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Dendritic Cells―Ontogeny―
Satoshi Takeuchi1 and Masutaka Furue1

ABSTRACT
Dendritic cells (DC) play key rolls in various aspects of immunity. The functions of DC depend on the subsets
as well as their location or activation status. Understanding developmental lineages, precursors and inducing
factors for various DC subsets would help their clinical application, but despite extensive efforts, the precise on-
togeny of various DC, remain unclear and complex. Because of their many functional similarities to macro-
phages, DC were originally thought to be of myeloid-lineage, an idea supported by many in vitro studies where
monocytes or GM-CSF (a key myeloid growth factor) has been extensively used for generating DC. However,
there has been considerable evidence which suggests the existence of lymphoid-lineage DC. After the confu-
sion of myeloid-�lymphoid-DC concept regarding DC surface markers, we have now reached a consensus that
each DC subset can differentiate through both myeloid- and lymphoid-lineages. The identification of committed
populations (such as common myeloid- and lymphoid progenitors) as precursors for every DC subsets and
findings from various knockout (KO) mice that have selected lymphoid- or myeloid-lineage deficiency appear to
indicate flexibility of DC development rather than their lineage restriction. Why is DC development so flexible
unlike other hematopoitic cells? It might be because there is developmental redundancy to maintain such im-
portant populations in any occasions, or such developmental flexibility would be advantageous for DC to be
able to differentiate from any “available” precursors in situ irrespective of their lineages. This review will cover
ontogeny of conventional (CD8+�− DC) DC, plasmacytoid DC and skin Langerhans cells, and recently-identified
many Pre-DC (immediate DC precursor) populations, in addition to monocytes and plasmacytoid DC, will also
be discussed.
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INTRODUCTION
Dendritic cells (DC) play key rolls in adoptive immu-
nity, inducing antigen-specific immunity or tolerance.
The functions of DC depend on DC subsets as well as
their location or activation status. Understanding de-
velopmental lineages, precursors and inducing fac-
tors of each DC subset would help generating and�or
activating “appropriate” DC subset in vitro or in vivo
as a potential treatment for various diseases such as
cancers and autoimmune diseases. However, despite
extensive efforts, the precise developmental lineage,
precursors of various DC, including skin Langerhans
cells (LC), remain unclear and complex.1 Although
the ultimate goal would be to comprehend ontogeny
of human DC, most findings of human DC ontogeny
is considerably based on in vitro cell culture assay us-
ing limited hamatopoietic cell populations. Mean-

while in animal models, we can utilize in vivo labeling
assay, reconstitution assay using wide variety of cell
populations or various targeted gene knockout mice
etc, findings of which have greatly contributed to un-
derstanding of DC ontogeny in vivo. Therefore, this
review is mainly based on in vivo findings from ani-
mal studies, combined with those of in vitro (human
and animals), although one could argue whether ex-
perimental techniques like donor cell reconstitution
in irradiated recipients truly reflects normal DC dif-
ferentiation in steady-state.

HISTORICAL BACKGROUND ON DEVEL-
OPMENTAL LINEAGES OF DC
Because of their many functional similarities to
macrophages, DC and epidermal LC, were originally
thought to be of myeloid lineage, an idea supported
by studies demonstrating DC generation from mono-
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Table 1 Various DC subsets and their unique functions

FunctionsDC subsets

Conventional DC
・Cross presentation11 (constitutively)・Th1 differentiation10CD8＋ DC
・Cross presentation11 (upon activation)・Th2 differentiation10CD8－ DC
・Tolerogenic potential17 (constitutively)・Viral immunity17 (upon activation)Plasmacytoid DC
・Tolerogenic potential?27,28・Primary APC in skin22 (upon activation)Epidermal LC

DC, dendritic cells; LC, Langerhans cells; APC, Antigen-presenting cells

cytes using granulocyte-macrophage colony-
stimulating factor (GM-CSF) and interleukin (IL)-4 in
vitro,2 or that phagocytic monocytes could differenti-
ate into DC in vivo.3 Considerable evidence also sug-
gested the existence of lymphoid-lineage DCs be-
cause CD8+ thymic DC could be generated from
CD4low early thymic precursors in vivo when intra-
thymically transferred.4 Other studies further con-
firmed and extended the concept that CD8+DC are of
lymphoid origin5,6 (and CD8−DC are of myeloid ori-
gin). However, the simple concept was soon chal-
lenged by several studies where generation of both
CD8+ and CD8−DC subsets from either lymphoid-,7,8

or myeloid-committed progenitors8 had been demon-
strated in vivo.

