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Abstract We construct normed spaces of real-valued functions with con-
trolled growth on possibly infinite-dimensional state spaces such that semi-
groups of positive, bounded operators (Pt)t≥0 thereon with limt→0+ Ptf(x) =
f(x) are in fact strongly continuous. This result applies to prove optimal rates
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tions with linearly growing characteristics and for sets of functions with con-
trolled growth. Applications are general Da Prato-Zabczyk type equations and
the HJM equations from interest rate theory.
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1 Introduction

In applications, we often apply mathematical theory to models, even though
the assumptions of the respective theory are not completely satisfied. For in-
stance, when we consider the Heston stochastic volatility model, it is clear
that the involved vector fields are not everywhere Lipschitz continuous on the
state space, and that linearly, not to mention exponentially growing payoffs,
do not fall into the class of test functions where a guaranteed rate of conver-
gence is provided. Nevertheless we do not hesitate to apply Euler or higher
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order schemes and we clarify – if we have time – the raised open questions in
a case-by-case study.

There arises the interesting and promising question of whether there is
a general statement possible that embeds different specialised results into a
general framework. In particular in infinite dimension this larger picture is
fairly unknown. This is due to the additional phenomenon of unboundedness,
which is impossible to circumvent in concrete cases, see for instance [1].

In this work, we want to provide this larger picture for splitting schemes
for S(P)DEs. This allows us to deal with unbounded payoff functions and
with certain kinds of singularities of the local characteristics. It is well-known
that the world of stochastic Markov processes on general state spaces is tied to
strongly continuous semigroups in two ways: either through the Feller property,
or through invariant measures. In both cases we can construct an appropri-
ate Banach space, C0(X) and Lp(X,µ), respectively, where the Markov semi-
groups act in a strongly continuous way. Strong continuity is in many senses a
“via regia” towards approximation schemes via splitting schemes (e.g. Trotter-
type formulae, Chernov’s theorem, etc), and therefore a very desirable feature.
However, neither the existence of invariant measures nor the Feller property
are generic properties of Markov processes – this holds true in particular in
infinite dimension. The situation is even worse for the Feller property, where
we have a strong connection to locally compact state spaces and continuous
functions vanishing at infinity. It therefore seems natural to ask for a frame-
work extending the Feller property towards unbounded payoffs and non-locally
compact spaces. Moreover, the framework should be as generic as possible to
remain applicable to general SPDEs. From the viewpoint of applications, the
new concept is useful if we are able to prove rates of convergence for substan-
tially larger classes of payoffs and equations with the presented method.

Let us first fix what we mean by a splitting scheme for Markov processes
(cf. [26] for a similar, abstract approach, or [25] for a more concrete approach,
both in the finite dimensional setting). Let x(t, x0) be a Markov process on a
(measurable) state space X and assume that

– there is a (some) Banach space B(X) of real-valued functions with Markov
semigroup Ptf(x0) := E[f(x(t, x0))], for f ∈ B(X), t ≥ 0 and x0 ∈ X ,
acting on B(X) as a semigroup of linear operators bounded by M exp(ωt)
for some M ≥ 1 and some real ω;

– there are semigroups P (1), . . . , P (k) of linear operators on B(X) such that
the weighted composition

Q(∆t) :=

K∑

j=1

λjP
(i1)

δj1∆t
. . . P

(il)

δj
l
∆t
, (1.1)

for some real numbers δji ≥ 0 and ∆t > 0, and some weights λj ≥ 0,
form a family of operators power-bounded on some interval [0, T ], in the
sense that (Q(∆t))

m is bounded in operator norm for all 1 ≤ m ≤ n and
n∆t ∈ [0, T ]; and
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– the short time asymptotic expansions of order p > 1 of the operators P∆t
and Q(∆t) coincide on some subspace M ⊂ B(X), i.e.

‖P∆tPsf −Q(∆t)Psf‖ ≤ Cf∆t
p (1.2)

for f ∈ M and s,∆t ∈ [0, T ].

Under these assumptions we can readily prove that

lim
n→∞

(Q( t
n
))
nf = Ptf (1.3)

for f ∈ M and t ≤ T . The proof is well-known and simple due to the tele-
scoping sum

(Q( t
n
))
n
f − Ptf =

n−1∑

i=1

(Q( t
n
))

(n−i)(
Q( t

n
) − P t

n
)P it

n
f (1.4)

for t ∈ [0, ε] and f ∈ M. We even obtain weak convergence of order p− 1 on
M, i.e.

‖Ptf − (Q( t
n
))
nf‖ ≤ Cf

(
t/n)p−1. (1.5)

Due to the boundedness properties of the involved operators the convergence
extends to the closure of M. The rate of convergence, however, is then lost.
While splitting schemes as formulated above have an order bound for positive
step sizes [3] and the choice of δ and λ in the Ninomiya-Victoir splitting [21]
thus yields the optimal possible order, the above approach can also be taken
for approximations Q(∆t) which are not necessarily derived from a splitting
scheme. The authors use similar methods to derive rates of convergence for
cubature methods for stochastic partial differential equations in a forthcoming
paper.

Using Lyapunov-type functions ψ, we shall construct Banach spaces Bψ(X)
where the previous requirements are satisfied for Euler- and Ninomiya-Victoir-
type schemes.

Even in finite dimensions this is – in its generality – a new result and can
be seen as widening [18] to the case of unbounded coefficients and unbounded
claims, further extending the work from [26]. Its importance, however, lies in
its applicability to problems with infinite dimensional state spaces. We achieve
this in a unified way by putting the theory of [26] on an abstract theoretical
basis through developping a notion of generalised Feller semigroups.

We outline our ideas in a finite dimensional example, but it is the goal of
this work to show that a corresponding result can also be achieved for SPDEs.

Example 1.1 Consider a stochastic differential equations

dx(t, x0) = V (x(t, x0))dt+ V1(x(t, x0))dBt (1.6)

with C3-bounded vector fields V, V1 driven by a one-dimensional Brownian
motion (Bt)t≥0. It is well known that we can consider the Markov process
x(t, x0) and its semigroup (Pt)t≥0 on the space C0(R

N ) of continuous functions
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decaying at infinity, endowed with the norm ‖f‖∞ := supx∈RN
|f(x)|. Since

|Ptf(x0)| = |E[f(x(t, x0))]| ≤ ‖f‖∞ and limx0→∞ Ptf(x0) = 0 uniformly, we
know that P acts as a semigroup of contractions on C0(R

N ). Let us introduce
a splitting, i.e. two semigroups P 1 and P 2 associated with the equations

dz1(t, x0) = V0(z
1(t, x0))dt (1.7)

and
dz2(t, x0) = V1(z

2(t, x0)) ◦ dBt, (1.8)

where V0 is the Stratonovich corrected drift term. Apparently, these two semi-
groups are contractions, too, and it remains to show that we have a short time
asymptotic expansion on some subspace M ⊂ C0(R

n). For Q(∆t) := P 1
∆tP

2
∆t

we can choose any C3-function f , which is bounded with compact support,
and we obtain by Itô’s formula

‖P∆tPsf −Q(∆t)Psf‖∞ ≤ Cf∆t
2

for ∆t in some small interval [0, ε]. The previous result then leads to the
desired convergence, which has the well-known meaning of weak convergence
of the associated processes to x(t, x0). However, two questions remain at this
point: is it possible to obtain the convergence also for functions, which are
not compactly supported, or not even globally bounded? If we want to relax
towards f /∈ C0(R

N ), we have to give up linear growth of vector fields and
replace it by boundedness. This raises the important question: is it possible to
obtain rates of convergence in a generic setting for unbounded, non-compactly
supported payoffs f and vector fields with linear growth?

The answer to the first part of this question will also answer the second
part. We introduce a weight function ψ : RN → (0,∞) such that

exp(−αt)ψ(x(t, x0)) (1.9)

is a supermartingale for every x0 ∈ R
N . We can easily choose such weight

functions, even if the vector fields are linearly growing, as polynomials, and
we can do so simultaneously for x, z1, z2. We need the uniform bound on
moments of diffusions with linearly growing vector fields and Itô’s formula.
Then we consider the Banach spaces Bψ(X) of those functions which can be
approximated by bounded continuous functions with respect to the norm

‖f‖ψ := sup
x∈RN

|f(x)|
ψ(x)

.

Apparently all semigroups are extending to this space and their respective
norms are bounded by exp(αt). This finally yields that we are again in the
assumptions of the previous meta-theorem, i.e.

‖Ptf − (Q( t
n
))
n
f‖ψ ≤ Cf

1

n

as n → ∞, for f ∈ M, which are C2-functions with appropriate boundedness
relative to ψ. Notice that we have extended the previous result twofold: in
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the present setting, both linearly growing volatility vector fields and linearly
growing payoffs are allowed. The price to pay was that all results are with
respect to a weighted supremum norm.

2 Riesz Representation for Weighted Spaces

In this section we show that we can actually obtain a variant of the Riesz
representation theorem even on spaces that are not locally compact. Consider
a completely regular Hausdorff topological space X (i.e. T3.5).

Definition 2.1 A function ψ : X → (0,∞) is called admissible weight func-
tion if the sets KR := {x ∈ X : ψ(x) ≤ R} are compact for all R > 0.

Such a function ψ is lower semicontinuous and bounded from below, and any
such space X is σ-compact due to

⋃
n∈N

Kn = X . We call the pair (X,ψ) a
weighted space.

Consider the vector space

Bψ(X ;Z) :=

{
f : X → Z : sup

x∈X
ψ(x)−1‖f(x)‖ <∞

}
(2.1)

of Z-valued functions f , Z a Banach space, equipped with the norm

‖f‖ψ := sup
x∈X

ψ(x)−1‖f(x)‖, (2.2)

turning it into a Banach space itself. It is clear that Cb(X ;Z) ⊂ Bψ(X ;Z),
where Cb(X ;Z) denotes the space of continuous, bounded functions f : X →
Z, endowed with the norm ‖f‖Cb(X;Z) := supx∈X‖f(x)‖.
Definition 2.2 We define Bψ(X ;Z) as the closure of Cb(X ;Z) in Bψ(X ;Z).
The normed space Bψ(X ;Z) is a Banach space.

Remark 2.3 Suppose X compact. Then the choice ψ(x) = 1 for x ∈ X is
admissible. On general spaces weights ψ necessarily grow due to the compact-
ness of KR, which means that f ∈ Bψ(X ;Z) typically is unbounded, but its
growth is bounded by the growth of ψ. Therefore, we call elements of Bψ(X ;Z)
functions with growth controlled by ψ.

We set Bψ(X) := Bψ(X ;R).

