
ar
X

iv
:1

01
1.

26
44

v1
 [

cs
.I

T
]

 1
1

N
ov

 2
01

0

Do AES encryptions act randomly?

Anna Rimoldi (rimoldi@science.unitn.it)

Department of Mathematics, Univ. of Trento, Italy.

Massimiliano Sala (maxsalacodes@gmail.com)

Department of Mathematics, Univ. of Trento, Italy.

Enrico Bertolazzi (enrico.bertolazzi@ing.unitn.it)

Department of Mechanical and Structural Engineering, Univ. of Trento, Italy.

Abstract

The Advanced Encryption Standard (AES) is widely recognized as the most impor-
tant block cipher in common use nowadays. This high assurance in AES is given by
its resistance to ten years of extensive cryptanalysis, that has shown no weakness,
not even any deviation from the statistical behaviour expected from a random per-
mutation. Only reduced versions of the ciphers have been broken, but they are not
usually implemented. In this paper we build a distinguishing attack on the AES,
exploiting the properties of a novel cipher embedding. With our attack we give some
statistical evidence that the set of AES-128 encryptions acts on the message space in
a way significantly different than that of the set of random permutations acting on
the same space. While we feel that more computational experiments by independent
third parties are needed in order to validate our statistical results, we show that the
non-random behaviour is the same as we would predict using the property of our
embedding. Indeed, the embedding lowers the nonlinearity of the AES rounds and
therefore the AES encryptions tend, on average, to keep low the rank of low-rank
matrices constructed in the large space. Our attack needs 223 plaintext-ciphertext
pairs and costs the equivalent of 248 encryptions.

We expect our attack to work also for AES-192 and AES-256, as confirmed by
preliminary experiments.

Introduction

The Advanced Encryption Standard (AES) is widely recognized as the
most important block cipher in common use nowadays [Nat01]. Its 256-bit
version (AES256) can even be used at top secret level ([CGC05]). This high
assurance in AES is given by its resistance to ten years of extensive cryptanal-
ysis: AES has shown no weakness, not even any deviation from the statistical
behaviour expected from a random permutation. Only reduced versions of

http://arxiv.org/abs/1011.2644v1

2 Do AES encryptions act randomly?

the cipher have been broken, but they are not usually implemented (see e.g.
[RST10], Section 2).

For a high-security cipher it is essential that nobody can distinguish its
encryption functions from random functions. It is not enough that the encryp-
tion function associated to a key cannot be distinguished from a random map
(single-key attack), or that the encryption functions associated to related keys
cannot be distinguished from a set of random maps. A high security cipher
must behave so randomly that it must be impossible to distinguish (a random
sample of) the whole set of AES encryptions from (a random sample of) the
set of random permutations.

In this paper we build a special kind of distinguishing attack on the AES.
To be more precise, with our attack we give some statistical evidence that the
set of AES-128 encryptions acts on the message space in a way different than
that of the set of random permutations acting on the same space. In this paper
we do not claim any other successful distinguishing attack, neither single-key
nor related-keys.

Our attack has a subtle theoretical justification. We are able to embed
the AES (and actually also other translation-based ciphers) in a larger cipher,
as explained in full details in [RST10]. This embedding is designed to lower
the non-linearity of the AES rounds. The decrease in the non-linearity should
be noted by analysing the ranks of some matrices (similarly to a Marsaglia
Die-Hard test [NIS00]). While we feel that more computational experiments by
independent third parties are needed in order to validate our statistical results,
we show that the non-random behaviour is the same as we would predict using
the property of our embedding. Indeed, we observe that the AES encryptions
tend, on average, to keep low the rank of low-rank matrices constructed in the
large space. This holds true apparently for all standard AES versions.

Our attack needs 223 plaintext-ciphertext pairs and costs the equivalent of
248 encryptions, thanks to a highly specialized rank-computation algorithm.

