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HENSELIAN VALUED QUASILOCAL FIELDS WITH

TOTALLY INDIVISIBLE VALUE GROUPS, II

I.D. CHIPCHAKOV

Abstract. This paper characterizes the quasilocal fields from the class
of Henselian valued fields with totally indivisible value groups, over
which there exist finite separable extensions of nontrivial defect. We
show that every nontrivial divisible subgroup of the quotient group Q/Z
of the additive group of rational numbers by the subgroup of integers is
realizable as a Brauer group of such a quasilocal field.

1. Introduction and statements of the main results

Let K be a field, Ksep a separable closure of K, GK = G(Ksep/K) the
absolute Galois group of K and Π(K) the set of those prime numbers for
which the Sylow pro-p-subgroups of GK are nontrivial. The field K is called
primarily quasilocal (abbr, PQL), if every cyclic extension F of K is embed-
dable as a subalgebra in each central division K-algebra D of Schur index
ind(D) divisible by the degree [F : K]; we say thatK is quasilocal, if its finite
extensions are PQL-fields. The notion of a quasilocal field extends the one
of a local field and defines a class which contains p-adically closed fields and
Henselian discrete valued fields with quasifinite residue fields (cf. [23], Ch.
XIII, Sect. 3, [21], Theorem 3.1 and Lemma 2.9, and [3], Proposition 6.4).
Other examples of quasilocal fields, mostly, of nonarithmetic nature (from
the perspective of [3], (1.2), (1.3) and Corollary 5.2), can be found in [5].

The purpose of this paper is to find a satisfactory characterization of
the quasilocal property in the class of Henselian valued fields with totally
indivisible value groups. When finite separable extensions of the considered
Henselian fields are defectless, such a characterization is contained in [1],
Theorem 2.1. This, combined with the following result, stated below, solves
the considered problem in general. The statement of the result is simplified
by the notion of a quasiinertial extension introduced in Section 2.

Theorem 1.1. Let (K, v) be a Henselian valued field, such that char(K̂) =
q 6= 0, and for each p ∈ Π(K), let Kp be the fixed field of some Sylow pro-

p-subgroup Gp ≤ GK . Assume that v(K) 6= pv(K), for every p ∈ Π(K), and
K possesses at least one finite extension in Ksep of nontrivial defect. Then

K is quasilocal if and only if it satisfies the following two conditions:
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(i) v(K)/qv(K) is of order q and Ksep contains as a subfield a quasiinertial

Zq-extension Y of Kq, such that every finite extension Lq of Kq in Ksep with

Lq ∩ Y = Kq is totally ramified;

(ii) r(p)Kp
≤ 2, for each p ∈ Π(K) \ {q}.

For a proof of Theorem 1.1, we refer the reader to [3], Proposition 6.1.
Our main objective in this paper is to prove the following:

Theorem 1.2. Let (Φ, ω) be a Henselian discrete valued field, such that

Φ̂ is quasifinite of characteristic q 6= 0, and let T be a divisible subgroup of

Q/Z with a nontrivial q-component Tq. Then there exists a Henselian valued

quasilocal field (K, v) with the following properties:

(i) The Brauer group Br(K) is isomorphic to T , K/Φ is a field extension

of transcendency degree 1 and v is a prolongation of ω;

(ii) v(K) is Archimedean and totally indivisible, K̂/Φ̂ is an algebraic ex-

tension, and K possesses an immediate Zq-extension I∞.

Brauer groups of quasilocal fields have influence on a wide spectrum of
their algebraic properties (see, e.g., [2], I, Lemma 3.8 and Theorem 8.1, [2],
II, Lemmas 2.3 and 3.3, [4], Sects. 3 and 4, and [5], Sects. 1 and 6). Note also
that, by [3], Corollary 5.2, Br(K) is divisible and embeds in Q/Z whenever
(K, v) is a Henselian valued quasilocal field with v(K) totally indivisible.
Therefore, Theorem 1.2 can be viewed as a complement to Theorem 1.1,
which clearly shows that the study of the fields dealt with in the present
paper does not reduce to the special case singled out by [1], Theorem 2.1.

