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We have studied the transition from two to three dimensions in a low temperature weakly inter-
acting 6Li Fermi gas. Below a critical atom number, N2D, only the lowest transverse vibrational
state of a highly anisotropic oblate trapping potential is occupied and the gas is two-dimensional.
Above N2D the Fermi gas enters the quasi-2D regime where shell structure associated with the filling
of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated
through measurements of the cloud size and aspect ratio versus atom number.
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Two-dimensional (2D) ensembles of strongly correlated
fermions occur in a number of important settings in-
cluding high temperature superconductors [1] and 3He
films [2]. Ultracold neutral atoms provide new opportu-
nities to explore such systems where the dimensionality
and interactions can be precisely controlled [3]. To date
great progress has been made through investigations of
the Bose-Einstein condensate (BEC) to Bardeen-Cooper-
Schrieffer (BCS) superfluid crossover [4–10] in gases free
to move in three spatial dimensions. Freezing the motion
in one or more dimensions through tight confinement can
have dramatic consequences. For instance in a homoge-
neous 2D Bose gas there is no Bose-Einstein condensation
at finite temperature as phase fluctuations destroy long
range order [11, 12]. However, as shown by Berezin-
skii [13] and Kosterlitz and Thouless [14], a system of
interacting particles can form a (BKT) superfluid. Two-
dimensional gases of fermionic atoms are poised to pro-
vide new insights into 2D superfluidity and can also dis-
play mesoscopic phenomena such as shell structure [15–
17] which arises due to Pauli exclusion.

In this letter we study the crossover from 2D to 3D
in an optically trapped 6Li degenerate Fermi gas. The
scaling of the cloud width with atom number in both the
tight and weakly confined directions changes dramati-
cally through the crossover. We also see clear indications
of the characteristic shell-structure associated with the
filling of discrete energy levels; a feature which is most
pronounced when looking at the aspect ratio of the cloud.
The experimentally observed structure agrees well with
theoretical predictions for an ideal Fermi gas.

Achieving the 2D regime in a Fermi gas requires that
the Fermi energy, EF , and temperature, T , are suffi-
ciently low that excitations in the restricted dimension
are forbidden. Theoretical studies have shown that quasi-
2D systems are a promising route towards fermionic su-
perfluidity [18]. The possibility of observing a 2D BKT
superfluid with fermions [19, 20] has recently emerged.
The BEC-BCS crossover displays a different character in

balanced [21] and in imbalanced [22] 2D systems. This is
manifest through the existence of a two-body bound state
for arbitrarily weak attractive interactions in 2D [23–25],
making 2D Fermi gases a rich field for study.

The first demonstration of an ultracold 2D Fermi gas
was achieved using 40K atoms confined in a 1D optical
lattice [26]. Restricting dimensions with an optical lat-
tice was shown to shift the position of a p-wave Feshbach
resonance in 40K [27]. In 2009 Du et al. [28] studied
inelastic collisions in a quasi-2D Fermi gas and more re-
cently Martiyanov et al. produced an array of 2D gases
using 6Li atoms in an optical lattice [29]. Experiments in
lattices produce multiple 2D clouds that can be imaged
simultaneously giving better signal to noise for bulk mea-
surements. However, the properties of individual clouds
in lattices cannot be easily measured. In the tightly con-
fined direction the cloud size is typically sub-micron and
hence well below the resolution limit of nearly all imaging
systems. We overcome this limitation by using a single
2D cloud.

The transition from 2D to 3D is readily understood by
considering an ideal Fermi gas confined in an harmonic
trapping potential

V (x, y, z) =
1

2
m(ωxx

2 + ωyy
2 + ωzz

2), (1)

where m is the mass of the atoms and ωx,y,z are the trap-
ping frequencies in the x, y and z directions, respectively.
For simplicity, we consider the radially symmetric case
ωx = ωy = ωr and an oblate geometry where ωz � ωr.
In 2D the Fermi energy is given by EF,2D =

√
2N~ωr

where N is the atom number. In 3D the Fermi energy
is EF,3D = (6N)1/3~ω̄ where ω̄ = (ωxωyωz)

1/3 is the
geometric mean trapping frequency.