VARIOUS DC SUBSETS AND THEIR UNIQUE
FUNCTIONS
All the DC subsets can uptake antigens and present
them to T cells, but the detailed functions in immu-
nity varies considerably, depending on the subset and
presence�absence of inflammatory stimuli such as vi-
ral or bacterial infections. This review will focus on
the following DC subsets (Table 1), discussing their
developmental lineages and precursors.

CONVENTIONAL DC (CD8+- AND CD8−DC)
The first DC category is termed as conventional DC.
In mice, these DC can be divided into two subsets,
CD8+- and CD8−DC.9 CD8+ and CD8−DC preferen-
tially activate T cells toward Th1 and Th2 differentia-
tion,10 respectively. The CD8+DC constitutively cross-
presents antigens to T cells, while CD8−DC will do so
upon their activation.11 These conventional DC reside
within lymph nodes, spleen, thymus, but not in bone
marrow (BM).12 In thymus, most of the resident DC
express CD8 and there is only small CD8−DC popula-
tion,13 as compared to those of other organs. The
question of whether these conventional DC subsets
are developmentally distinct populations from each
others or are merely presenting different maturation�
differentiation steps will be discussed later.

PLASMACYTOID DC
Plasmacytoid DC is characterized by the round
shape, plasmacytoid morphology and remarkable
ability to secret copious amount of interferon-γ in viral

or bacterial infection,14-16 while they can also exhibit
tolerogenic potential when not stimulated.17 They re-
side within lymph nodes, spleen, thymus, and
BM,18-20 but the BM-plasmacytoid DC population
does not seem to be developmentally equal to those
of other organs since the BM-plasmacytoid DC popu-
lation are capable of differentiating into conventional
DC subsets.21 Thus, some of plasmacytoid DC popu-
lations, as do monocytes, can serve as pre-DC (Imme-
diate DC precursor) for conventional DC subsets,
which will be discussed later.

EPIDERMAL LC (MIGRATORY DC)
Epidermal LC, the primary sentinels of the skin, is
the first described DC subset, which can be charac-
terized by the Langerin expression and cytoplasmic
Birbeck’s granules. Upon activation (and constitu-
tively to some extent), epidermal LC migrate through
dermis into regional lymph nodes to present antigens
to T cells.22 Therefore, this type of DC is categorized
as “migratory DC”. Other non-lymphoid tissue resid-
ing DC, such as dermal- and intestinal DC, both of
which are not discussed in this review, would also fall
into this category. In steady-state condition, LC have
much long life span (labeled only ―25% of LC after 2
weeks) while most of other DC in other organs are la-
beled approximately by 3―10 days23 Epidermal LC ap-
pear to self-renew themselves within skin and are
hardly repopulated by circulating precursors unless
their residing environment is disturbed.24 Although
LC cross-present viral antigen inefficiently (as com-
pared to dermal DC),25 a very recent study identified
their potential contribution against HIV infection,26

revealing the biological functions of Birbick granules
for the first time. Possible tolerogenic capacity of LC
have also been indicated.27,28

DC SUBSETS FOR TH1-, TH2-, TH17- AND
REGULATORY T CELL DIFFERENTIATION IN
MICE AND HUMAN
There has been considerable evidence which suggest
that DC subsets may associate with differentiation of
T helper 1 cells (Th1)-, Th2-, Th17- or regulatory T
cell (Treg) in a subset specific manner. As partially
mentioned elsewhere, murine CD8+- and CD8−DC ap-
pear to intrinsically induce Th1 and Th2, respec-
tively.10 However, it has been shown that tumor cells
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Fig. 1 Hematopoiesis and DC developmental pathways. All the DC 
subsets (pDC, cDC and LC) can derive from both myeloid- and lym-
phoid progenitor(s). RBC: red blood cells, CMP: common myeloid pro-
genitor, GMP: granulocyte/macrophage progenitor, M: monocytes, 
Neut.: neutrophils, Mϕ: macrophages, HSC; hematopoietic stem cell, 
ELP: earliest lymphoid progenitor, ETP: early T-lineage progenitor, 
Thym. thymocytes, CLP: common lymphoid progenitor, Pro-B: Pro B 
cell, pDC: plasmacytoid dendritic cells, cDC: conventional dendritic 
cells, LC: Langerhans cells.
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can convert CD8−DC (or termed CD11b+ myeloid
DC) to induce Treg29 or that CD11b+ myeloid DC
subset induces Th17 much more efficiently than
other DC subsets in experimental autoimmune en-
cephalomyelitis.30 CD11b+ myeloid DC can also in-
duce Th1 when generated with GM-CSF and acti-
vated with LPS.31 Plsasmacytoid DC show tolero-
genic potential17,32 but can also induce Th1.31,33 In hu-
mans, DC subsets seem to be less heterogeneous
and two distinct DC subsets are known to exist:
CD11c+CD14−CD1a+ myeloid DC (mDC) and CD11c−

