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DERIVED MODULI OF SCHEMES AND SHEAVES

J.P.PRIDHAM

Abstract. We describe derived moduli functors for a range of problems involving
schemes and quasi-coherent sheaves, and give cohomological conditions for them to be
representable by derived geometric n-stacks. Examples of problems represented by de-
rived geometric 1-stacks are derived moduli of polarised projective varieties, derived
moduli of vector bundles, and derived moduli of polarised abelian varieties.

Introduction

The driving philosophy behind derived algebraic geometry is that for every moduli
problem, there should be an associated derived moduli problem. Thanks to the framework
of [TV2] and [Lur1], there is often an obvious candidate for such a functor for derived
moduli of schemes:

Given a simplicial algebra A, we first form the ∞-category C(A) of derived geometric
stacks X homotopy-flat over SpecA, with the additional property that

X×h
SpecA Specπ0A

is a scheme. We can impose additional restrictions (smoothness, properness, dimension)
of X by requiring that they apply to X×h

SpecA Specπ0A. We then consider the∞-category

G(A) ⊂ C(A) in which the only morphisms are weak equivalences. Finally, we define the
derived moduli functor M(A) to be the nerve of the ∞-category G(A). There are variants
of this construction for subschemes and so on.

Similarly, for derived moduli of sheaves or complexes on a scheme X, we can first set
C(A) to be the ∞-category of quasi-coherent complexes F (in the sense of [TV2]) on
X × SpecA, such that the complex F ⊗L

A π0A on X × Spec (π0A) satisfies any additional
constraints (bounded, fixed Euler characteristic, concentrated in degree 0, free of rank n).
We then form G(A) ⊂ C(A) as before, and take the nerve.

We can even combine these approaches to consider moduli of polarised projective
schemes. C(A) then consists of pairs (X,F ), for X a derived geometric stack homotopy-flat
over SpecA and F a quasi-coherent complex on X, with

(X×h
SpecA Specπ0A,F ⊗

L

A π0A)

a projective scheme and an ample line bundle.
Lurie’s Representability Theorem provides explicit criteria to check whether such a

functor is representable by a geometric derived stack. However, the framework of [TV2]
and [Lur1] does not lend itself easily to calculations, making it difficult to verify that
these functors satisfy the criteria of the representability theorem. Even to show that
the cotangent complex governs first-order deformations of n-geometric stacks, the more
concrete approach of Artin hypergroupoids is needed (as in [Pri1] §9.2). Several examples
of representable derived moduli functors have already been established, however. Both
[TV2] and [Lur1] construct Hom-stacks, while [Lur1] addresses derived moduli of stable
curves, as well as derived Picard stacks and derived Hilbert schemes.
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The purpose of this paper is to establish representability more generally for problems
involving schemes and quasi-coherent sheaves, building on the explicit characterisations
of [Pri1]. In simplistic terms, we show that if the associated underived moduli problem
is representable, then the derived moduli problem will be representable provided only
that certain cohomology groups satisfy mild finiteness conditions. The main results are
Theorem 3.32 for moduli of derived geometric stacks over a fixed base, Theorem 3.35
which has the additional datum of an augmentation, and Theorem 4.12 for moduli of
quasi-coherent complexes.

By contrast to the indirect approach of satisfying a representability theorem, [CFK2]
and [CFK1] construct explicit derived Hilbert and Quot schemes as dg-schemes with the
necessary properties, but there no universal family is given, so the derived moduli spaces
lack functorial interpretations. In [Pri2], we will show how to compare these approaches,
thereby giving explicit presentations for the derived moduli spaces constructed here.

The structure of the paper is as follows.
In Section 1 we review the framework of simplicial categories, giving several properties

of the nerve construction from simplicial categories to simplicial sets. Section 2 then
recalls a variant (Theorem 2.10) of Lurie’s Representability Theorem, and shows how the
nerve construction transfers good properties from simplicial category-valued functors to
simplicial set-valued functors. These results are then applied in the last two sections to a
wide range of moduli problems.

The main results of Section 3 are Corollaries 3.10 and 3.15, which deal with derived
moduli of affine schemes, and Theorems 3.32 and 3.35, addressing derived moduli of (aug-
mented) geometric n-stacks. These are applied to moduli of finite schemes (Example
3.11), of schemes (Example 3.36), of torsors (Example 3.38), of polarised schemes (Exam-
ple 3.39), of polarised abelian schemes (Example 3.46) and derived Hom-stacks (Example
3.37).

Section 4 deals, in Theorem 4.12 and Example 4.15, with moduli of quasi-coherent
complexes. Lemma 4.16 then shows that the paper’s two possible approaches to derived
moduli of vector bundles (via GLn-torsors and via quasi-coherent complexes) give equiv-
alent results.
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1. Simplicial categories

Let S denote the category of simplicial sets, and sS the category of bisimplicial sets.

Definition 1.1. Let sCat be the category of small simplicially enriched categories, which
we will refer to as simplicial categories. Explicitly, an object C ∈ sCat consists of a set Ob C
of objects, together with HomC(x, y) ∈ S for all x, y ∈ ObS, equipped with an associative
composition law and identities.

Definition 1.2. Given a simplicial category C, the category π0C is defined to have the
same objects as C, with morphisms

Homπ0C(x, y) = π0HomC(x, y).

A morphism in HomC(x, y)0 is said to be a homotopy equivalence if its image in π0C is an
isomorphism.

Definition 1.3. Recall from [Ber] Theorem 1.1 that a morphism f : C → D in sCat is
said to be a weak equivalence (a.k.a. an ∞-equivalence) whenever

(W1) for any objects a1 and a2 in C, the map HomC(a1, a2)→ HomD(fa1, fa2) is a weak
equivalence of simplicial sets;

(W2) the induced functor π0f : π0C → π0D is an equivalence of categories.

Definition 1.4. Given a simplicial category C, a morphism in C0 is said to be a homotopy
equivalence if it becomes an isomorphism in π0C.

Definition 1.5. Recall from [Ber] Theorem 1.1 that a morphism f : C → D in sCat is
said to be a fibration whenever

(F1) for any objects a1 and a2 in C, the map HomC(a1, a2) → HomD(fa1, fa2) is a
fibration of simplicial sets;

(F2) for any objects a1 ∈ C, b ∈ D, and homotopy equivalence e : fa1 → b in D, there
is an object a2 ∈ C and a homotopy equivalence d : a1 → a2 in C such that fd = e.

Definition 1.6. Given C ∈ sCat, define W̄C := W̄BC, where W̄ : sS → S is the right
adjoint to Illusie’s total Dec functor given by DEC (X)mn = Xm+n+1, and B : Cat→ S is
the nerve. Explicitly

(W̄C)n =
∐

x∈(Ob C)n+1

Cn−1(xn−1, xn)× Cn−2(xn−2, xn−1)× . . . × C0(x0, x1),

with operations

∂i(gn−1, . . . , g0) =







(gn−2, . . . , g0) i = 0,
(∂i−1gn−1, . . . , ∂1gn−i+1, (∂0gn−i)gn−i−1, gn−i−2, . . . , g0) 0 < i < n,

(∂n−1gn−1, . . . , ∂1g1) i = n,

σi(gn−1, . . . , g0) = (σi−1gn−1, . . . , σ0gn−i, idxn−i
, gn−i−1, . . . , g0),

Remark 1.7. Another functor from bisimplicial to simplicial sets is the diagonal functor
diag (Y )n = Ynn. In [CR], it is established that the canonical natural transformation

diag Y → W̄Y

is a weak equivalence for all Y . When Y = BC, this transformation is given by

(yn, hn−1, yn−1, . . . , h0, y0) 7→ (yn, ∂0hn−1, ∂0yn−1, . . . , (∂0)
nh0, (∂0)

ny0).

This observation means that throughout this paper, W̄ can be replaced with diag , which is
simpler to define. Our reasons for preferring W̄ are that it produces much smaller objects,
as exploited in [DK]. For instance, if Y is a bisimplicial abelian group, then the Dold–
Kan normalisation NW̄Y (see Definition 2.1) is just the total complex of the Dold–Kan
binormalisation NY .
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The following results seem to be folklore, but lacking a suitable reference, we prove
them afresh.

Proposition 1.8. If f : C → D is a fibration of simplicial categories, with π0C and π0D
being groupoids, and B → D is an arbitrary morphism in sCat, then the homotopy fibre
product

(W̄C)×h
(W̄D) (W̄B)

is weakly equivalent to W̄ (C ×D B).

Proof. Construct a category πnC with objects Ob C and morphisms
∐

f∈C0(x,y)
πn(C(x, y), f) for x, y ∈ Ob C. If we form the bisimplicial set BC, then

πnBC = BπnC and we wish to verify the π∗-Kan condition ([GJ] §IV.4) — that

BπnC → BC0

is a fibration.
If a functor F : A → A′ of categories is an isomorphism on objects, then BA→ BA′ is

a fibration if and only if

(1) F is full, and

(2) if a morphism h in A factors as F (h) = fg in A′, with either f or g lifting to f̃ or

g̃ in A, then the other lifts uniquely in such a way that f̃ g̃ = h.

Since πnC → C0 has a canonical section (given by 0 ∈ πn), it is full. Now, as π0C
is a groupoid, for all f ∈ C0(x, y) the map f∗ : πnEndC(x) → πn(HomC(x, y), f) is an
isomorphism. It therefore gives rise to an isomorphism adf : πnEndC(x) → πnEndC(y).

We can write f̃ = f∗a, g̃ = g∗b and h = f∗g∗c, so f̃ and g̃ determine each other by the
formula a = adg(cb

−1).
Now, (F2) implies that Bπ0C → Bπ0D is a Kan fibration, while (F1) implies that

BC → BD is a pointwise fibration. Therefore the Bousfield–Friedlander Theorem ([GJ]
Theorem IV.4.9) gives that

diagB(C ×D B)→ (diagBC)×h
(diagBD) (diagBB)

is a weak equivalence. Finally, [CR], shows that canonical natural transformation
diagBA→ W̄A is a weak equivalence for all A, which completes the proof. �

Definition 1.9. Given a category C, define c(C) to be the set of isomorphism classes in C.

Corollary 1.10. If C ∈ sCat is such that π0C is a groupoid, then the homotopy fibre of
W̄C → c(π0C) over x ∈ Ob C is just

W̄EndC(x).

Thus πn(W̄C, x) = πn−1EndC(x), where the basepoint of the EndC(x) is taken to be the
identity.

Proof. By using the model structure of [Ber] Theorem 1.1, there is a morphism g : C → C′

over c(C), with c(π0C) = c(π0C
′), π∗HomC′(gx, gy) ∼= π∗HomC(x, y), and C′ → c(C) a

fibration. Replacing C with C′, we may therefore assume that HomC(x, y) is fibrant for all
x, y.

Let D be the groupoid with objects Ob C, and a unique morphism x→ y for any pair of
objects with the same image in c(π0C). There is therefore a canonical morphism C → D,
and this is a fibration. Therefore the proposition gives

W̄ (C ×D {x}) ≃ (W̄C)×h
(W̄D) {x}.

Since W̄D ≃ c(π0C), the right-hand side is just the homotopy fibre of W̄C → c(π0C).
Meanwhile, C ×D {x} is just the simplicial category EndC(x) with unique object x and
morphisms HomC(x, x), as required. �
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Corollary 1.11. If C and D are simplicial categories for which π0C and π0D are groupoids,
then a morphism f : C → D is an ∞-equivalence if and only if

W̄C → W̄D

is a weak equivalence.

Proof. We have just seen that f is a W̄ -equivalence if and only if c(π0C) → c(π0D) is an
isomorphism, and πnEndC(x) → πnEndD(fx) is an isomorphism for all n ≥ 0. This is
precisely the same as saying that f is an ∞-equivalence. �

Corollary 1.12. If C → D and B → D are arbitrary morphisms in sCat, with π0C and
π0D groupoids, then

W̄ (C ×h
D B)→ (W̄C)×h

(W̄D) (W̄B)

is a weak equivalence, where the homotopy fibre product C ×h
D B is taken in the model

structure of [Ber].
In particular, if π0B is also a groupoid, then the fundamental groupoid πf ((W̄C)×

h
(W̄D)

(W̄B)) is equivalent to the 2-fibre product

(π0C)×
(2)
(π0D) (π0B),

while for any α := (x, f, y), where x ∈ Ob C, y ∈ ObB and f ∈ D0(x̄, ȳ),

πn((W̄C)×
h
(W̄D) (W̄B), α)

∼= πn−1(EndC(x)×
h
f∗,HomD(x̄,ȳ),f∗ EndB(y)).