At zero temperature, the Fermi radii in both 2D
and 3D are found simply from the Fermi energy.
In 3D this gives the well known result RF,ri =
(48N)1/6

√
~ω̄/(mω2

ri), where ri = x, y, z. In con-
trast when the gas is confined to two dimensions (when
EF � ~ωz) the width in the tightly confined direction is
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fixed by the size of the harmonic oscillator ground state
az =

√
~/(mωz). In the radial directions, however, the

Fermi radius is

RF,r = (8N)1/4
√

~
mωr

. (2)

This N1/4 growth is more rapid than in 3D as two phase
space degrees of freedom (z, pz) are no longer accessible.
As the Fermi energy depends on the atom number we
define a critical numberN2D below which atoms populate
only the lowest transverse vibrational state at T = 0.
This is found by counting the number of single particle
states with energy less than the lowest energy state with
one transverse excitation. Labelling harmonic oscillator
states by the vibrational quantum numbers nx, ny and
nz and defining the trap aspect ratio as λ = ωz/ωr the
energy of an arbitrary state is given by

E(nx, ny, nz) = ~ωr [nx + ny + 1 + λ(nz + 1/2)] . (3)

The number of (nz = 0) states with energy less than the
(nx = ny = 0, nz = 1) state is the maximum number of
particles that can be accommodated while remaining in
the true 2D regime. These states satisfy nx + ny < λ,so
N2D is given by

N2D =

λ−1∑
nx=0

(λ−nx−1)∑
ny=0

1 =
λ

2
(λ+ 1). (4)

This critical number increases with the square of the trap
aspect ratio. In the experiments that follow, we work in
a trap with λ ≈ 60 corresponding to N2D ≈ 1800.

As well as the critical atom number it is also possi-
ble to calculate the root mean square (rms) cloud width
σri =

√
〈r2i 〉. This provides a model independent mea-

sure of the cloud size applicable at both zero and fi-
nite temperatures. In the case of an ideal Fermi gas,
σri can be found by summing the squared wavefunctions
of the individual oscillator states to obtain a full den-
sity profile n(x, y, z). These profiles can then be inte-
grated over two spatial dimensions to produce a line pro-
file n(ri) from which the second moment can be evaluated
〈r2i 〉 =

∫
n(ri)r

2
i dri/

∫
n(ri)dri = σ2

ri .
To create a 2D Fermi gas, we begin with an evapora-

tively cooled cloud of approximately N = 105 6Li atoms
in each of the lowest two spin states |F = 1/2,mF =
±1/2〉 in a single beam optical dipole trap at a temper-
ature of T ≈ 0.1TF [30, 31]. To vary the final atom
number we continue the evaporation by further lower-
ing the dipole trap power so that atoms are spilled while
maintaining the cloud at the lowest possible temperature.
The final stage of the evaporation takes place at 834 G
where two-body scattering is unitarity-limited [32].

Next we adiabatically ramp on the 2D optical trap,
which is formed by a cylindrically focussed Gaussian
beam (λ = 1075 nm) propagating along the y-direction
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Figure 1. Contour plots of the measured 1D density profiles as
a function of atom number in both the tight (a) and weakly
confined (b) directions after 500 µs expansion. Solid black
lines are contours of equal density and the dashed red lines
show the zero temperature rms cloud width. The color bar
indicates line density in units of atoms/µm.

