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Abstract

We prove that the Hilbert functions of codimension four graded Goren-
stein Artin algebras R/I are unimodal provided I has a minimal generator
in degree less than five. It is an open question whether all Gorenstein h-
vectors in codimension four are unimodal. In this paper, we prove that Hilbert
functions of all artinian codimension four Gorenstein algebras starting with
(1, 4, 10, 20, h4 , · · · ), where h4 ≤ 34 are unimodal. Combining this with the pre-
viously known results, we obtain that all Gorenstein h-vectors (1, h1, h2, h3, h4, · · · )
are unimodal if h4 ≤ 34.

1 Introduction

We study the problem of whether the Hilbert function of a standard graded Gorenstein
algebra is an SI sequence or at least whether it is unimodal.

In [9], Stanley proved that all Gorenstein h-vectors are SI-sequences for h1 ≤ 3
using Buchsbaum-Eisenbud structure theorems. Bernstein and Iarrobino in [1] found
examples of non-unimodal Gorenstein h-vectors for h1 ≥ 5, so it turns out that the
unimodality for Hilbert functions of Gorenstein algebras remained a question only
in codimension four. In codimension four, A. Iarrobino and H. Srinivasan showed in
[5] that all Gorenstein h-vectors with h2 ≤ 7 are SI-sequences and hence unimodal
and J. Migliore, U. Nagel and F. Zanello showed in [6] that Hilbert functions of all
artinian codimension four Gorenstein algebras starting with (1, 4, h2, h3, . . .), where
h4 ≤ 33 are SI-sequences. It still remains open whether all Gorenstein h-vectors are
SI-sequences, even whether they must be unimodal. Since the Hilbert function HR/I

is an O-sequence, h4 ≤ 35. If I has any minimal generator in degrees less than five,
h4 ≤ 34. Thus, the only remaining case was h4 = 34. We settle this remaining case
to prove:
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Theorem 1.1. Let R = k[x1, x2, x3, x4] where k is a field of characteristic zero and
I be an artinian Gorenstein ideal of codimension four. If a minimal generating set of
I contains at least one generator of degree less than five, then the h-vector of R/I is
unimodal.

This is the main result of this paper. In section 2, we outline some of the prelim-
inary results. In section 3, we show first that an h-vector of an artinian Gorenstein
algebra in codimension four with initial degree 4 is unimodal in theorem 3.1, and
section 4 has some examples.

There has been steady work on the problem of determining Gorenstein h-vectors
and also whether they are unimodal beginning with Stanley’s first counter exam-
ple for nonunimodal h-vector in embedding dimension 13 followed by Bernstein and
Iarrobino in embedding dimension 5 and higher. It turns out that the examples of
nonunimodal Gorenstein Hilbert functions all have h2 less than the maximum pre-
dicted by Macaualay’s bound for it. So, the fact that any possibly nonunimodal
Hilbert function in embedding dimension four has the maximum possible h2, h3, h4

is interesting and gives hope for the conjecture that Gorenstein Artin algebras of
embedding dimension four are unimodal.

2 Preliminaries

Let R = k[x1, · · · , xn] be a polynimial ring over a field k with standard grading
and k be an algebraically closed field of characteristic zero. Let I = ⊕i≥0Ii be a
homogeneous ideal of R and consider an artinian algebra A = R/I = ⊕i≥0Ai. The
Hilbert function of A is HA : Z−→Z defined by

HA(i) = dimkRi − dimkIi =

(

n− 1 + i

n− 1

)

− dimkIi = hi

then h(A) = h = (h0, h1, h2, · · · , he) is known as the h-vector of A where hi =
HA(i) and e, the socle degree of A, is the largest i for which dimkAi > 0. Without
loss of generality, we may assume that I has no linear terms and hence h1 = n is
the embedding dimension. If A is Gorenstein, the h-vector is symmetric about the
middle

⌊

e
2

⌋

. An h-vector is said to be unimodal if it no longer increases once it starts
decreasing.