Proof. Factorise C → D as C → C′ → D, a weak equivalence followed by a fibration. By
Corollary 1.11,

(W̄C)×h
(W̄D) (W̄B)→ (W̄C′)×h

(W̄D) (W̄B)

is a weak equivalence. By Proposition 1.8, the latter is weakly equivalent to W̄ (C′ ×D B),
which is just W̄ (C ×h

D B), since sCat is right proper.
The description of the fundamental groupoid follows from the observation that for A ∈

sCat and a discrete groupoid Γ, there are canonical isomorphisms

HomS(W̄A, BΓ) ∼= HomsCat(A,Γ) ∼= HomCat(π0A,Γ).

For C′ → D a fibration, the map

π0(C
′ ×D B) = (π0C

′)×(π0D) (π0B)→ (π0C
′)×

(2)
(π0D) (π0B)

is an equivalence, and the latter is equivalent to (π0C)×
(2)
(π0D) (π0B).

Finally, for α := (x, f, y) as above, also write x for the image of x in C′. Since C′ → D
lifts homotopy equivalences, there is a morphism g : x→ z in C′ mapping to f in D. Then

α defines the same element in c(π0C
′) ×

(2)
(π0D) (π0B) as α′ := (z, id, y), so we need only

describe homotopy groups based at α′.
By Corollary 1.10,

πn(W̄ (C′ ×D B), α
′) = πn−1(EndC′(z) ×EndD(ȳ) EndB(y), α

′),

and we note that EndC′(z) → EndD(ȳ) is a Kan fibration, since C′ → D is a fibration.
Now, since g and f are homotopy equivalences, they induce weak equivalences

g∗ : EndC′(z) → HomC′(x, z)

g∗ : EndC′(x) → HomC′(x, z)

f∗ : EndD(ȳ) → HomD(x̄, ȳ),

giving weak equivalences

EndC′(z)×EndD(ȳ)EndB(y)→ HomC′(x, z)×h
HomD(x̄,ȳ)EndB(y)← EndC′(x)×h

f∗,HomD(x̄,ȳ)EndB(y).
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Finally, the weak equivalence C → C′ gives a weak equivalence EndC(x) → EndC′(x),
yielding the expression required. �

2. Derived moduli from simplicial categories

2.1. Background on representability. Denote the category of simplicial rings by sRing,
the category of simplicial R-algebras by sAlgR, and the category of simplicial R-modules
by sModR. If R is a (dg) Q-algebra, we let dg+AlgR be the category of differential graded-
commutative R-algebras in non-negative chain degrees, and dg+ModR the category of
R-modules in chain complexes in non-negative chain degrees.

Definition 2.1. Given a simplicial abelian group A•, we denote the associated normalised
chain complex by NA. Recall that this is given by N(A)n :=

⋂

i>0 ker(∂i : An → An−1),
with differential ∂0. Then H∗(NA) ∼= π∗(A).

Using the Eilenberg–Zilber shuffle product, normalisation N extends to a functor

N : sAlgR → dg+AlgR.

When R is a Q-algebra, this functor is a right Quillen equivalence.

Definition 2.2. Define dg+NR (resp. sNR) to be the full subcategory of dg+AlgR (resp.
sAlgR) consisting of objects A for which the map A → H0A (resp. A → π0A) has
nilpotent kernel. Define dg+N

♭
R (resp. sN ♭

R) to be the full subcategory of dg+NR (resp.
sNR) consisting of objects A for which Ai = 0 (resp. NiA = 0) for all i≫ 0.

From now on, we will write dN ♭ (resp. dAlgR, resp. dModR) to mean either sN ♭
R (resp.

sAlgR, resp. sModR) or dg+N
♭
R (resp. dg+AlgR, resp. dg+ mod R), noting that we only

use chain algebras in characteristic 0.

Definition 2.3. Say that a surjection A→ B in dg+AlgR (resp. sAlgR) is a tiny acyclic
extension if the kernel K satisfies IA ·K = 0, andK (resp. NK) is of the form cone(M)[−r]
for some H0A-module (resp. π0A-module) M . In particular, H∗K = 0.

Definition 2.4. Say that a functor F : dN ♭ → C to a model category C is homotopy-
preserving if for all tiny acyclic extensions A→ B, the map

F (A)→ F (B)

is a weak equivalence.

Definition 2.5. We say that a functor

F : dN ♭ → C

to a model category C is homotopy-homogeneous if for all square-zero extensions A → B
and all maps C → B in dN ♭, the natural map

F (A×B C)→ F (A)×h
F (B) F (C)

to the homotopy fibre product is a weak equivalence.

Definition 2.6. Given a homotopy-preserving homotopy-homogeneous functor F :
dN ♭ → S, A ∈ dN ♭, and a point x ∈ F (A), define

Tx(F/R) : dModA → S

by
Tx(F/R)(M) := F (A⊕M)×h

F (A) {x}.

Definition 2.7. Given F,A, x as above, and M ∈ dModA, define

Dn−i
x (F/R,M) := πi(Tx(F/R)(M [−n])),

noting that this is well-defined by [Pri3] Lemma 1.12.
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Proposition 2.8. If F : sAlgR → S is homotopy-preserving and homotopy-homogeneous,

then for any square-zero extension e : I → A
f
−→ B in C, there is a sequence of sets

π0(FA)
f∗
−→ π0(FB)

oe−→ Γ(FB,D1(F/R, I)),

where Γ(−) denotes the global section functor. This is exact in the sense that the fibre of
oe over 0 is the image of f∗ Moreover, there is a group action of D0

x(F/R, I) on the fibre
of π0(FA)→ π0(FB) over x, whose orbits are precisely the fibres of f∗.

For any y ∈ F0A, with x = f∗y, the fibre of FA → FB over x is weakly equivalent to
Tx(F/R, I), and the sequence above extends to a long exact sequence

· · ·
e∗

// πn(FA, y)
f∗

// πn(FB, x)
oe

// D1−n
y (F/R, I)

e∗
// πn−1(FA, y)

f∗
// · · ·

· · ·
f∗

// π1(FB, x)
oe

// D0
y(F/R, I)

−∗y
// π0(FA).

Proof. This is [Pri3] Proposition 1.16 �

Definition 2.9. Given a functor F : dN ♭
R → S, define π0F : Algπ0R → S by π0F (A) =

F (A).

The following variant of Lurie’s Representability Theorem is [Pri3] Theorem 2.17:

Theorem 2.10. Let R be a derived G-ring admitting a dualising module (in the sense of

[Lur1] Definition 3.6.1) and take a functor F : dN ♭
R → S. Then F is the restriction of

an almost finitely presented geometric derived n-stack F ′ : dAlgR → S if and only if the
following conditions hold

(1) F is homotopy-preserving.
(2) For all discrete rings A, F (A) is n-truncated, i.e. πiF (A) = 0 for all i > n .
(3) F is homotopy-homogeneous.
(4) π0F : Algπ0R → S is a hypersheaf for the étale topology.

(5) π0π
0F : Algπ0R → Set preserves filtered colimits.

(6) For all A ∈ Algπ0R and all x ∈ F (A), the functors πi(π
0F, x) : AlgA → Set

preserve filtered colimits for all i > 0.
(7) for all finitely generated integral domains A ∈ Algπ0R, all x ∈ F (A)0 and all étale

morphisms f : A→ A′, the maps

D∗
x(F,A) ⊗A A′ → D∗

fx(F,A
′)

are isomorphisms.
(8) for all finitely generated A ∈ Algπ0R and all x ∈ F (A)0, the functors

Di
x((F/R),−) : ModA → Ab preserve filtered colimits for all i > 0.

(9) for all finitely generated integral domains A ∈ Algπ0R and all x ∈ F (A)0, the

groups Di
x(F/R,A) are all finitely generated A-modules.

(10) for all discrete local Noetherian π0R-algebras A, with maximal ideal m, the map

π0F (A)→ lim←−
hF (A/mr)

is a weak equivalence.

Moreover, F ′ is uniquely determined by F (up to weak equivalence).

Remark 2.11. The Milnor exact sequence ([GJ] Proposition 2.15) gives a sequence

• →
1

lim
←−
r

πi+1F (A/mr)→ πi(lim←−
hF (A/mr))→ lim

←−
r

πiF (A/mr)→ •,

which is exact as groups for i ≥ 1 and as pointed sets for i = 0. Thus the final condition
above can be rephrased to say that the map

f0 : π0F (A)→ lim
←−
r

π0F (A/mr)
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is surjective, that for all x ∈ F (A) the maps

fi,x : πi(FA, x)→ lim←−
r

πi(F (A/mr), x)

are surjective for all i ≥ 1 and that the resulting maps

ker fi,x →
1

lim
←−
r

πi+1(F (A/mr), x)

are surjective for all i ≥ 0.
Now, we can say that an inverse system {Gr}r∈N of groups satisfies the Mittag-Leffler

condition if for all r, the images Im (Gs → Gr)s≥r satisfy the descending chain condition.
In that case, the usual abelian proof (see e.g. [Wei] Proposition 3.5.7) adapts to show that
lim
←−

1{Gr}r = 1.

Hence, if each system {Im (πi(F (A/ms), x)→ πi(F (A/mr), x))}s≥r satisfies the Mittag-
Leffler condition for i ≥ 1, then the final condition of the theorem reduces to requiring
that the maps

πiF (A)→ lim
←−
r

πiF (A/mr)

be isomorphisms for all i.

Remark 2.12. Note that there are slight differences in terminology between [TV2] and
[Lur1]. In the former, only disjoint unions of affine schemes are 0-representable, so arbi-
trary schemes are 2-geometric stacks, and Artin stacks are 1-geometric stacks if and only if
they have affine diagonal. In the latter, algebraic spaces are 0-stacks. A geometric n-stack
is called n-truncated in [TV2], and it follows easily that every n-geometric stack in [TV2]
is n-truncated. Conversely, every geometric n-stack is (n+ 2)-geometric.

Theorem 2.10 takes the convention from [Lur1], so “geometric derived n-stack” means
“n-truncated derived geometric stack”.

2.2. Formal quasi-smoothness.

Definition 2.13. Say that a natural transformation η : F → G of functors F,G : dN ♭ → C
to a model category C is homotopic if for all tiny acyclic extensions A→ B, the map

F (A)→ F (B)×G(B) G(A)

is a trivial fibration. Say that F is homotopic if F → • is so, where • denotes the final
object of C.

Definition 2.14. Say that a natural transformation η : F → G of functors F,G : dN ♭ → C
to a model category C is formally quasi-presmooth if for all square-zero extensions A→ B,
the map

F (A)→ F (B)×G(B) G(A)

is a fibration.
Say that η is formally quasi-smooth if it is formally quasi-presmooth and homotopic.

Definition 2.15. Say that a natural transformation η : F → G of functors F,G : dN ♭ → S

is formally presmooth (resp. formally smooth) if it is formally quasi-presmooth (resp.
formally quasi-smooth) and for all square-zero extensions A→ B, the map

F (A)→ F (B)×G(B) G(A)

is surjective on π0.

Definition 2.16. Say that a natural transformation η : F → G of functors on dN ♭ is
formally étale if for all square-zero extensions A→ B, the map

F (A)→ F (B)×G(B) G(A)

is an isomorphism.
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2.3. Homogeneity.

Definition 2.17. Say that a natural transformation F → G of functors is (relatively)
homogeneous if for all square-zero extensions A→ B, the map

F (A×B C)→ G(A×B C)×[G(A)×G(B)G(C)] [F (A) ×F (B) F (C)]

is an isomorphism. Say that F is homogeneous if F → • is relatively homogeneous.

Proposition 2.18. Let α : F → G be a formally étale morphism of functors F,G :
dN ♭ → Set. If G is homogeneous, then so is F . Conversely, if α is surjective and F is
homogeneous, then so is G.

Proof. Take a square-zero extension A → B, and a morphism C → B, noting that A ×B

C → C is then another square-zero extension. Since α is formally étale,

F (A×B C) ∼= G(A ×B C)×GC FC,

and

FA×FB FC ∼= [GA×GB FB]×FB FC

= GA×GB FC

= [GA×GB GC]×GC FC.

Thus homogeneity of G implies homogeneity of F , and if π0FC → π0GC is surjective for
all C, then homogeneity of F implies homogeneity of G. �

2.4. Simplicial categories.

Definition 2.19. Given functors A
F
−→ B

G
←− C between categories, define the 2-fibre

product A×
(2)
B C as follows. Objects of A×

(2)
B C are triples (a, θ, c), for a ∈ A, c ∈ C and

θ : Fa→ Gc an isomorphism in B. A morphism in A×
(2)
B C from (a, θ, c) to (a′, θ′, c′) is a

pair (f, g), where f : a→ a′ is a morphism in A and g : c→ c′ a morphism in C, satisfying
the condition that

Gg ◦ θ = θ′ ◦ Ff.