The remainder of this paper is organized as follows. In Section 1 we sketch
the internal structure of the AES, we explain our embedding and we treat some
statistical models related to statistical attacks. In Section 2 we describe our
attack strategy. In Section 3 we report our attack numerical results, including
results on different AES versions. In Section 4 we discuss some computational
matters, presenting a rank-computation algorithm. In Section 5 we provide
our conclusions and several remarks.

1 Preliminaries

In this section we mainly follow the notations and the approach in [RST10],
including viewing AES as a translation-based cipher.

A. Rimoldi, M. Sala, E. Bertolazzi 3

1.1 An AES description

In this subsection we recall the essential structure of the AES cryptosystem
viewed as translation-based (for a more traditional approach see [DR02]).

Let V = (F2)
r with r = 128 be the space of all possible messages (plain-

texts or ciphertexts). Let K = (F2)
ℓ be the finite set of all possible keys

(with ℓ = 128, 192, 256). Any key k ∈ K specifies an encryption function φk.
Let x ∈ V be any plaintext. In order to obtain the corresponding cipher-
text y = φk(x) ∈ V , the encryption proceeds through N = 10, 12, 14 similar
rounds, respectively (depending on ℓ), as described below.

A preliminary translation via (addition with) the first round key k(0) in
(F2)

r is applied to the plaintext to form the input to the first round (Round
1). Other N rounds follow.

Let 1 ≤ ρ ≤ N −1. A typical round (Round ρ) can be written as the com-
position 1 γλσk(ρ), where the map γ is called SubBytes and works in parallel
to each of the 16 bytes of the data (SubBytes is composed by two transforma-
tions: the inversion in F28 and an affine transformation over F2); the linear map
λ : V → V is the composition of two linear operations known as ShiftRows and
MixColumns; σk(ρ) is the translation with the round key k(ρ) (this operation is
called AddRoundKey).

The last round (Round N) is atypical and can be written as γλ̄σk(N) , where
the affine map λ̄ is the ShiftRows operation.

Obviously, we can see the linear operation λ as a matrix M. We observe
that the order of λ is quite small and equal to 8: λ8 = 1V .

1.2 The embedding we are using

We are interested in particular space embeddings where the vector space
V = (F2)

r and W is the vector space (F2)
s, with s > r. We want to embed V

into W by an injective map α and to extend φk ∈ Sym(V) to a permutation
φ′
k ∈ Sym(W) as shown in the following commutative diagram:

V

�φk

��

α //W

φ′

k

��

V
α //W

In order to do this, we have to define the permutation φ′
k ∈ Sym(W). We

say that φ′
k is an extension of φk. Let r = mb, let s = 2mbt. According to the

setting described in [RST10, Section 4], the space embedding α : V → W we
consider is defined as follows

α(v) = (ε(v), ε(Mv), . . . , ε(Mt−1v)) (1)

where:

1 Note that the order of the operation is exactly: γ, λ, and then σk.

4 Do AES encryptions act randomly?

a) ε : (F2m)
b → ((F2)

2m)b is a parallel map ε(v1, . . . , vb) = (ε′(v1), . . . , ε
′(vb));

b) the map ε′ : F2m → (F2)
2m is defined by means of a primitive element η

of F2m as

ε′(0) = (1, 0, . . . , 0
︸ ︷︷ ︸

2m−1

) ε′(ηi) = (0, . . . , 0, 1
↑

i+1

, 0, . . . , 0) ∀1 ≤ i ≤ 2m − 1 .

c) the matrix M in GL((F2)
mb) has order t.

Moreover, for byte-oriented Mixing Layers, i.e. if M ∈ GL((F2m)
b), the

following bound has been proved as Proposition 4.2 in [RST10]:

dimF2

(
〈Im(α)〉

)
≤ 2mbt− (bt− 1)−mb(t− 1).