If h and i are positive integers, then h can be written uniquely in the form of
i-binomial expansion of h:

h =

(

ni

i

)

+

(

ni−1

i− 1

)

+ · · ·+

(

nj

j

)

,
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where hi > hi−1 > · · · > nj ≥ j ≥ 1.
We now define a collection of functions −<i> : Z−→Z as follows: if h ∈ Z has
i-binomial expansion as above, then

h<i> =

(

ni + 1

i+ 1

)

+

(

ni−1 + 1

i

)

+ · · ·+

(

nj + 1

j + 1

)

.

A sequence of nonnegative integers {hi}i≥0 is called an O-sequence if h0 = 1 and

hi+1 ≤ h<i>
i for all i. Such sequences are precisely the ones that occur as Hilbert

functions of standard graded algebras [8]. We say that maximal growth of the Hilbert
function of A occurs in degree i if hi+1 = h<i>

i . The first difference of the Hilbert
function H is denoted by ∆HA(i) := HA(i) − HA(i − 1) = hi − hi−1 for all i ≥ 1.
An h-vector is called a differentiable O-sequence up to j if ∆H≤j = (h0, h1 − h0, h2 −
h1, · · · , hj − hj−1) is an O-sequence. An h-vector is called an SI-sequence(Stanley-
Iarrobino sequence) if it is symmetric about the middle and the first half difference
∆H≤ e

2
= (h0, h1 − h0, h2 − h1, · · · , h⌊ e

2
⌋ − h⌊ e

2
⌋−1) is an O-sequence. The importance

of this name is due to the fact that in codimension three, being an SI sequence is
precisely the same as being Gorenstein. However, it is not so in codimension five and
higher. This leads us to concentrate on codimension four.

We define h<i>:

h<i> =

(

ni − 1

i

)

+

(

ni−1 − 1

i− 1

)

+ · · ·+

(

nj − 1

j

)

.

The following lemma encodes the change in the Hilbert function when one mods
out by a sufficiently general linear form. This is used to cut down the dimension of
R.

Theorem 2.1. [4] If l ∈ R is a general linear form, then the h-vector of A/lA satisfies

hA/lA(i) ≤ (hA(i))<i>.

If R/I is a Gorenstein Artin algebra and f /∈ I, then R/(I : f) is again Gorenstein,
for if I = annF for some F ∈ kDP [X1, · · ·Xn] where kDP [X1, · · ·Xn] is the divided
power algebra, then (I : f) = annF . Thus, f is homogeneous of degree d and the
socle degree of R/(I : f) is e− d. Thus,

Lemma 2.2. If f ∈ Rd is a homogeneous form of degree d and f /∈ I, then R/(I : f)
is Gorenstein with socle degree e− d, where e is the socle degree of R/I.

We apply this for a general linear form l in R/I. One of the first things we do is
to compare the Hilbert function of R/I with HR/(I:l) for a suitably general l and set
up an induction on the socle degree. Following observation, lemma 2.3 shows how to
compare the two h- vectors. It is also proved in [6]. We include a short proof.
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Lemma 2.3. Let A = R/I be a graded Artin algebra with dimkA1 ≥ 2. Assume that
It has a GCD, D, of degree d > 0. Set B = R/(I : D). Then If i ≤ t, then

HB(i− d) = HA(i)−

[(

i+ n− 1

n− 1

)

−

(

i− d+ n− 1

n− 1

)]

.

Further, if the h-vector of B is non-decreasing (resp. increasing) in degrees ≤ t − d,
then the h-vector of A is non-decreasing (resp. increasing) in degree ≤ t.

Proof. From the exact sequence,

0 → R/(I : D)(−d) → R/I → R/(I,D) → 0

we get HB(i− d) = HR/I(i)−HR/(D)(i) where (I,D)i = (D)i if i ≤ t. So for i ≤ t,

HB(i− d) = HA(i)−

[(

i+ n− 1

n− 1

)

−

(

i− d+ n− 1

n− 1

)]

Then,

HB(i− d+ 1)−HB(i− d) = HA(i+ 1)−HA(i)−

[(

i+ n− 1

n− 2

)

−

(

i− d+ n− 1

n− 2

)]

which proves the lemma.

