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Abstract

We consider a general class of superadditive scores measuring the similarity of two
independent sequences of n i.i.d. letters from a finite alphabet. Our object of
interest is the mean score by letter ln. By subadditivity ln is nondecreasing and
converges to a limit l. We give a simple method of bounding the difference l − ln
and obtaining the rate of convergence. Our result generalizes the previous result of
Alexander [1], where only the special case of the longest common subsequence was
considered.

Keywords. Random sequence comparison, longest common sequence, rate of
convergence.

AMS. 60K35, 41A25, 60C05

1 Introduction

Throughout this paper X1, X2, . . . and Y1, Y2, . . . are two independent sequences of
i.i.d. random variables drawn from a finite alphabet A and having the same distri-
bution. Since we mostly study the finite strings of length n, let X = (X1, X2, . . . Xn)
and let Y = (Y1, Y2, . . . Yn) be the corresponding n-dimensional random vectors. We
shall usually refer to X and Y as random sequences.
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The problem of measuring the similarity of X and Y is central in many areas of
applications including computational molecular biology [7, 14, 23, 24, 25] and com-
putational linguistics [8, 18, 20, 21]. In this paper, we consider a general scoring
scheme, where S : A × A → R+ is a pairwise scoring function that assigns a score
to each couple of letters from A. We assume S to be symmetric and we denote by
F and A the largest possible score and the largest possible change of score by one
variable, respectively. Formally (recall that S is symmetric)

F := max
a,b∈A

S(a, b), A := max
a,b,c∈A

|S(a, b)− S(a, c)|.

An alignment is a pair (π, µ) where π = (π1, π2, . . . , πk) and µ = (µ1, µ2, . . . , µk)
are two increasing sequences of natural numbers, i.e. 1 ≤ π1 < π2 < ... < πk ≤ n
and 1 ≤ µ1 < µ2 < . . . < µk ≤ n. The integer k is the number of aligned letters
and n − k is the number of gaps in the alignment. Note that our definition of
gap slightly differs from the one that is commonly used in the sequence alignment
literature, where a gap consists of maximal number of consecutive indels (insertion
and deletion) in one side. Our gap actually corresponds to a pair of indels, one in
X-side and another in Y side. Since we consider the sequences of equal length, to
every indel in X-side corresponds an indel in Y -side, so considering them pairwise
is justified. In other words, the number of gaps in our sense is the number of indels
in one sequence. We also consider a gap price δ. Given the pairwise scoring function
S and the gap price δ, the score of the alignment (π, µ) when aligning X and Y is
defined by

U(π,µ)(X,Y ) :=

k∑
i=1

S(Xπi , Yµi) + δ(n− k).

In our general scoring scheme δ can also be positive, although usually δ ≤ 0 penal-
izing the mismatch (in this case −δ is usually called the gap penalty). We naturally
assume δ ≤ F .
The (optimal) score of X and Y is defined to be best score over all possible align-
ments, i.e.

Ln := L(X;Y ) := max
(π,µ)

U(π,µ)(X,Y ).

The alignments achieving the maximum are called optimal. Such a similarity cri-
terion is most commonly used in sequence comparison [3, 14, 24, 25, 26]. When
S(a, b) = 1 for a = b and S(a, b) = 0 for a 6= b, then for δ = 0 the optimal score is
equal to the length of the longest common subsequence (LCS) of X and Y .
It is well-known that the sequence ELn, n = 1, 2 . . . is superadditive, i.e. ELn+m ≥
ELn + ELm for all n,m ≥ 1. Hence, by Fekete’s lemma the ratios ln := ELn

n are
nondecreasing and converge to the limit

l := lim
n
ln = sup

n
ln.