Let M : V → V be the MixingLayer of AES. The map α : V → W we
propose for AES is defined as follows

α(v) = (ε(v), ε(Mv), . . . , ε(M7v)), (2)

where: ε : (F2)
128 → (F2)

4096, ε′ : F256 → (F2)
256, M ∈ GL((F2)

128).
We have t = 8, b = 16 and m = 8. In Fact 4.4 ([RST10]) we determined the
dimension of 〈Im(α)〉, for α in (2), using the fact that M ∈ GL((F256)

16):

dimF2(〈Im(α)〉) = 2mbt− (bt− 1)−mb(t− 1) = 31745.

The encryption φk is the composition of AddRoundKey, Subbytes and Mix-

ingLayer. So the only part of φ′
k which is not linear is the SubBytes operation.

Remark 1.1. The goal of our φ′
k construction is to have the non-linearity of

SubBytes decrease.

1.3 On randomness and statistical distinguishers

When a statistical test on data from a cryptographic algorithm is per-
formed, we wish to test whether the data “seem” random or not. It is impos-
sible to design a test that gives a decisive answer in all cases. However, there
are many different properties of randomness and non-randomness, and it is
possible to design tests for these specific properties. An example of a set of
tests is the NIST Test Suite [NIS00]. It is a statistical package consisting of 16
tests that were developed to test the randomness of (arbitrarily long) binary
sequences produced by cryptographic random or pseudorandom number gen-
erators. These tests focus on a variety of different types of non-randomness
that could exist in a sequence. For example, the Marsaglia “Die Hard” test
consists of determining whether the statistics of ranks of (32 × 32) matri-
ces over F2, constructed with bits coming from the sequence, agrees with the
theoretical distributions.

A. Rimoldi, M. Sala, E. Bertolazzi 5

We are going to introduce three cryptanalitic scenarios where such test
can be applied. They are called “distinguishing attacks” or “distinguishers”.

Generally speaking, distinguishing attacks against block ciphers aim at
determining whether a given permutation corresponds to a random permuta-
tion 2 or to a φk. Of course, there is always a distinguishing attack against
any block cipher, since |K| < +∞, and so a brute-force key search will yield a
distinguishing attack of average complexity 2ℓ−1 (where ℓ is the key length),
but we are interested in attacks costing significantly less.

Let m1, . . . , mN be some plaintexts, let k be any key. We denote by π any
random permutation in Sym((F2)

r) and by φk the encryption function for the
key k; we have to consider the following situation, where one black box is
involved and it contains 3 either φk or π.

φ

?

mi

?

ci = φk(mi)

k -
π

?

mi

?

c̄i = π(mi)

A single-key distinguishing attack on a cipher C is any algorithm A able to
distinguish the ciphertexts {ci}1≤i≤N from the random ciphertexts {c̄i}1≤i≤N,
using some information on the plaintexts. There are two main variants: the
chosen-plaintext and the known-plaintext. In both, formally A takes as input
a set of pairs {(m1, ĉi), . . . , (mN , ĉN)} where

• either ĉi = ci ∀1 ≤ i ≤ N ,

• or ĉi = c̄i ∀1 ≤ i ≤ N ,

and returns as output “true” or “false”:

• A outputs “true” if and only if ĉi = ci, ∀i s.t. 1 ≤ i ≤ N .

• A outputs “false” if and only if ĉi = c̄i, ∀i s.t. 1 ≤ i ≤ N .

The difference between the two 4 variants:

• Chosen-plaintext: A can decide the plaintexts and obtain the correspond-
ing ciphertexts. In this case, such plaintexts are often chosen “related”,
i.e. satisfying some additional prescribed mathematical relations;

2 a permutation chosen uniformly at random from the set of all permutations.
3 A weaker form of distinguisher assumes that the black box contain φk or π with
the same probability [Luc96].
4 There are other ways to consider the plaintexts, according to the possibilities and
the capabilities of Eve.

6 Do AES encryptions act randomly?

• Known-plaintext: A cannot decide the plaintexts and we can only assume
that A knows a certain amount of pairs (plaintext,ciphertext). In this
case, the plaintexts are often supposed random.

If we have some related keys k1, . . . , kτ , we can describe a second cryptana-
litic scenario. A related-key distinguishing attack on a cipher C is any algorithm
A able to distinguish the ciphertexts {ci,j} from the random ciphertexts {c̄i,j},
as in the following scheme.