From here on, we let R = k[x1, x2, x3, x4] and a = min{j ∈ Z|Ij 6= 0} denote the
initial degree of I. The following lemma relates to the situation when there is exactly
one minimal generator in any initial degree.

Lemma 2.4. Let I be any ideal of codimension four and minimally generated in
degrees ≥ a. Suppose I has exactly one generator in degree a and all other generators
in degree ≥ a + m for a certain positive number m. If l1 and l2 are two general
linear forms in R and (f0, f1, f2, · · · ) is the Hilbert function of R/(I, l1, l2). Then
fa−1 = fa = · · · = fa+m−1 = a and fa+m ≤ a−1. In particular, {fj} is non-increasing
from j = a− 1.

Proof. f = (f0, f1, f2, · · · ) is the Hilbert function of R/(I, l1, l2) that is an artinian
quotient of R/(l1, l2) ∼= k[x, y]. Let R̄ = R/(l1, l2) and Ī be the restriction to R̄. Then
the h-vector of R̄/Ī is f . Let F ∈ I be the minimal generator of degree a. We may
assume that a second minimal generator G of I comes in degree a+m(m ≥ 1). Since
I has no generator of degree less than a, fa−1 = dimk(R̄/Ī)a−1 = a.

fj = dimk(R̄/Ī)j = dimkR̄j − dimkĪj = (j + 1)− dimk(F̄ )j

= (j + 1)− (j − a+ 1) = a for all j, a ≤ j < a+m.
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So, fa−1 = · · · = fa+m−1 = a. The second minimal generator G is of degree a + m,
then (F,G)a+m ⊂ Ia+m. dimkĪa+m > dimk(F̄ )a+m = m+ 1.

fa+m = dimkR̄a+t − dimkĪa+t < (a+m+ 1)− (m+ 1) = a = fa+m−1

For all j ≥ a− 1, fj ≥ fj+1 because dimkĪj < dimkĪj+1 unless Īj+1 = 0. So, {fj}
is non-increasing from j ≥ a− 1.

We note that if the Hilbert function of R/I is (1, 4, 10, 20, h4, · · · ), then the ideal
I is generated in degrees 4 and higher. So, a = 4. If m is the difference between the
first and second minimal degrees of generators in I, we have 4 entries in the h-vector
(f0, f1, f2, · · · ) in degree 3 up to degree one less than the second minimal degree, that
is, f3 = f4 = · · · = fm+3 = 4.

The following lemma plays a very important role. The example 4.1 is one with
this situation.

Lemma 2.5. Let J = (f, g, h) ⊂ I with deg h = deg g + 1. Suppose D = GCD(f, g)
is of degree d(deg f − 2 ≤ d < deg f) and h /∈ (D). Let l1 and l2 be general linear
forms. Then

HR/(J,l1,l2)(j) = HR/(J,D,l1,l2)(j) for j ≥ deg h.

Proof. Let R̄ = R/(l1, l2). Ī and J̄ are the image of I and J respectively in R̄. Since
D is the GCD of f and g, f = f ′D, g = g′D and (f ′, g′) is the regular sequence with
deg f ′ = deg f − d and deg g′ = deg g − d. Consider the exact sequence:

0 → [R̄/(J̄ : D̄)](−d) → R̄/J̄ → R̄/(J̄ , D̄) → 0.