Theorem 2.4 (Riesz representation for Bψ(X)) Let ℓ : Bψ(X) → R be a
continuous linear functional. Then, there exists a finite signed Radon measure
µ on X such that

ℓ(f) =

∫

X

f(x)µ(dx) for all f ∈ Bψ(X). (2.3)

Furthermore, ∫

X

ψ(x)|µ|(dx) = ‖ℓ‖L(Bψ(X),R), (2.4)

where |µ| denotes the total variation measure of µ.
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As every such measure defines a continuous linear functional on Bψ(X), this
completely characterises the dual space of Bψ(X).

Proof Clearly, ℓ|Cb(X) is a continuous linear functional on Cb(X), as

‖f‖ψ ≤
(
inf
x∈X

ψ(x)

)−1

‖f‖Cb(X) for f ∈ Cb(X). (2.5)

We thus have to ensure condition (M) of [4, § 5 Proposition 5]. Defining
K := Kε−1‖ℓ‖

L(Bψ(X),R)
, we see that for g ∈ Cb(X) with |g| ≤ 1 and g|K = 0,

‖g‖ψ = sup
x∈X\K

ψ(x)−1|g(x)| ≤ ε‖ℓ‖−1
L(Bψ(X),R)

‖g‖Cb(X) ≤ ε‖ℓ‖−1
L(Bψ(X),R)

,

(2.6)
and thus |ℓ(g)| ≤ ε. Hence we obtain existence of a finite, uniquely determined
signed Radon measure µ with ℓ(f) =

∫
X
f(x)µ(dx) for all f ∈ Cb(X) (see also

[2, Chapter 2 Theorem 2.2]).

To determine
∫
X ψ(x)|µ|(dx), we apply [4, § 5 Proposition 1b)]: ψ is lower

semicontinuous and every positive g ∈ Cb(X) with g ≤ ψ satisfies ‖g‖ψ ≤ 1.
Therefore,

∫

X

ψ(x)|µ|(dx) = sup
g∈Cb(X)
|g|≤ψ

|ℓ(g)| ≤ ‖ℓ‖L(Bψ(X),R). (2.7)

The density of Cb(X) in Bψ(X) yields

‖ℓ‖L(Bψ(X);R) = sup
g∈Cb(X)

‖g‖−1
ψ |ℓ(g)| = sup

g∈Cb(X)

‖g‖−1
ψ

∣∣∣
∫

X

g(x)µ(dx)
∣∣∣

≤
∫

X

ψ(x)|µ|(dx). (2.8)

Hence,
∫
X ψ(x)|µ|(dx) = ‖ℓ‖L(Bψ(X);R).

For the proof of ℓ(f) =
∫
X
f(x)µ(dx) for all f ∈ Bψ(X), note that f 7→∫

X f(x)µ(dx) defines a continuous linear functional on Bψ(X) due to the inte-
grability of ψ with respect to |µ|. As both expressions agree on a dense subset,
we obtain the desired equality. ⊓⊔

Remark 2.5 While the result in [2, Chapter 2 Theorem 2.2] is more general,
we do not see how to prove

∫
X
ψ(x)|µ|(dx) < ∞ in that situation. However,

this bound is important in our further results, see the proof of Theorem 3.2.

Corollary 2.6 Let ℓ : Bψ(X) → R be a positive linear functional, that is,
ℓ(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X. Then, there exists a (positive)
measure µ with ℓ(f) =

∫
X f(x)µ(dx) for every f ∈ Bψ(X).



7

Proof We only have to prove that ℓ is continuous. Assume otherwise. Then,
there exists a sequence (fn)n∈N, fn ∈ Bψ(X), such that ‖fn‖ψ = 1, but
|ℓ(fn)| ≥ n3. As |ℓ(f)| ≤ ℓ(|f |) for any f ∈ Bψ(X), we can assume with-
out loss of generality that fn ≥ 0 for all n ∈ N. As

∑
n∈N

n−2‖fn‖ψ <∞, the

limit f :=
∑
n∈N

n−2fn ∈ Bψ(X) is well-defined and f ≥ 0. Thus, we obtain a
contradiction due to

n ≤ ℓ(n−2fn) ≤ ℓ(f). (2.9)

⊓⊔
The following results emphasise the analogy in structure of Bψ(X) and the

space of functions vanishing at infinity on a locally compact space.

Theorem 2.7 Let f : X → R. Then, f ∈ Bψ(X) if and only if f |KR ∈ C(KR)
for all R > 0 and

lim
R→∞

sup
x∈X\KR

ψ(x)−1|f(x)| = 0. (2.10)

In particular, f ∈ Bψ(X) for every f ∈ C(X) where (2.10) holds.

Proof Assume that f ∈ Bψ(X). For g ∈ Cb(X) with ‖f − g‖ψ < ε
2 ,

ψ(x)−1|f(x)| ≤ ε

2
+ ψ(x)−1|g(x)| for x ∈ X, (2.11)

the last term being bounded by ε
2 for x ∈ X \ KR with R := 2ε−1‖g‖Cb(X).

Thus,
sup

x∈X\KR

ψ(x)−1|f(x)| ≤ ε, (2.12)

which proves (2.10).
Next, we prove that for any R > 0, f |KR is continuous. With g as above,

sup
x∈KR

|f(x)− g(x)| ≤ R sup
x∈KR

ψ(x)−1|f(x)− g(x)| ≤ ε

2
R, (2.13)

which means that f |KR is a uniform limit of continuous functions and hence
continuous.

For the other direction, set fn := min(max(f(·),−n), n) = (fn∨n)∧n. We
prove first that fn ∈ Bψ(X). As f |KR ∈ C(KR), we see that fn|KR ∈ C(KR).
KR is compact in a completely regular space. We can embed X into a compact
space Y by [6, Chapitre IX § 1 Proposition 3, Proposition 4]. Applying the
Tietze extension theorem [6, Chapitre IX § 4 Théorème 2] to the setKR, which
is also compact in Y and therefore closed, we obtain existence of gn,R ∈ Cb(X)
with gn,R|KR = fn|KR and supx∈X |gn,R(x)| ≤ n for all x ∈ X . (2.10) yields

‖fn − gn,R‖ψ ≤ sup
x∈X\KR

ψ(x)−1|fn(x)− gn,R(x)| ≤ 2nR−1, (2.14)

hence fn ∈ Bψ(X). Next, choose R > 0 such that supx∈X\KR ψ(x)
−1|f(x)| <

ε. With n > supx∈KR |f(x)|, f(x) = fn(x) on KR. Therefore,

‖f − fn‖ψ ≤ sup
x∈X\KR

ψ(x)−1|f(x)− fn(x)| ≤ 2ε, (2.15)

which shows that f ∈ Bψ(X). ⊓⊔
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Theorem 2.8 For every f ∈ Bψ(X) with supx∈X f(x) > 0, there exists z ∈ X
such that

ψ(x)−1f(x) ≤ ψ(z)−1f(z) for all x ∈ X. (2.16)

Proof Let α := supx∈X ψ(x)
−1f(x) > 0. Then, by Theorem 2.7, there exists

some R > 0 such that supψ(x)>R ψ(x)
−1f(x) ≤ α

2 , that is,

α = sup
x∈KR

ψ(x)−1f(x). (2.17)

Define h := ψ−1 max(f, 0). Then, α = supx∈KR h(x). Furthermore, ψ−1 is up-
per semicontinuous, max(f, 0) is continuous on KR by Theorem 2.7 and both
are nonnegative. Thus, h is upper semicontinuous (see [5, Chap. IV § 6 Propo-
sition 2]) and by [5, Chapitre IV § 6 Théorème 3] attains its maximum at some
point z ∈ KR, i.e., α = ψ(z)−1f(z) ⊓⊔

3 A Generalised Feller Condition

The generalised Feller property will allow us to speak about strongly con-
tinuous semigroups on spaces of functions with growth controlled by ψ, in
particular functions which are unbounded. From the point of view of applica-
tions this means that we consider a weighted supremum norm instead of the
supremum norm.

Let (Pt)t≥0 be a family of bounded linear operators Pt : Bψ(X) → Bψ(X)
with the following properties:

F1 P0 = I, the identity on Bψ(X),
F2 Pt+s = PtPs for all t, s ≥ 0,
F3 for all f ∈ Bψ(X) and x ∈ X , limt→0+ Ptf(x) = f(x),
F4 there exist a constant C ∈ R and ε > 0 such that for all t ∈ [0, ε],

‖Pt‖L(Bψ(X)) ≤ C,

F5 Pt is positive for all t ≥ 0, that is, for f ∈ Bψ(X), f ≥ 0, we have Ptf ≥ 0.

Alluding to [17, Chapter 17], such a family of operators will be called a gen-
eralised Feller semigroup.

Remark 3.1 As Chris Rogers remarked, state space transformation of the type
x 7→ φ(x) := x√

1+‖x‖2
transform unbounded state spaces into bounded ones.

The weight function ψ is then used to rescale real valued functions f : X → R

via f̃ := f/ψ in order to investigate f̃ ◦ φ−1 on φ(X). This function will often
have a continuous extension to the closure of φ(X), which – in the appropriate
topology – will be often compact. This relates the generalized Feller property to
the classical Feller property. Note that in our situation, however, ψ is typically
not continuous for infinite dimensional X .

We shall now prove that semigroups satisfying F1 to F4 are actually
strongly continuous, a direct consequence of Lebesgue’s dominated conver-
gence theorem with respect to measures existing due to Riesz representation.
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Theorem 3.2 Let (Pt)t≥0 satisfy F1 to F4. Then, (Pt)t≥0 is strongly con-
tinuous on Bψ(X), that is,

lim
t→0+

‖Ptf − f‖ψ = 0 for all f ∈ Bψ(X). (3.1)

Proof By [11, Theorem I.5.8], we only have to prove that t 7→ ℓ(Ptf) is right
continuous at zero for every f ∈ Bψ(X) and every continuous linear functional
ℓ : Bψ(X) → R. Due to Theorem 2.4, we know that there exists a signed
measure ν on X such that ℓ(g) =

∫
X gdν for every g ∈ Bψ(X). By F4, we see

that for every t ∈ [0, ε],

|Ptf(x)| ≤ Cψ(x). (3.2)

Due to (2.4), the dominated convergence theorem yields

lim
t→0+

∫

X

Ptf(x)ν(dx) =

∫

X

f(x)ν(dx), (3.3)

and the claim follows. Here, the integrability of ψ with respect to the total
variation measure |ν| enters in an essential way. ⊓⊔

We can establish a positive maximum principle in case that the semigroup
Pt grows like exp(αt) with respect to the operator norm on Bψ(X).