Remark 2.20. This definition has the property that A ×
(2)
B C is a model for the 2-fibre

product in the 2-category of categories. However, we will always use the notation A×
(2)
B C

to mean the specific model of Definition 2.19, and not merely any equivalent category.
Also note that

A×
(2)
B C = (A×

(2)
B B)×B C

Definition 2.21. Given functors A
F
−→ B

G
←− C between simplicial categories, define the

2-fibre product A×
(2)
B C as follows. Objects of A×

(2)
B C are triples (a, θ, c), for a ∈ A, c ∈ C

and θ : Fa→ Gc an isomorphism in B0. Morphisms are given by setting

Hom
A×

(2)
B

C
((a, θ, c), (a′, θ′, c′)) := {(f, g) ∈ HomA(a, a

′)×HomC(c, c
′) : Gg ◦ θ = θ′ ◦ Ff}.

Definition 2.22. Say that a morphism F : A → B in sCat is a (trivial) 2-fibration if

A ×
(2)
B B → B is a (trivial) fibration in the sense of Definition 1.5. Explicitly, F is a

2-fibration if

(F1) for any objects a1 and a2 in A, the map HomA(a1, a2) → HomB(Fa1, Fa2) is a
fibration of simplicial sets;

(F2) for any objects a1 ∈ A, b ∈ B, and any homotopy equivalence e : Fa1 → b in
B, there is an object a2 ∈ C, a homotopy equivalence d : a1 → a2 in C and an
isomorphism θ : Fa2 → b such that θ ◦ Fd = e.

Likewise, F is a trivial 2-fibration if
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(TF1) for any objects a1 and a2 in A, the map HomA(a1, a2) → HomB(Fa1, Fa2) is a
trivial fibration of simplicial sets;

(TF2) F0 : A0 → B0 is essentially surjective on objects.

Definition 2.23. Say that a natural transformation η : D → E of functors D : dN ♭ →
sCat is 2-homotopic if for all tiny acyclic extensions A→ B, the map

D(A)→ D(B)×
(2)
E(B) E(A)

is a trivial 2-fibration. Say that D is 2-homotopic if D → • is so.

Lemma 2.24. If D is 2-homotopic, then D is homotopy-preserving.

Proof. By [Pri3] Lemma 2.11 and the proof of [Pri3] Proposition 2.7, it suffices to show
that D maps tiny acyclic extensions A→ B to weak equivalences. Since D0(A)→ D0(B)
is essentially surjective on objects, so is π0D(A) → π0D(B). On morphisms, we have
HomD(A)(x, y)→ HomD(B)(x, y) a trivial fibration (and hence a weak equivalence) for all

x, y ∈ D(A), so D(A)→ D(B) is indeed a weak equivalence. �

Definition 2.25. Say that a natural transformation η : D → E of functors D : dN ♭ →
sCat is formally 2-quasi-presmooth if for all square-zero extensions A→ B, the map

D(A)→ D(B)×
(2)
E(B) E(A)

is a 2-fibration. If η is also 2-homotopic, then we say that η is formally 2-quasi-smooth.
Say that D is formally 2-quasi-presmooth (resp. formally 2-quasi-smooth) if D → • is

so.

Definition 2.26. Say that a functor F : dN ♭ → sCat is 2-homogeneous if for all square-
zero extensions A→ B, the map

F(A×B C)→ F(A) ×
(2)
F(B) F(C)

is essentially surjective on objects (for F0), and an isomorphism on Hom-spaces.

Lemma 2.27. If D : dN ♭ → sCat is 2-homogeneous and 2-quasi-presmooth, then D is
homotopy-homogeneous.

Proof. Take a square-zero extension A → B and a map C → B. We first need to show
that

θ : π0D(A×B C)→ π0(D(A)×
h
D(B) D(C))

is essentially surjective on objects.
Any object of the right-hand side is represented by objects x ∈ D(A), y ∈ D(B), and a

homotopy equivalence f : x̄→ ȳ in D(B). Since D is 2-quasi-presmooth, we may lift f to

some map f̃ : x → z in D(A)0 with g : z̄ ∼= ȳ in D(B)0. Since D is 2-homogeneous, there

must then be an object t ∈ D(A×B C) whose image in D(A)0×
(2)
D(B)0

D(C)0 is isomorphic

to (z, g, y). Since f̃ gives a homotopy equivalence from this to (x, f, y), we have shown
that θ is essentially surjective on objects.

For morphisms, we have

HomD(A×BC)(t, t
′) ∼= HomD(A)(t, t

′)×HomD(B)(t,t
′) HomD(C)(t, t

′)

≃ HomD(A)(t, t
′)×h

HomD(B)(t,t
′) HomD(C)(t, t

′),

the first isomorphism following from homogeneity, and the second because
HomD(A)(t, t

′) → HomD(B)(t, t
′) is a fibration, by quasi-smoothness. This completes the

proof that
D(A×B C) ≃ D(A)×h

D(B) D(C)

in sCat. �
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Definition 2.28. Say that D : dN ♭ → sCat has formally quasi-presmooth (resp. formally

quasi-smooth) Hom-spaces if HomD(x, y) : A↓dN
♭ → S is formally quasi-presmooth (resp.

formally quasi-smooth) for all A ∈ dN ♭ and x, y ∈ D(A).

Definition 2.29. Given a simplicial category C, defineW(C) to be the full simplicial sub-
category in which morphisms are maps whose images in π0C are invertible. In particular,
this means that π0W(C) is the core (maximal subgroupoid) of π0C.

Proposition 2.30. If D : dN ♭ → sCat is 2-homogeneous with formally quasi-smooth
Hom-spaces, then W(D) → D is formally étale, in the sense that for any square-zero
extension A→ B, the map

W(D)(A)→ D(A)×D(B)W(D)(B)

is an isomorphism.

Proof. Since f ∈ HomC(x, y)n lies inW(C) if and only if (∂0)
nf is a homotopy equivalence,

it suffices to show that

W(D)0(A)→ D0(A)×D0(B)W(D)0(B)

is an isomorphism.
Take a morphism f ∈ HomD(B)(x, y)0, with objects x, y lifting to x, y ∈ D(A). If we set

Dn
f (M) := Dn

f (HomD(x, y)/A,M), then Proposition 2.8 shows that the obstruction o(f)

to lifting f̄ to HomD(A)(x, y)0 lies in D1
f̄
(I), where I = ker(A→ B).

Assume that f is a homotopy equivalence, so there exist g ∈ HomD(B)(y, x)0 and ho-

motopies hx ∈ HomD(B)(x, x)1, h
y ∈ HomD(B)(y, y)1 such that

∂1h
x = idx, ∂1h

y = idy, ∂0h
x = g ◦ f̄ , ∂0h

y = f̄ ◦ g.

We now need to study the construction of obstruction maps.
For the acyclic extension B̃ → B as in the Proof of Proposition 2.8, we may lift f to f̃

in D(B̃), and do the same for g. Then the obstruction o(f ◦ g) to lifting f ◦ g is the class

of the image of f̃ ◦ g̃ in π0HomD(B ⊕ I[−1])(y, y), which is just

o(f ◦ g) = f ◦ g + f∗o(g) + g∗o(f) ∈ D1
f◦g(I).

Since HomD(B̃)(x, x) → HomD(B)(x, x) is a trivial fibration (by quasi-smoothness), we

may also lift the homotopies hx, hy to give homotopies h̃x ∈ HomD(B̃)(x, x)1, h̃
y ∈

HomD(B̃)(y, y)1 making f̃ and g̃ homotopy inverses. Then h̃y ensures that o(f◦g) = 0 (since

the image of f̃ ◦ g̃ is homotopic to idy), and therefore f∗o(g) = −g
∗o(f) ∈ D1

y(I). Likewise

g∗o(f) = −f
∗o(g) ∈ D1

x(I). Since o(g) = (gf)∗(fg)
∗o(g), this gives o(g) = −g∗g

∗o(f)
If f lifts to f ′ ∈ HomD(A)(x, y)0, then o(f) = 0, and the formula above ensures that

o(g) = 0, so g also lifts to g′ in D(A). Now, f ′ ◦ g′ is in the fibre of EndD(A)(y)0 →

EndD(B)(y)0 over idy, so [f ′ ◦ g′] ∈ π0EndD(A)(y) lies in the image of

π0Tidy(EndD(y)/A, I) = D0
y(I).

Another choice for g′ is of the form g′+a for a ∈ D0
g(I), and then [f ′◦(g′+1)] = [f ′◦g′]+f∗a.

Since f is a homotopy equivalence, f∗ : D
0
g(I)→ D0

y(I) is an isomorphism, so we may set

a = −(f∗)
−1[f ′ ◦ g′]. Without loss of generality, we may therefore assume that f ′ and g′

are homotopy inverses.
Finally, write [g′ ◦f ′] = idx+ b, for b ∈ D0

x(I). Since f
′ ◦g′ is homotopic to idy, applying

f∗ to b gives

[f ′] + f∗b = [f ′ ◦ g′ ◦ f ′] = [f ′],

so f∗b = 0 ∈ D0
f (I). Thus b = 0, as f∗ : D

0
x(I)→ D0

f (I) is an isomorphism. �
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Corollary 2.31. If D : dN ♭ → sCat is formally 2-quasi-smooth and 2-homogeneous, then
so is W(D).

Proof. For any square-zero extension A→ B in dN ♭, we have

W(D)(A) = D(A)×D(B)W(D)(B),

by Proposition 2.30. Thus

W(D)(A) ×
(2)
W(D)(B)W(D)(B) = D(A)×

(2)
D(B)W(D)(B),

so θ : W(D)(A) ×
(2)
W(D)(B)W(D)(B) → W(D)(B) is the pullback of D(A) ×

(2)
D(B) D(B) →

D(B) along W(D)(B) → D(B). By 2-quasi-smoothness of D, this means that θ is a
fibration in sCat, and a trivial fibration whenever A→ B is a tiny acyclic extension. Thus
W(D) is formally 2-quasi-smooth.

To see that W(D) is 2-homogeneous, first observe that D(A) ×
(2)
D(B) D(C) and

W(D)(A)×
(2)
W(D)(B)

W(D)(C) have the same objects. For a square-zero extension A→ B

and a map C → B, 2-homogeneity of D then gives that

W(D)0(A×B C)→W(D)0(A)×
(2)
W(D)0(B)W(D)0(C)

is essentially surjective on objects. Proposition 2.30 combines with 2-homogeneity of D
and Lemma 2.18 to give that HomW(D)(x, y) is homogeneous, since HomW(D)(x, y) →
HomD(x, y) is formally étale. �

3. Derived moduli of schemes

3.1. Derived moduli of affine schemes.

Definition 3.1. Given A ∈ dg+AlgR, say that B ∈ dg+AlgA is quasi-free if the underlying
map A∗ → B∗ of graded algebras is freely generated. Say that B ∈ dg+AlgA is cofibrant
if it is a retract of a quasi-free dg algebra.

This is equivalent to satisfying the condition that for all acyclic surjections C ′ → C in
dg+AlgA, the map Homdg+AlgA(B,C ′)→ Homdg+AlgA(B,C) is surjective.

Definition 3.2. Given A ∈ sAlgR, say that B ∈ sAlgA is quasi-free if there are sets
Σq ⊂ Bq with Bq = Aq[Σq], such that

⋃

q Σq is closed under the degeneracy operations.
Say that B ∈ dg+AlgA is cofibrant if it is a retract of a quasi-free simplicial algebra.

This is equivalent to satisfying the condition that for all acyclic surjections C ′ → C in
dg+AlgA, the map HomsAlgA(B,C ′)→ HomsAlgA(B,C) is surjective.

Definition 3.3. Let ∆n ∈ S be the standard n-simplex, and ∂∆n ∈ S its boundary. Given
0 ≤ k ≤ n, define the kth horn Λn

k of ∆n to be the simplicial set obtained from ∆n by
removing the interior and the kth face. See [GJ] §I.1 for explicit descriptions.

Definition 3.4. There is a simplicial structure on sAlgA given as follows. For B ∈ sAlgA
and K ∈ S, BK is defined by

(BK)n := HomS(K ×∆n, B).

Spaces HomsAlgA
(C,B) ∈ S of morphisms are then given by

HomsAlgA
(C,B)n := HomsAlgA(C,B

∆n

).