In fact, from Kingman’s subadditivity ergodic theorem, it follows that l is also the
a.s. limit of Ln

n . The limit l (which for the LCS-case is called Chvatal-Sankoff con-
stant) is not known exactly even for the simplest scoring scheme and the simplest
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model for X and Y , so it is usually estimated by simulations. Using McDiarmid’s
inequality (see (3.6)) one can estimate ln with prescribed accuracy; to obtain con-
fidence intervals for l, the difference l − ln should be estimated. This is the aim of
the present paper.
To our best knowledge, the difference l − ln has been theoretically studied only by
Alexander in [1], though there exist many numeric results on the value of ln or its
distribution in various contexts [4, 6, 9, 11, 12, 15, 16, 17, 22]. Alexander proved
that in the case of the LCS, for any C > (2+

√
2) there exists an integer no(C) such

that

l − ln ≤ C
√

log n

n
, provided n > no(C). (1.1)

The bound (1.1) is independent of the common law of X and Y , and the integer
no(C) can be exactly determined. Hence the bound (1.1) can be used for the cal-
culation of explicit confidence intervals.

Our main result is the following:

Theorem 1.1 Let n ∈ N be even. Then, with any c >
√
A,

l − ln ≤ c
√

2

n− 1

(n+ 1

n− 1
+ ln(n− 1)

)
+

F

n− 1
. (1.2)

Note that by the monotonicity of ln, the assumption on n even actually is not
restrictive. In fact, Alexander’s main result (Prop. 2.4 in [1]) is also proven for n
even. Theorem 1.1 and its proof generalize Alexander’s result in many ways:

1. Theorem 1.1 applies for a general scoring scheme, not just for the LCS. This is
due to the fact that our proof is based solely on McDiarmid’s large deviation
equality, whilst Alexander’s proof, although using also McDiarmid’s inequality,
is mainly based on first passage percolation techniques. Despite the fact that
the percolation approach applies in many other situations rather than sequence
comparison (see [2]), it is not clear whether it can be efficiently applied to our
general scoring scheme. For McDiarmid’s inequality, however, it makes no
difference what kind of scoring is used. This gives us reasons to believe that
our proof is somehow ”easier” than the one in [1].

2. The proof of Theorem 1.1 relates the rate of the convergence of ln to the car-
dinality of the set of partitions Bk,n (see Lemma 3.1) so that finding the good
rate boils down to the good estimation of |Bk,n|. The bound (1.2) corresponds
to a particular estimate of |Bk,n|, any better estimate would give a sharper
bound and, probably, also a faster rate. In a sense, the cardinality |Bk,n| could
be interpreted as the complexity of the model and the relation between the
rate of convergence and the complexity of the model is a well-known fact in
statistics (see e.g. [5]).

3. When applied to the LCS, our bound (1.2) is sharper than (1.1). Indeed, for
the case of LCS the constants A and F in (1.2) can be taken equal to one and
the smaller constants make the difference. In other words, for the case of LCS
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both results yield the rate C
√

lnn
n , but the constant C is different (C > 3.42

in Alexander’s result and c >
√

2 in ours).

We can easily compare (1.2) and (1.1) by comparing the decay of the two following
functions:

R : {1, . . . , 10000} → R+

R(n) = (3.42 + 0.1)

√
lnn

n
(1.3)

QF : {1, . . . , 10000} × {0.1, . . . , 2} → R+

QF (n,A) =
√
A

√
2

n− 1

(n+ 1

n− 1
+ ln(n− 1)

)
+

F

n− 1

(1.4)

In figure 1, we can see the improved bound (1.2) given by function (1.4) (changes
of A are represented in colours, F = 1) over the bound by Alexander (1.1) given
by function (1.3) (in black). Note that the dark blue curve corresponds to A = 0.1
whilst the light violet curve to A = 2 (namely, the colour gets lighter as A increases).
The curve in green corresponds to the case A = 1 (ie, our bound for the LCS case).
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Figure 1: comparison of the bounds (1.2) and (1.1) through the functions (1.4) and (1.3),
respectively.
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2 Confidence bounds for l

Suppose that k samples of Xi = Xi
1, . . . , X

i
n and Y i = Y i

1 , . . . , Y
i
n, i = 1, . . . , N

are generated. Let Lin be the score of the i-th sample. Thus ELin = n ln. By
McDiarmid’s inequality (see (3.5) below), for every ρ > 0

P

(
1

kn

k∑
i=1

Lin − ln < −ρ

)
= P

(
k∑
i=1

Lin − kn ln < −knρ

)
≤ exp

[
−ρ

2kn

A2

]
. (2.1)

Let

L̄n :=
1

kn

k∑
i=1

Lin.