φ

?

mi

?

ci,j = φkj(mi)

kj-
πj

?

mi

?

c̄i,j = πj(mi)

Remark 1.2. In this model, A knows additionally some mathematical relations
between the keys used for encryption, but not the key values. Both the single
key scenario and the related-key one describe a hypothetical situation, very
difficult to reach in practice. Yet, a very secure block cipher must resist in
both scenarios.

There is another scenario where a distinguishing attack can be mounted.
This scenario is less common and we have not found an established name in
the literature for it, so we will call it a random-key-sample distinguisher. As
in the related-key scenario we consider some keys k1, . . . , kτ , some plaintexts
{m1, . . . , mN} and the corresponding ciphertexts {ci,j}. The difference is that
now we consider the keys as a random sample from the keyspace. This is a
realistic assumption, because when the session key is changed during trans-
missions a new (pseudo)-random key is negiotiated between the two peers.
Formally, A behaves in the same way as the related-key algorithm, being able
to distinguish the set of actual encryptions {ci,j} from a set of random vec-
tors {c̄i,j}. Clearly, also for the random-key-sample scenario we could have a
chosen-plaintext variant and a known-text variant, although it is rather un-
likely that a known-key attack can be succesful (we would have both random
keys and random plaintexts).

Our attack in the next section is of the third type. We use a strategy
similar to that of the well-known Marsaglia test.

A. Rimoldi, M. Sala, E. Bertolazzi 7

2 Strategy description

In this section, α is our embedding (2).
We recall that dimF2 (〈Im(α)〉) = 31745. Let a1, . . . , a31745 be (not necessarily
distinct) vectors in V . Let D = {a1, a2, . . . , a31745}, so |D| ≤ 31745. We con-
struct the (31745 × 215)-matrix D such that the i-th row is the image of the
map α applied to the plaintext ai, as in (3).

D =











α(a1)

α(a2)
...

α(a31745)











=











ε(a1) ε(Ma1) · · · ε(M7a1)

ε(a2) ε(Ma2) · · · ε(M7a2)
...

...
...

...

ε(a31745) ε(Ma31745) · · · ε(M7a31745)











. (3)

Let M be the set of all such matrices. Clearly, we have

|M| = (|V |)31745 = (2128)31745.

We note that the weight of any row is bt = 128.

What is the rank of D if D is random in Im(α)?

The probability that a ν × n random matrix (ν < n) with entries in F2 has
rank exactly s is significantly greater than the probability of having rank equal
to ν−1 or ν−2 or less. On the other hand, for a square n×n random matrix
in F2 the rank n−1 is the most probable. However, the most likely rank for D
as in (3) is not 31745, although 31745 < 215, because our construction imposes
specific constraints, for example on the row weight. Let dM denote the total
number of matrices in M and let d31743 denote the number of all matrices in
M with rank less than or equal to 31743. In [RST10] we have computed the
expected rank statistics for D. In particular, a direct consequence of Theo-
rem 3.19 in [RST10] is the following corollary:

Corollary 2.1.
d31743

dM
= 0.1336357 .

Our attack is a random-key-sample distinguisher with chosen plaintext, as
detailed in the remainder of this section.

We choose 216 plaintexts obtained by taking

S̄ = {v̄ = (v̄1, . . . , v̄16) | v̄ ∈ (F256)
16, v̄i = 0, 1 ≤ i ≤ 14}.

Clearly, |S̄| = (28)2 = 216.
Remark 2.2. We order (F2)

8 following the order of the binary representa-
tion. For example, since (00000010) 7→ 2 and (00001100) 7→ 12 we have

8 Do AES encryptions act randomly?

(00001100) > (00000010). We order ((F2)
8)2 using the lexicographic order-

ing, induced by the previous order: (a, b) > (a′, b′) if and only if either a > a′

or a = a′, b > b′. Once chosen an irreducible polynomial p ∈ F2[x], with
deg(p) = 8, we can identify F256 with (F2)

8 and so we can use the above
orderings to order both F256 and (F256)

2.