BDCA2+CD123+ plasmacytoid DC.34 Human mDC
and (the descendent of) plasmacytoid DC used to be
termed DC1 and DC2 respectively, because the mDC
and plasmacytoid DC were shown to preferentially in-
duce Th1 and Th2, respectively.35 However, the hu-
man DC1�DC2 concept was soon challenged by stud-
ies in which human plasmacytoid DC was shown to
be able to induce Th1 response.36,37 Furthermore, hu-
man plasmacytoid DC can also induce T reg.38 LC
was thought to induce Th1 because of its ability to
produce bioactive IL-12, evidenced by a study using
human LC.39 However, LC has recently been shown
to induce Th240 or to have a regulatory function in
mice.27 Overall, although there is a “tendency” of DC
lineage- or subset-specific Th- or Treg induction, such
induction is also highly dependent on the experimen-
tal condition or environmental factors such as cytoki-
nes, chemokines, stimuli through various Toll like re-

ceptors,41 In other words, Th- or Treg differentiation
by DC�LC depends on how they are generated�de-
veloped, matured or activated.

DEVELOPMENTAL LINEAGES AND PRE-
CURSORS
HEMATOPIESIS AND DC DEVELOPMENTAL
LINEAGES
All the DC subsets, like other hematopoietic cells, ul-
timately derive from hematopoietic stem cells (HSC).
HSC self-renew themselves and can differentiate into
myeloid- and lymphoid-committed hamatopoietic pre-
cursors (and other lineages like erythrocyte or mega-
caryocyte) (Fig. 1). In lymphopoiesis, common lym-
phoid progenitor (CLP)42 used to be thought as the
governing lymphoid-committed progenitor which
could give rise to all the lymphoid lineages such as T
cells and B cells. The CLP is characterized by its IL-7
receptor (R)-α expression, together with other hema-
topoietic progenitor markers such as c-kit and Sca-1.
IL-7Rα knockout mice exhibited significantly im-
paired lymphopoiesis, supporting the idea of CLP
might be a vital precursor for lymphopoiesis.43 How-
ever, the current schema of hamatopoiesis is a little
more complex. Other, more potent thymus repopulat-
ing progenitors, called early T-lineage progenitor
(ETP) and the precursor have been identified within
thymus44 and BM45 both of which are negative for IL-
7Rα expression. Furthermore, earliest lymphoid pro-
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genitor (ELP)46 have been identified and is supposed
be in upstream of other lymphoid progenitors from
the characteristics (c.f. ELP remains to have myeloid
lineage potential). As for myeloid-lineage, common
myeloid progenitor (CMP)47 and their progeny
(granulocyte-monocyte progenitor and monocytes
etc) appear to be only myeloid-committed DC precur-
sors. DC which are generated through these
committed-precursors would be lymphoid- or
myeloid-lineage DC. Indeed, some of plasmacyotid-
and thymic DC (but not splenic DC, regardless of
their CD8 expression) in normal mice have IgH D-J
rearrangement,48 which is a trace of lymphoid line-
age.49 Such location dependence of IgH rearrange-
ment in DC might be because lymphoid- (thymic pre-
cursor) and myeloid progenitors are simply abundant
in thymus and spleen, respectively, and because plas-
macytoid DC population is initially generated in BM
where precursors of both lineages (CMP and CLP
etc) are abundant. The finding of lymphoid trace of
steady-state DCs in normal mice may provide evi-
dence that DC have both lymphoid- and myeloid ori-
gin in vivo, in addition to those obtained from cell
transfer studies. The development of DC seems to be
quite flexible since at least two distinct developmental
pathways exist to form a particular DC subset. Then
one might wonder if there are any other pathways
for DC generation. There was a report indicating a
common DC precursor population,50 but the study
was confounded by contamination of more than two
populations.51 So far, current findings have not
achieved a clear consensus for such DC-restricted
pathway yet.