Since (J̄ : D̄) = (f̄ ′, ḡ′, h̄), starting j = deg h

dimk[R̄/J̄ ]deg h = dimk[R̄/(f̄ ′, ḡ′, h̄)]deg h−d + dimk[R̄/(J̄ , D̄)]deg h (2.1)

(f̄ ′, ḡ′, h̄) has at most two minimal generators up to degree deg h− d. So we get

dimk[R̄/(f̄ ′, ḡ′, h̄)]deg h−d = dimk[R̄/(f̄ ′, ḡ′)]deg h−d

= (deg h− d+ 1)− (deg h− deg f + 1)− (deg h− deg g + 1)

= deg f − d− 2

dimk[R̄/J̄ ]h − dimk[R̄/(J̄ , D̄)]deg h = deg f − d− 2 ≤ 0.

Thus,
dimk[R̄/J̄ ]deg h ≤ dimk[R̄/(J̄ , D̄)]deg h.
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On the other hand,

(J̄ , D̄) = (D̄, f̄ , ḡ, h̄) = (D̄, h̄) ⊃ (f̄ , ḡ, h̄) = J̄ .

It follows
dimk[R̄/J̄ ]deg h ≥ dimk[R̄/(J̄ , D̄)]deg h.

If j > deg h, (I,D, l1, l2)j = (I, l1, l2)j , which implies the two h-vectors are equal.

3 H = (1, 4, 10, 20, 34, · · · , 34, 20, 10, 4, 1)

In this section, R = k[x1, x2, x3, x4] and I is a grade four Gorenstein ideal in R. We
consider the case HR/I = (1, 4, 10, 20, · · · ). So, I is minimally generated in degree 4
and all other generators in higher degrees.

Let l1 and l2 be sufficiently general linear forms so that R/(I, l1, l2) is isomorphic
to k[x1, x2]/I. Recall that (I : l1) is Gorenstein and HR/I denotes the Hilbert function
of R/I. From the exact sequence

0 → R/(I : l1)(−1) → R/I → R/(I, l1) → 0

we get,
HR/(I,l1)(i) = HR/I(i)−HR/(I:l1)(i− 1),

and
HR/(I,l1,l2)(i) = HR/(I,l1)(i)−HR/((I,l1):l2)(i− 1).

Let bi := HR/(I:l1)(i − 1), the (i − 1)-th entry of the Hilbert function of HR/(I:l1),
then we have HR/(I:l1)(−1) = (0, 1, b2, b3, · · · ) and HR/(I,l1,l2) = (f0, f1, f2, · · · ). Thus,

fi = hi − bi −HR/((I,l1):l2)(i− 1) ≤ (hi)<i> −HR/((I,l1):l2)(i− 1).

Theorem 3.1. Let R = k[x1, x2, x3, x4] and I be an artinian Gorenstein ideal of
codimension four. If I contains exactly one minimal generator of degree four, then
the h-vector of R/I is unimodal.

Proof. Since R/I has no generator in degrees 1, 2 and 3, its Hilbert function is given
by h = (1, 4, 10, 20, h4 · · · , he) with h4 = 34. h4 = 34 because there is exactly one
minimal generator for I in degree four. We call it f . Let the next minimal generator
be in degree 4 +m.

We use induction on the socle degree of R/I. It is clearly unimodal when the socle
degree is 1 and in fact when it is less than or equal to 8. Suppose all such Gorenstein
Artin algebras with socle degrees less than e have unimodal Hilbert functions. So, we
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may assume that the h-vector of R/I has the least socle degree e > 8. Suppose the
h-vector of R/I is not unimodal.

R/(I : l1) has socle degree e − 1 and hence by induction HR/(I:l1) = (b1, b2, · · · be)
is unimodal. By lemma 2.4, the HR/(I,l1,l2) is (1, 2, 3, 4, 4, · · · , 4, f4+m, · · · ) and non-
increasing after f3.

We note that

HR/(I,l1) = HR/I −HR/(I:l1)(−1)

= (1, 4, 10, 24, 34, · · · , 34, 20, 10, 4, 1)− (0, 1, b2, b3, · · · b3, b2, 1)

= (1, 3, 6, 10, 14, · · · )

HR/(I,l1,l2) = HR/(I,l1) −HR/(I,l1):l2)(−1)

HR/(I,l1,l2) = HR/I −HR/(I:l1)(−1) −HR/((I,l1):l2)(−1).