Following the previous remark, we can write S̄ = {v̄1, . . . , v̄2
16
} where

v̄i+1 > v̄i for all i. In other words, S̄ is an ordered set of 216 vectors.

We now describe an algorithm, that we call B, that takes in input an
ordered set S = {v1, . . . , v2

16
} of 216 vectors in V and that outputs a list

of natural numbers r0, . . . , r31745 computed as follows. We construct a first
matrix D starting from {v1, . . . , v31745}. We compute the rank of D and we
store the value. We repeat this procedure with {v2, . . . , v31746} and so on with
{vk+1, . . . , vk+31745}, where 2 < k ≤ 33791. In total, we compute the rank of
216−31745+1 = 33792 matrices. We define rj as the number of these matrices
with rank j (for 0 ≤ j ≤ 31745).

We applied algorithm B to S̄ and, since the rows of these matrices are
strongly related (they share the same first 14 bytes), we expect the corre-
sponding ranks to be significantly lower than the most probable ones (see
Subsection 3.1 for details).

We can apply algorithm B to φk(S̄) and to π(S̄), where π is any random
map. We would like to use the two output lists to distinguish between φk

and π, but we are not able to do it. Instead, we choose a number τ and we
do two different operations. In one case, we apply B to φki(S̄) for τ random
keys k1, . . . , kτ . In the other case, we apply B to πi(S̄) for τ random maps
π1, . . . , πτ . In practice, we apply B to τ random ordered sets, each containing
216 distinct vectors.
Finally, we use the output lists to distinguish between {φki} and {πi}.

We expect that the behaviour of the ranks coming from the encrypted
matrices is distinguishable from the theoretical distribution, and in particular
that these ranks are lower. On the other hand, we expect that the ranks coming
from the random matrices follow the theoretical distribution. The results are
reported in Section 3.

3 Numerical results

To mount the attack successfully we need to choose τ small enough to
allow for a practical computations and large enough to overcome the effects
induced by the variance in the random distribution.

Since we computed bunches of 10 random keys (and random maps), we
observed that the values coming from the randommaps may be distinguishable
(from the expected distribution) if we consider up to 50 maps. However, with
70 maps (or more) the random maps become undistinguishable, especially
compared to the drastic values obtained by the encryptions.

A. Rimoldi, M. Sala, E. Bertolazzi 9

Starting from a sample of 70 matrices, we report the obtained rank values
corresponding to r0 + . . .+ r31743 and r31744 + r31745:

Rank Random AES Expected

> 31743 2049671 2047430 2049333

≤ 31743 315769 318010 316107

Now, we apply the χ2 test between

(1) Random and Expected, → P value equals 0.51;

(2) AES and Expected, → P value equals 0.0003.

The lower the P-value, the higher the probability that the observed data
do not come from the theoretical distribution. It is customary in Statistics to
consider 0.05 as a threshold. Since the value for random data is 0.51 and that
for AES-128 is 0.0003, we may safely assume that, with high probability, the
ranks observed for AES-128 do not come from a random sample.
Besides, apart from the threshold, the ratio between the two P values is re-
markable. And the difference between the AES-128 ranks and the theoretical
distribution is exactly where we expect it to lie: in a significantly higher num-
ber of low-rank matrices.

In the following figure, we report the results of two samples coming from
φk(S̄) (the 70 red dots) and from π(S̄) (the 70 blue circles). First, we ordered
our samples according to the number of low-rank matrices: on the left the
samples with a smaller number and on the right those with a larger number.
Then we plotted vertically this number. The horizontal line corresponds to the
expected value for low-rank matrices. It should be apparent from the picture
how the two groups of values are separated.

expected value

10 Do AES encryptions act randomly?

3.1 Furher remarks

In this subsection we report on special applications of our algorithm B.
Some results are predictable:

• since our plaintext set S̄ contains highly correlated vectors, we would
expect that B outputs very low ranks when the input is S̄ itself; indeed,
in this case the output is r4690 = 33792, that is, we get exactly 33792
ranks equal to 4690. Actually, it is not difficult to prove that the di-
mension of the vector space generated by α(S̄) is 4821, with arguments
similar to those of the proof of Propostion 4.2 in [RST10]. Therefore, we
would expect our 31745 vector sample to form a matrix with a lower rank
(4690 < 4821);

• when we apply one round of AES (with any key) to S̄, algorithm B
outputs again r4690 = 33792. This may come as a surprise, but it is
easily explained in our framework. One round 5 means, in order, one
key addition, one S-Box, one λ and another key addition. Thanks to
properties of the embedding α, all the above operations are linear, except
for the S-Box (see Proposition 4.5 in [RST10]). However, the S-Box in
this case does not change the type of subspace. Indeed, after the fist key-
addition we have all vectors sharing the first 14 coordinates and the last
two are free to be any pair. Since the S-Box acts in parallel, it does not
change this situation and so the dimension of the whole space and the
ranks of our matrix remain unchanged;

• things change when we apply two rounds of AES; the reason is that the
MixColumns changes the structure, since it intermixes four bytes at a
time; it is true that the MixColumns in the first round does not change
the rank, but the change in the structure is fatal to the rank when the
S-Box of the second round is applied; indeed, our experiments shows that
B outputs in this case r20548 = 33792. Again, this lower value is justified
by the dimension of the 2-round encryption of S̄, which is 20679;

• similarly, the rank raises with the application of three rounds: B outputs
in this case r31661 = 33792 and the dimension of the 3-round encryption
of S̄ is 31681;

• when we apply four rounds or more, we get values near to the random
setting (and the dimension of the subspace is 31745, since it coincides with
the whole space 〈Im(α)〉); in this sense, we could say that the diffusion
of AES is working from 4 rounds and above, as it is usually agreed.

5 In the translation-based notation we are performing Round 0 and Round 1

A. Rimoldi, M. Sala, E. Bertolazzi 11

Some results are largely unexpected. For example:

• let us consider two random maps π1(S̄), π2(S̄) and two encryption func-
tions φk1(S̄) and φk2(S̄) (k1 6= k2). Now, we apply algorithm B to the
four corresponding sets and we obtain the following rank distributions.

Rank Random1 Random2 AES1 AES2 Expected

31745 9782 9467 9765 9554 9759

31744 19482 19765 19525 19569 19517

≤ 31743 4528 4560 4502 4669 4516

As before, we apply the χ2 test between

(1) Random1 and Expected, → P value equals 0.928;
(2) Random2 and Expected, → P value equals 0.002;
(3) AES1 and Expected, → P value equals 0.97;
(4) AES2 and Expected, → P value equals 0.008.

We note that case (1) and case (3) are statistically indistinguishable
from the expected distribution, while case (2) and (4) appear statisti-
cally distinguishable from the expected. In other words, if we apply our
test only to one key 6 , it fails badly, because it would distinguish with
probability 0.5, that is, it outputs a random value! The reason for the
single-key failure lies in the large variance among our samples. This is
why, in order to overcome this problem, we had to consider more keys:
the right τ , large enough to highlight the statistical differences and still
small enough to compute efficiently the corresponding ranks.

• When we mount our attack we have the freedom to consider for the χ2

test whatever combination of the ranks rj we like, as long as random
samples are not distinguishable and AES samples are. We tuned our test
to consider only two values (ranks lower than 31743 and those higher).
Two other choices are possible.
One would be to look only at even smaller ranks, such as “ranks lower
than 31740” (and those higher). We have discarded this option because
smaller ranks are very infrequent and we would then need a very large
sample in order to validate our tests.
The second choice is to consider more ranks, for example three ranks, as
in the following table. We considered a total sample having 70 elements

6 that is, if we try to mount a single-key attack.