Theorem 3.3 Let A be an operator on Bψ(X) with domain D, and ω ∈ R. A
is closable with its closure A generating a generalised Feller semigroup (Pt)t≥0

with ‖Pt‖L(Bψ(X)) ≤ exp(ωt) for all t ≥ 0 if and only if

(i) D is dense,
(ii) A− λ0 has dense image for some λ0 > ω, and
(iii) A satisfies the generalised positive maximum principle, that is, for f ∈ D

with (ψ−1f) ∨ 0 ≤ ψ(z)−1f(z) for some z ∈ X, Af(z) ≤ ωf(z).

Note that (ψ−1f) ∨ 0 = ψ−1(f ∨ 0) as ψ > 0. Therefore, (ψ−1f) ∨ 0 ≤
ψ−1(z)f(z) is equivalent to

‖f ∨ 0‖ψ ≤ ψ−1(z)f(z). (3.4)

Proof Assume first that (Pt)t≥0 is a generalised Feller semigroup satisfying

‖Pt‖L(Bψ(X)) ≤ exp(ωt), (3.5)

and A with domain D is its generator. For f ∈ D with ‖f ∨0‖ψ ≤ ψ−1(z)f(z),

Ptf(z) ≤ Pt(f ∨ 0)(z) ≤ ψ(z)‖Pt(f ∨ 0)‖ψ ≤ ψ(z) exp(ωt)‖f ∨ 0‖ψ
≤ exp(ωt)f(z), (3.6)

and due to the continuity of point evaluation, we obtain the inequality Af(z) ≤
ωf(z) in the limit t→ 0+. Thus, A satisfies the generalised positive maximum
principle. The density of D and of (A − λ0)D follow from the Hille-Yosida
theorem [11, Theorem II.3.8, p. 77].
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For the other direction, let f ∈ D be arbitrary, and define g := (sgn f(z))f ,
where z is chosen such that ψ(z)−1|f(z)| = ‖f‖ψ (this is possible due to
Theorem 2.8). Clearly, g ∈ D and ψ(x)−1g(x) ≤ ψ(z)−1g(z), so the generalised
positive maximum principle yields Ag(z) ≤ ωg(z). Thus, for λ > 0,

‖(λ− (A− ω))f‖ψ ≥ ψ(z)−1 (λg(z)− (A− ω)g(z)) ≥ ψ(z)−1λg(z)

= λ‖f‖ψ. (3.7)

From this, closability of A follows: if (fn)n∈N in D are given such that both
limn→∞‖fn‖ψ = 0 and limn→∞‖Afn − g‖ψ = 0, there exist (gm)m∈N in D
with limm→∞‖gm − g‖ψ = 0. Thus, for any λ > 0 and m, n ∈ N,

‖(λ− (A− ω))(gm + λfn)‖ψ ≥ λ‖gm + λfn‖. (3.8)

Taking the limit n→ ∞, dividing by λ and taking the limit λ→ ∞, we obtain
‖gm − g‖ψ ≥ ‖gm‖ψ, and the limit m → ∞ yields g = 0. This proves the
closability of A, and the closure A of A with domain D satisfies

‖(λ− (A− ω))f‖ψ ≥ λ‖f‖ψ for all λ > 0 and f ∈ D. (3.9)

Thus, A− ω is dissipative. The Lumer-Phillips theorem [11, Theorem II.3.15]
yields that A generates a semigroup with ‖Pt‖L(Bψ(X)) ≤ exp(ωt) for all t ≥ 0.

We now prove that Rλ = (λ − A)−1 is positive for every λ > ω, which
yields that Pt is positive for every t ≥ 0. To this end, we show that given
g ∈ Bψ(X) such that the solution f ∈ D of (λ − A)f = g is not positive, g
cannot be positive, either. By assumption, α := infx∈X ψ(x)

−1f(x) < 0. Given
a sequence of functions (fn)n∈N in D converging to f such that Afn converges
to Af , we see that we can assume without loss of generality that for every
n ∈ N, αn := infx∈X ψ(x)

−1fn(x) < 0, and we have that limn→∞ αn = α.
Theorem 2.8 yields the existence of zn ∈ X with ψ(zn)

−1fn(zn) = αn. By the
positive maximum principle, Afn(zn) ≥ ωfn(zn). Thus,

inf
x∈X

ψ(x)−1g(x) = lim
n→∞

inf
x∈X

ψ(x)−1(λ−A)fn(x)

≤ lim
n→∞

ψ(zn)
−1(λ−A)fn(zn)

≤ lim
n→∞

ψ(zn)
−1(λ− ω)fn(zn)

= (λ− ω) lim
n→∞

inf
x∈X

ψ(x)−1fn(x)

= (λ− ω) inf
x∈X

ψ(x)−1f(x) = (λ− ω)α < 0, (3.10)

that is, g is not positive. ⊓⊔
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4 Results On Dual Spaces

In this section we consider a special class of state spaces that will be crucial
for our applications to SPDEs: dual spaces of Banach spaces equipped with
the weak-∗ topology. We remark that the weak topology on Hilbert spaces
and sequential weak continuity was also used by Maslowski and Seidler [20] to
prove ergodicity of stochastic partial differential equations.

Assume that X = Y ∗ is the dual space of some Banach space Y with
its weak-∗ topology or, more generally, a Hausdorff topological vector space.
Such a space is clearly endowed with a uniform structure, and thus completely
regular Hausdorff [6, Chapitre IX § 1 Théorème 2]. Consider a lower semi-
continuous function ψ : X → (0,∞). Compactness of KR can often be proved
using the Banach-Alaoglu theorem [24, Theorem 3.15]. In particular, if Y is
a Banach space and the sets KR are bounded in norm in X , compactness
follows.

We denote by Xw∗ the space X endowed with the weak-∗ topology, and
assume that (Xw∗, ψ) is a weighted space for a given weight function. The sets

KR = {x ∈ X : ψ(x) ≤ R}

are then weak-∗ compact, and we shall always consider the weak-∗ topology
on KR.

Example 4.1 Typical examples for weight functions are of the form ψ(x) =
ρ(‖x‖), where ρ : [0,∞) → (0,∞) is increasing and left-continuous. In this
case,

KR = Cr(0) := {x ∈ X : ‖x‖ ≤ r} , (4.1)

where r = max {p ∈ R : ρ(p) ≤ R}, and Cr(0) is weak-∗ compact by the Ba-
nach-Alaoglu theorem. Note that ρ(r) ≤ R by left continuity. Below, we will
consider choices such as ρ(t) = (1 + t2)s/2, s ≥ 2, ρ(t) = cosh(βt), β > 0, and
ρ(t) = exp(ηt2), η > 0.

We want to give an approximation result for functions in Bψ(Xw∗) by cylin-
drical functions. Set

AN :=
{
g(〈·, y1〉, . . . , 〈·, yN 〉) : g ∈ C∞

b (RN )

and yj ∈ Y , j = 1, . . . , N
}
, (4.2)

and denote by A :=
⋃
N∈N

AN the bounded smooth continuous cylinder func-

tions on X . Clearly, A ⊂ Bψ(Xw∗).

Theorem 4.2 The closure of A in Bψ(Xw∗) coincides with Bψ(Xw∗).

Proof We prove first by the Stone-Weierstrass theorem [24] that A is dense in
Cb(KR) for any R > 0. First, it is obvious that A is an algebra, as AN ·AM ⊂
AN+M for all N and M with obvious notation, and AN ⊂ AN+1 for all
N ∈ N. Moreover, for any x1 6= x2, x1, x2 ∈ KR, there exists some y ∈ Y with
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〈x1, y〉 6= 〈x2, y〉, which clearly yields that already A1 separates points. As the
constant functions are obviously in A, we obtain density in Cb(KR).

Let now f ∈ Cb(Xw∗). Then, for every R > 0 and ε > 0, there exists some
N ∈ N and f̃R,ε ∈ AN ⊂ Bψ(X) with

sup
x∈KR

|f(x)− f̃R,ε(x)| < ε. (4.3)

By definition, f̃R,ε = g̃ ◦ h with h(x) = (〈x, yj〉)j=1,...,N for some yj ∈ Y and

g̃ ∈ C∞
b (RN ). As KR is compact, h(KR) ⊂ R

N is compact. By the Tietze
extension theorem [6, Chapitre IX § 4 Théorème 2], we can extend g̃|h(KR)

to a continuous function ĝ on R
N with supy∈RN |ĝ(y)| ≤ supx∈KR |f̃R,ε(x)|.

Applying [7, Proposition IV.21, Proposition IV.20], we see that convolution
of ĝ with a mollifier yields a function g ∈ C∞

b (RN ) with supy∈RN |g(y)| ≤
supx∈KR |f̃R,ε(x)| and supy∈h(KR)|g(y) − g̃(y)| < ε. Assuming without loss of
generality that

sup
x∈KR

|f̃R,ε(x)| ≤ 2 sup
x∈KR

|f(x)|, (4.4)

we see that fR,ε := g ◦ h satisfies

sup
x∈KR

|f(x)− fR,ε(x)| < 2ε and sup
x∈X

|fR,ε(x)| ≤ 2 sup
x∈X

|f(x)|, (4.5)

independently of R and ε. Therefore, as ψ(x) ≥ δ for all x ∈ X ,

‖f − fR,ε‖ψ ≤ sup
x∈KR

ψ(x)−1|f(x)− fR,ε(x)|+ sup
ψ(x)>R

ψ(x)−1|f(x)− fR,ε(x)|

≤ δ−1 sup
x∈KR

|f(x)− fR,ε(x)| + 3R−1 sup
x∈X

|f(x)|. (4.6)

The result follows. ⊓⊔

The definition of A is not “optimal” in the sense that it will contain too many
functions. The following result is significantly better in this respect.

Theorem 4.3 Assume that Y is separable, and let {yj : j ∈ N} ⊂ Y be a
countable set which separates the points of X = Y ∗. Define

ÃN :=
{
g(〈·, y1〉, . . . , 〈·, yN 〉) : g ∈ C∞

b (RN )
}
, (4.7)

and Ã :=
⋃
N∈N

ÃN ⊂ Bψ(Xw∗). Then, Ã is dense in Bψ(Xw∗).

Proof The proof is done in the same way as for Theorem 4.2, using that for any
x1, x2 ∈ X with x1 6= x2, there exists some j ∈ N with 〈x1, yj〉 6= 〈x2, yj〉. ⊓⊔

Remark 4.4 A possible choice for {yj : j ∈ N} is given by any countable dense
set in Y . In particular, the specific choice of the yj does not make any differ-
ence, which was also observed in [15, Remark 5.9].