Definition 3.5. As in [Pri3] Lemma 3.4, put a simplicial structure on dg+AlgA as follows.
First set Ωn to be the cochain algebra

Q[t0, t1, . . . , tn, dt0, dt1, . . . , dtn]/(
∑

ti − 1,
∑

dti)
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of rational differential forms on the n-simplex ∆n. These fit together to form a simplicial
complex Ω• of DG-algebras, and we define B∆n

as the good truncation B∆n
:= τ≥0(B ⊗

Ωn). Spaces Homdg+AlgA
(C,B) ∈ S of morphisms are then given by

Homdg+AlgA
(C,B)n := Homdg+AlgA(C,B

∆n

).

Definition 3.6. For A ∈ dg+AlgR (resp. A ∈ sAlgR), define ALG(A) to be the full
simplicial subcategory of the category dg+AlgA (resp. sAlgA) on cofibrant objects.

Proposition 3.7. The functor ALG : dN ♭ → sCat defined above is 2-homogeneous and
formally 2-quasi-smooth.

Proof. We first prove that ALG is 2-homogeneous, taking a square-zero extension A→ B
and a morphism C → B. Homogeneity of HomALG is almost immediate, because S ∈
ALG(A×B C) is flat over A×B C as a graded algebra (resp. levelwise flat over A×B C),
giving the pullback square

HomALG(A×BC)(S, S
′) −−−−→ HomALG(A)(S ⊗A×BC A,S′ ⊗A×BC A)



y



y

HomALG(C)(S ⊗A×BC C,S′ ⊗A×BC C) −−−−→ HomALG(B)(S ⊗A×BC B,S′ ⊗A×BC B).

Given objects SA ∈ ALG(A) and SC ∈ ALG(C), and an isomorphism α : SA ⊗A B →
SC ⊗C B, we can define S ∈ ALG(A×B C) by S := SA ×α,SC⊗CB SC , noting that this is
automatically cofibrant, with S ⊗A×BC A ∼= SA and S ⊗A×BC C ∼= SC . This completes
the proof that ALG is 2-homogeneous.

Now, since any S ∈ ALG(A) is cofibrant over A, the map f : HomALG(A)(S, S
′) →

HomALG(B)(S ⊗AB,S′⊗AB) is a fibration for all square-zero extensions A→ B, because

S′ → S′⊗AB is also a square-zero extension. If A→ B is also a weak equivalence, then so
is S′ → S′⊗AB (as S′ is levelwise flat over A, so the kernel is S′⊗A I), and f is therefore
a trivial fibration. We have therefore shown that HomALG(S, S

′) is formally quasi-smooth
It only remains to show that ALG(A)→ ALG(B) satisfies Condition (F2) from Defini-

tion 2.22 for all square-zero extensions A→ B, and satisfies condition (TF2) whenever the
extension is acyclic. [Pri1] Proposition 10.6 shows that the obstruction (in the simplicial
case) to lifting S ∈ ALG(B) to ALG(A) lies in

Ext2B(Ω
S/B , S ⊗B I) = D2

idS
(HomALG(S, S), I),

where I = ker(A → B). The idea is that as an almost simplicial algebra (i.e. discarding

∂0), S has a unique levelwise flat lift to S̃ over A. We can then choose a lifting δ of ∂0
with ∂iδ = δ∂i−1 for all i > 1, and the obstruction comes from comparing δ2 and δ∂1.
The same proof adapts to the dg case, where we lift S as a flat graded algebra, lift d to δ,
and get δ2 as the obstruction. In particular, this ensures that (TF2) is satisfied, since if

H∗(I) = 0, then Ext2B(Ω
S/B , S ⊗B I) = 0.

We now establish (F1): take S ∈ ALG(A), write S̄ := S ⊗A B, and take a homotopy
equivalence θ : S̄ → T . We now proceed with the proof in the dg case — the simplicial
case is entirely similar, replacing graded algebras with almost simplicial algebras. As a
graded algebra, T has a unique lift T̃ over A, and we can then lift θ to θ̃ : S → T̃ (as a

graded morphism), since S is smooth. We also lift the differential d on T to δ on T̃ . The
obstruction to these giving a morphism of dg algebras is then

(u, v) := (δ2, δ ◦ θ̃ − θ̃ ◦ d) ∈ HOM2
B(Ω

T/B , T ⊗B I)×HOM1
B(Ω

S̄/B , T ⊗B I),

which satisfies du = 0, dv = u ◦ θ. Here, HOMi
B denotes B-linear graded morphisms of

chain degree −i. Alternative choices for (δ, θ̃) would be of the form (δ + a, θ̃ + b), for

(a, b) ∈ HOM1
B(Ω

T/B , T ⊗B I)×HOM0
B(Ω

S̄/B , T ⊗B I);
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these send (u, v) to (u + da, v + db + a ◦ θ). Thus the obstruction to lifting θ and T
compatibly lies in H2 of the cone complex

HOM•
B(Ω

T/B , T ⊗B I)
θ∗
−→ HOM•

B(Ω
S̄/B , T ⊗B I).

Since θ is a weak equivalence, θ∗ is a quasi-isomorphism, so cohomology of this complex
is 0, and suitable liftings thus exist. �

Definition 3.8. Given a functor C : AlgH0R → sCat and a functorial simplicial subcate-
goryM⊂ C, say thatM is an open simplicial subcategory of C if

(1) M is a full simplicial subcategory, i.e. for all X,Y ∈ M(A), the map
HomM(A)(X,Y )→ HomC(A)(X,Y ) is a weak equivalence;

(2) the mapM→ C is homotopy formally étale, in the sense that for any square-zero
extension A→ B, the map

π0M(A)→ π0C(A)×
(2)
π0C(B) π0M(B)

is essentially surjective on objects.

Definition 3.9. Given a simplicial category C for which π0C is a groupoid, say that C is
n-truncated if

πiHomC(A)(X,Y ) = 0

for all i ≥ n. Thus C is n-truncated if and only if πi(W̄C) = 0 for all i > n.

Corollary 3.10. Take an n-truncated hypersheaf M : AlgH0R → sCat, open in

π0W(ALG) (in the sense of Definition 3.8), such that

(1) for all finitely generated A ∈ AlgH0R and all X ∈ M(A), the functors

Extif(X)(L
f(X)/A, f(X)⊗L

A −) : ModA → Ab

preserve filtered colimits for all i > 1.
(2) for all finitely generated integral domains A ∈ AlgH0R and all X ∈ M(A), the

groups Extif(X)(L
f(X)/A, f(X)) are all finitely generated A-modules.

(3) for all discrete local Noetherian H0R-algebras A, with maximal ideal m, the map

M(A)→ lim
←−

hM(A/mn)

is a weak equivalence (see Remark 2.11 for a reformulation).
(4) The functor c(π0M) : Algπ0R → Set of components of the groupoid π0M preserves

filtered colimits.
(5) For all A ∈ Algπ0R and all X ∈ M(A), the functors πiHomM(X,X) : AlgA → Set

preserve filtered colimits for all i ≥ 0.

Let M̃ : dN ♭
R → sCat be the full simplicial subcategory of W(ALG)(A) consisting of

objects C for which C ⊗A H0A is weakly equivalent (in W(ALG)(H0A)) to an object of

M(H0A). Then the nerve W̄M̃ is a geometric derived n-stack.

Proof. Since π0W(ALG) is a groupoid-valued functor, andM →֒ π0W(ALG) is open, the
map

M→ π0W(ALG)

is homotopy formally étale. This also implies that W̄M̃ is a model for

A 7→ W̄M(H0A)×
h
W̄W(ALG)(H0A) W̄W(ALG)(A).

Now observe that this satisfies the conditions of Theorem 2.10, using Lemmas 2.24 and
2.27, Propositions 2.30 and 3.7, and Corollary 2.31. The proof of Proposition 3.7 shows
that

Di
X(W̄M̃/R,M) = Exti+1

f(X)
(Lf(X)/A, f(X)⊗L

A M).

�
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Example 3.11 (Moduli of finite schemes). DefineM : AlgH0R → sCat by settingM(A) ⊂
π0W(ALG)(A) to consist of dg (resp. simplicial) A-algebras S for which H0S is a finite
flat A-module, and HiS = 0 for all i > 0. Then we get

M̃ ≃M×
(2)
π0ALG

ALG.

Now, H0 gives a functor fromM(A) to the groupoidW(FALG(A)) of finite flat A-algebras,
and this is a weak equivalence in sCat, so

M≃W(FALG),

which is a hypersheaf by [Pri3] Remark 1.29. Thus the corollary above implies that the

nerve W̄M̃ is a geometric derived 1-stack, which we can now regard as the derived moduli
stack of finite flat algebras.

We now check show that this example is consistent with the flatness criteria used in
[TV2] and [Lur1]

Definition 3.12. Given A ∈ dg+AlgR (resp. A ∈ sAlgR) say that M ∈ dg+ModA (resp.
M ∈ sModA) is homotopy-flat over A if H0M is flat over H0A, and the maps

Hn(A)⊗H0A H0M → HnM

are isomorphisms for all n.

Note that [TV2] Lemma 2.2.2.2 implies that this is the same as flatness in the sense
of [TV2] Definition 1.2.4.1, which corresponds to the functor ⊗L

AM : Ho(dg+ModA) →
Ho(dg+ModA) (resp. ⊗

L

AM : Ho(sModA)→ Ho(sModA)) preserving homotopy pullbacks.

Lemma 3.13. A morphism f : A → B in A ∈ dg+AlgR (resp. sAlgR) is homotopy-flat
if and only if B ⊗L

A H0A is weakly equivalent to a discrete flat H0A-algebra.

Proof. If f is flat, then the proof of [TV2] Lemma 2.2.2.2(2) shows that for any A-module
N , we have H∗(Lf

∗N) ∼= H0B ⊗H0A H∗N . Setting N = H0A, this gives Lf
∗H0A ≃ H0B.

This is flat over H0A by hypothesis, completing the proof of one implication.
For the converse, assume that Lf∗H0A ≃ H0B, flat over H0A. By considering free

simplicial resolutions, this implies that Lf∗M ≃ H0B ⊗H0A M for all H0A-modules M .
We have a spectral sequence

Hi(Lf
∗HjA) =⇒ Hi+j(B),

giving HjB ∼= H0B ⊗H0A HjA, which completes the proof. �

In particular, this means that B is homotopy-flat over A if and only if for all H0A-
algebras C and all i > 0, we have Hi(B ⊗

L

A C) = 0.

Proposition 3.14. For T ∈ dg+AlgR (resp. T ∈ sAlgR) flat as a graded algebra over

R, the functor ALGT := ALG(T ⊗ −) : dN ♭ → sCat is 2-homogeneous and formally
2-quasi-smooth.

Proof. The proof of Proposition 3.7 carries over to this generality, noting that for any
(acyclic) square-zero extension A → B, we get another (acyclic) square-zero extension
T ⊗A→ T ⊗B. �

Corollary 3.15. Take an n-truncated hypersheaf M : AlgH0R → sCat, open in

π0W(ALGT ), such that

(1) for all finitely generated A ∈ AlgH0R and all X ∈ M(A), the functors

Extif(X)(L
f(X)/A⊗T , f(X)⊗L

A −) : ModA → Ab

preserve filtered colimits for all i > 0.
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(2) for all finitely generated integral domains A ∈ AlgH0R and all X ∈ M(A), the

groups Extif(X)(L
f(X)/A⊗T , f(X)) are all finitely generated A-modules.

(3) for all discrete local Noetherian H0R-algebras A, with maximal ideal m, the map

M(A)→ lim
←−

hM(A/mn)

is a weak equivalence (see Remark 2.11 for a reformulation).
(4) The functor c(π0M) : Algπ0R → Set of components of the groupoid π0M preserves

filtered colimits.
(5) For all A ∈ Algπ0R and all X ∈ M(A), the functors πiHomM(X,X) : AlgA → Set

preserve filtered colimits for all i ≥ 0.

Let M̃ : dN ♭
R → sCat be the full simplicial subcategory of W(ALGT )(A) consisting of

objects C for which C ⊗A H0A is weakly equivalent (in W(ALGT )(H0A)) to an object of
M(H0A). Then the nerve W̄M is a geometric derived n-stack.

Proof. The proof of Corollary 3.10 carries over. �

Example 3.16 (Moduli of finite schemes over an affine base). Fix T ∈ dg+AlgR (resp.
T ∈ sAlgR) flat as a graded algebra over R, define M : AlgH0R → sCat by setting

M(A) ⊂ π0WALG(T ⊗R A) to consist of dg (resp. simplicial) T ⊗R A-algebras S for
which H0S is a finite flat A-module, and HiS = 0 for all i > 0. Then we get

M̃ ≃M×
(2)
π0ALGT

ALGT .