12 Do AES encryptions act randomly?

Rank Random AES Expected

31745 684191 682317 683111

31744 1365480 1365113 1366222

≤ 31743 315769 318010 316107

According to the χ2 test we have that:

(1) Random and Expected, → P value equals 0.29;
(2) AES and Expected, → P value equals 0.0013.

So again we would distinguish between random and AES-128, but with
more difficulty. This can actually be explained a posteriori: it is true that
our embedding would induce less maximum-rank matrices (and the num-
bers confirm this: 682317 < 683111), but they might become 31744-rank
matrices and so add to the most noisy value 7 , and indeed the 31744-rank
matrices in the AES-128 sample are only slighty less than the expected.

We did not report on experiments on the other standard versions of AES
(AES-256 and AES-192), but our preliminary tests seem to indicate that our
test works well also in those cases, with only a slight worsening of the P
value ratio. Indeed, our strategy is independent from the key-length of AES,
since our approach is actually independent from the key-schedule and only
marginally dependent on the round numbers.

4 Computational effort

The algorithm developed to compute the ranks for the attacks is special-
ized for F2 and is described in [BR10]. Here we provide a sketch.

Since the matrix is rather large (circa 215 × 215), we must keep the heav-
iest part of the computation within the cache. However, some steps on the
whole matrix cannot be avoided, so we need a strategy that keeps these to a
minimum. In particular, we may need both column and row permutations. In
the below description, we assume that we do not need them.
Remark 4.1. To be able to avoid permutations is equivalent to having per-
formed a preprocessing such that each upper-left square block is square and
non-singular. Of course this cannot be done a priori, but we stick to this for
clarity’s sake.

Without the technicalities pertaing permutations, our algorithm reduces
to a variant of a recursive LU decomposition ([GV96]). Let the matrix M be
in (F2)

R×n. If the whole M does not fit into the cache, we partition M into
four blocks of approximately the same size.

7 random variable r31744 has the largest variance.

A. Rimoldi, M. Sala, E. Bertolazzi 13

Let M1 be the left-top block. If it does not fit, then we partition M1

similarly in four blocks and so on. Let A be the smallest block that does not
fit. We will have

A =




A11 A12

A21 A22



 , (4)

where A11 fits into the cache. Thanks to Remark 4.1, we can assume that
block A11 is square and non-singular. We can build the LU decomposition of
A11 = L11U11 and consider the following equality

A =




A11 A12

A21 A22



 =




L11 0

A21U
−1
11 I








I 0

0 Ã22








U11 L

−1
11 A12

0 I



 (5)

where Ã22 = A22 − A21U
−1L−1A12 is the Schur complement. Even if

block Ã22 is singular we can compute the LU decomposition Ã22 = L22U22

and the final LU decomposition of matrix A, as follows:

A=




L11 0

A21U
−1
11 I








I 0

0 L̃22








I 0

0 Ũ22








U11 L

−1
11 A12

0 I



 =

=




L11 0

A21U
−1
11 L̃22





︸ ︷︷ ︸

L




U11 L

−1
11 A12

0 Ũ22





︸ ︷︷ ︸

U

.

Once we have the LU decomposition of A, we use it to recursively compute
the LU decomposition of larger blocks containing A, until we reach a global
LU decomposition for the whole M . From it, the rank determination is trivial,
because it is enough to count the nonzeros in the diagonal of L.

The three most expensive steps in the above algorithm are:

(1) the LU decomposition of block A11.

(2) the LU decomposition of block Ã22.

(3) the computation of the Schur complement Ã22.

All three steps cost at most O(n3), with standard matrix multiplication, how-
ever the actual constants differ and depend on the matrix structure and spar-
sity. The cost of matrix multiplication can be lowered theoretically with the
Strassen method ([Str69]), but our matrices are too small to take advantage
of it. However, they are large enough to entice the use of the famous four

Russian algorithm ([Ang76]). We refer to [BR10] for our exact strategy.

14 Do AES encryptions act randomly?

4.1 Cost of the attack

The attack works very well with 128 keys, although 70 are usually enough.
We draw a very conservative estimate of its cost in this subsection.