Lemma 4.5 Assume that X = Y ∗ with Y separable.
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(i) f ∈ Bψ(Xw∗) if and only if f satisfies (2.10) and f |KR is sequentially
weak-∗ continuous for any R > 0.

(ii) If for every r > 0 there exists some R > 0 such that Cr(0) ⊂ KR, then
every f ∈ Bψ(Xw∗) is sequentially weak-∗ continuous. In particular, in this
case, Bψ ⊂ C(Xw∗).

Remark 4.6 The condition Cr(0) ⊂ KR is quite natural, and is satisfied by the
choice ψ(x) = ρ(‖x‖) with ρ increasing and left-continuous from Example 4.1.
It is, however, not automatically satisfied, as the example X = R, ψ(x) :=
x2+x−1χ(0,∞) shows. Here, χA(x) := 1 for x ∈ A and 0 for x /∈ A denotes the
indicator function of the set A. In this example, the conclusion of the second
part of the above Theorem even fails, as is easily seen.

Proof By Theorem 2.7, we only have to equate sequential weak-∗ and weak-∗
continuity of f |KR for any R > 0. By compactness, KR is bounded by the
Banach-Steinhaus theorem [7, Théorème II.1], as for any y ∈ Y ,

sup
x∈KR

|〈x, y〉| <∞. (4.8)

Thus, [7, Théorème III.25] shows that KR is metrisable, which means that
weak-∗ continuity and sequential weak-∗ continuity coincide. Therefore, any
function f is sequentially weak-∗ continuous if and only if it is weak-∗ contin-
uous on KR, and the first claim follows.

For the second claim, note that any weak-∗ converging sequence (xn)n∈N

is bounded by the Banach-Steinhaus theorem. Thus, by assumption, (xn)n∈N

stays in KR for some R > 0, and the weak-∗ continuity of f |KR yields the
result. Finally, every such f is continuous with respect to the norm topology,
as every norm convergent sequence converges weak-∗, as well. ⊓⊔

5 Generalised Feller Semigroups and S(P)DEs

Assume from now on that X = Y ∗ with Y a separable Banach space. Let
{yj : j ∈ N} ⊂ Y be a countable set which separates the points of X . Again,
we write Xw∗ for X endowed with the weak-∗ topology.

Assumption 5.1 Let (x(t, x0))t≥0 be a time homogeneous Markov process
on some stochastic basis (Ω,F ,P, (Ft)t≥0) satisfying the usual conditions with
values in X, started at x0 ∈ X. We assume that (x(t, x0))t≥0 has right con-
tinuous trajectories with respect to the weak-∗ topology on X.

We want to derive conditions on (x(t, x0))t≥0 such that its Markov semigroup
(Pt)t≥0, given by Ptf(x0) := E [f(x(t, x0))], is strongly continuous on the space
Bψ(Xw∗) for an appropriately chosen weight function ψ.

Assumption 5.2 Let (X,ψ) be a weighted space and x(t, x0) a Markov pro-
cess on X. We assume the existence of constants C and ε > 0 with

E[ψ(x(t, x0))] ≤ Cψ(x0) for all x0 ∈ X and t ∈ [0, ε]. (5.1)
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We prove first that inequality (5.1) is related to boundedness of the transition
operator on Bψ(Xw∗), and to some supermartingale property.

Lemma 5.1 Assume (5.1) for some C and ε > 0. Then |E[f(x(t, x0))]| ≤
Cψ(x0) for all f ∈ Bψ(Xw∗), x0 ∈ X and t ∈ [0, ε].

Furthermore, the condition

E[ψ(x(t, x0))] ≤ exp(ωt)ψ(x0) for all x0 ∈ X and t ∈ [0, ε]. (5.2)

is equivalent to the property that the process exp(−ωt)ψ(x(t, x0)) is a super-
martingale in its own filtration, and this leads to

|E[f(x(t, x0))]| ≤ exp(ωt)ψ(x0) for x0 ∈ X and t ≥ 0 (5.3)

for all f ∈ Bψ(Xw∗).

Lemma 5.2 Assume (5.1) for some C and ε > 0. Then

lim
t→0+

E[f(x(t, x0))] = f(x0) for any f ∈ Bψ(Xw∗) and x0 ∈ X. (5.4)

Proof Denoting by χA the indicator function of the set A, we chooseR > ψ(x0)
and consider

|E [f(x(t, x0))]− f(x0)| ≤E
[
|f(x(t, x0))− f(x0)|χ[ψ(x(t,x0))≤R]

]

+ E
[
|f(x(t, x0))|χ[ψ(x(t,x0))>R]

]

+ f(x0)P [ψ(x(t, x0)) > R] . (5.5)

By the Markov inequality,

P [ψ(x(t, x0)) > R] ≤ R−1
E [ψ(x(t, x0))] ≤ CR−1ψ(x0). (5.6)

Given ε > 0, Theorem 2.7 shows that |f(x)| ≤ εψ(x) if x /∈ KR with R large
enough. Therefore,

E
[
|f(x(t, x0))|χ[ψ(x(t,x0))>R]

]
≤ Cεψ(x0). (5.7)

Finally, given R > 0, supx∈KR |f(x)| < ∞ by weak continuity. By dominated
convergence, limt→0+ E

[
|f(x(t, x0))− f(x0)|χ[ψ(x(t,x0))≤R]

]
= 0. ⊓⊔

Theorem 5.3 Assume (5.1) for some C and ε > 0, and that for any t > 0,
j ∈ N and sequence (xn)n∈N converging weak-∗ to some x0 ∈ X,

lim
n→∞

〈x(t, xn), yj〉 = 〈x(t, x0), yj〉 almost surely. (5.8)

Then, Ptf(x0) := E[f(x(t, x0))] satisfies the generalised Feller property and is
therefore a strongly continuous semigroup on Bψ(Xw∗).
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Proof Let f = g ◦ h with g ∈ C∞
b (Rn) and h(x) = (〈x, yj〉)j=1,...,n. Such

functions are dense in Bψ(Xw∗) by Theorem 4.3. By Lemma 4.5, we only
have to prove sequential weak-∗ continuity of Ptf for f ∈ Bψ(Xw∗). From
the assumption, limn→∞ h(x(t, xn)) = h(x(t, x0)) for any weak-∗ converging
sequence (xn)n∈N with limit x0. By dominated convergence, Ptf ∈ Bψ(Xw∗).
The result now follows from Lemma 5.2 and Theorem 3.2. ⊓⊔

Example 5.4 Let (x(t, x0))t≥0 admit a decomposition of the form x(t, x0) =
x0 +X0

t for all x0 ∈ X . Assume furthermore that ψ(x + y) ≤ Cψ(x)ψ(y) for
some C > 0 and all x, y ∈ X , and that E[ψ(X0

t )] ≤ C <∞ for t ∈ [0, ε]. Then,

E[ψ(x(t, x0))] ≤ C2ψ(x0), (5.9)

and it is easy to see that (x(t, x0))t≥0 satisfies the conditions of Theorem 5.3.
Suppose x(t, x0) = x0 + Lt, where Lt is a càdlàg Lévy process with jumps

bounded by some constant c > 0 in X . Then, by Fernique’s theorem [23,
Theorem 4.4], it follows that E[exp(β‖Lt‖)] < ∞ for all β > 0. Choosing
ψ(x) := cosh(β‖x‖), we see that ψ(x+ y) ≤ 2ψ(x)ψ(y). We obtain that every
càdlàg Lévy process on a Hilbert space with bounded jumps induces a strongly
continuous semigroup on a cosh-weighted space Bψ(Xw∗).

The continuity assumptions of Theorem 5.3 are typically not easy to ver-
ify directly in the weak-∗ topology. The following theorem yields a simpler
approach by using a compact embedding in a reflexive setting.

Theorem 5.5 Assume (5.1) for some C and ε > 0 on a separable, reflex-
ive Banach space Z. Let X be another separable, reflexive Banach space with
Z ⊂ X compactly embedded. Furthermore, suppose that the Markov process
(x(t, x0))t≥0 on Z can be extended to X, and that for any f ∈ Cb(X), the
mapping x0 7→ E[f(x(t, x0))] is continuous with respect to the norm topology
of X. Then, Ptf(z) := E[f(x(t, z))] satisfies the generalised Feller property
and is therefore a strongly continuous semigroup on Bψ(Zw∗).

Remark 5.6 Note that for concrete examples, we often work the other way
round: First, we prove existence of the process on X , then we prove the invari-
ance and continuity properties for x(t, z) on Z and X . It is actually a result
on preservation of regularity, when showing that x(t, z) ∈ Z almost surely if
z ∈ Z.

Proof Let {wj : j ∈ N} ⊂ X∗ be a countable set which separates the points of
X . Then, it also separates the points of Z. Let f = g ◦ h with g ∈ C∞

b (Rn)
and h : X → R

n, h(x) = (〈x,wj〉)j=1,...,n. By Theorem 4.3, such functions are

dense in Bψ(Zw∗). Clearly, f ∈ Cb(X), and by assumption, x0 7→ u(x0) :=
E[f(x(t, x0))] is continuous with respect to the norm topology. As the embed-
ding ι : Z → X is compact and KR is bounded for every R > 0, we see that
u|KR is sequentially weak-∗ continuous due to the cylindrical structure of f ,
and it follows that u|Z ∈ Bψ(Zw∗) by Lemma 4.5. Lemma 5.2 and Theorem 3.2
prove the claim. ⊓⊔
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Example 5.7 Continuity in norm topologies, as required in Theorem 5.5, is
often satisfied in applications for stochastic partial differential equations, con-
sider for example [9, Theorem 7.3.5] and [23, Theorem 9.29]. The classical
Rellich-Kondrachov type embedding theorems, see [7, Théorème IX.16], yield
compact embeddings for problems on bounded domains.

If X is a separable Hilbert space with scalar product 〈·, ·〉, the separating
set can be chosen to be a countable orthonormal basis (ej)j∈N.

Theorem 5.8 Assume (5.1) for some C and ε > 0. Let X be a separable
Hilbert space with scalar product 〈·, ·〉 and countable orthonormal basis (ej)j∈N.
Denoting by πM the orthogonal projection onto the span of the first M basis
vectors, suppose that for j ∈ N,

lim
M→∞

sup
x0∈X

ψ(x0)
−1

E [|〈x(t, x0), ej〉 − 〈x(t, πMx0), ej〉|] = 0. (5.10)

Then, the semigroup (Pt)t≥0 defined by Ptf(x0) := E[f(x(t, x0))] satisfies the
generalised Feller property and is therefore strongly continuous on Bψ(Xw∗).