Now, H0 gives a functor fromM(A) to the groupoid W(FALGH0T (A)) of (H0T ⊗H0R A)-
algebras, finite and flat over A, and this is a weak equivalence in sCat, so

M≃WFALGH0T ,

which is a hypersheaf by [Pri3] Remark 1.29. Thus the corollary above implies that the

nerve W̄M̃ is a geometric derived 1-stack, which we can now regard as the derived moduli
stack of finite flat algebras equipped with a morphism from T .

3.2. Derived moduli of schemes. Recall that we write dAlgR for either dg+AlgR or
sAlgR.

3.2.1. Cosimplicial derived rings.

Definition 3.17. Define ∆ to be the ordinal number category. For any category C, this
means that C∆ (resp. C∆

opp
) is the category of cosimplicial (resp. simplicial) diagrams in

C.

Definition 3.18. Define a simplicial structure on (dAlgA)
∆ as follows. For C ∈ (dAlgA)

∆,
first define h(∆n, C) ∈ (dAlgA)

∆ by h(∆n, C)i := (Ci)∆
n
i , and then define the Hom-spaces

by

Hom(dAlgA)∆(B,C)n = Hom(dAlgA)∆(B,h(∆n, C)).

Definition 3.19. Given A ∈ (dAlgR)
∆, define LnA to represent the functor MnSpecA

given by

(MnSpecA)(B) = {x ∈
n∏

i=0

HomdAlgR(A
n−1, B) : (∂i)∗xj = (∂j−1)∗xi if 0 ≤ i < j ≤ n}.

Definition 3.20. Say that a morphism A→ B in (dAlgR)
∆ is a Reedy cofibration if the

latching maps

An ⊗LnA LnB → Bn

in dAlgA are cofibrations (in the sense of Definitions 3.1 and 3.2) for all n ≥ 0.
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This is equivalent to satisfying the conditions that for all acyclic surjections in C ′ → C
in dAlgR, the map

HomdAlgR(B,C ′)→ HomdAlgR(B,C)×HomdAlgR
(A,C) HomdAlgR(A,C

′)

is a trivial fibration in S, where we set HomdAlgR(A,C)n := HomdAlgR(A
n, C).

Definition 3.21. For A ∈ dAlgR, define cALGT (A) to be the full simplicial subcategory
of the category (dAlg(T⊗RA))

∆ on cofibrant objects (over T ⊗R A).

Proposition 3.22. For T levelwise flat as a graded algebra over R, the functor cALGT :
dN ♭ → sCat defined above is 2-homogeneous and formally 2-quasi-smooth.

Proof. This is a fairly direct consequence of the proof of Proposition 3.14. Again the only
part which is not immediate is showing that cALGT (A)→ cALGT (B) satisfies Condition
(F2) from Definition 2.22 for all square-zero extensions A → B, and satisfies condition
(TF2) whenever the extension is acyclic.

Given a square-zero extension A → B and an object S in cALGT (B), Proposition

3.14 gives criteria for lifting S0 to S̃0 ∈ ALGT 0(A). Similar criteria apply for lifting the

L0S⊗L0T T
1-algebra S1 to an L0S̃⊗L0T T

1-algebra S̃1, with an augmentation S̃1 →M1(S̃)
extending the augmentation S1 → M1S. We then proceed by induction on the levels of
the cosimplicial diagram. A similar argument applies to lift morphisms. �

Definition 3.23. Say that a map f : A→ B in dAlgR is homotopy-flat (resp. homotopy-
smooth, resp. homotopy-étale) if H0A → H0B is flat (resp. smooth, resp. étale) and the
maps

HnA⊗H0A H0B → HnB

are isomorphisms for all n.
Say that a homotopy-flat map A→ B is a cover if H0A→ H0B is faithfully flat.

Definition 3.24. Say that a Reedy cofibration A→ B in (dAlgR)
∆ is a homotopy-étale

hypercover if the latching maps

An ⊗LnA LnB → Bn

in dAlgA are homotopy-étale covers for all n ≥ 0.

Definition 3.25. Define cALGT,hyp : dN ♭ → sCat by setting cALGhyp(A) to have the
same objects as cAlgT (A), and morphisms

HomcALGT,hyp(A)(B,C) = lim
−→
C→C̃

HomcAlgT (A)(B, C̃),

where the colimit ranges over the category hyp(C) of all Reedy cofibrant homotopy-étale

hypercovers C → C̃, with the only morphisms between them being Reedy cofibrant
homotopy-étale hypercovers. The argument of [Pri1] Lemma 5.9 shows that hyp(C) is
a filtered inverse category.

Composition is defined as follows. Given elements of HomcALGT,hyp(A)(B,C) and

HomcALGT,hyp(A)(C,D), represented by f : B → C̃ and g : C → D̃, we define g ◦ f to

be the composition

B → C̃ → C̃ ⊗C D̃.

Proposition 3.26. The functor cALGT,hyp : dN ♭ → sCat defined above is 2-homogeneous
and formally 2-quasi-smooth.

Proof. This follows immediately from Proposition 3.22, making use of the fact that filtered
colimits commute with finite limits. �



18 J.P.PRIDHAM

3.2.2. Artin hypergroupoids.

Definition 3.27. Define the category dAffR of derived affine R-schemes to be opposite
to dAlgR (i.e. dg+AlgR or sAlgR). Write sdAffR for the category of simplicial objects in
dAffR; this is opposite to (dAlgR)

∆. Say that a morphism in dAffR is a fibration if the
corresponding morphism in dAlgR is a cofibration.

The following definition is adapted from [Pri1]. For the definitions of ∂∆m and Λm
k , see

Definition 3.3.

Definition 3.28. Given Y• ∈ sdAffR, define a strongly quasi-compact relative derived
Artin (resp. Deligne–Mumford) n-hypergroupoid over Y• to be a morphism X• → Y• in
sdAffR, satisfying the following conditions :

(1) for each m ≥ 0, the matching map

Xm → HomS(∂∆
m,X)×HomS(∂∆m,Y ) Ym

is a fibration (this is equivalent to saying that X → Y is opposite to a Reedy
cofibration in (dAlgR)

∆);
(2) for each k,m, the partial matching map

Xm → HomS(Λ
m
k ,X) ×HomS(Λ

m
k
,Y ) Ym

is a homotopy-smooth (resp. homotopy-étale) cover (in the sense of Definition
3.23);

(3) for all m > n and all k, the partial matching maps

Xm → HomS(Λ
m
k ,X) ×HomS(Λ

m
k
,Y ) Ym

are weak equivalences.

Proposition 3.29. The simplicial category of strongly quasi-compact n-geometric derived
Artin (resp. Deligne–Mumford) stacks over the hypersheafification Spec (T⊗L

RA)
♯ is weakly

equivalent to the full subcategory HYPn
T (A) of cALGT,hyp(A) whose objects are dual to

strongly quasi-compact derived Artin (resp. Deligne–Mumford) n-hypergroupoids.

Proof. This is [Pri1] Theorem 7.21. The functor is given by sending C ∈ HYPn(A) to the
hypersheafification of the presheaf SpecC : dAffopp

R → S. �

Definition 3.30. Given a flat ∞-geometric Artin stack Y over H0R, and A ∈ AlgH0R

let FStacknY(A) be the simplicial category of n-geometric Artin stacks over Y ⊗H0R A,
flat over A, and set FStackY(A) = lim−→n

FStacknY(A). Likewise, given an ∞-geometric

derived Artin stack Y over R and A ∈ dAlgR, let dStacknY(A) be the simplicial category

of n-geometric derived Artin stacks over Y⊗L

R A, and set dStackY(A) = lim
−→n

dStacknY(A).

Note that if we set Y := Spec (T )♯, then Proposition 3.29 shows that sheafification
gives an∞-equivalence HYPn

T (A)→ dStacknY(A). Also note that the maps dStacknY(A)→
dStackY(A) are homotopy formally étale, as are the maps FStacknY(A) → dStacknY(A),
FStackY(A) → dStackY(A) and the embedding FSchY(A) → FStackY(A) of algebraic
spaces into ∞-geometric stacks.

Lemma 3.31. Given an∞-geometric derived Artin stack Y over R, the functor dStackY :

dN ♭
R → sCat is homotopy-preserving and homotopy-homogeneous.

Proof. Choose a representative T ∈ cALG(R) with (SpecT )♯ ≃ Y (as in Proposition
3.29). If we write HYPT (A) := lim

−→n
HYPn

T (A), then Proposition 3.29 allows us to replace

dStackY(A) with HYPT (A). The map HYPT → cALGT,hyp(A) is homotopy formally
étale, so it suffices to show that cALGT,hyp(A) is homotopy-preserving and homotopy-
homogeneous. This follows from combining Lemmas 2.24 and 2.27 with Proposition 3.26.

�
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Theorem 3.32. Take an ∞-geometric derived Artin stack Y, homotopy-flat over R.
Assume that we have an n-truncated hypersheaf M : AlgH0R → sCat, open in

π0W(FStackY), noting that homotopy-flatness ensures that YA := Y ⊗L

R A is a flat ∞-
geometric (underived) Artin stack over A for all A ∈ AlgH0R.

Also assume that this satisfies the following conditions

(1) for all finitely generated A ∈ AlgH0R and all X ∈ M(A), the functors

ExtiX(LX/YA ,OX ⊗
L

A −) : ModA → Ab

preserve filtered colimits for all i > 1.
(2) for all finitely generated integral domains A ∈ AlgH0R and all X ∈ M(A), the

groups ExtiX(LX/YA ,OX) are all finitely generated A-modules.
(3) for all discrete local Noetherian H0R-algebras A, with maximal ideal m, the map

M(A)→ lim
←−

hM(A/mn)

is a weak equivalence (see Remark 2.11 for a reformulation).
(4) The functor c(π0M) : Algπ0R → Set of components of the groupoid π0M preserves

filtered colimits.
(5) For all A ∈ Algπ0R and all X ∈M(A), the functors πiHomM(X,X) : AlgA → Set

preserve filtered colimits for all i ≥ 0.

Let M̃ : dN ♭
R → sCat be the full simplicial subcategory of W(cALGT,hyp(A)) consisting

of objects X for which X ⊗A H0A is weakly equivalent in dStackY(H0A) to an object of

M(H0A). Then the nerve W̄M̃ is a geometric derived n-stack.

Proof. As in Lemma 3.31, we may replace cALGT,hyp(A) with dStackY(A), so

M̃(A) ≃M(H0A)×
h
W(dStackY(H0A))W(dStackY(A)),

becauseM is open in FStackY, which is open in π0dStackY.
The proof of Corollary 3.10 now carries over to this context, using Lemma 3.31 in place

of Proposition 3.7. The only non-trivial part is the calculation

Di
X(W̄M̃/R,M) = Exti+1

X (LX/YA ,OX ⊗
L

A M),

but this follows from the calculations of [Pri1] §9.2, for instance. �

Remark 3.33. Since W̄M̃ is a geometric derived stack, it extends canonically to a functor

W̄M̃ : dAlgR → S

where dAlgR = sAlgR or dg+AlgR. The obvious candidate for this functor is given

by adapting the description above; M̃ should be the full simplicial subcategory of
W(cALGT,hyp) (or equivalently ofW(dStackY)) consisting of objects X for which X⊗L

AH0A
is weakly equivalent in dStackY(H0A) to an object ofM(H0A).

To check that this is indeed the case, it would suffice to verify the conditions of [Pri3]
Corollary 1.35 for this functor. These reduce to showing that the functor

W̄W(dStackY) : dAlgR → S

is a homotopy-preserving functor (which is certainly true), and nilcomplete in the sense
that for all A ∈ dAlgR, the map

W̄W(dStackY)(A)→ lim
←−

hW̄W(dStackY)(PkA)

is an equivalence, for {PkA} the Postnikov tower of A. Nilcompleteness certainly seems
plausible, as similar statements in [Lur1] §8 are asserted to be automatic. However, broadly
similar comparisons in [TV2] involve weighty strictification theorems (such as [TV2] The-
orem B.0.7 or [TV1] Theorem 4.2.1).

