Ea| =
∑

S⊂{0,...,7}
uSnQS

(t). (26)

The above plugged in Equation (25) will prove the lemma. To do so, notice that:

Ea =
⋂

i:ai=0

Fi ∩
⋂

i:ai=1

(NQ − Fi), (27)
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where NQ denotes the set NQ(t) of (23). For b = 0 or 1, let us define Sb
def
= {i : ai = b}. Let

also G be the set ∩i:ai=0Fi = ∩i∈S0Fi. Equation (27) can be rewritten as:

Ea =
⋂

i∈S0

Fi ∩
⋂

i∈S1

(NQ − Fi) = G ∩
(

NQ −
⋃

i∈S1

Fi

)

= G−
(

G ∩
⋃

i∈S1

Fi

)

.

The last equality is justified by the inclusion G ⊂ NQ. We now take cardinal:

|Ea| = |G| −

∣
∣
∣
∣
∣
∣

G ∩
⋃

i∈S1

Fi

∣
∣
∣
∣
∣
∣

= |G| −

∣
∣
∣
∣
∣
∣

⋃

i∈S1

G ∩ Fi

∣
∣
∣
∣
∣
∣

= |G| −
∑

T⊆S1

(−1)|T |−1

∣
∣
∣
∣
∣
G ∩

⋂

i∈T
Fi

∣
∣
∣
∣
∣

(by the inclusion/exclusion principle)

=

∣
∣
∣
∣
∣
∣

⋂

i∈S0

Fi

∣
∣
∣
∣
∣
∣

−
∑

T⊆S1

(−1)|T |−1

∣
∣
∣
∣
∣
∣

⋂

i∈T∪S0

Fi

∣
∣
∣
∣
∣
∣

= nQS0
(t)−

∑

T⊆S1

(−1)|T |−1nQT∪S0
(t) (by using (24))

This proves Equality (26), which is sufficient to conclude the proof as already mentionned. 2

We assume from now on that m is even, say m = 2ℓ. Equality (22) is then rewritten as:

rQ(p
2ℓ) =

2p3ℓ

n

n−1∑

j=0

Um

(
λj

2p3/2

)

. (28)

For every 0 ≤ j ≤ n−1, there exists a unique θj ∈ [3i2 ln p, 0]∪[0, π]∪[π, π+ 3i
2 ln p] ⊂ C such that:

λj = 2p3/2 cos θj (precisely, θj ∈ [0, π] if |λj | ≤ 2p3/2, θj ∈ [3i2 ln p, 0) for 2p3/2 < λj ≤ p3+1 and

θj ∈ (π, π + 3i
2 ln p] for −p3 − 1 ≤ λj < −2p3/2). Recall that λ0 = p3 + 1 and since the graphs

are bipartite λn−1 = −p3 − 1, so θ0 = 3i
2 ln p and θn−1 = π + 3i

2 ln p. As a consequence, the
graphs are Ramanujan if and only if the θj’s are real for 1 ≤ j ≤ n− 1, which will be proved in
the 3rd step below.

By coming back to the definition of Chebychev polynomials, Equality (28) becomes:

rQ(p
2ℓ) =

2p3ℓ

n

n−1∑

j=0

sin(2ℓ+ 1)θj
sin θj

. (29)

With the aforementioned values for θ0 and θn−1, namely θ0 =
3i
2 ln p and θn−1 = π + 3i

2 ln p, we
check that:

rQ(p
2ℓ) =

4

n

1− p3(2ℓ+1)

1− p3
+

2p3ℓ

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

. (30)

Step 3: Using modular forms techniques to estimate rQ(p
m). Similarly to [32], let us

bring in the Theta series:

ΘS(z)
def
=

∞∑

k=0

nQS
(k)e2iπkz . (31)

By using classical results about Theta series (see for instance [36, §4.9.5] or [40, Chapter VI-3]),
we obtain
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Lemma 11 ΘS(z) is a modular form5 of weight 4 for Γ(16q2).

Γ(16q2) denotes here the group of matrices

Γ(16q2) =

{(
a b
c d

)

∈ SL2(Z) :

(
a b
c d

)

≡
(
1 0
0 1

)

(mod 16q2)

}

.

The modular forms ΘS can be decomposed in a unique way as a sum of a linear combination
of Eisenstein series ES(z) =

∑∞
k=0 ek,Se

2iπkz and a cusp form CS(z) =
∑∞

k=1 ck,Se
2iπkz of weight

4 for Γ(16q2) (see [22, article 24, Satz 1. II] for instance), i.e ΘS(z) = ES(z) + CS(z). We can
therefore write by using Lemma 10

∑

S⊆{0,...,7}
aS

(
ep2ℓ,S + cp2ℓ,S

)
=

4

n

1− p3(2ℓ+1)

1− p3
+

2p3ℓ

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

. (32)

The central argument for estimating accurately rQ(p
2ℓ) is that the Fourier coefficients of a cusp

form C(z) =
∑∞

k=1 cke
2iπkz of weight 4 satisfy for every ǫ > 0:

|ck| = Oǫ(k
3/2+ǫ) as k → ∞. (33)

This comes from the proof of the Ramanujan conjecture for cusp forms of even weight obtained
by using the work of Ihara [27], which reduced the proof of the conjecture to the Riemann
hypothesis for varieties over finite field which was later settled by Deligne in [14, 15].