Proof For f a bounded and smooth cylinder function with f = f ◦πN , consider
gM := Pt(f ◦ πN ) ◦ πM . We prove that gM converges to Pt(f ◦ πN ). For any
x0 ∈ X , the smoothness of f yields

|Pt(f ◦ πN )(x0)− gM (x0)| ≤ E [|f(πNx(t, x0))− f(πNx(t, πMx0))|]
≤ CfE [‖πN (x(t, x0)− x(t, πMx0))‖]

≤ Cf

N∑

j=1

E [|〈x(t, x0), ej〉 − 〈x(t, πMx0), ej〉|] ,

(5.11)

which shows that PtBψ(Xw∗) ⊂ Bψ(Xw∗), see Remark 4.4. By Lemma 5.1,
Pt ∈ L(Bψ(Xw∗)). Again, the result follows from Lemma 5.2 and Theorem 3.2.

⊓⊔

Example 5.9 The assumptions of Theorem 5.8 are satisfied for the stochastic
Navier-Stokes equation on the two-dimensional torus with additive noise (see
[15]). The first estimate in [15, Theorem A.3] proves the condition of Theo-
rem 5.8, where the weight function is ψ(x) = exp(η‖x‖2) with η > 0 chosen
in such a way that E[ψ(x(t, x0))] ≤ Kψ(x0) for small t.

6 Differentiable functions with controlled growth

In this section we show an easy way how to construct elements of Bψ(Xw∗)
where we actually can hope for short time asymptotics. This is nothing else
than including Ck-concepts into the setting of functions f with growth con-
trolled by ψ.
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Let Ck(X ;Z), with Z another Banach space, denote the functions which are
k-times Fréchet differentiable and continuous in the norm topology, together
with their derivatives. We introduce spaces Bψk (Xw∗) of C

k-differentiable func-
tions with derivatives which are in some sense in Bψ(Xw∗). Consider seminorms

|f |ψ,j := sup
x∈X

ψ(x)−1‖Djf(x)‖L(X⊗j;R), (6.1)

where for a multilinear form b : Xj → Z with Z a Banach space with norm
‖·‖Z ,

‖b‖L(X⊗j;Z) := sup
x1,...,xj∈X

‖x1‖−1 · · · ‖xj‖−1 · ‖b(x1, . . . , xj)‖Z . (6.2)

A fundamental condition simplifying the consideration of such spaces of dif-
ferentiable functions will be that

for all r > 0, there exists R > 0 such that Cr(0) ⊂ KR. (6.3)

Definition 6.1 Let (Xw∗, ψ) be a weighted space satisfying (6.3).

We say that f ∈ Bψk (Xw∗) if and only if f ∈ Bψ(Xw∗), f ∈ Ck(X), and for
j = 1, . . . , k,

(i) |f |ψ,j <∞,
(ii) limR→∞ supx∈X\KR ψ(x)

−1‖Djf(x)‖L(X⊗j ;R) = 0, and
(iii) for r > 0, the mapping

Cr(0)× C1(0)
j → R, (x, x1, . . . , xj) 7→ Djf(x)(x1, . . . , xj) (6.4)

is continuous with respect to the weak-∗ topology.

Remark 6.2 The continuity assumption here does not follow from the assump-
tion f ∈ Ck(X), as this only guarantees continuity with respect to the norm
topology, but we require continuity with respect to the weak-∗ topology. Note
that the continuity of Djf(x) in the last j variables extends to the entire space
due to linearity.

Clearly, ‖f‖ψ,k := ‖f‖ψ +
∑k

j=1|f |ψ,j defines a norm on Bψk (Xw∗). Note that

Bψ0 (Xw∗) = Bψ(Xw∗) by Lemma 4.5. We easily see that Bψk+1(Xw∗) is contin-

uously embedded in Bψk (Xw∗) for any k ≥ 0.

Remark 6.3 As the set of cylindrical, C∞-bounded functions is contained in
Bψk (Xw∗) for any k ≥ 0 and dense in Bψ(Xw∗), we see that Bψk (Xw∗) is dense
in Bψ(Xw∗), as well.

Theorem 6.4 Consider the weight function ψ(j)(x, x1, . . . , xj) := ψ(x) on

X × C1(0)
j. Then, f ∈ Bψk (Xw∗) if and only if f ∈ Bψ(Xw∗) ∩ Ck(X) and

Djf ∈ Bψ(j)

((X × C1(0)
j)w∗).

Proof The first direction is obvious, as |f |ψ,j = ‖Djf‖ψ(j) . The other direction
also follows from this fact together with Theorem 2.7 and condition (6.3).
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Theorem 6.5 With the norm ‖·‖ψ,k, Bψk (Xw∗) is a Banach space.

Proof Let fn ∈ Bψk (Xw∗), n ∈ N, be a Cauchy sequence. Using the last The-
orem, we see that fn converges to some limit g ∈ Bψ(X), and similarly Djf

converges to some limit gj ∈ Bψ(j)

((X ×C1(0)
j)w∗), j = 1, . . . , k. As this con-

vergence is uniform on Cr(0)×Cr(0)j , it follows that g ∈ Ck(X) andDjg = gj.

In particular, fn → g in Bψk (Xw∗), which proves the claim. ⊓⊔
The following result gives conditions for the directional differentiability of a
function f ∈ Bψk (Xw∗) along a vector field defined on a subspace Z of X .

Definition 6.6 Let X , Z be dual spaces, Z ⊂ X , and suppose that (Xw∗, ψ),
(Zw∗, ψ̃) are weighted spaces both satisfying (6.3).

We say that σ ∈ Vℓk((Zw∗, ψ̃); (Xw∗, ψ)) if and only if

(i) σ ∈ Cℓ(Z;X),
(ii) for r > 0, the mapping

C̃r(0)× C̃1(0)
j → Xw∗, (x, x1, . . . , xj) 7→ Djσ(x)(x1, . . . , xj) (6.5)

is weak-∗ continuous, and
(iii) there exists a function ϕ : Z → [1,∞) and a constant C > 0 such that

ψ(x)ϕ(x)k ≤ Cψ̃(x), ‖σ(x)‖ ≤ ϕ(x) and ‖Djσ(x)‖L(Z⊗j ;X) ≤ ϕ(x) for
j = 1, . . . , ℓ and all x ∈ Z.

Remark 6.7 Assuming, for example, that the σj are sequentially weak-∗ con-
tinuous and bounded together with their derivatives, we see that the choice
Z = X , ψ̃ = ψ is possible.

Remark 6.8 While the definition of Vℓk((Zw∗, ψ̃); (Xw∗, ψ)) and Bψk (Xw∗) are
quite similar, it is not possible to reduce differentiable vector fields with growth
control entirely to differentiable functions with growth control.

Remark 6.9 Note that if σ1, . . . , σk ∈ Vℓk((Zw∗, ψ̃); (Xw∗, ψ)), we can use a
single function ϕ. Indeed, let ϕ1, . . . , ϕk be the respective functions. Then, the
choice ϕ(x) := maxj=1,...,k ϕj(x) is admissible for all σj simultaneously.

Theorem 6.10 Given k ≥ 1, ℓ ≥ 0. With X, Z dual spaces, Z ⊂ X, let
(Xw∗, ψ) and (Zw∗, ψ̃) be weighted spaces. Assume that f ∈ Bψk+ℓ(Xw∗) and

that the vector fields satisfy σj ∈ Vℓk((Zw∗, ψ̃); (Xw∗, ψ)). Then,

Dkf(·)(σ1(·), . . . , σk(·)) ∈ Bψ̃ℓ (Zw∗), (6.6)

‖Dkf(·)(σ1(·), . . . , σk(·))‖ψ̃ ≤ C−1|f |ψ,k and (6.7)

|Dkf(·)(σ1(·), . . . , σk(·))|ψ̃,j ≤ Ck,j

j∑

ι=0

|f |ψ,k+ι, j = 1, . . . , ℓ. (6.8)

In particular, the linear mapping

Bψk+ℓ(Xw∗) → Bψ̃ℓ (Zw∗), f 7→ Dkf(·)(σ1(·), . . . , σk(·)) (6.9)

is continuous.
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Remark 6.11 Theorem 6.10 yields another reason why we have to use un-
bounded weight functions ψ. Even in the finite-dimensional case, the vector
fields defining a stochastic differential equation generally grow linearly. There-
fore, we need to absorb the growth of the vector fields in the weight ψ̃, and
cannot work in an unweighted space such as Cb(X).

Proof Define K̃R :=
{
z ∈ Z : ψ̃(z) ≤ R

}
, and choose ϕ as explained in Re-

mark 6.9. As K :=
⋃
j=1,...,d σj(K̃R) ⊂ X is weak-∗ compact by the weak-∗

continuity of σj , j = 1, . . . , d, it is clear that for g := Dkf(·)(σ1(·), . . . , σk(·)),
g|K̃R is weakly continuous, and

ψ̃(x)−1|g(x)| ≤ C−1ψ(x)−1‖Dkf(x)‖L(X⊗k;R). (6.10)

From this, it follows that supψ̃(x)>R ψ̃(x)
−1|g(x)| tends to zero for R → ∞:

Assume otherwise. Then, there exists ε > 0 and a sequence of points
(xn)n∈N with ψ̃(xn) ≥ n and ψ̃(xn)

−1|g(xn)| ≥ ε for all n ∈ N. We dis-
tinguish two cases: First, assume that lim supn→∞ ψ(xn) = ∞. By (6.10), it
follows from

lim
R→∞

sup
ψ(x)>R

ψ(x)−1‖Dkf(x)‖L(X⊗k;R) = 0 (6.11)

that lim infn→∞ ψ̃(xn)
−1|g(xn)| = 0, a contradiction. Assume now that we

have the bound ψ(xn) ≤ K for all n ∈ N with some K > 0. Then, as f ∈
Bψk (X), there exists some constant Cf depending on f , but not on n such that

ψ̃(xn)
−1|g(xn)| ≤ Cf ψ̃(xn)

−1ψ(xn) ≤ CfKn
−1, (6.12)

again a contradiction. We obtain g ∈ Bψ̃(Z) by Theorem 2.7.
Consider now Dg. We have

Dg(x)(x1) = Dk+1f(x)(σ1(x), . . . , σk(x), x1)

+
k∑

j=1

Dkf(x)(σ1(x), . . . , σj−1(x), Dσj(x)(x1), σj+1(x), . . . , σk(x)). (6.13)

This shows that for r > 0, Dg|C̃r(0)2 is continuous. Moreover,

|Dg(x)(x1)| ≤ ψ(x)ϕ(x)kψ(x)−1‖x1‖×
×
(
‖Dk+1f(x)‖L(X⊗k+1;R) + k‖Dkf(x)‖L(X⊗k;R)

)

≤ ψ̃(x)ψ(x)−1‖x1‖
(
‖Dk+1f(x)‖L(X⊗k+1;R) + k‖Dkf(x)‖L(X⊗k;R)

)
,

(6.14)

which yields

ψ̃(x)−1‖Dg(x)‖L(X;R)

≤ ψ(x)−1
(
‖Dk+1f(x)‖L(X⊗k+1;R) + k‖Dkf(x)‖L(X⊗k;R)

)
. (6.15)

Similarly as above, we prove Dg ∈ Bψ̃1 (Z). Estimates for higher derivatives are
obtained in a similar way. ⊓⊔
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7 Numerics Of Stochastic Partial Differential Equations

We shall show now how the above perspective can be used to obtain rates
of convergence for splitting schemes applied to stochastic partial differential
equations. Our applications are for general Da Prato-Zabczyk equations [9]
where the generator admits a compact resolvent and generates a pseudocon-
tractive semigroup. In the next section the Heath-Jarrow-Morton equation
of interest rate theory on an adequate Hilbert space [14,13] is treated as an
example.