with 1/e2 waists of wz = 8µm and wx = 400µm in
200 ms. Similar trapping configurations have been used
to study 2D Bose gases [33, 34]. Once the trap is fully
on, the first beam used for evaporation is adiabatically
ramped down in 200 ms leaving the atoms in the 2D trap.
Confinement in the y-direction of the 2D trap is achieved
by the short Rayleigh length associated with the 8 µm
waist. Additional harmonic confinement in the x and
y-directions is provided by residual curvature of the Fes-
hbach magnetic field. The 2D trapping frequencies were
measured to be ωz/2π = 2800 Hz and ωr/2π = 47 Hz
(ωx ∼ ωy ≡ ωr) giving an aspect ratio of approximately
60. The final stage of the preparation involves adiabat-
ically ramping the magnetic field to 992 G where the
s-wave scattering length is as = −4300a0 (a0 is the Bohr
radius) and the cloud is imaged after 500 µs time of flight.
Cloud temperatures in the 2D trap are difficult to ascer-
tain due to the lack of an analytic model in the interact-
ing quasi-2D regime. However, in the 2D trap we expect
T < 0.1TF due to the adiabatic sweep of the magnetic
field and the deep evaporation used to prepare the low
atom number clouds.

To demonstrate the crossover from 2D to 3D we mea-
sure the rms cloud radii in the tight and weakly con-
fined directions as a function of the atom number. In
the tightly confined z-direction the cloud width in trap
(az ∼

√
~/(mωz) ≈ 770 nm) is much smaller than the

resolution of our imaging system, so a short time of flight
(500µs) is allowed before imaging. This time was chosen
to be long compared to the inverse trapping frequency
in the z-direction (1/ωz = 57µs) and short compared to
the inverse trapping frequencies in the radial directions
(1/ωy = 3.4ms). The measured spatial distribution in
the radial dimension will thus be very close to the in-
trap distribution.
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The imaging beam propagates roughly along the (ra-
dial) x-direction, so we obtain two-dimensional density
profiles n(z, y). From these we generate line profiles n(z),
n(y) by integrating over the other dimension. Absorption
images are processed using a fringe removal algorithm
[35] to optimise the image quality. Figure 1(a) and (b)
show the measured line-densities as a function of atom
number for gases at 992 G (as = −4300a0) in both the
tight and weakly confined directions, respectively. The
plots consist of approximately 50 profiles; each profile is
the average of several images binned according toN . The
dashed red lines show the scaled predictions for the zero
temperature rms radius for an ideal Fermi gas and the
solid lines are contours of equal density.

In order to compare these data with theory, we eval-
uate the rms cloud widths from the profiles in Fig. 1.
Figure 2 (main panel) shows the rms width in the y-
direction (σy) versus atom number. Data points are the
experimentally measured widths and the solid line is the
calculated width for an ideal T = 0 Fermi gas. The theo-
retical curve has been scaled by a factor of 1.1 to provide
the best agreement with the experimental data for low
atom numbers (N < 5000) where interactions play a mi-
nor role. We attribute this scaling to a combination of
finite imaging resolution and nonzero cloud temperature.
The data points follow the predicted growth rate at low
atom numbers, but drop below the theory at high num-
bers (densities), where the attractive interactions become
more significant. Below N2D = 1800, a least squares fit
to the experimental data shows that the width grows as
N0.28±0.05, in agreement with the predicted N0.25 scaling
for an ideal gas. Above N = 5000, a fit to the data yields
a power law dependence of N0.148±0.004, below the ideal
gas prediction of N0.174, due to interactions. For the
lowest atom numbers shown in this plot (N ≈ 800) the
interaction parameter 1/(kFas) = −2.3, where kF is the
Fermi wave-vector. For the highest numbers (N ≈ 105)
the gas is approaching the strongly interacting regime,
1/(kFas) = −1.0, and the ideal gas picture will fail.