We now give a generalisation which will be used for moduli of pointed schemes.
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Definition 3.34. Given a morphism f : Z→ Y of ∞-geometric derived Artin stacks over
R, define dStackZY : dN ♭

R → sCat as follows. First set ZA := Z ⊗L

R A, YA := Y ⊗L

R A;

objects of dStackZY(A) are factorisations

ZA
i
−→ X

p
−→ YA

of f in the category of ∞-geometric derived Artin stacks over A. Morphism spaces are
given by homotopy fibre products

HomdStackZ
Y
(A)(X,X ′) := HomYA

(X,X ′)×h
i∗,HomYA

(ZA,X′) {i
′}.

Theorem 3.35. Take a morphism Z → Y of homotopy-flat ∞-geometric derived Artin
stacks over R. Assume that we have an n-truncated hypersheaf M : AlgH0R → sCat, open

in the functor A 7→ W((Z⊗L

R A)↓FStackY), noting that YA := Y⊗L

R A and ZA := Z⊗L

R A
are flat ∞-geometric (underived) Artin stacks over A for all A ∈ AlgH0R.

Also assume that these satisfy the following conditions

(1) for all finitely generated A ∈ AlgH0R and all ZA
i
−→ X inM(A), the functors

ExtjX(LX/YA , (OX → Ri∗OZA
)⊗L

A −) : ModA → Ab

preserve filtered colimits for all j > 1.
(2) for all finitely generated integral domains A ∈ AlgH0R and all X ∈ M(A), the

groups ExtjX(LX/YA ,OX → Ri∗OZA
) are all finitely generated A-modules.

(3) for all discrete local Noetherian H0R-algebras A, with maximal ideal m, the map

M(A)→ lim←−
hM(A/mn)

is a weak equivalence (see Remark 2.11 for a reformulation).
(4) The functor c(π0M) : Algπ0R → Set of components of the groupoid π0M preserves

filtered colimits.
(5) For all A ∈ Algπ0R and all X ∈ M(A), the functors πjHomM(X,X) : AlgA → Set

preserve filtered colimits for all j ≥ 0.

Let M̃ : dN ♭
R → sCat be the full simplicial subcategory of W(dStackZY) consisting of

morphisms i : ZA → X for which X ⊗A H0A is weakly equivalent in dStackZY(H0A) to an

object of M(H0A). Then the nerve W̄M̃ is a geometric derived n-stack.

Proof. Lemma 3.31 ensures that dStackY is homotopy-preserving and homotopy-

homogeneous, so it follows immediately that dStackZY inherits these properties. Lemma

2.30 ensures that the same is true of W(dStackZY).
In order to verify the conditions of Theorem 2.10, we now just need to establish the

isomorphisms

Dj

(ZA

i
−→X)

(W̄M̃/R,M) = Extj+1
X (LX/YA ,OX ⊗

L

A M → Ri∗OZA
⊗L

R M).

As in the proof of Theorem 3.32, we know that the loop space of T
(ZA

i−→X)
(W̄M̃/R)(M)

is the homotopy fibre of

RHomX(LX/YA ,OX ⊗
L

A M)→ RHomZA
(Li∗LX/YA ,OZA

⊗L

R M)

over 0. We can rewrite the second space as RHomX(LX/YA ,Ri∗OZA
⊗L

RM), and the result
follows by noting that homotopy fibres correspond to mapping cones of complexes. �
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3.3. Examples. In the examples which follow, we will always choose a functorial full
subgroupoidM of the core W(FStacknY ) on objects which are fibred in geometric 0-stacks
(i.e. algebraic spaces) over Y ⊗H0RA — this has the effect thatM is a bona fide groupoid,

not just an ∞-groupoid. We get a derived 1-stack by taking the nerve W̄M̃ of M̃ as
constructed in Theorem 3.32.

Our first application generalises the examples of Hilbert schemes and moduli of curves
in [Lur1] §8, but beware that the derived schemes featuring in [Lur1] form a larger category
than derived geometric 0-stacks.

Example 3.36 (Moduli of schemes). Let Y be a homotopy-flat derived geometric 0-stack
over R, so Y := Y⊗L

RH0R is a flat algebraic space over H0R. Choose a stackM equipped
with a functorial fully faithful embedding ofM into the core of FSchY , with the property
that M is closed under infinitesimal deformations. This ensures that W̄M → W̄FSchY
is open.

An example satisfying these conditions is when Y = R and M is some moduli stack
schemes with fixed dimension. Another example is to let M(A) be the set of closed
subschemes of Y ⊗H0R A.

Then we can define M̃ as above, and we get a derived 1-stack W̄M, with π0W̄M̃ =
BM.

If M is known to be an algebraic stack, then the last two conditions of Theorem 3.32
are automatically satisfied, so for geometricity of W̄M̃ we need only check properties of
the cohomology groups

Di
f (W̄M̃/R,M) = Exti+1

X (LX/Y⊗H0R
A,OX ⊗

L

A M),

for A ∈ AlgH0R and X ∈ M(A).

Our next application gives a generalisation of [TV2] Theorem 2.2.6.11.

Example 3.37 (Derived Hom-stacks). Another example is to fix n-geometric derived stacks
X,Z, homotopy-flat over R. Set X := π0X = X ⊗L

R H0R, Z := π0Z; these are flat n-
geometric stacks over H0R.

Now, let Y := X×SpecR Z with Y := π0Y, and setM(A) ⊂ SchY (A) to consist of maps

U ×SpecR SpecA→ X ×SpecR Z

for which the projection U → X is an equivalence. Then W̄M(A) is isomorphic to the

simplicial set Hom(X ×SpecH0R SpecA,Z). The derived moduli stack W̄M̃(A) is weakly
equivalent to the nerve of

dStackY(A)×
h
dStack(A) {Z}

— W̄M̃ is the derived Hom-stack Hom(X,Z).
By considering the arrow category of dStack(A), we see that this in turn is equivalent

to Hom(X×SpecR SpecA,Z). Thus a far simpler characterisation of this moduli functor is

given by choosing B,C ∈ HYPn
R with X = (SpecB)♯,X = (SpecC)♯. Then

M̃(A) ≃ HomHYPn
R(A)(C ⊗R A,B ⊗R A).

Of course, if X,Z are affine schemes, then we can take n = 0. If they are semi-separated
schemes, we can take n = 1.

For f : X ⊗A→ Z inM(A), Hom(X,Z) has cohomology groups

Di
f (Hom(X,Z)/R,M) = Exti+1

X⊗A(L
X⊗A/(X×Z)⊗A,OX ⊗H0R M)

= Exti+1
X⊗A(f

∗LZ/H0R[1],OX ⊗H0R M)

= ExtiZ(L
Z/H0R,Rf∗OX ⊗H0R M).
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Theorem 3.32 (or a direct application of Theorem 2.10 to Hom(X ×SpecR SpecA,Z))
then shows that Hom(X,Z) is a derived n-geometric stack provided X is strongly quasi-
compact (i.e. quasi-compact, quasi-separated . . . ), that Z is almost of finite presentation,

and that the groups ExtiX(f∗LZ/H0R,OX⊗H0R−) have suitable finiteness properties (which
are satisfied if X is proper).

Example 3.38 (Moduli of torsors). A special case of Example 3.37 is to take a smooth
group scheme G over R, and to set Z to be the classifying stack BG. Then Hom(X, BG)
is the derived stack of G-torsors on X — when G = GLr, this gives derived moduli of
vector bundles, and when G = SLr it gives derived moduli of vector bundles with trivial
determinant.

To calculate the cohomology groups Di
f (M̃/R,M) for f : X × SpecA → BG, write

e : SpecR → G for the unit. Then e∗Ω(G/R) has a G-action, so can be regarded as a
quasi-coherent sheaf C on BG. We then have LBG/R ≃ C [1], so

Di
f (Hom(X, BG)/R,M) = Exti+1

X⊗A(f
∗
C ,OX ⊗R M).

If f corresponds to a G-torsor P , then note that f∗C = P ×G (e∗Ω(G/R)).
If G = GL(V ), then C ∼= End(V ) with the adjoint action, and for f : X × SpecA →

BGLn corresponding to a vector bundle E , we have f∗C ∼= End(E ), so

Di
f (Hom(X, BG)/R,M) = Exti+1

X⊗A(End(E ),OX ⊗R M)

= Exti+1
X⊗A(E ,E ⊗R M).

Example 3.39 (Moduli of polarised schemes). For an example combining aspects of all the
problems so far, consider moduli of polarised schemes. In Theorem 3.32, take Y = BGm,
and let M(A) be some groupoid of flat schemes X over A, equipped with polarisations

f : X → BGm, with morphisms required to respect the polarisations. Then we have M̃
as defined at the the beginning of the section. Again, W̄M̃ will be a geometric derived
1-stack whenever M is an algebraic 1-stack and the cohomology groups Di(W̄M̃/R,−)
satisfy the requisite finiteness conditions.

Explicitly,

Di
X(W̄M̃/R,M) = Exti+1

X (LX/BGm ,OX ⊗H0R M).

The calculations of the previous example show that f∗LBGm = OX [1], so the cotangent

complex LX/BGm is an extension of OX by LX/H0R. This gives a long exact sequence

. . .Hi+1(X,OX ⊗H0R M)→ Di
X(W̄M̃/R,M)→ Exti+1

X (LX/H0R,OX ⊗H0R M)→ . . . ,

so properness of X gives finiteness.

Remark 3.40. When considering moduli of polarised varieties, it is common only to con-
sider the polarisation up to equivalence, so (X,Lm) ∼ (X,Ln). The corresponding derived
moduli stack can be constructed by taking the filtered colimit

lim−→
n∈N×

W̄M̃,

for M̃ as in Example 3.39, with the transition maps M̃ → M̃ (corresponding to m→ mn
in N×) coming from the multiplication map [n] : Gm → Gm.

Alternatively, we could simply replace Gm with the (non-quasi-separated) algebraic
group space lim

−→n∈N×
Gm = Gm/µ∞, where µ∞ =

⋃

n∈N× µn.

Example 3.41 (Moduli of group schemes). Given a smooth group scheme G over A,
the nerve BG is a 1-truncated geometric Artin stack over A. However, beware that
HomA(BG,BG′) is the nerve of the groupoid [HomGpSch(G,G′)/G′(A)], where HomGp

denotes group scheme homomorphisms and G′ acts by conjugation. IfM(A) is the nerve
of some open 2-subcategory of the category of group schemes over A, then B gives a map
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M → FStack(A), so we may apply Theorem 3.32 to give a derived moduli functor M̃
wheneverM satisfies the conditions of that theorem.

Since we usually wish to kill the 2-morphisms (given by inner automorphisms), an
alternative approach is to apply Theorem 3.35, taking Z = Y = SpecR. Making use of
the canonical basepoint i : SpecA→ BG, we then have

HomA(BG,BG′)×i∗,HomA(SpecA,BG′) {i
′} ≃ HomGpSch(G,G′),

so the nerve functor allows us to regard smooth group schemes over A as an open subcat-

egory of dStackSpecRSpecR(A).

As in Example 3.38, LBG/A ≃ C [1], where C = e∗Ω(G/A) with its canonical G-action.
Thus

Di
G(W̄M̃/R,M) ∼= Exti+2

BG(C ,OBG ⊗
L

A M)

for i ≥ 0 (or, in the unpointed case, for all i). For i < −1, the groups Di
G(W̄M̃/R,M)

are 0 in the pointed case, with i = −1 giving an exact sequence

0→ HomBG(C ,OBG ⊗
L

A M)→ HomA(e
∗C ,M)→

D−1
G (W̄M̃/R,M)→ Ext1BG(C ,OBG ⊗

L

A M)→ 0.

Remark 3.42. Given a flat finitely presented group scheme G over A, [Art] Theorem 6.1
implies that BG is a 1-truncated geometric Artin stack over A. The analysis of the example
above then carries over, subject to replacing ΩG with the complex χG defined in [Ill2]. The
same substitution will also work in the following example, with [Toë] Theorem 0.1 ensuring
that K(G,n) be an n-truncated geometric Artin stack over A.

Example 3.43 (Moduli of commutative group schemes). For smooth commutative group
schemes G over A, we can no longer study moduli via BG, since this has non-commutative
deformations. However, for all n ≥ 2, the construction K(G,n) gives an n-truncated
geometric Artin stack over A, whose deformations all correspond to commutative group
schemes. Rather than fixing one value of n, the most natural approach is to use them all
simultaneously.

The loop space functor (X,x) 7→ XS1
×X {x} gives a endofunctor Ω of dStackSpecRSpecR.