If n is even, by (1.2) and (1.4) we have that l ≤ ln +QF (n,A) and then

P (L̄n+ρ+QF (n,A) ≥ l) ≥ P (L̄n+ρ ≥ ln) = P (L̄n− ln ≥ −ρ) ≥ 1−exp

[
−ρ

2kn

A2

]
.

(2.2)
Now, given ε > 0, choose ρ = ρ(n, ε) so that the right hand side in the last inequality
is equal to 1− ε:

ρ(n, ε) = A

√
ln(1/ε)

kn
.

So, with probability 1− ε, we obtain one side confidence interval as follows:

l ≤ L̄n +QF (n,A) +A

√
ln(1/ε)

kn
. (2.3)

In statistical learning, the inequalities of type (2.3) are known as PAC inequality
(probably almost correct inequalities). The two-sided confidence bounds are, with
probability 1− ε, as follows:

L̄n −A
√

ln(2/ε)

kn
≤ l ≤ L̄n +QF (n,A) +A

√
ln(2/ε)

kn
. (2.4)

The bounds in (2.4) suggest to use the estimate

l̂n := L̄n +
QF (n,A)

2

so that the confidence bounds for this estimate are

P

(
|l̂n − l| ≤ A

√
ln(2/ε)

kn
+
QF (n,A)

2

)
≥ 1− ε. (2.5)

Alexander [1] obtained, for n = 100000, k = 2 and A = F = 1 (for the LCS case),
the following bounds:

P (|l̂n − l| ≤ 0.0264) ≥ 0.95. (2.6)
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By using (2.5) and (1.4) we obtain, for n = 100000, k = 2 and A = F = 1 (for the
LCS case), the following bounds:

P (|l̂n − l| ≤ 0.0122) ≥ 0.95. (2.7)

It is clear that (2.7) is sharper than (2.6). To our best knowledge, the best previous
lower and upper bounds for l, in the LCS context for A = {0, 1}, were due to Dancik
[10], Dancik and Paterson [11, 22] (0.773911 and 0.837623, respectivley) and Lueker
[19] (0.788071 and 0.826280, respectively).

Remark: The inequality (2.3) confirms the well-known fact that it is better to
generate one sample of length kn rather than k samples of length n. Indeed, with
one sample of length kn, the inequality (2.3) becames

l ≤ L̄n +QF (kn,A) +A

√
ln(1/ε)

kn
(2.8)

and since QF (kn,A) < QF (n,A), the bounds get narrower.

3 Proof of the main result

3.1 The set of partitions Bk,n
In this section, we shall consider the sequences X and Y with length kn where k, n
are nonnegative integers. Let (π, µ) be an arbitrary alignment of X and Y . Let
ν = (ν1, . . . , νr+1) and τ = (τ1, . . . , τr+1) be vectors satisfying

1 = ν1 ≤ ν2 ≤ . . . ≤ νr ≤ νr+1 = kn+ 1, 1 = τ1 ≤ τ2 ≤ . . . ≤ τr ≤ τr+1 = kn+ 1.
(3.1)

We say that the pair (ν, τ) forms a r-partition of the alignment (π, µ) if for any
j = 1, . . . , r, the following conditions are simultaneously satisfied:
1) if, for some i = 1, . . . k, it holds that νj ≤ πi < νj+1, then τj ≤ µi < τj+1;
2) if, for some i = 1, . . . k, it holds that τj ≤ µi < τj+1, then νj ≤ πi < νj+1.