So,
(1, 2, 3, 4, 4, · · · , 4, f4+m, · · · ) = (1, 3, 6, 10, 14, · · · )−HR/((I,l1):l2)(−1)

Further, we have

bt = HR/(I:l1)(t− 1) ≤ HR/I(t− 1) = ht−1

and
HR/((I,l1):l2)(t− 1) ≤ HR/(I,l1)(t− 1) = ht−1 − bt−1.

If h = (h0, h1, h2, · · · , he) is not unimodal, there is the least integer i ≤ e
2
− 1 such

that hi > hi+1 equivalent to he−1−i < he−i by symmetry. We must have i + 1 ≥ 5,
then e

2
≥ i + 1 ≥ 5, so e ≥ 10. Since hi > hi+1 and he−1−i < he−i, and (1, b2, b3, · · · )

is unimodal, we get

fe−i = he−i−be−i−HR/((I,l1):l2)(e−i−1) > he−i−1−be−i−1−HR/((I,l1):l2)(e−i−1) ≥ 0.

Recall that e
2
+ 1 ≤ e− i. Thus, we have two cases: e

2
+ 1 < e− i and e

2
+ 1 = e− i.

Case I: e
2
+ 1 < e− i

Since e − i − 2 > e
2
− 1 ≥ 4, definitely fe−i−2 ≤ 4. fe−i > 0 allows the possible

values of the tuple (fe−i−2, fe−i−1, fe−i) as follows:

• (4,4,4),(4,4,3),(4,4,2),(4,4,1),(4,3,3),(4,2,2),(4,1,1),
(3,3,3),(3,3,2),(3,3,1),(3,2,2),(3,1,1),
(2,2,2),(2,2,1),(2,1,1),(1,1,1)

We know that fe−i−2 = 1, 2, 3 or 4 and e − i − 2 > 4, so fe−i−2 ≤ e − i − 2.
When fe−i−2 = fe−i−1, f

<e−i−2>
e−i−2 = fe−i−2 = fe−i−1 which implies that there
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is maximal growth of Hilbert function of R/(I, l1, l2)in degree e− i− 2. When
fe−i−1 = fe−i = 1, 2, 3 or 4, e − i − 1 ≥ 4 and f <e−i−1>

e−i−1 = fe−i = fe−i−1

allow us to have maximal growth in Hilbert function in degree e − i − 1. So
Īe−i−1 has a GCD of appropriate degree by proposition 2.7 in [2]. By lifting to
I, Ie−i−1 has a GCD. For, if It has no GCD then there are a, b in It forming a
regular sequence. They are still regular modulo general enough l1, l2, so Īt = It
in R/(l1, l2) has no GCD(see [3]). Further codimension of It = codimension of
Īt =1. Hence Ie−i−1 has a GCD of degree 1,2,3 or 4. By e − i − 1 > e

2
and

lemma 2.3, the h-vector of R/I is unimodal, contradicting our assumption of
nonunimodality.

• (4,3,2),(4,3,1),(4,2,1)
By theorem 2.4, the second minimal generator of I comes in degree e−i−1(> e

2
),

so the unimodality follows immediately.

• (3,2,1)
fe−i−3 is either 4 or 3. If (fe−i−3, fe−i−2, fe−i−1, fe−i) = (4, 3, 2, 1), then the
second minimal generator comes in degree e − i − 2(> e

2
− 1). Actually, e −

i − 2 ≥ e
2
. So the h-vector of R/I is non-decreasing to degree e

2
, leading

to contradiction. If (fe−i−3, fe−i−2, fe−i−1, fe−i) = (3, 3, 2, 1), then Ie−i−2 has a
GCD, D, of degree 3. Note that by induction hypothesis, R/(I : D) is unimodal
and has an h-vector that is non-decreasing up to degree e−3

2
since the socle degree

of R/(I : D) = e − 3. So it is non-decreasing up to e
2
− 3(≤ (e − i − 2) − 3).