This maps K(G,n) to K(G,n− 1) (up to weak equivalence). We define dSpStackR(A) to
be the homotopy inverse limit of the diagram

. . .
Ω
−→ dStackSpecRSpecR

Ω
−→ dStackSpecRSpecR(A);

this is the ∞-category of spectral derived stacks. Defining FSpStackR(A) from
FStackRR(A) analogously, we have a functor from the category SGpSch(A) smooth commu-
tative group schemes G over A to FSpStackR(A), given by G 7→ {K(G,n)}n. Explicitly,
K(G, 0) = G, and we form K(G,n) from the group n − 1-stack K(G,n − 1) as the nerve
K(G,n) := W̄K(G,n− 1). Then SGpSch is an open subcategory of FSpStackR(A), each

of the projections K(−, n) : SGpSch→ dStackSpecRSpecR(A) also being open for n ≥ 2.

We can now adapt Theorem 3.35, replacing dStackZY with dSpStack, noting that the
latter is homotopy-preserving and homotopy-homogeneous. In order to determine which
open subcategoriesM of SGpSch yield derived geometric stacks

M̃(A) :=M(H0A)×
h
FSpStack(H0A) dSpStack(A),
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we need to calculate the cohomology groups Di
G(W̄M̃/R,M). The theorem implies that

these groups are given by cohomology of

lim
←−
n

RHOMK(G,n)(L
K(G,n)/A,OK(G,n) ⊗

L

A M → Ri∗M)[1]

= lim
←−
n

RHOMK(G,n)(OK(G,n) ⊗A e∗Ω(G/A)[n + 1],OK(G,n) ⊗
L

A M → Ri∗M)

= RHOMA(e
∗Ω(G/A), lim←−

n

RΓ̃(K(G,n),OK(G,n))⊗
L

A M)[n + 1],

where RΓ̃ = RΓ/H0. We can rewrite this as

Di
G(W̄M̃/R,M) = Exti+1

Z (lim−→
n

NZK(G,n)[n],HomA(e
∗Ω(G/A),M)),

where N denotes Dold–Kan normalisation, and Ext is taken in the category of abelian
fppf sheaves over SpecA. This ties in with the approach of [Ill1] §VII.4 (as sketched in
[Ill2] Theorem 5.3).

Now, [Car] Theorem 9.7 (adapted to abelian sheaves as in [Bre] Theorem 3) shows that

lim
−→
n

Hn(NZK(G,n)) = G,

and that for fixed q, the groups Hn+q(NZK(G,n)) are constant for n > q, and can be
expressed in terms of G/pG and pG for primes p. [Explicit descriptions up to q=5 are
given at the end of [Bre] §1.] In particular, Hn+1(lim−→n

NZK(G,n)) = 0 for n > 1, so

Di
G(W̄M̃/R,M) = Exti+1

Z (G,HomA(e
∗Ω(G/A),M))

for all i ≤ 0.

Remark 3.44. This approach means that we can think of (derived) commutative group
schemes as functors from simplicial (or dg) algebras to spectra. By contrast, derived stacks
are functors from simplicial algebras to simplicial sets. This might help to explain why
Shimura varieties are one of the rare examples of moduli spaces which extend naturally to
brave new stacks (i.e. functors from ring spectra to simplicial sets), as observed in [Lur2].

Example 3.45 (Moduli of abelian schemes). A special case of the previous example is
when M is an open subcategory of the category of abelian schemes. The description of
the cohomology groups in this case simplifies greatly. The key observation is that

RΓ(G,OG) ≃ SymmA(H
1(G,OG)[−1]),

with H1(G,OG) projective over A.
If we have H1(G,OG) ∼= Ag, then the equivalence becomes

RΓ(G,OG) ≃ C•(K(Zg, 1),Z) ⊗L

Z A.

Thus

lim←−
n

RΓ(K(G,n),OK(G,n))[n] ≃ lim←−
n

C•(K(Zg, n + 1),Z)[n]⊗L

Z A

= C•−1
st (HZg,Z)⊗L

Z A

= C•−1
st (HZ,Z)⊗L

Z Ag,

the complex of stable cochains of the integral Eilenberg–Mac Lane spectrum HZ.
In general, lim←−n

RΓ(K(G,n),OK(G,n))[n] can be rewritten A-linearly in terms of the

cocommutative A-coalgebra RΓ(G,OG) (a model for which is the normalised Čech complex
with Eilenberg-Zilber comultiplication). This gives us a morphism

C•
st(HZ,Z)⊗L

Z lim
←−
n

RΓ(K(G,n),OK(G,n))[n]→ lim
←−
n

RΓ(K(G,n),OK(G,n))[n],
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inducing a map

C•−1
st (HZ,Z)⊗L

Z H1(G,OG)→ lim
←−
n

RΓ(K(G,n),OK(G,n))[n].

We know that this is an isomorphism locally on A (as H1(G,OG) is locally free), so it is
an isomorphism in general.

Thus

Di
G(W̄M̃/R,M) ∼= HomA(e

∗Ω(G/A),H1(G,OG))⊗A Hi
st(HZ,M).

These stable cohomology groups can be calculated by applying the universal coefficient
theorem to [Car] Theorem 7; alternatively we could apply the universal coefficient theorem
for Tor to the integral Steenrod algebra Hi

st(HZ,Z). The important features are that
H<0

st (HZ,M) = 0, while H0
st(HZ,M) = M and H>0

st (HZ,M) is an invariant of the torsion
and cotorsion in M . In particular, if M is a Q-module, then H>0

st (HZ,M) = 0. We always
have H1

st(HZ,M) = 0, which is why moduli of abelian varieties are unobstructed.

The example above only gives a derived Artin stack when a suitable moduli stack of
abelian varieties exists. This is seldom the case, so we now consider polarisations.

Example 3.46 (Moduli of polarised abelian schemes). A polarisation on an abelian scheme
G yields a line bundle L for which

µ∗
L ∼= pr∗1L ⊗ pr∗2L ,

where µ : G × G → G is the multiplication map. This is equivalent to a morphism
f : G → BGm with f ◦ µ = Bµ ◦ (f, f). Since K(G,n) = W̄K(G,n − 1), this gives us
compatible maps

K(G,n)→ K(Gm, n+ 1)

for all n ≥ 0.
Therefore the Eilenberg–Mac Lane spectrum G 7→ HG gives a functor from polarised

abelian schemes over A to FSpStackR(A) ↓Ω
−1H(Gm ⊗ A), where Ω−1Hπ = {K(π, n +

1)}n. A pair (G,L ) as above is a polarised (resp. principally polarised) abelian scheme
if the induced map G → G∨ is an isogeny (resp. an isomorphism). Since isogenies and
isomorphisms are open in the space of group scheme homomorphisms, we can takeM(A)
to be the category of polarised (or principally polarised) abelian schemes over A.

In order to proceed further, we need to compute the cotangent complexes
LK(G,n)/K(Gm,n+1). The calculations of Example 3.39 adapt to show that this is an exten-
sion of OG[n] by e∗Ω(G/A) ⊗A OG[n]. Now, there is a spectral sequence

Hi(K(G,n)j ,OK(G,n)j) =⇒ Hi+j(K(G,n),OK(G,n));

since K(G,n)j = SpecA for all j < n, this means that Hj(K(G,n),OK(G,n)) = 0 for all

0 < j < n. In particular, we have Ext1K(G,n)(e
∗Ω(G/A) ⊗A OG,OG) = 0 for all n ≥ 2,

giving a decomposition

LK(G,n)/K(Gm,n+1) ∼= (e∗Ω(G/A)⊕A)⊗A OG[n].

Therefore

Di
G(W̄M̃/R,M) ∼= HomA(e

∗Ω(G/A) ⊕A,H1(G,OG))⊗A Hi
st(HZ,M),

where

M̃(A) =M(H0A)×
h
(FSpStack(H0A)↓Ω−1H(Gm⊗H0A)) (dSpStack(A)↓Ω

−1H(Gm ⊗A)).

Since these groups satisfy the requisite finiteness conditions, and asM is representable,
this means that M̃ satisfies Theorem 2.10, so is a 1-truncated derived geometric Deligne-
Mumford stack.
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Remark 3.47. If M is a Q-module, then Hi
st(HZ,M) = 0 for all i > 0, so in Example 3.46,

we have

Di
G(W̄M̃/R,M) ∼=

{
HomA(e

∗Ω(G/A) ⊕A,H1(G,OG))⊗A M i = 0
0 i 6= 0.

Since M is a smooth scheme, the map M → M̃ is therefore an equivalence of derived
stacks (since it is an isomorphism on π0 and on the groups Di). In other words, the derived
moduli stack of (principally) polarised abelian schemes is just the ordinary moduli stack
in characteristic zero.

However, even in this case, Example 3.46 provides us with new information: it provides
us with the notion of a derived abelian scheme G over a dg algebra A. Explicitly, G is
a spectral derived stack over HGm × SpecA for which the derived pullback G ⊗L

A H0A is
equivalent to the Eilenberg–Mac Lane spectrum HG, for some polarised abelian scheme
G over H0A.

4. Derived moduli of quasi-coherent sheaves

4.1. Derived quasi-coherent sheaves. Given a simplicial ring A•, the simplicial nor-
malisation functor N s of Definition 2.1 induces an equivalence between the categories
sMod(A) of simplicial A•-modules, and dg+Mod(N sA) of N sA-modules in non-negatively
graded chain complexes, where the Eilenberg–Zilber shuffle product makes N sA into
a graded-commutative algebra. As observed in [TV2] §2.2.1, this extends to give a
weak equivalence between the ∞-category of stable A-modules, and the ∞-category
dgMod(N sA) of N sA-modules in Z-graded chain complexes, and hence an equivalence
between the corresponding homotopy categories. More precisely, the ∞-structure on
dgMod(N sA) comes from a model structure:

Definition 4.1. In dgMod(N sA), fibrations are surjections, weak equivalences are quasi-
isomorphisms, and cofibrations satisfy LLP with respect to trivial fibrations. Explicitly,
f : L→M is a a cofibration if it is a retract of a transfinite composition of monomorphisms
f ′ : L′ →M ′ with coker f ′ ∼= (N sA)[n] for some n.

In particular, if A is discrete and f is a monomorphism with coker f bounded below
and levelwise projective, then f is a cofibration.

Definition 4.2. Given L,M ∈ dgMod(N sA), we can then define HOMA(L,M) to be
the chain complex given in level n by A-linear maps L → M [n] of graded objects. The
differential on HOMA(L,M) is given by d(f) = d ◦ f ± f ◦ d. The simplicial structure on
dgMod(N sA) is then given by setting

HomA(L,M) := (N s)−1(τ≥0HOMA(L,M)),

where τ≥0 is good truncation.

The associated ∞-category is given by the full simplicial subcategory of dgMod(N sA)
on cofibrant objects. Equivalently, we have derived function complexes on dgMod(N sA)

given by RHom(L,M) := Hom(L̃,M), for L̃→ L a cofibrant replacement.

Definition 4.3. An object X• in sdAffR is said to be a strongly quasi-compact homotopy
derived Artin n-hypergroupoid if it admits a map X• → X̃• to a strongly quasi-compact
derived Artin n-hypergroupoid with the property that the level maps Xn → X̃n are all
weak equivalences in dAffR.

Definition 4.4. If X is a strongly quasi-compact homotopy derived Artin l-
hypergroupoid, define the simplicial cosimplicial algebra O(X)•• by O(X)nm =
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Γ(Xm
n ,OXm

n
). Define the category dgMod(X) to have objects M consisting of complexes

Mn
• ∈ dgMod(N sO(X)n• ) for all n, together with morphisms

∂i : Mn
• ⊗NsO(X)n• ,∂

∗
i
N sO(X)n+1

• → Mn+1
•

σi : Mn
• ⊗NsO(X)n• ,σ

∗
i
N sO(X)n−1

• → Mn−1
• ,

satisfying the usual cosimplicial identities.

Definition 4.5. A morphism f : M → N in dgMod(X) is said to be a weak equivalence
each map fn : Mn → Nn is a weak equivalence in dgMod(N sO(X)n• ). Say that f is a
fibration if each map fn : Mn → Nn is surjective.

Finally, f is said to be a cofibration if it satisfies the LLP with respect to trivial fi-
brations. For an explicit characterisation, first form the nth latching object LnM ∈
dgMod(N sO(X)n• ) as the cokernel of

(α− β) :

n⊕

i=0

i−1⊕

j=0

∂∗
i ∂

∗
jM

n−2 →
n−1⊕

i=0

∂∗
i M

n−1,

where for x ∈ ∂∗
i ∂

∗
jM

n−2 = ∂∗
j ∂

∗
i−1M

n−2, we define α(x) = ∂∗
i (∂

j)x ∈ ∂∗
i M

n−1, and

β(x) = ∂∗
j (∂

i−1)x ∈ ∂∗
jM

n−1. Then f is a cofibration if and only if the maps

LnN ⊕LmM Mn → Nn

are cofibrations in dgMod(N sO(X)n• ) for all n.