ESSENTIAL FINDINGS FROM IN VITRO CELL
CULTURE ASSAY
Human monocytes are first shown to differentiate
into DC when cultured with GM-CSF+IL-4,2 and can
have some of LC characteristics when transforming
growth factor (TGF)-β is added to the cytokine com-
bination.52 Human CD34+ cells (HSC-enriched popu-
lation) can differentiate into DC or LC when cultured
with GM-CSF and tumor necrosis factor (TNF)-α,53

IL-3 and TNF-α,54 or FMS-like tyrosine kinase-3
(FIT3) ligand (L) and TGF-β.55 Mouse BM cells can
differentiate into DC�LC when cultured with GM-
CSF+TNF+stem cell factor (SCF),56 or into
plasmacyotoid-, CD8+- and CD8−DC when cultured
with FLT3L.57,58 There is an interesting report show-
ing the importance of GM-CSF (+SCF) and IL-7 for
DC generation from CMP and CLP in vitro, respec-
tively.59 Mouse spleen cells can differentiate into DC
when cultured with GM-CSF+FLT3L (or+SCF).60

Mouse thymic precursor populations can differentiate
into thymic DC when cultured with IL-7-cytokine mix
(+ IL-3) without GM-CSF, the myeloid lineage growth
factor.61 (Table 2)

From these findings, GM-CSF, IL-7 or FLT3L ap-

pears important for DC generation in vitro. The start-
ing material tends to be cell populations which could
be obtained from peripheral blood in human studies
because of its easier access in many aspects, while
cell preparations from various lymphoid organs are
popular in murine studies, which makes direct com-
parison difficult between human and mouse studies.

ESSENTIAL FINDINGS FROM IN VIVO CELL
TRANSFER ASSAY
In vivo cell transfer studies have significantly contrib-
uted to the understanding of DC lineages. Unlike the
case of in vitro studies, where many myeloid-
differentiation of DC had been shown, the first in vivo
evidence of DC differentiation in vivo was that of
lymphoid-lineage. A study demonstrated that thymic
precursor population (with lymphoid-restricted differ-
entiation capacity) can give rise to DC and T cells
when intrathymically transferred.4 Meanwhile, the
first evidence of myeloid-lineage DC differentiation in
vivo was given later in a study where phagocytic
monocytes differentiated into DC.3 Generation of
both CD8+- and CD8−DC have been shown after intra-
venous transfer of lymphoid-committed (CD4low thy-
mic precursor7 or CLP8) or myeloid-committed pre-
cursor (CMP8), which have challenged the
CD8+DC = lymphoid-lineage DC concept. Generation
of plasmacytoid DC from FLT3+ fractions of both CLP
and CMP has also been shown.62 In the case of LC,
LC differentiation through lymphoid-lineage (thymic
precursor63 and CLP64) and myeloid-lineage (CMP64

and BM monocyte precursor65) has been shown in
vivo. (Table 3) Overall, these in vivo cell transfer
studies have suggested the DC develop through both
lymphoid- and myeloid pathways, indicating the de-
velopmental flexibility of DC. CLP is more potent
than CMP at DC generation in a per cell basis, but
since there is an excess of CMP over CLP in BM,66

perhaps both the committed-progenitors significantly
contribute to DC generation as a whole. Interestingly,
most of the DC precursor populations have receptors
such as GM-CSFR, IL-7Rα, FLT3 or c-kit (SCFR), re-
flecting the findings of cytokine requirement in in vi-
tro studies.

FINDINGS FROM KNOCKOUT MICE (LINEAGE
RESTRICTION OR DIFFERENTIATION FAC-
TORS?)
The findings in knockout mice are complicated (Ta-
ble 4). The data from knockout mice that show hema-
topoietic lineage restriction has been thought to read-
ily indicate DC lineages. For example, Ikaros DN
mice have showed significantly impaired lymphoid
development and absence of certain DC subsets
(splenic CD8+- and CD8−DC and thymic CD8+DC),67

by which these absent DC subsets are considered to
be of lymphoid lineage. However, there have been
many inconsistent findings in other knockout mice
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Table 2 Essential findings from in vitro cell culture assay

Ref.Induced DCsDifferentiation factorsPrecursors

 2DCGM-CSF＋IL-4Human monocytes
52LCGM-CSF＋IL-4＋TGF-β
53DC, LCGM-CSF＋TNF-αHuman CD34＋cells
54LCIL-3＋TNF-α
55DCFLT3L＋TGF-β
56DCGM-CSF＋TNF-α＋SCFMouse bone marrow
57, 58pDC, CD8＋/－DCFLT3L
60DCGM-CSF＋FLT3L (or＋SCF)Mouse splenocytes
61Thymic DCIL-7-mix (without GM-CSF)Mouse thymocytes