Consider a Markov process x(t, x0) on a Hilbert space X . The basic ap-
proach in all our model problems is the following:

(i) We identify families (ψi)i∈I of plausible weight functions and (Zj)j∈J of
suitable subspaces Zj ⊂ X of the state space X . This is done in such a way

that (Pt)t≥0 will satisfy PtBψi(Zj) ⊂ Bψi(Zj) and PtBψik (Zj) ⊂ Bψik (Zj)
for i ∈ I and j ∈ J .

(ii) We split up the generator G of Pt into a sum of simpler operators Gγ ,
γ = 0, . . . , d such that each of these operators generates a Markov process
on X and Zj with expectation operator (P γt )t≥0, and that these Markov
processes can be relatively easily generated.

(iii) Using Theorem 6.10, we can rewrite Gγ on Bψik (Zj) as a sum of direc-

tional derivatives along vector fields, which continuously maps Bψik (Zj) to
Bψικ (Zµ).

(iv) Together with the results of [16], this proves optimal rates of convergence
of the Ninomiya-Victoir splitting scheme or related methods for functions
f ∈ Bψik (Z).

Note that for simplicity and ease of representation, we restrict ourselves here
to equations driven by Brownian motions. It is possible to deal with more
general Lévy driving processes in a similar manner, cf. also [26].

Consider a stochastic partial differential equation of Da Prato-Zabczyk
type

dx(t, x0) = (A+ α(x(t, x0)))dt+

d∑

j=1

σj(x(t, x0))dW
j
t (7.1)

on a separable Hilbert space X with norm ‖·‖, where α, σj : X → X are Lip-

schitz continuous, (W j
t )j=1,...,d is a d-dimensional Brownian motion and A with

domain domA generates a strongly continuous, pseudocontractive semigroup
on X .

Assume furthermore that A has a compact resolvent, and that α and σj are
Lipschitz continuous domAℓ → domAℓ, ℓ = 1, . . . ,m, as well, where domAℓ

is a Hilbert space with respect to the norm ‖x‖domAℓ :=
(∑ℓ

k=0‖Akx‖2
)1/2

.

Therefore, we can consider the equation to be of Da Prato-Zabczyk type on
any of the spaces domAℓ, ℓ = 0, . . . ,m. [9, Theorem 7.3.5] yields that E[(1 +
‖x(t, x0)‖2domAℓ)

s/2] ≤ K(1 + ‖x‖2domAℓ)
s/2 for s ≥ 2, ℓ = 0, . . . ,m and t ∈

[0, ε] for some ε > 0.
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Lemma 7.1 domAℓ+1 is compactly embedded in domAℓ, ℓ ≥ 0.

Proof As A has a compact resolvent and generates a strongly continuous semi-
group, there exists some λ0 ∈ R such that λ0 − A is continuously invertible
and (λ0 − A)−1 : X → X is compact. Clearly, (λ0 − A)ℓ : domAℓ → X is
continuously invertible.

If a sequence (xn)n∈N converges weakly in domAℓ+1 to some x ∈ domAℓ+1,
then (λ0 −A)ℓ+1xn converges weakly to (λ0 −A)ℓ+1x. It follows by the com-
pactness of (λ0−A)−1 that (λ0−A)ℓxn converges strongly to (λ0−A)ℓx. The
claim follows. ⊓⊔

Consider the weight functions

ψℓ,s : domAℓ → (0,∞), (7.2)

x 7→ ψℓ,s(x) := (1 + ‖x‖2domAℓ)
s/2, s ≥ 2, ℓ ≥ 0. (7.3)

Due to reflexivity, the weak and weak-∗ topology on domAℓ agree. As t →
x(t, x0) is clearly right continuous and X , domAℓ are reflexive, Theorem 5.5
proves that the Markov semigroup (Pt)t≥0 defined through (x(t, x0))t≥0 is
strongly continuous on Bψℓ,s((domAℓ)w), ℓ = 1, . . . ,m.

The following theorem makes substantial use of the assumption that A
generates a pseudocontractive semigroup.

Theorem 7.2 If α and σj are Lipschitz continuous on domAℓ, then

‖Pt‖L(Bψℓ,s((domAℓ)w)) ≤ exp(ωt) for some ω > 0. (7.4)

Remark 7.3 The proof is somehow twisted in infinite dimension and does not
follow the usual finite dimensional lines of proving that the local martingale
part of ψℓ,s(x(t, x0)) is in fact a martingale, and therefore Ito’s formula yields
the result: we use the Szőkefalvi-Nagy theorem [10, Theorems 7.2.1 and 7.2.3]
and move to a larger Hilbert space H ⊂ H containing H as a closed sub-
space and where we can write the solution process x(t, x0) = πUtY (t, x0) as
orthogonal projection.

Proof We proceed similarly as in [27]. Take ℓ = 0 without any restriction and
set ψ = ψ0,s. Additionally we assume that A generates a contractive semigroup
on H by adding the growth to α. Let us consider a larger Hilbert spaceH ⊂ H,
where the semigroup generated by H lifts to a unitary group U . The projection
onto H is denoted by π. Then we consider the stochastic partial differential
equation prolonged to H

dX(t, x0) = (AX(t, x0) + α(π(X(t, x0))))dt+

d∑

j=1

σj(π(X(t, x0)))dW
j
t , (7.5)

where A is the extension of A to H. By switching to a “coordinate system”
which moves with velocity x 7→ Ax, we obtain a new stochastic differential
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equation

dY (t, x0) = β(t, Y (t, y0))dt+
d∑

j=1

ηj(t, Y (t, x0))dW
j
t , (7.6)

with Lipschitz continuous vector fields

β(t, y) = U−tα(πUty) and (7.7)

ηj(t, y) = U−tσj(πUty) for t ∈ [0, ε] and y ∈ H. (7.8)

With [9, Theorem 7.3.5] we can conclude that supt∈[0,ε] E[‖Y (t, x0)‖p] <∞
for p ≥ 2 and ε > 0 small. Ito’s formula applied to

ψH(Y (t, x0)) := (1 + ‖Y (t, x0)‖2)
p/2

(7.9)

together with linear growth and Gronwall’s inequality then yields the result;
more precisely, defining

Ltf(x) := Df(x) · β(t, x) + 1

2

d∑

j=1

D2f(x)(ηj(t, x), ηj(t, x)), (7.10)

we see that

E[ψH(Y (t, x0))] =ψH(x0) +

∫ t

0

E[Lt(ψH)(Y (s, x0)]ds

≤ψ(x0) + ω

∫ t

0

E[ψH(Y (s, x0))]ds, (7.11)

where the constant ω depends on the Lipschitz and growth bounds of the
vector fields α and σj . Noting that ψ(x0) = ψH(x0), we consider x(t, x0) =
πUtY (t, x0) and realise – due to ‖πUt‖ ≤ 1 – that

E[ψ(x(t, x0)] ≤ E[ψH(Y (t, x0))]] ≤ exp(ωt)ψH(x0) = exp(ωt)ψ(x0), (7.12)

which is the desired result. ⊓⊔

Remark 7.4 Note that under the assumption that the semigroup generated by
A consists of compact operators, a condition that is in general stronger than
the existence of a compact resolvent (see [22, Theorem 2.3.2]), (Pt)t≥0 will
also be strongly continuous on Bψ0,s(Xw), s ≥ 2, by an argument as in [20,
Theorem 2.2]. A is nevertheless unbounded on X , which means that estimates
using Bψℓ,s((domAℓ)w) are still mandatory.

Consider now two splitting scheme for (7.1): the Euler scheme (in an geo-
metric integrator version), and the Ninomiya-Victoir scheme. Assuming that
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the vector fields σj are continuously differentiable with bounded first deriva-
tive, we switch to Stratonovich form and define z0(t, x), zj(t, x)t, j = 1, . . . , d
as the solutions of

d

dt
z0(t, x0) = Az0(t, x0) + α(z0(t, x0))−

1

2

d∑

j=1

Dσj(z
0(t, x0))σj(z

0(t, x0))

= Az0(t, x0) + α0(z
0(t, x0)), (7.13)

dzj(t, x0) = σj(z
j(t, x0)) ◦ dW j

t (7.14)

for all j = 1, . . . , d, where α0(z) := α(z) − 1
2

∑d
j=1Dσj(z)σj(z) is the Stra-

tonovich-corrected drift. The use of Stratonovich integrals is not mandatory
in our setting as it is in approaches guided by Lyons-Victoir cubature [19,1,
21], but it is very helpful – the processes zj(t, x) are, for j = 1, . . . , d, given
through evaluation of the flow of the vector field σj at random times given by

W j
t : z

j(t, x) = Fl
σj

W j
t

(x), where Flσjs denotes the flow defined by σj . Note that

only the equation for Z0,x
t contains the unbounded operator A, but that this

equation is a deterministic evolution equation on X .
By Theorem 7.2, all Markov semigroups P jt are simultaneously strongly

continuous on Bψℓ,s((domAℓ)w), and ‖P jt ‖L(Bψℓ,s((domAℓ)w)) ≤ exp(ωjt) with

some constants ωj ∈ R, j = 0, . . . , d.