Thus (ν, τ) is a r-partition, if the sequences X and Y can be partitioned into r
pieces

(X1, . . . , Xν2−1), (Xν2 , . . . , Xν3−1), . . . , (Xνr , . . . , Xkn)

(Y1, . . . , Yτ2−1), (Yτ2 , . . . , Yτ3−1), . . . , (Yτr , . . . , Ykn)

such that the alignment (π, µ) aligns a piece (Xνj , . . . , Xνj+1−1) with the piece
(Yτj , . . . , Yτj+1−1), where j = 1, . . . r. It is important to note that the pieces might be
empty, i.e. it might be that νj = νj+1 (or τj = τj+1), meaning that (τj , . . . , τj+1 − 1)
cannot contain any elements of µ, otherwise the requirement 2) would be violated
(or (µj , . . . , µj+1 − 1) cannot contain any elements of τ , otherwise the requirement
1) would be violated). Hence, if for a partition a piece of X is empty, then the
corresponding piece of Y cannot have any aligned letter.
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The following observation shows that any alignment of X and Y can be parti-
tioned into r pieces such that k ≤ r ≤ d 2kn

2n−1e and such that the sum of the lengths
of aligned pairs in each partition is always at most 2n. We believe that the idea of
the proof as well as the meaning of the partition becomes transparent by an example.

Example. Let n = 3, k = 4. Let π = (1, 5, 6, 9, 10, 12) and µ = (2, 3, 4, 6, 9, 10).
The alignment (π, µ) can be represented as follows

X - 1 2 3 4 5 6 7 8 - 9 - - 10 11 12 - -

Y 1 2 - - - 3 4 - - 5 6 7 8 9 - 10 11 12

The table above indicates that X1 is aligned with Y2, X5 is aligned with Y3 and
so on; the rest of the letters are unaligned, so we say that they are aligned with
gaps. In the table, there are two types of columns: the columns with two figures
(aligned pairs) and the columns with one figure (unaligned pairs). Let ui ∈ {1, 2}
be the number of figures in the i-th column, and let sj = u1 + · · · + uj be the
corresponding cumulative sum. To get an r-partition proceed as follows: start from
the beginning of the table (most left position) and find j such that sj = 2n. Since
the cumulative sum increases by one or two, such a j might not exist. In this case
find j such that sj = 2n − 1. In the present example n = 3, thus we are looking
for j such that sj = 6. Such a j is 5. The first five columns thus form the first
part of the partition and there are exactly 2n = 6 elements in the first part (those
elements are X1, X2, X3, X4, Y1 and Y2). Now disregard the first five columns from
the table and start the same procedure afresh. Then the second part is obtained and
so on. In the following table the vertical lines indicate the different parts obtained
by the aforementioned procedure: the first two parts have six elements, the third
and fourth has five elements and the last part consists of one element:

X - 1 2 3 4 5 6 7 8 - 9 - - 10 11 12 - -

Y 1 2 - - - 3 4 - - 5 6 7 8 9 - 10 11 12

From the table, we read the corresponding pieces from theX-side: (1, 4), (5, 8), (9, 9),
(10, 12), ∅ as well as the ones from the Y -side: (1, 2), (3, 4), (5, 8), (9, 11), (12, 12).
The corresponding vectors ν and τ are thus ν = (1, 5, 9, 10, 13, 13), τ = (1, 3, 5, 9, 12, 13).
The number of parts in such a partition is clearly at least k (corresponding to the
case that all pairs sum up to 2n) and at most d 2kn

2n−1e (corresponding to the case

that all pairs except the last one sum up to 2n−1). In our example is r = 5 = d245 e.
Now, it is clear that the following claim holds.