We can then form the simplicial structure by analogy with dgMod(N sA): define the
chain complex

HOMX(M,N)n := HomO(X)(M,N [n]),

where Hom respects cosimplicial, but not chain, structures. Then Hom(M,N) :=
(N s)−1(τ≥0HOMX(M,N)), with RHom given by taking a cofibrant replacement for M .

Definition 4.6. Define dgMod(X)cart ⊂ dgMod(X) to be the full subcategory consisting
of those M for which the morphisms ∂i are all weak equivalences. Let Ho(dgMod(X))cart)
be the category obtained by localising at weak equivalences. Note that dgMod(X)cart
also inherits a simplicial structure from dgMod(X). Objects of dgMod(X)cart are called
derived quasi-coherent sheaves on X.

Proposition 4.7. Fix a strongly quasi-compact homotopy derived Artin n-hypergroupoid
X. The simplicial category of derived quasi-coherent sheaves on X is equivalent to the
∞-category dgModcart(X

♯) of homotopy-Cartesian modules on X♯ (as in [TV2] Definition
1.2.12.1) or equivalently, of quasi-coherent complexes on X♯ (in the sense of [Lur1] §5.2).

Proof. This is [Pri1] Proposition 4.7. �

In particular, this means that dgMod(X)cart is essentially independent of the atlas X
chosen for X♯.

Definition 4.8. Define a strongly quasi-compact Artin (resp. Deligne–Mumford) n-
hypergroupoid over a ring R to be an object X• ∈ sAffR, such that the partial matching
maps

Xm →MΛm
k
X

are smooth (resp. étale) surjections for all k,m, and isomorphisms for all m > n and all
k.

In particular, note that every strongly quasi-compact Artin (resp. Deligne–Mumford)
n-hypergroupoid is a strongly quasi-compact homotopy derived Artin (resp. Deligne–
Mumford) n-hypergroupoid. Specialising to underived n-stacks, Proposition 3.29 shows
that every strongly quasi-compact n-geometric Artin (resp. Deligne–Mumford) stack
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is of the form X♯, for some strongly quasi-compact Artin (resp. Deligne–Mumford) n-
hypergroupoid X ([Pri1] Theorem 5.16).

For our purposes, the main applications of derived quasi-coherent sheaves stem from
the following:

Proposition 4.9. (1) Take a strongly quasi-compact Artin n-hypergroupoid X. Then
the category of quasi-coherent sheaves on the geometric stack X♯ is equivalent to
the full subcategory of Ho(dgMod(X)cart) consisting of complexes concentrated in
chain degree 0.

(2) If Y is a semi-separated quasi-compact scheme, take an open affine cover {Ui}
n
i=1.

Let U =
∐

i Ui, and set X to be the strongly quasi-compact Deligne-Mumford 1-
hypergroupoid given by

Xn =

n+1
︷ ︸︸ ︷

U ×Y U ×Y . . . ×Y U .

Then Ho(dgMod(X)cart) is equivalent to the derived category of complexes of quasi-
coherent sheaves on Y .

Proof. The first statement is [Pri1] Corollary 6.7. The second is [Hüt] Theorem 4.5.1, once
we note that X♯ = Y . �

4.2. Moduli.

Definition 4.10. Take A ∈ dg+AlgR (resp. A ∈ sAlgR), and a strongly quasi-compact
homotopy derived Artin n-hypergroupoidX over R, chosen so that each Xn is levelwise flat
over R (which holds for instance if X is a derived Artin n-hypergroupoid). Then observe
that X ⊗R A is a strongly quasi-compact homotopy derived Artin n-hypergroupoid over
A, and define

dCARTX(A)

to be the full simplicial subcategory of the category of dgMod(X ⊗R A)cart on cofibrant
objects.

Proposition 4.11. The functor dCARTX : dN ♭ → sCat defined above is 2-homogeneous
and formally 2-quasi-smooth.

Proof. The proof of Proposition 3.22 carries over to this context, with cofibrancy once
again ensuring the existence of suitable lifts. �

Theorem 4.12. Take an m-geometric derived Artin stack Y over R, and choose a strongly
quasi-compact homotopy derived Artin n-hypergroupoid Y̌ with Y̌♯ = Y and each Y̌n flat
over R.

Assume that we have an n-truncated hypersheaf M : AlgH0R → sCat, open in the

functor A 7→ W(dgModcart(Y⊗
L

R A)).
Also assume that this satisfies the following conditions:

(1) for all finitely generated A ∈ AlgH0R and all E ∈ M(A), the functors

Exti
Y⊗L

R
A
(E ,E ⊗L

A −) : ModA → Ab

preserve filtered colimits for all i 6= 1.
(2) for all finitely generated integral domains A ∈ AlgH0R and all E ∈ M(A), the

groups Exti
Y⊗L

R
A
(E ,E ) are all finitely generated A-modules.

(3) The functor c(π0M) : Algπ0R → Set of components of the groupoid π0M preserves
filtered colimits.
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(4) for all discrete local Noetherian H0R-algebras A, with maximal ideal m, the map

c(π0M(A))→ lim
←−
r

c(π0M(A/mr))

is an isomorphism, as are the maps

Autπ0M(A)(E ) → lim
←−
r

Autπ0M(A/mr)(E /mr)

Exti
Y⊗L

R
A
(E ,E ) → lim←−

r

Exti
Y⊗L

R
A
(E ,E /mr)

for all E ∈ M(A) and all i < 0.

Let M̃ : dN ♭
R → sCat be the full simplicial subcategory of W(dCARTY̌(A)) consisting

of objects F for which F ⊗A H0A is weakly equivalent in dgModcart(Y ⊗
L

R H0A) to an
object of M(H0A). Then the nerve W̄M is an geometric derived n-stack.

Proof. First note that Proposition 4.7 allows us to replace dCARTY̌(A) with

dgModcart(Y⊗
L

R A), so

M̃(A) ≃M(H0A)×
h
W(dgModcart(Y⊗L

R
H0A))

W(dgModcart(Y⊗
L

R A)),

becauseM is open in π0W(dgModcart(Y⊗
L

R −)).
Now, we have

Di
E (W̄M̃/R,M) = Exti+1

Y⊗L

R
A
(E ,E ⊗L

A M),

for instance from the calculations of [Pri1] §9, where Ext groups are also characterised as

Exti
Y⊗L

R
A
(E ,F ) ∼= H−iRHOMX⊗RA(E ,F ),

provided E is chosen to be cofibrant.
Note that πiHomM(B)(E ,E ) = Ext−i(E ,E ⊗L

AB) for i ≥ 1, and that π0HomM(B)(E ,E )

consists of invertible elements in Ext0(E ,E ⊗L

A B). Thus Condition (1) ensures that for
all A ∈ Algπ0R and all E ∈ M(A), the functors πiHomM(E ,E ) : AlgA → Set preserve
filtered colimits for all i ≥ 0.

Next, we need to establish that for all discrete local Noetherian H0R-algebras A, with
maximal ideal m, the map

M(A)→ lim←−
hM(A/mn)

is a weak equivalence. Since

π1(W̄M(A),E )) = Autπ0M(A)(E )

πi(W̄M(A),E )) = Ext1−i
Y⊗L

R
A
(E ,E )

for i ≥ 2, by Remark 2.11 it suffices to show that each system

{Im (πi(W̄M(A/ms), x = E )→ πi(W̄M(A/mr),E ))}s≥r

satisfies the Mittag-Leffler condition for i ≥ 1 and E ∈ M(A), and that Condition (4)
holds.

Since Ext1−i
Y⊗L

R
A
(E ,E /mr) is a finitely generated A/mr-module, it is Artinian, so the

Mittag-Leffler condition is automatically satisfied for i ≥ 2. For i = 1, we can study the
obstruction maps of Proposition 2.8 to deduce that

Autπ0M(A/mr)(E ) = Ext0
Y⊗L

R
A
(E ,E /mr)×Ext0

Y⊗L

R
A
(E ,E /m) Autπ0M(A/m)(E /m).

Since Ext0
Y⊗L

R
A
(E ,E /mr) is Artinian, we deduce that the Mittag-Leffler condition holds

for i = 1, so we have satisfied the conditions of Remark 2.11.
The proof of Corollary 3.10 now carries over to this context, using Proposition 4.11 in

place of Proposition 3.7.
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�

Remarks 4.13. If R = H0R, we can let Y = Y be a semi-separated quasi-compact scheme,
then form the Čech nerve Y̌ as in part 2 of Proposition 4.9, giving an explicit description
of M̃.

In order to satisfy the finiteness hypotheses for Ext∗, a likely candidate for a derived
geometric n-stack satisfying the hypotheses would be to letM(A) consist of perfect com-
plexes E• of OY ⊗

L

RA-modules of Tor-dimension (n−1) over A, with Hi(E ) quasi-coherent
of proper support on Y .

Definition 4.14. Given an m-geometric (underived) Artin stack Y over H0R, and A ∈
AlgH0R, let FModY (A) be the category of quasi-coherent sheaves (not complexes) on
Y ⊗H0R A, flat over A.

Example 4.15. For Y as in Theorem 4.12, set Y := π0Y (an m-geometric (underived)
Artin stack over H0R). Of course, if R = H0R, then we will have Y = Y. Choose a
stackM equipped with functorial fully faithful embeddings ofM into the core of FModY ,
with the property that M is closed under infinitesimal deformations. This ensures that
W̄M→ W̄FModY is open.

Note that flatness ensures that for any morphism A → B in AlgH0R and F ∈

FModY (A), the complex F ⊗L

AB is weakly equivalent to F ⊗AB, so FModY (A) embeds

into Modcart(Y⊗
L

RA)). In fact, we can characterise FModY (A) as being weakly equivalent

to the subcategory of Modcart(Y⊗
L

RA) consisting of complexes F for which the homology

sheaves Hi(F⊗
L

AB) = 0 for all i 6= 0 and all B ∈ AlgA. Thus FMod→ π0Modcart(Y⊗
L

R−)
is an open embedding.

Provided that the objects of M satisfy the conditions of Theorem 4.12, this gives us
a geometric derived 1-stack of quasi-coherent sheaves of Y. An example for which the
conditions are satisfied arises when Y is a projective scheme over R andM(A) consists of
coherent sheaves on Y ⊗R A, flat over A.

4.2.1. Comparisons. If we wish to study derived moduli of rank r vector bundles on a
homotopy-flat derived geometric ∞-stack X over R, we now have two possible approaches,
which we now show are consistent. Let X = X ⊗R H0R, and defineM : AlgH0R → Gpd
by lettingM(A) be the groupoid of rank r vector bundles on X ⊗H0R A.

Example 3.38 gives one extension Hom(X, BGLr) : dN ♭
R → S of BM. Theorem 4.12

gives another candidate W̄M̃ for an extension, where the objects of M̃ : dN ♭
R → sCat are

quasi-coherent complexes E on X⊗L

R A for which E ⊗L

A H0A is quasi-isomorphic to a rank

r vector bundle on X⊗L

R H0A.

Lemma 4.16. The derived geometric 1-stacks Hom(X, BGLr) and W̄M̃ defined above are
weakly equivalent.

Proof. The argument of Example 3.38 gives a morphism from Hom(X, BGLn) to W̄W(T ),
where T (A) is the full simplicial subcategory of dStackX×BGLr

(A) on objects Z for which
the projection f1 : Z→ X⊗L

R (A) is a weak equivalence. We can then define a morphism

W(T )→ M̃ as follows: let U be the universal rank r vector bundle on BGLr, and send

(Z
(f1,f2)
−−−−→ (X×BGLr)⊗

L

R (A))

in T (A) to the quasi-coherent complex Rf1∗f
∗U on X.

Thus we have constructed a map Hom(X, BGLn) → W̄M̃. It is immediate that this
gives an equivalence on π0, and straightforward to check that it gives isomorphisms on
cohomology groups Di, so it is a weak equivalence, by [Pri3] Proposition 1.37. �

Remark 4.17. We could adapt Theorem 4.12 to moduli of polarised varieties, by considering
pairs (T,M), for T ∈ cALG(A) and M ∈ dCARTT (A). The resulting derived stack
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would parametrise pairs (X,E ), for X a derived geometric m-stack and E a quasi-coherent
complex on X. The argument of Lemma 4.16 then adapts to show that an open substack
of the resulting moduli stack is equivalent to the derived stack from Example 3.39.
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