Remark 7.5 For the split semigroups, we can also prove pseudocontractivity
directly without invoking the Szőkefalvi-Nagy theorem. Indeed, for P jt , j =
1, . . . , d, we can apply Itô’s formula. For P 0

t , we use the mild formulation

z0(t, x0) = exp(tA)x0 +

∫ t

0

exp((t− s)A)α(z0(s, x0))ds, (7.15)

where exp(At) denotes the semigroup generated by A at time t. As A is pseu-
docontractive, we can assume without loss of generality that A is contractive
by modifying α0 by a constant times the identity. Together with the Lipschitz
continuity of α with constant denoted by L, this yields

‖z0(t, x)‖ ≤ ‖x0‖+
∫ t

0

‖α(z0(s, x0))‖ds ≤ ‖x0‖+
∫ t

0

L‖z0(s, x0)‖ds. (7.16)

The Gronwall inequality proves the required estimate.
Note that this, together with the fact that the split semigroups approximate

Pt strongly on Bψ(Xw∗) (see Corollary 7.22), yields an alternative proof of
Theorem 7.2.

We define now two well-known splitting schemes and prove optimal rates of
convergence on spaces of sufficiently smooth functions in our general setting.

Definition 7.6 (Euler splitting scheme) One step of the Euler splitting
scheme is defined as

QEuler
(∆t) := P 0

∆tP
1
∆t · · ·P d∆t, (7.17)

which is a geometric integrator version of the well-known Euler scheme.
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Definition 7.7 (Ninomiya-Victoir splitting scheme) One step of the Ni-
nomiya-Victoir splitting is defined as

QNV
(∆t) :=

1

2
P 0
∆t/2

(
P 1
∆t · · ·P d∆t + P d∆t · · ·P 1

∆t

)
P 0
∆t/2, (7.18)

which should in theory improve the Euler scheme’s weak rate of convergence
by one order.

Let Gj with domain domGj be the infinitesimal generator of (P jt )t≥0, where

(P jt )t≥0 is considered on Bψℓ0,s0 ((domAℓ0)w) with some fixed ℓ0 ∈ {0, . . . ,m−
1}, s0 ≥ 2. The function spaces defined below will be fundamental for proving
convergence estimates.

Definition 7.8 Let p ≥ 1 be given. We say that f ∈ Mp
T if and only if

f ∈ Bψℓ0,s0 ((domAℓ0)w), Ptf ∈ domGp ∩⋂dj=0 domGpj for t ∈ [0, T ],

Cf := sup
t∈[0,T ]

j1,...,jp=0,...,d

‖Gj1 · · · GjpPtf‖ψℓ0,s0 <∞ and (7.19)

GiPtf =

(
d∑

j=0

Gj
)i
Ptf, i = 1, . . . , p. (7.20)

Proposition 7.9 Let Q∆t be a splitting for P∆t of classical order p. For f ∈
Mp+1

T , the splitting converges of optimal order, that is, with a constant Cf
independent of n ∈ N and ∆t > 0, we have that for n∆t ≤ T ,

‖Pn∆tf −Qn(∆t)f‖ψ ≤ Cf∆t
p. (7.21)

Proof Set g := Ptf ∈ domG ∩ ⋂dj=0 Gj . The results in [16, Proof of Theo-
rem 3.4, Section 4.1, Section 4.4] prove existence of a family of linear operators
Tt : Bψℓ0,s0 ((domAℓ0)w) → Bψℓ0,s0 ((domAℓ0)w) which are uniformly bounded,
that is,

sup
t∈[0,ε]

‖Tt‖L(Bψ(domAℓ0)w) ≤ Cε <∞ for some ε > 0, (7.22)

such that the short term asymptotic expansions of P∆tg and Q(∆t)g of order
p coincide, i.e.

P∆tg −Q(∆t)g = ∆tp+1T∆tEp+1g, (7.23)

where Ep+1 is a linear combination of the operators Gj1 · · · Gjp+1 , j1, . . . , jp+1 =
0, . . . , d, where we apply that by assumption, Gp+1 is itself a linear combination
of these operators when applied to g. Thus,

‖P∆tg −Q(∆t)g‖ψ ≤ Cf∆t
p+1‖T∆t‖L(Bψℓ,s((domAℓ)w)) ≤ Cf∆t

p+1. (7.24)

It follows that

‖Pn∆tf −Qn(∆t)f‖ψ ≤ Cf∆t
p+1

n∑

i=1

‖Qj(∆t)‖L(Bψℓ,s((domAℓ)w))

≤ Cf∆t
p. (7.25)

⊓⊔
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With respect to the Euler scheme define now For the Euler and Ninomiya-
Victoir schemes, we define MEuler

T ⊂ Bψℓ,s((domAℓ)w)

MEuler
T := M2

T (7.26)

and MNV
T ⊂ Bψℓ,s((domAℓ)w) by

MNV
T := M3

T . (7.27)

The following results are now an easy consequence of Proposition 7.9.

Corollary 7.10 For f ∈ MEuler
T there exists some constant Cf independent

of n ∈ N and ∆t > 0 such that if n∆t ≤ T ,

‖Pn∆tf −Qn(∆t)f‖ψ ≤ Cf∆t. (7.28)

Hence, for f ∈ MEuler
T , the Euler splitting scheme converges of optimal order.

Corollary 7.11 For f ∈ MNV
T there exists some constant Cf independent of

n ∈ N and ∆t > 0 such that if n∆t ≤ T ,

‖Pn∆tf − (QNV
(∆t))

nf‖ψ ≤ Cf∆t
2. (7.29)

Hence, for f ∈ MNV
T , the Ninomiya-Victoir splitting scheme converges of

optimal order.

Remark 7.12 Note that in principle, we can now also consider different split-
tings than the Euler or the Ninomiya-Victoir schemes. It is, however, not
possible to obtain higher rates of convergence due to inherent limits of split-
ting schemes with positive coefficients (see [3]), and positivity of coefficients
is mandatory in the probabilistic setting under concern.

We derive easy conditions guaranteeing f ∈ MNV
T .

Lemma 7.13 Suppose that f ∈ C2(domAℓ), 0 ≤ ℓ ≤ ℓ0, with uniformly
continuous derivatives on bounded sets in domAℓ. Further, assume that f ,
g ∈ Bψℓ,s((domAℓ)w), where

g :=
1

2
Df(·)Dσj(·)σj(·) +D2f(·)(σj(·), σj(·)). (7.30)

Then f ∈ domGj and Gjf = g.

Proof Under the given assumption, we apply Itô’s formula [9, Theorem 7.2.1]
to obtain

P jt f(x) = f(x) +

∫ t

0

E
[
g(zj(s, x))

]
ds = f(x) +

∫ t

0

P js g(x)ds. (7.31)

The result follows from g ∈ Bψℓ,s((domAℓ)w) and the strong continuity of
(P jt )t≥0. ⊓⊔
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Lemma 7.14 If f ∈ C1(domAℓ), 0 ≤ ℓ ≤ ℓ0 − 1, with f , g := Df(·)(A ·
+α0(·)) ∈ Bψℓ,s((domAℓ)w), then f ∈ domG0 and G0f = g.

Remark 7.15 For f ∈ C1(domAℓ), Df(x) defines a continuous functional on
domAℓ+1. It follows that g : domAℓ0 → R is well-defined for ℓ ≤ ℓ0 − 1.

Proof By the fundamental theorem of calculus,

P 0
t f(x0) = f(x0) +

∫ t

0

g(z0(s, x0))ds = f(x0) +

∫ t

0

P 0
s g(x0)ds. (7.32)

Again, g ∈ Bψℓ,s((domAℓ)w) and strong continuity of (P jt )t≥0 prove the result.
⊓⊔

Lemma 7.16 Assume that f ∈ C2(domAℓ), 0 ≤ ℓ ≤ ℓ0 − 1, with uniformly
continuous derivatives on bounded sets in domAℓ, and that f , g := Df(·)(A ·
+α0(·)) +

∑d
j=1

1
2Df(·)Dσj(·)σj(·) +D2f(·)(σj(·), σj(·)) ∈ Bψℓ,s((domAℓ)w).

Then f ∈ domG and Gf = g.

Proof Itô’s formula [9, Theorem 7.2.1], g ∈ Bψℓ,s((domAℓ)w) and the strong
continuity of (Pt)t≥0 yield the result. ⊓⊔

The following result shows how compactness can be used to prove weak
continuity of nonlinear mappings.

Proposition 7.17 Suppose that X, Z are Banach spaces with norms ‖·‖X ,
‖·‖Z , Z ⊂ X compactly embedded, and j ≥ 1. Let F ∈ C(Xj;X) and assume
that for some r > 0, F (Cr(0)

j) ⊂ Z and is bounded in Z, where we set
Cr(0) := {z ∈ Z : ‖z‖Z ≤ r}.

Then, F : Cr(0)
j → Z is sequentially weakly continuous, i.e., whenever

a sequence (ζn)n∈N ⊂ Cr(0)
j converges weakly to ζ, it follows that F (ζn)

converges weakly to F (ζ) in Z.

Proof Denote the compact embedding ι : Z → X , and let (ζn)n∈N, zn =
(zn,1, . . . , zn,j), converge weakly to ζ = (z1, · · · , zj) in Z. By assumption,
‖F (ζn)‖Z ≤ C for some C > 0. Additionally, (ζn)n∈N converges to ζ in
the norm of Xj. The continuity of F on X yields X-norm convergence of
(F (ζn))n∈N to F (ζ).

As ι is injective, it follows that its adjoint ι∗ : X∗ → Z∗ has dense range by
[7, Corollaire II.17(iii)], where ι∗ is given by (ι∗x∗)(z) = x∗(ιz) for all z ∈ Z
and x∗ ∈ X∗. It follows that for every z∗ ∈ Z∗ and ε > 0, there exists some
x∗ ∈ X∗ such that ‖z∗ − ιx∗‖L(Z;R) < ε, whence |z∗(z) − x∗(ιz)| < ε. The
result follows from the norm convergence of (F (ζn))n∈N in X and

|z∗(F (ζn)− F (ζ))| ≤ 2Cε+ ‖x∗‖L(X;R) · ‖F (ζn)− F (ζ)‖X . (7.33)

⊓⊔
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Lemma 7.18 Assume that α, σj ∈ Ck−2(X ;X) with bounded derivatives, and

that 0 ≤ ℓ ≤ ℓ0−1, 2 ≤ s ≤ s0−2 and k ≥ 2. Then, G, Gj : Bψℓ,sk ((domAℓ)w) →
Bψℓ+1,s+2

k−2 ((domAℓ+1)w) are continuous for j = 0, . . . , d, and

d∑

j=0

Gjf = Gf for all f ∈ Bψℓ,sk ((domAℓ)w). (7.34)

Proof Note that f and its derivatives are uniformly continuous on bounded
subsets of domAℓ as they are weakly compact. By the Lemmas 7.13, 7.14

and 7.16, it follows that Bψℓ,sk ((domAℓ)w) ⊂ domG ∩ ⋂dj=0 Gj , and that for

f ∈ Bψℓ,s((domAℓ)w), G and Gjf are given by a sum of directional deriva-
tives α, σj and their derivatives are norm continuous on domAℓ by assump-
tion. By the compact embedding domAℓ+1 → domAℓ, it follows by Propo-
sition 7.17 that α and σj are weakly continuous on every bounded set in
domAℓ+1. By linear boundedness with bounded derivatives, we can choose

ϕ(x) :=
(
1 + ‖x‖2domAℓ+1

)1/2
to obtain

α ∈ Vk−2
1

(
((domAℓ+1)w, ψℓ+1,s+2); ((domAℓ)w, ψℓ,s)

)
, and (7.35)

σj ∈ Vk−2
2

(
((domAℓ+1)w, ψℓ+1,s+2); ((domAℓ)w, ψℓ,s)

)
, j = 1, . . . , d.