Claim 3.1 Let X, Y be sequences of length kn and let (π, µ) be an arbitrary align-
ment of X and Y . Then there exist an integer r such that k ≤ r ≤ d 2kn

2n−1e and an
r-partition (ν, τ) of (π, µ) such that for every j = 1, . . . , r − 1, it holds

(νj+1−νj)+(τj+1− τj) ∈ {2n, 2n−1} and (νr+1−νr)+(τr+1− τr) ≤ 2n. (3.2)
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Let, for every r, Brk,n be the set of vectors ν = (ν1, . . . , νr+1) and τ = (τ1, . . . , τr+1)
satisfying (3.1) and (3.2). Let

Bk,n =

d 2kn
2n−1

e⋃
r=k

Brk,n.

We shall call the elements of Bk,n as the partitions. For every partition (ν, τ) ∈ Brk,n,
we define

Lkn(ν, τ) :=

r∑
i=1

L(Xνj , . . . , Xνj+1−1;Yτj , . . . , Yτj+1−1),

where L(Xνj , . . . , Xνj+1−1;Yτj , . . . , Xτj+1−1) is the optimal score between Xνj , . . . ,
Xνj+1−1 and Yτj , . . . , Yτj+1−1. The key observation is the following: if (π, µ) is
optimal for X,Y and (ν, τ) is a r-partition of (π, µ), then Lkn = Lkn(ν, τ). By
Claim 3.1, every alignment, including the optimal one, has at least one partition
from the set Bk,n, hence it follows that

Lkn = max
(ν,τ)∈Bk,n

Lkn(ν, τ). (3.3)

Claim 3.2 For every r-partition (ν, τ) ∈ Bk,n,

E
(
Lkn(ν, τ)

)
≤ r

2
EL2n ≤

1

2

⌈ 2kn

2n− 1

⌉
EL2n. (3.4)

Proof. Let (ν, τ) ∈ Brk,n with r ≤ d 2nk
2n−1e. Let j be such that (νj+1 − νj) + (τj+1 −

τj) = 2n. Thus, there exists an integer u ∈ {−n, . . . , n} such that νj+1− νj = n−u
and τj+1 − τj = n+ u. Since X1, X2, . . . , Y1, Y2, . . . are i.i.d., we have

E
(
L(Xνj , . . . , Xνj+1−1;Yτj , . . . , Yτj+1−1)

)
= E

(
L(X1, . . . , Xn−u;Y1, . . . , Yn+u)

)
=

E
(
L(Xn−u+1, . . . , X2n;Yn+u+1, . . . , Y2n)

)
≤ 1

2
E
(
L(X1, . . . , X2n;Y1, . . . , Y2n)

)
=

1

2
EL2n.

The last inequality follows from the superadditivity:

L(X1, . . . , Xn−u;Y1, . . . , Yn+u) + L(Xn−u+1, . . . , X2n;Yn+u+1, . . . , Y2n)

≤ L(X1, . . . , X2n;Y1, . . . , Y2n).

If (νj+1 − νj) + (τj+1 − τj) < 2n, then by the same argument

E
(
L(Xνj , . . . , Xνj+1−1;Yτj , . . . , Yτj+1−1)

)
≤ E

(
L(X1, . . . , Xn−u;Y1, . . . , Yn+u)

)
≤ 1

2
EL2n.

Hence the first inequality in (3.4) follows. The second inequality follows from the
condition r ≤ d 2nk

2n−1e.
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3.2 The size of Bk,n and the rate of convergence

In the following we prove the main theoretical result that links the rate of the
convergence to the rate at which the number of elements in |Bk,n| grows as k in-
creases. Our proof is entirely based on McDiarmid’s inequality, so let us recall it
for the sake of completeness: Let Z1, . . . , Z2m be independent random variables and
f(Z1, . . . , Z2m) be a function so that changing one variable changes the value at
most A. Then for any ∆ > 0,

P
(
f(Z1, . . . , Z2m)− Ef(Z1, . . . , Z2m) > ∆

)
≤ exp

[
− ∆2

mA2

]
. (3.5)