Since the remaining sum 2p3ℓ

n

∑n−2
j=1

sin(2ℓ+1)θj
sin θj

is clearly of the form o(p6ℓ) as m tends to

infinity, it follows from the upper-bound (33) and from Equation (32) that

∑

S⊆{0,...,7}
aSep2ℓ,S =

4

n

1− p3(2ℓ+1)

1− p3
+ o

(
p6ℓ

)
. (34)

Following [32], we observe now that the sum of the Fourier coefficients
∑

S⊆{0,...,7} aSep2ℓ,S
are exactly equal to the right-hand side without remainder term, by using the fact that the
coefficients ek of any linear combination E(z) =

∑∞
k=0 eke

2iπkz of Eisenstein series of weight 4
for Γ(N) are of the form

ek =
∑

d|k
d3F (d) (35)

for some periodic function F : N → C of period N (see for instance [40, Proposition 17, Chapter
IV]). We invoke now a the slight variation of [32, Lemma 4.4]:

Lemma 12 Let G : N → C be periodic and satisfy

∑

d|pm
d3G(d) = o(p3m) as m → ∞

then ∑

d|pm
d3G(d) = 0 for all m.

5Actually, ΘS(z) even belongs to Γ0(16q
2) as is readily checked from [36]. However, this allows us to make

directly use of certain results related to Γ16q2 as will appear later on.
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Proof: Let um
def
=

∑

d|pm d3G(d), then

G(pm) =
um − um−1

p3m
=

um
p3m

− um−1

p3(m−1)p3
. (36)

We notice now that the right-hand-side term um

p3m − um−1

p3(m−1)p3
tends to 0 as m goes to infinity.

G is periodic, therefore G(pm) = 0 for all m. 2

By noticing that
4

n

1− p3(2ℓ+1)

1− p3
=

∑

d|p2ℓ

4

n
d3,

writing that
∑

S⊆{0,...,7}
aSep2ℓ,S =

∑

d|p2ℓ
d3F (d)

for some periodic function F : N → C of period 16q2, and using Equation (35), we obtain that

∑

S⊆{0,...,7}
aSep2ℓ,S − 4

n

1− p3(2ℓ+1)

1− p3
=

∑

d|pm
d3

(

F (d)− 4

n

)

.

From Equation (34) we see that we can apply Lemma 12 to
∑

S⊆{0,...,7} aSep2ℓ,S − 4
n
1−p3(2ℓ+1)

1−p3

and obtain
∑

S⊆{0,...,7}
aSep2ℓ,S =

4

n

1− p3(2ℓ+1)

1− p3
. (37)

This reduces Equation (32) to

∑

S⊆{0,...,7}
aScp2ℓ,S =

2p3ℓ

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

.

and by using the upperbound (33) we finally obtain

2

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

= Oǫ(p
2ℓε).

Suppose that there is some λj 6∈ [−2p3/2, 2p3/2] with j ∈ {1, . . . , n − 2}, or equivalently
that there is some θj which is not real. There exists a unique 0 < tj < 1 such that either
θj =

3i
2 tj ln p or θj = π+ 3i

2 tj ln p. Consider the index j of this kind which maximizes |λj |. It is
straightforward to check that

2

n

n−2∑

j=1

sin(2ℓ+ 1)θj
sin θj

=
2|{i : |λi| = |λj|}|

n
p3ℓtj

1− p−3tj(2ℓ+1)

1− p−3tj
(1 + o(1))

as ℓ goes to infinity. If ε is small enough, the right-hand term can not be upper-bounded by

O(p2ℓε) and therefore the same thing holds for 2
n

∑n−2
j=1

sin(2ℓ+1)θj
sin θj

. So for 1 ≤ j ≤ n− 2, the θj ’s

are real, or equivalently the λj ’s are in [−2p3/2, 2p3/2]. This proves that the graphs Xp,q are
Ramanujan.

Corollary 3 For p < q such that
(
p
q

)

= 1, the graphs Yp,q are also Ramanujan.
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Proof: Let µ0 ≥ · · · ≥ µn−1 be the spectrum of Yp,q. The equality µ0 = p3 + 1 holds. The
graphs are not bipartite by Proposition 6 so there is the inequality µn−1 > −p3 − 1. The
spectrum of the bipartite double cover Xp,q of Yp,q is given by ±µ0, . . . ,±µn−1, counted with
multiplicities. But the graphs Xp,q are Ramanujan, that implies µj ≤ 2p3/2 for j 6= 0. That is
Yp,q are also Ramanujan. 2

Conclusions

The contributions of this work are twofold. First, the girth problem consisting of finding for an
infinite growing family of k-regular graphs {Gn} what is the largest constant

γ({Gn}) def
= lim

n→∞
inf

{
girth(Gn)

logk−1 |Gn|

}

reduces now to 12
7 ≤ γ ≤ 2, for the values of k = p3 + 1, p an odd prime. This is a clear

improvement on the 25 years old result 4
3 ≤ γ ≤ 2.

Second, this is the first construction of Cayley expanders non explicitely based on a group.
However, as already mentionned in introduction, we stress that the graphs presented here may
be Cayley graphs on groups. The question is then which groups ? A simpler open problem is the
vertex-transitivity of these graphs. In any case, it might be interesting to pursue further research
toward expansion properties in non-associative algebraic structures. Indeed, the expansion
property of Cayley graphs on groups has been thoroughly studied recently. Similar questions
arise for loops.

In addition, it may be interesting to carry over the construction of Morgenstern [37] based
on quaternions over function fields, to octonions. There would be indeed a hope to build
Ramanujan graphs of girth 12

7 logk−1 n for various degrees k, not only of the form k = p3 +1, p
is prime, like in the present paper.

To conclude, let us recall that the graphs constructed here display other properties shared by
all Ramanujan graphs, namely a small diameter D satisfying D ≤ 2 logd−1 n+O(1) and in the

non bipartite case, an independence number i verifying i ≤ 2
√
d−1
d n and therefore a chromatic

number χ of the form χ ≥ d
2
√
d−1

.
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