(7.36)

Using Theorem 6.10, we see that Gjf ∈ Bψℓ+1,s+2

k−2 ((domAℓ+1)w). ⊓⊔

Lemma 7.19 Suppose α, σj ∈ Ck(X ;X) with bounded derivatives. Let 1 ≤
ℓ ≤ ℓ0, 2 ≤ s ≤ s0 and k ≥ 0. Then, PtBψℓ,sk ((domAℓ)w) ⊂ Bψℓ,sk ((domAℓ)w),
and supt∈[0,T ]‖Ptf‖ψℓ,s,k ≤ KT ‖f‖ψℓ,s,k with some constant KT independent
of f .

Proof The results in [8, Theorem 5.4.1] and [9, Theorem 7.3.6] prove existence
of C > 0 such that ‖Dj

xX
x
t ‖L((domAℓ)⊗j;domAℓ) ≤ C almost surely for all

x ∈ domAℓ and j = 1, · · · , k, and that these mappings are almost surely
norm continuous in x. By the compact embedding, almost sure sequential
weak continuity on bounded sets of domAℓ follows from Proposition 7.17. We
obtain

|DPtf(x0)(x1)| ≤ ‖x1‖E[‖Dx(t, x0)‖L(domAℓ;domAℓ)× (7.37)

× ‖Df(x(t, x0))‖L(domAℓ;R)]

≤ Ct|f |ψℓ,s,1ψℓ,s(x)‖x1‖ (7.38)

with some constant Ct independent of x and f , and similarly for higher deriva-
tives. ⊓⊔

Theorem 7.20 Assume that α, σj ∈ C6(X ;X) with bounded derivatives, that
ℓ0 ≥ 4 and that s0 ≥ 8. Then, for 0 ≤ ℓ ≤ ℓ0 − 4 and 2 ≤ s ≤ s0 − 6,

Bψℓ,s6 ((domAℓ)w) ⊂ MNV
T . In particular, C6

b(X) ⊂ MNV
T .



28

Proof By Lemma 7.19, ‖Ptf‖ψ,6 ≤ KT‖f‖ψ,6 < ∞ for all t ∈ [0, T ]. The first
claim follows by iterating Lemma 7.18.

For the second claim, let f ∈ C6
b(X). f ∈ C6(domAℓ) is obvious. By the

compact embedding domAℓ → X , f has weakly continuous derivatives on
bounded sets of domAℓ, and Lemma 4.5 proves f ∈ Bψ((domAℓ)w). Bound-
edness of the derivatives shows |f |ψ,j <∞ and

lim
R→∞

sup
ψℓ,s(x)>R

ψ(x)−1‖Djf(x)‖L((domAℓ)j ;R) = 0. (7.39)

Hence, f ∈ Bψℓ,s6 ((domAℓ)w). ⊓⊔

The following theorem follows analogously.

Theorem 7.21 Assume that α, σj ∈ C4(X ;X) with bounded derivatives, that
ℓ0 ≥ 3 and that s0 ≥ 6. Then, for 0 ≤ ℓ ≤ ℓ0 − 3 and 2 ≤ s ≤ s0 − 4,

Bψℓ,s4 ((domAℓ)w) ⊂ MEuler
T . In particular, C4

b(X) ⊂ MEuler
T .

Corollary 7.22 Let f ∈ Bψ(Xw∗). Then, for any t > 0,

lim
n→∞

‖Ptf − (QEuler
(t/n))

nf‖ψ = lim
n→∞

‖Ptf − (QNV
(t/n))

nf‖ψ = 0, (7.40)

that is, the Euler and Ninomiya-Victoir splittings converge strongly on the
space Bψ(Xw∗).

Proof This follows from the density of bounded, smooth, cylindrical functions
in Bψ(Xw∗), see Remark 6.3. ⊓⊔

Example 7.23 Assume that α ≡ 0 and that the σj are constant, j = 1, . . . , d.
This includes, in particular, stochastic heat and wave equations on bounded
domains with additive noise. It is easy to see that if A : domA→ X admits a
compact resolvent, we are in the situation described above, and the Ninomiya-
Victoir splitting converges of optimal order.

Example 7.24 Note that finite-dimensional problems with Lipschitz-continu-
ous coefficients are also included in this setting. Here, A can be chosen to be
zero, and the embedding is trivially compact due to the local compactness of
finite-dimensional spaces.

8 An Example: The Heath-Jarrow-Morton Equation Of Interest
Rate Theory

With α ∈ R and wα := exp(αx), we set L2
α(R+) := L2(R+, wα) and Hkα(R+) :=

Hk(R+, wα). Here and in the following, R+ := (0,∞).

Proposition 8.1 For every α > 0, the space H1(R+) ∩ L2
α(R+) with norm

given by

‖f‖ :=
(
‖f‖2H1(R+) + ‖f‖2L2

α(R+)

)1/2
(8.1)

is compactly embedded in L2(R+).
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Note that the proof shows that an analogous result holds true for any weight
function w with limx→+∞ w(x) = +∞.

Proof We apply [7, Théorème IV.26]. For any τ > 0,

∫

R+

|f(x+ τ) − f(x)|2dx ≤
∫

R+

∫ τ

0

|f ′(x + s)|2dsdx

=

∫ τ

0

∫

R+

|f ′(x + s)|2dxds

≤ τ‖f‖H1(R+), (8.2)

and for any R > 0,

∫ ∞

R

|f(x)|2dx ≤ exp(−αR)
∫ ∞

R

|f(x)|2 exp(αx)dx

≤ exp(−αR)‖f‖L2
α(R+). (8.3)

These estimates prove the claim. ⊓⊔

Corollary 8.2 For any α, β ∈ R with β > α and integer k ≥ 0, Hk+1
β (R+) is

compactly embedded in Hkα(R+).

Proof Assume first k = 0. Then, Proposition 8.1 shows that H1
β−α(R+) is

compactly embedded in L2(R+).
The mapping T : L2(R+) → L2

α(R+), f 7→ exp(−α
2 x)f , is an isometric

isomorphism, and T (H1
β−α(R+)) = H1

β(R+), where the norms ‖T−1f‖H1
β−α

(R+)

and ‖f‖H1
β
(R+) are equivalent. It follows that H1

β(R+) is compactly embedded

in L2
α(R+). The full result follows by a simple induction. ⊓⊔

This compact embedding lets us derive rates of convergence of the Ninomiya-
Victoir splitting scheme in the HJM setting of [12,13] (see also [14] for an-
other setting where our approach should be equally applicable). There, the
space Hw consisting of functions f with f ′ lying in some weighted Sobolev
space is used. We shall restrict ourselves to exponential weights. We set Hα ={
h ∈ L1

loc(R+) : h
′ ∈ L2

α(R+)
}
for α > 0 with norm

‖h‖Hα :=

(
|h(0)|2 +

∫

R+

|h(x)|2 exp(αx)dx
)1/2

. (8.4)

Furthermore, we define H0
α := {h ∈ Hα : h(+∞) = 0} (see [12, Chapter 5]).

Let σj : Hα → H0
α be Lipschitz continuous and bounded, j = 1, . . . , d.

Define the Heath-Jarrow-Morton drift

αHJM : Hα → Hα, αHJM(h) :=

d∑

j=1

Sσj(h), (8.5)
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where Sf(x) := f(x)
∫ x
0
f(y)dy. The operator A := d

dx with domain domA :=
{h ∈ Hα : h

′ ∈ Hα} is the infinitesimal generator of the shift semigroup on Hα.
Then, the HJM equation

dr(t, r0) = (Ar(tr0) + αHJM(r(t, r0)))dt+

d∑

j=1

σj(r(t, r0))dW
j
t , (8.6)

r(0, r0) = r0,

where (W j
t )j=1,...,d is a d-dimensional Brownian motion, has a unique solution

(see [12, Chapter 5]).
Let Aβ be the restriction of A to domAβ := {h ∈ Hβ : h

′ ∈ Hβ}. It is
clear that Aβ is the infinitesimal generator of the shift semigroup on Hβ. We
shall assume now in addition that αHJM and σj , j = 1, . . . , d are Lipschitz
continuous on Hβ and domAℓβ for ℓ = 1, . . . ,m with some m ≥ 1. Such an
assumption is actually not untypical and is even weaker than [13, (A1), p. 135].

Theorem 8.3 For any k ≥ 0, domAkβ is compactly embedded in Hα.

Proof As domAkβ is continuously embedded in domAβ for any k ≥ 1, we only
have to prove the result for k = 1. Let therefore hn ∈ domAβ be a sequence
converging weakly to h ∈ Aβ , that is, hn and h′n converge weakly to h and h′ in
the topology ofHβ . Then, as point evaluations are continuous in Hβ, we obtain
that limhn(0) = h(0). As h′n converges weakly to h′ in Hβ , we see that h

′
n and

h′′n converge weakly to h′ and h′′ in L2
β(R+), that is, h′n converges weakly to

h′ in H1
β(R+). By Corollary 8.2, h′n converges strongly to h′ in L2

α(R+), and
the result follows. ⊓⊔

From Lipschitz continuity of the coefficients, we obtain easily that solutions of
(8.6) depend Lipschitz continuously on the initial value. Thus, weakly contin-
uous dependence in domAkβ follows for any k ≥ 1. Similarly as in Section 7, by

splitting into a part corresponding to the Stratonovich-corrected drift, d
dx+α0,

and the parts corresponding to the diffusions, we obtain optimal weak rates
of convergence in a supremum norm weighted by ψ(h) := (1 + ‖h‖2

domAℓ
β

)s/2,

ℓ, s large enough, for sufficiently smooth functions if αHJM and σj are smooth
enough.
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