Hence, lemma 2.3 gives that the h-vector of R/I is non-decreasing up to degree
e
2
, and is unimodal by symmetry.

Case II: e
2
+ 1 = e− i

This case is of i = e
2
− 1 and e is even. Consequently, the non-unimodality occurs

in the very middle, that is h e

2
−1 > h e

2
< h e

2
+1. Consider the tuple (f e

2
−1, f e

2
, f e

2
+1)

of f . With the same argument above, we get rid of the tuples where two entries are
equal since they have a GCD in degree e

2
and apply lemma 2.3. The cases that we

need to deal with are (4,3,2),(4,3,1),(4,2,1) and (3,2,1).

• (4,3,2),(4,3,1),(4,2,1)
By theorem 2.4, the second minimal generator of I comes in degree e

2
, so the

unimodality follows immediately.

• (3,2,1)
We claim that I e

2
has no GCD. Suppose not, I e

2
has a GCD, D, of degree

d(0 < d < 3). (I,D)j = (D)j if j ≤
e
2
.

∆hR/(I,D)(
e

2
) = ∆hR/(D)(

e

2
) =

(

2 + e
2

2

)

−

(

2 + e
2
− d

2

)

≥
e

2
+ 1
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Note that HR/I(i) = HR/(I:D)(i− d) +HR/D(i) for all i > d. Since h e

2
< h e

2
−1,

0 > h e

2
− h e

2
−1

= HR/(I:f)(
e

2
− d)−HR/(I:f)(

e

2
− 1− d) + ∆hR/(f)(

e

2
)

≥ HR/(I:f)(
e

2
− d)−HR/(I:f)(

e

2
− 1− d) +

e

2
+ 1

⇒ HR/(I:f)(
e

2
− d) < HR/(I:f)(

e

2
− 1− d)

This implies contradiction to HR/(I:f)(
e
2
−d) ≥ HR/(I:f)(

e
2
−1−d) by unimodality

of Gorenstein R/(I : f). This completes the proof of this claim.

f e

2
−2 is either 4 or 3. If (f e

2
−2, f e

2
−1, f e

2
, f e

2
+1) = (3, 3, 2, 1), then I e

2
−1 has a GCD,

A, of degree 3. The second minimal generator of I comes in degree 4+m for some
m(0 < m < e

2
−4). In fact, I has exactly one minimal generator of degree 4+m.

Otherwise, f4+m < 3, not satisfying this case (f e

2
−1, f e

2
, f e

2
+1) = (3, 2, 1). Denote

g the second minimal generator of I then f, g ∈ (A), so we get (I, A)j = (A)j
if j ≤ e

2
− 1. Since the (f0, f1, f2, · · · ) has dropped at degree e

2
by one, the

third minimal generator h comes in degree e
2
. Since I e

2
has no GCD, h /∈ (A).

(I, A) = (A, f, g, h, · · · ) = (A, h, · · · ) implies (I, A) has at most two minimal
generators up to degree e

2
and its second minimal generator is h of degree e

2
.

By lemma 2.4, the following table is obtained:

Degree 0 1 2 3 4 5 · · · 3 +m 4 +m · · · e
2 − 1 e

2

HR/(I,l1,l2) 1 2 3 4 4 4 · · · 4 3 · · · 3 2

HR/(A,I,l1,l2) 1 2 3 3 3 3 · · · 3 3 · · · 3 2

HR/(I,l1,l2)(j) = HR/(I,A,l1,l2)(j) = 3 for 4 +m < j <
e

2
− 1

HR/(I,l1,l2)(
e

2
) = HR/(I,A,l1,l2)(

e

2
) = 2,

which enables us to get (I, A, l1, l2) e

2
= (I, l1, l2) e

2
. We apply the information

obtained from lifting (I, A, l1, l2)/(l1, l2) to (I, A) as we have done before. The
Hilbert function of R/(I, A) is non decreasing up to degree e