For the proof, we refer [13]. We apply (3.5) with L in the role of f to the independent
(but not necessarily identically distributed) random variablesX1, . . . , Xm, Y1, . . . , Ym.
It is easy but important to see that independently of the value of δ, changing one
random variable changes the score at most by A so that in our case (3.5) is

P
(
Lm − ELm > ∆

)
≤ exp

[
− ∆2

mA2

]
. (3.6)

Lemma 3.1 Suppose that for any n and for k big enough

|Bk,n| ≤ exp[
(
ψ(n) + o(k)

)
kn], (3.7)

where ψ(n) does not depend on k. Let u(n) > A
√
ψ(n). Then

l − l2n ≤ u(n) +
l2n

2n− 1
≤ u(n) +

l

2n− 1
≤ u(n) +

F

2n− 1
. (3.8)

Proof. Let (ν, τ) ∈ Bk,n. Recall (3.4). Thus, from (3.6), we get that for any ρ > 0,

P
(
Lkn(ν, τ)−1

2

⌈
2kn

2n− 1

⌉
EL2n > ρkn

)
≤ P

(
Lkn(ν, τ)−E

(
Lkn(ν, τ)

)
ρkn

)
≤ exp

[
−ρ

2kn

A2

]
.

(3.9)
From (3.3) and (3.7) it now follows that, for big k

P

(
Lkn
kn
− 1

k

⌈
2kn

2n− 1

⌉
l2n > ρ

)
≤

∑
(ν,τ)∈Bk,n

P
(
Lkn(ν, τ)− 1

2

⌈
2kn

2n− 1

⌉
EL2n > ρkn

)
≤ |Bk,n| exp

[
−ρ

2kn

A2

]
≤ exp

[(
ψ(n) + o(k)−

( ρ
A

)2 )
kn
]
.

We consider n fixed and let k go to infinity. If u(n) > A
√
ψ(n), then there exists

K(n) <∞ so that for every k > K(n),

ψ(n) + o(k)−
(
u(n)

A

)2

<
1

2

(
ψ(n)−

(
u(n)

A

)2 )
.
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Hence, replacing in the inequalities above ρ with u(n), we obtain for every k > K(n),

P

(
Lkn
kn
− 1

k

⌈
2kn

2n− 1

⌉
l2n > u(n)

)
≤ exp

[
1

2

(
ψ(n)−

(
u(n)

A

)2
)
nk

]
= exp[−dnk],

(3.10)
where

dn :=

((
u(n)

A

)2

− ψ(n)

)
n > 0.

Now recall the assumption that δ ≤ F . Hence for any n and k, the random variable
Lkn
kn is bounded by F . From (3.10), it thus follows that for any k

E
(Lkn
kn

)
= lkn ≤

1

k

⌈
2kn

2n− 1

⌉
l2n + u(n) + F exp[−dnk].

Since lkn → l as k →∞ and

1

k

⌈
2kn

2n− 1

⌉
≤ 2n

2n− 1
+

1

k
,

we obtain that for any n,

l ≤
(

2n

2n− 1

)
l2n + u(n) = l2n

(
1 +

1

2n− 1

)
+ u(n).

The proof of Theorem 1.1. From Lemma 3.1, it follows that to obtain a
bound to l − ln, a suitable estimator of |Bk,n| satisfying (3.7) should be found.
Let us estimate |Brk,n|. The number of parts in the X side is bounded above by the
number of combination with repetition from nk+ 1 by r− 1. The repetitions allow
empty parts. When the size of a part in X-side is m, then, except from the last
part, the size of the corresponding part on Y side has two possibilities: 2n− 1−m
or 2n−m. Hence to any r-partition of X-size corresponds at most 2r−12n options
in Y side. In the following we use the fact that the number of combination with
repetition from nk+ 1 by r− 1 is