GM-CSF, granulocyte/macrophage colony-stimulating factor; IL, interleukin; TNF-α, tumor necrosis factor-α; SCF, stem cell factor, 
FLT3L, FMS-like tyrosine kinase 3; pDC, plasmacytoid DC

Table 3 Essential findings from in vivo cell transfer assay

Ref.yielded DCsTransferred populations

4, 7, 63CD8＋/－DC, LC(CD4low) thymic precursor
3, 65LCMonocytes
8, 64CD8＋/－DC, LCCLP
8, 64CD8＋/－DC, LCCMP

62pDCFLT3＋fractions of
CLP or CMP

85CD8＋/－DCpDC (in bone marrow)

CLP, common lymphoid progenitor; CMP, common myeloid pro-

genitor; FLT3, FMS-like tyrosine kinase 3;  pDC, plasmacytoid DC

that also show impaired lymphopoiesis, such as mice
deficient for Ikaros C68 or Common γ-chain69 where
development of only limited (only CD8−DC) to no DC
subsets are affected. Furthermore, CD8−DC is absent
in Relb knockout mice70 where myeloid hyperplasia
is observed, while the same CD8−DC subset is again
absent in PU.1 knockout mice where development of
B- and myeloid lineage is deficient.71,72 Meanwhile,
plasmacytoid DC and CD8+DC are absent, accompa-
nied with defective myeloid development in mice defi-
cient for ICSBP (IRF8),73,74 which form transcription
complexes with PU.1. These findings might simply
indicate complicated regulation of lymphopoiesis, but
they might as well indicate the existence of indispen-
sable differentiation factor for certain DC subsets re-
gardless of their passed lineages. At least the absence
of LC in TGF-β knockout mice,75 which have normal
development of both lymphoid- and myeloid-lineage,
probably favors the latter idea. LC are also absent in
mice deficient for Id2,76 a transcription factor regu-
lated by TGF-β, or Runx377 which mediates TGF-β re-
sponses. Meanwhile, LC and monocytes are absent in
macrophage colony-stimulating factor (M-CSF) R
knockout mice,65 which may provide evidence that
LC are of myeloid lineage. Paradoxical finding is that
GM-CSFR knockout mice show normal DC develop-
ment78 or that IL-7Rα knockout donor cells can re-
constitute various DC subsets, including epidermal

LC, in lymph nodes, spleen, thymus or BM.79 How-
ever, given the developmental flexibility of DC, the
absence of signals in a DC differentiation pathway
would have been compensated by those of the other
pathways. Absence of these cytokines (GM-CSF or
IL-7 etc) appears to be compensated by FLT3L,57,58 al-
though addition of GM-CSF to FLT3 improves yields
of DC as compared to those with either cytokine
alone.80 The FLT3 knockout mice show low DC num-
bers81 as do mice deficient for STAT3,82 which is a
key factor in FLT3 signal cascade. Furthermore,
FLT3L exceptionally increase DCs in mice83 and hu-
man84 when systemically administered.

PRE-DCs
Distinct DC subsets possess different functions, but
their developmental independency is not perfectly
clear. As previously mentioned, plasmacytoid DC has
been shown to be able to differentiate into conven-
tional DC.85 Thus, plasmacytoid DC, at least those in
bone marrow, can serve as pre-DC for cDC in an in-
flammatory condition. Many pre-DC populations, or
immediately DC precursors, have been identified so
far in blood, spleen and BM (Table 5). In BM, a pre-
DC called “pre-immunocyte” (B220+CD11c+CD31+Ly-
6C+)86 has been found to generate immature DC and
macrophage under aegis of M-CSF or GM-CSF and
also to generate both CD8+- and CD8− conventional D
in thymic organ culture. In addition, the pre-
immunocyte population immediately produce high
level of interferon-α mRNA as do plasmacytoid DC. A
few years later, 2 phenotypically distinct populations
(B220+CD11c+MHCII−Gr-1+M-CSFR− and B220−

CD11c+MHCII−Gr-1−M-CSFRint)87 have been identi-
fied. The B220+ pre-DC give rise to both plasmacytoid
DC, conventional DC, while the latter B220− pre-DC
give rise to only conventional DC. From the surface
phenotype and generating DC subsets, the former
population might be equal or closely related to the
pre-immunocyte population. BM-monocyte popula-
tion (Ly-6ChighCD11b+CD11c−B220−CD24int)88 also
differentiate into splenic conventional DC, although
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Table 4 Findings from knockout mice