2
, for (I, A) has at

most two minimal generators up to degree e
2
. Note that by induction hypothesis,

R/(I : A) is unimodal and has an h-vector that is non-decreasing up to degree
e−3
2

since the socle degree of R/(I : A) = e − 3. So it is non-decreasing up
to e

2
− 3. Hence, the h-vector of R/I is non-decreasing up to degree e

2
by the

relationship between the Hilbert functions. So, it is unimodal by symmetry.

If (f e

2
−2, f e

2
−1, f e

2
, f e

2
+1) = (4, 3, 2, 1), then the second minimal generator comes

in degree e
2
− 1. Let us denote G the second minimal generator of degree e

2
− 1,

then I = (f, g, others). If there is no generator of degree e
2
in I, I has at

most two generators up to degree e
2
and it is obviously unimodal. We may
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assume that I has exactly one generator of degree e
2
denoted by h. If (f, g)

forms a regular sequence, there is no generator of degree e
2
with the condition

(f e

2
−1, f e

2
, f e

2
+1) = (3, 2, 1). So the h-vector is unimodal. We consider that

f, g are not a regular sequence in which there is a GCD, D, of f, g of degree
d(< degf).

Let J = (f, g, h) ⊂ I, then (J,D) = (D, h) has the second generator H of degree
e
2
, so the h-vector R̄/(J̄ , D̄) has dropped at degree e

2
by lemma 2.4. We have

the h-vectors of R̄/(J̄ , D̄) as follows:

0 1 2 3 4 5 · · · e
2
− 2 e

2
− 1 e

2

HR̄/J̄ 1 2 3 4 4 4 · · · 4 3 2

HR̄/(J̄ ,D̄) d = 3 1 2 3 3 3 3 · · · 3 3 2
HR̄/(J̄ ,D̄) d = 2 1 2 2 2 2 2 · · · 2 2 1
HR̄/(J̄ ,D̄) d = 1 1 1 1 1 1 1 · · · 1 1 0

When d = 2, 3, we apply lemma 2.5 to deg f = 4, deg g = e
2
− 1 and deg h = e

2
.

We get,

HR/(J,l1,l2)(
e

2
) = HR/(J,D,L1,L2)(

e

2
) = 2.

Since J e

2
= I e

2
, we conclude that

(I, l1, l2) e

2
= (I,D, l1, l2) e

2
.

If d = 3, we apply the information of lifting from (I,D, l1, l2)/(l1, l2) to (I,D).
It is unimodal since the proof remaining is similar to (I, A) in the case of
(f e

2
−2, f e

2
−1, f e

2
, f e

2
+1) = (3, 3, 2, 1).

If d = 2, from table above HR̄/J̄ (
e
2
) = 2 > 1 = HR̄/(J̄ ,D̄)(

e
2
), which contradicts

the result of lemma 2.5. The case of d = 2 can not occur.

If d = 1, in R/(J,D, l1, l2) ∼= k[x]/h̄ where deg h̄ = e
2
. So by theorem 2.4,

HR/(J,D,l1,l2)(j) = 0 for j ≥ e
2
and HR̄/(J̄ ,D̄)(

e
2
) = 0. Note that f = Df ′ and g =

Dg′ where (f ′, g′) forms a regular sequence with deg f ′ = 3 and deg g′ = e
2
− 2.

In (2.1),

HR̄/(J̄ :D̄)(
e

2
− 1) = HR̄/J̄(

e

2
)−HR̄/(J̄ ,D̄)(

e

2
)

= 2− 0 = 2

However, since (f ′, g′) forms a regular sequence we get the contradiction as
follows:

HR̄/(J̄ :D̄)(
e

2
− 1) = HR̄/(f̄ ′,ḡ′,h̄)(

e

2
− 1)

= HR̄/(f̄ ′,ḡ′)(
e

2
− 1) = 1
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Hence the condition (f e

2
−2, f e

2
−1, f e

2
, f e

2
+1) = (4, 3, 2, 1) and the case of d = 1 do

not occur simultaneously. We complete the proof.