(
nk+r−1
r−1

)
and for any non-negative integers a > b

it holds (
a

b

)
≤ exp

[
he

(
b

a

)
a

]
,

where he(q) := −q ln q − (1 − q) ln(1 − q) is the binary entropy function. Since
r ≤ d 2nk

2n−1e implies that r − 1 ≤ 2nk
2n−1 , we thus have for n ≥ 2

|Brk,n| ≤ (2r−12n)

(
nk + r − 1

r − 1

)
≤ exp

[
(r − 1)(ln 2) + ln(2n) + he

(
r − 1

nk + r − 1

)
(nk + r − 1)

]
≤ exp

[(
ln 4

2n− 1
+

ln(2n)

nk
+ he

(
r − 1

nk + r − 1

)(
1 +

2

2n− 1

))
nk

]
≤ exp

[(
ln 4

2n− 1
+

ln(2n)

nk
+ he

(
2

2n+ 1

)(
2n+ 1

2n− 1

))
nk

]
.
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The last inequality follows from the inequalities

r − 1

nk + r − 1
≤

2nk
2n−1

nk + 2nk
2n−1

=
2

2n+ 1

so that if n ≥ 2, then 2
2n+1 ≤ 0.5 and

he

(
r − 1

nk + r − 1

)
≤ he

(
2

2n+ 1

)
.

Hence

|Bk,n| ≤
(

2nk

2n− 1
− k + 2

)
exp

[(
ln 4

2n− 1
+

ln(2n)

nk
+ he

(
2

2n+ 1

)(
2n+ 1

2n− 1

))
nk

]
=

(
k

2n− 1
+ 2

)
exp

[(
ln 4

2n− 1
+

ln(2n)

nk
+ he

(
2

2n+ 1

)(
2n+ 1

2n− 1

))
nk

]
= exp

[
ln

(
k

2n− 1
+ 2

)
+

(
ln 4

2n− 1
+

ln(2n)

nk
+ he

(
2

2n+ 1

)(
2n+ 1

2n− 1

))
nk

]

= exp

 ln
(

k
2n−1 + 2

)
+ ln(2n)

nk
+

ln 4

2n− 1
+ he

(
2

2n+ 1

)(
2n+ 1

2n− 1

)nk



= exp

[(
o(k) +

ln 4

2n− 1
+ he

(
2

2n+ 1

)(
2n+ 1

2n− 1

))
nk

]
≤ exp

[(
o(k) +

2

2n− 1

(
2n+ 1

2n− 1
+ ln(2n− 1)

))
nk

]
,

where the last inequality follows from the inequality

he

(
2

2n+ 1

)
≤ 2

2n+ 1

(
2n+ 1

2n− 1
+ ln

(
2n− 1

2

))
. (3.11)

Hence (3.7) holds with

ψ(n) =
2

2n− 1

(
2n+ 1

2n− 1
+ ln(2n− 1)

)
.

The inequality (1.2) now follows from Lemma 3.1.

Acknowledgments

The authors would like to thank the support of the German Science Foundation
(DFG) through the Collavorative Research Center 701 ”Spectral Structures and
Topological Methods in Mathematics” (CRC 701) at Bielefeld University and the
support of Barbara Gentz with the research stay of J. Lember at the CRC 701.
Additionally, F. Torres would like to thank the partial support of the International
Graduate College ”Stochastics and Real World Models” (IRTG 1132) at Bielefeld
University.

11



References

[1] Kenneth S. Alexander. The rate of convergence of the mean length of the
longest common subsequence. Ann. Appl. Probab., 4(4):1074–1082, 1994.

[2] Kenneth S. Alexander. Approximation of subadditive functions and conver-
gence rates in limiting-shape results. Ann. Appl. Probab., 25(1):30–55, 1997.

[3] Richard Arratia and Michael S. Waterman. A phase transition for the score in
matching random sequences allowing deletions. Ann. Appl. Probab., 4(1):200–
225, 1994.
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