The inset of Fig. 2 shows the measured widths in the
tightly confined z-direction. The theoretical width has
been scaled by b

√
1 + ω2

zt
2 ∼= bωzt to account for the

500µs expansion time (ω2
zt

2 ≈ 80 � 1). The value
of b which provides the best agreement with the data
is 1.17. This differs from the 1.1 scaling found for the
radial direction suggesting that the expansion may not
be simply ballistic. Below N2D the width scales with
N0.07±0.04 in reasonable agreement with the N0 predic-
tion for the ideal gas. Finite temperature may lead to
some population of the (nz = 1) state for atom num-
bers below N2D. For N > 5000 the measured width
scales as N0.132±0.005, in excellent agreement with the
ideal gas result of N0.135. We note that the measured
exponents may be influenced by interaction dependent
expansion dynamics in the z-direction [36]. The calcu-
lated exponent for the non-interacting gas is below the
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Figure 2. Measured rms cloud widths (data points) and the
theoretical predictions for an ideal T = 0 Fermi gas (solid
lines). Radial cloud width is plotted in the main panel and the
inset shows the transverse cloud width after 500 µs expansion.
Theoretical curves have been scaled as described in the text.

true 3D value of 1/6 as the data in the range considered
here lies in the quasi-2D regime where shell structure in-
fluences the widths. The theoretical curves in Fig. 2
display the characteristic steps in gradient due to shell
structure although it is difficult to identify these steps in
the experimental data here.

To further investigate the emergence of shell structure
we examine the cloud aspect ratio, κ = σz/σy. Shell
structure will be more prominent in measurements of κ
as the filling of a new transverse state begins in states
with the lowest radial quantum numbers. Hence an in-
crease in the transverse cloud size will correlate with a
decrease in the growth rate of the radial size. In the 3D
limit, the cloud aspect ratio will be constant but in 2D
and quasi-2D κ will show a strong dependence on the
atom number. Additionally, as κ is given by the ratio of
two measured quantities, the influence of certain experi-
mental systematics (for example finite imaging resolution
and shot to shot temperature variations) can be reduced.

In Fig. 3 (main panel) we plot the aspect ratio of the
cloud along with the theoretical predictions for a zero
temperature ideal Fermi gas. The agreement between
theory and experiment is very good and the large change
in aspect ratio with N clearly demonstrates departure
from 3D behavior. Only at the highest atom numbers
does the aspect ratio begin to level off indicating broad
coverage of the 2D and quasi-2D regimes. The dashed
vertical lines indicate the calculated atom numbers at
which new transverse states become accessible for a zero
temperature ideal gas. At low N , the aspect ratio de-
cays steadily with increasing atom number, before a step
occurs at N2D corresponding to occupation of the first
transverse excited state. The inset of Fig. 3 shows the
gradient dκ/dN of the theoretical and experimental as-
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Figure 3. Aspect ratio of the cloud through the 2D to 3D
crossover (data points) and theoretical predictions for an ideal
Fermi gas (solid line). Dashed lines indicate the predicted
location of the steps associated with the occupation of the
successive transverse oscillator states. Inset: Gradient of the
experimental and theoretical aspect ratios showing the signa-
ture of shell filling.

pect ratios which show the signatures of shell structure
more clearly. The steps in the theoretical curve in the in-
set plot correspond to the dashed lines in the main panel.
The experimental gradients were evaluated numerically
and smoothed with a five-point moving average. Both
the measured aspect ratio and gradient follow the the-
oretical predictions, with indications of shell structure
present in the experimental data for N . 10, 000 corre-
sponding to occupation of the ground and first transverse
excited states. For larger N the data lie close to the the-
oretical line but the shell structure is unresolved. For
atom numbers less than 10,000 the interaction parame-
ter 1/(kFas) remains below -1.5, so the ideal gas theory
provides a reasonable description of this situation.

This work provides the first quantitative study of the
transition from 2D to quasi-2D and 3D in a Fermi gas.
The weakly interacting Fermi gas used for these studies
behaves similarly to a non-interacting gas, particularly at
low atom numbers where shell structure associated with
the filling of individual transverse oscillator states be-
comes apparent. These data were obtained in the regime
where confinement induced scattering resonances should
not affect the measurements (as < az) but these phenom-
ena can readily be accessed at larger scattering lengths
closer to the Feshbach resonance [24, 37, 38]. This work
opens the way to further investigations of the phase di-
agram of 2D and quasi-2D Fermi gases as a function of
the 3D scattering length and temperature.
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