The attacker needs to collect 216 pairs encrypted with the same key. Since
we are requiring 128 keys, it means that the total number of pairs is

216 · 27 = 223 .

For any key, the attacker must compute about 215 matrix ranks. Any rank
computation costs 8 226 ecnryptions. Therefore, the total cost of the attack is

226 · 215 · 27 = 248 encryptions

5 Conclusions

Reduced-round versions of AES-128, AES-192, AES-256 are known to be
weak, although none of these attacks come close to the actual number of
rounds. The best-known attacks use advanced differential cryptanalysis and
depend heavily on the key-scheduling algorithm. Our distinguishing attack is
independent of the key-schedule and depends only on the round structure.
Therefore, it may be successful even if a huge number of rounds is used.
We strongly invite anyone to try our attack, with any number of rounds, and
we put our software freely usable at

http://www.science.unitn.it/˜ sala/AES/

The more statistical evidence we collect, the more confidence we will grow in
our results. Of course, it is possible that a refinement of our approach might
lead to a key-recovery algorithm. Yet, we have not been able to see how, since
the link between the key and the rank statistics is still unclear.

Acknowledgments

A preliminary attack with the same underlying philosophy is contained
in the first author’s Ph.D thesis. The first author would like to thank the
second author (her supervisor). The computational part contributed by the
third author (with very fast implementations) has been essential to the success
of this attack.

We thank G. Naldi and G. Aletti for the use of the computer cluster Ulisse
(University of Milan).

These results have been presented in a few talks (2009: Trento; 2010:
Marseille, Torino) and several scientific discussions with colleagues. The au-
thors would like to thank all the people involved in our discussions, for their

8 using our algorithm, this is an experimental estimate.

http://www.science.unitn.it/~

A. Rimoldi, M. Sala, E. Bertolazzi 15

valuable comments and suggestions. In particular, we would like to thank
T. Mora, L. Perret and C. Traverso. Some discussions took place during the
Special Semester on Groebner Bases (2006), organized by RICAM, Austrian
Academy of Sciences and RISC, Linz, Austria.

Part of this research has been funded by: Provincia Autonoma di Trento

grant“PAT-CRS grant”, MIUR grant“Algebra Commutativa, Combinatoria e

Computazionale”, MIUR grant “Rientro dei Cervelli”.

References

[Ang76] D. Angluin, The four Russians’ algorithm for Boolean matrix multiplication
is optimal in its class, SIGACT News 8 (1976), 29–33.

[BR10] E. Bertolazzi and A. Rimoldi, Fast matrix-rank computation in GF(2), Tech.
report, arxiv, 2010.

[CGC05] NSA Suite B Cryptography, NSA web site, 2005.

[DR02] J. Daemen and V. Rijmen, The Design of Rijndael, Springer, 2002.

[GV96] G. H. Golub and C. F. Van Loan, Matrix computations, third ed., Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins University
Press, Baltimore, MD, 1996.

[Luc96] S. Lucks, Faster luby-rackoff ciphers, Proc. of FSE 1996, LNCS, vol. 1039,
Springer, 1996, pp. 189–203.

[Nat01] National Institute of Standards and Technology, The Advanced Encryption
Standard, Federal Information Processing Standards Publication (FIPS)
197, 2001.

[NIS00] A statistical test suite for random and pseudorandom number generators for
cryptographic applications, Special Publication SP 800-22, NIST, 2000.

[RST10] A. Rimoldi, M. Sala, and I. Toli, A possible intrinsic weakness of AES
and other cryptosystems, Tech. report, arxiv, 2010,
http://arxiv.org/abs/1006.5894.

[Str69] V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik
13 (1969), 354–356.

	1 Preliminaries
	1.1 An AES description
	1.2 The embedding we are using
	1.3 On randomness and statistical distinguishers

	2 Strategy description
	3 Numerical results
	3.1 Furher remarks

	4 Computational effort
	4.1 Cost of the attack

	5 Conclusions
	References