Theorem 3.2. Let R = k[x1, x2, x3, x4] where k is a field of characteristic zero and
I be an artinian Gorenstein ideal of codimension four. If I has at least one generator
in degree less than five, then the h-vector of R/I is unimodal.

Proof. Since R/I has at least one generator in degree less than five, the HR/I =
(1, h1, h2, h3, h4, · · · , he) with h4 ≤ 34. If h4 ≤ 33, it is unimodal [6]. If h4 = 34, then
HR/I = (1, 4, 10, 20, 34, · · · , he). Then we have just proved in the above theorem 3.1
that HR/I is unimodal.

4 Examples

Here are some examples of Gorenstein Artin algebras.

Example 4.1.

I = (x2w2, x6, x4y3 − zw6, w8, y9w2, z11, x2z10, y12w, y12z, y13 − x3z9w, x3y12, y9z10)

Its h-vector is

(1, 4, 10, 20, 34, 52, 73, 95, 116, 136, 156, 174, 187, 191, 187, 174, · · · , 52, 34, 20, 10, 4, 1).
Since h4 = 34 and h5 ≤ 52, there is maximal growth in HR/I in degree 4. If we
take,l1 = 2x−5y+13z−7w and l2 = −11x−4y+5z+9w, then the Hilbert function
of R/(I, l1, l2) is

HR/(I,l1,l2) = (1, 2, 3, 4, 4, 4, 3, 1, 0, 0, · · ·).

Note that D = x2 is the gcd of the first two generators and the third generator is
not divisible by x2. Further, the third generator is of degree 7, one more than the
degree of the second generator. This is the situation in the lemma 2.5

We have
HR/(J,l1,l2) = (1, 2, 3, 4, 4, 4, 3, 1, 0, 0, 0, · · ·).

The Hilbert function of R/(J,D, l1, l2) is (1, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, · · ·).

Example 4.2. Let ideal I be generated by

(y2w2, y4w, y4z, xy4, w8, x6y2, z10w2, y2z11 − x7w6, x13, x6z10, z21, y26 − x5z20w).

The h-vector for this R/I is
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(1, 4, 10, 20, 34, 49, 66, 85, 104, 121, 137, 153, 168, 179, 184,
184, 179, 168, 153, 137, 121, 104, 85, 66, 49, 34, 20, 10, 4, 1).

If we take l1 = x− 3y+15z− 2w and l2 = −13x− 4y+5z+8w as general enough
linear forms, then the h-vector of R/(I, l1, l2) is (1, 2, 3, 4, 4, 2, 2, 2, 1). The maximal
growth in Hilbert function of R/(I, l1, l2) occurs in degree 5 and 6. Then I5, I6 and
I7 have a gcd of degree 2.

The next two examples are some Gorenstein ideals generated in degrees 5 and
higher and they do have unimodal Hilbert functions.

Example 4.3. Let ideal I be generated by

(x2w4, x6, z3w4, xy6, z8, w9, y6z3, x5z5 − y5w5, y11).

The h-vector for this R/I is

(1, 4, 10, 20, 35, 55, 79, 104, 127, 137, 143, 149, 143, 137, 127, 104, 79, 55, 35, 20, 10, 4, 1).

Example 4.4. Let ideal I be generated by

(y3w3, y5w, y5z, xy5, w9, x7y3, y2z11 − x7w6, z11w3, x14, x7z11, z22, y29 − x6z21w2).

The h-vector for this R/I is

(1, 4, 10, 20, 35, 56, 80, 107, 137, 169, 201, 231, 259, 285, 307, 322, 329,
329, 322, 307, · · · · · · , 56, 35, 20, 10, 4, 1).
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