Ref.Absent DCsPhenotypesKnockout genes

67CD8＋/－ DCDeficient T-, B-, NK-lineageIkaros DN
68CD8－DCDeficient T-, B-, NK-lineageIkaros C
69NoneDeficient T-, B-, NK-lineageCommon γ-chain
70CD8－DCMyeloid hyperplasiaRelb
71, 72CD8－DC, thymic DCDeficient myeloid-, B-lineagePU.1
73, 74pDC, CD8＋ DCDeficient myeloid-lineageICSBP (IRF-8)
75LCNormal myeloid-, lymphoid-lineageTGF-β
76LC, CD8＋/－ DCDeficient NK-lineageId2
77LCDeficient T-lineageRunx3
65LCDeficient monocytesM-CSFR
82pDC, CD8＋/－DCIncreased macrophageSTAT3

pDC, plasmacytoid DC, M-CSFR, macrophage colony-stimulating factor

Table 5 Pre-DCs

Ref.Yielded DCsSurface phenotypespopulations

bone marrow
86CD8＋/－DC, pDC?, (Mϕ)Ly-6C＋CD11c＋CD31＋B220＋Pre-immunocyte
87CD8＋/－DC, pDCB220＋CD11c＋MHCII－Gr-1＋M-CSFR －B220＋DC precursor
87CD8＋/－DCB220－CD11c＋MHCII－Gr-1－M-CSFR intB220－DC precursor
88CD8＋/－DC, (Mϕ)Ly-6c＋CD11c－MHCII－CD24intLy-6chigh monocyte

blood
89CD8－DCLy-6clowCD11b＋NK1.1－SSClowLy-6clow monocyte

spleen
89CD8＋/－DCCD11cintCD45RAlowCD43intSplenic pre-cDC

SIRP-αintCD4－CD8－

pDC, plasmacytoid DC; cDC, conventional DC; M-CSFR, macrophage colony-stimulating factor; Mϕ, macrophage.

repopulating only very small percentage (2%) of total
splenic DC. Recently, a group identified a much more
efficient splenic DC-repopulating population within
spleen, called “intrasplenic pre-cDC” (CD11cintCD45
RAlowCD43intSIRP-αintCD4−CD8−MHC II−).89 The in-
trasplenic pre-cDC repopulates splenic DC in steady-
state most efficiently while monocyte populations
hardly do so. The pre-cDC population does not re-
spond M-CSF, therefore they appear different from
monocytes. Blood- or splenic monocytes (Ly-6Clow

CD11b+NK1.1−SSClow) can give rise to splenic DC in
inflammatory conditions, but they form only a dis-
tince (CD8−) DC population. Since most of known
pre-DC (plasmacyitoid DC or monocytes) differenti-
ate into DC with inflammatory stimuli or inflamma-
tory growth factors such as GM-CSF. Although there
have been many studies using monocyte-derived or
GM-CSF-induced DC, these protocol might not be
suitable to examine DC functions in steady-state, or
tissue-residing DCs.

Incidentally, it has been reported that CD8−DC can
differentiate into CD8+DC,90 indicating precursor-
progeny relationship between the two conventional
DC subsets. However, this might be because of the
existence of direct CD8+DC precursor (but yet nega-

tive for CD8 expression) within CD8−DC population
like others pointed.91

THE ONTOGENY OF DC―THE PLURAL DEVEL-
OPMENTAL REGULATION―
As mentioned, the DC development is complex and
quite flexible, unlike other hamatopoietic lineages
like T-, B-, NK cells, neutrophils or monocytes etc.
One might wonder why such flexibility exists in DC
development. The speculations here are as follows.
The flexibility might simply be a redundant mecha-
nism to maintain the important hamatopoietic popula-
tions, DCs, in any situations. Alternatively, since the
existence of tissue-residing DC and their functions
are relevant in various lymphoid organs (thymus,
lymph nodes, spleen etc) or in non-lymphoid organs
(skin, gut etc) to induce immunity and�or tolerance
(such that within thymus),92 it would be advanta-
geous for a DC subset to be able to differentiate in
situ from certain “available” precursors such as
organ-seeding- or self-repopulating populations in the
organ according to the required functions (or DC
subset), irrespective of the committed-lineages of DC
precursors.
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