The basic notation, terminology and conventions kept in this paper are
standard and essentially the same as in [2], I, [3] and [4]. Throughout,
Brauer and value groups are written additively, Galois groups are viewed
as profinite with respect to the Krull topology, and by a profinite group
homomorphism, we mean a continuous one. We write P for the set of prime
numbers, and for each p ∈ P, Zp is the additive group of p-adic integers and
Z(p∞) is the quasicyclic p-group. For any profinite group G, we denote by
cd(G) the cohomological dimension of G, and by cdp(G) its cohomological
p-dimension, for each p ∈ P. Given a field E, Br(E)p is the p-component
of the Brauer group Br(E), pBr(E) = {δ ∈ Br(E) : pδ = 0}, for a fixed
p ∈ P, and P (E) = {p ∈ P : E(p) 6= E}, where E(p) is the maximal p-
extension of E in Esep. For any p ∈ P (E), r(p)E is the rank of G(E(p)/E)
as a pro-p-group; r(p)E := 0 in case p /∈ P (E). We write s(E) for the class
of finite-dimensional central simple E-algebras, d(E) stands for the class of
division algebras D ∈ s(E), and for each A ∈ s(E), [A] is the similarity
class of A in Br(E). For any field extension E′/E, I(E′/E) denotes the
set of its intermediate fields. The field E is called p-quasilocal, for some
p ∈ P, if Br(E)p 6= {0}, or p /∈ P (E), or every extension of E in E(p) of
degree p embeds as an E-subalgebra in each ∆p ∈ d(E) of index p. By [2],
I, Theorem 4.1, E is PQL if and only if it is p-quasilocal, for each p ∈ P (E).

2. Preliminaries on Henselian valuations

Let K be a field with a nontrivial (Krull) valuation v, Ov(K) = {a ∈
K : v(a) ≥ 0} the valuation ring of (K, v), Mv(K) = {µ ∈ K : v(µ) > 0}
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the unique maximal ideal of Ov, ∇0(K) = {α ∈ K : (α−1) ∈Mv(K)\{0}},

and let v(K) and K̂ be the value group and the residue field of (K, v), re-
spectively. We say that v is Henselian, if it is uniquely, up-to an equivalence,
extendable to a valuation vL on each algebraic field extension L/K. It is
known that v is Henselian if and only if (K, v) satisfies the following (Hensel-
Rychlik) condition (cf. [11], Sect. 18.1):

(2.2) Given a polynomial f(X) ∈ Ov(K)[X], and an element a ∈ Ov(K),
such that 2v(f ′(a)) < v(f(a)), where f ′ is the formal derivative of f , there
is a zero c ∈ Ov(K) of f satisfying the equality v(c − a) = v(f(a)/f ′(a)).

When v is Henselian and L/K is algebraic, vL is Henselian and extends

uniquely to a valuation vD on each D ∈ d(L). Denote by D̂ the residue field
of (D, vD) and put v(D) = vD(D). By the Ostrowski-Draxl theorem [8],

[D : K], [D̂ : K̂] and the ramification index e(D/K) are related as follows:

(2.3) [D : K] is divisible by [D̂ : K̂]e(D/K) and [D : K]/([D̂ : K̂]e(D/K))

is not divisible by any p ∈ P, p 6= char(K̂).

The K-algebra D is said to be defectless, if [D : K] = [D̂ : K̂]e(D/K),

and it is called immediate, if D̂ = K̂ and e(D/K) = 1. We say that D/K
is totally ramified, if e(D/K) = [D : K]. When v is Henselian with v(K) 6=
pv(K), for a given p ∈ P, (K, v) is subject to the following alternative (see
[6], Corollary 6.5):

(2.4) (i) K has a totally ramified proper extension in K(p);
(ii) char(K) = 0, K does not contain a primitive p-th root of unity and

the minimal isolated subgroup of v(K) containing v(p) is p-divisible.

Let (K, v) be a Henselian valued field with char(K̂) = p > 0, and let M ∈

I(K(p)/K) be a finite extension of K. When M̂ = K̂, ∇0(M) equals the
pre-image of ∇0(K) under the norm map NM

K , which implies the following:

(2.5) ϕ(µ)µ−1 ∈ ∇0(M), if µ ∈M∗ and ϕ is a K-automorphism of M .

The extensionM/K is called norm-inertial, if ∇0(K) is included in the norm
group N(M/K). We say that M/K is quasiinertial, if Ov(M) equals the
set of those elements δ ∈ M∗, for which the trace TrMK (δµ) ∈ Ov(K), for
every µ ∈ Ov(M). For each primitive element µ of M/K lying in Ov(M),
put δM/K(µ) = vM (f ′µ(µ)), where f

′

µ is the formal derivative of the minimal
(monic) polynomial fµ of µ over K. It is well-known that [M : K]δM/K(µ) =
v(dµ), where dµ is the discriminant of fµ. Our main objective in the rest of
this Section is to show that M/K is quasiinertial if and only if any of the
following three equivalent conditions is fulfilled:

(2.6) (i) For each γ ∈ v(K), γ > 0, there exists λγ ∈ Ov(K), such that

v(TrMK (λγ)) < γ;
(ii) For each γ′ ∈ v(M), γ′ > 0, Ov(M) contains a primitive element µγ′

of M/K satisfying the inequality δM/K(µ′γ′) < γ′;

(iii) There exists L ∈ I(M/K), such that L/K andM/L are quasiinertial.

It follows from the inequalities vM (y) ≤ v(TrMK (y)), y ∈ Ov(M), and the
transitivity of traces in towers of finite separable extensions (cf. [17], Ch.
VIII, Sect. 5) that ifM/K satisfies (2.6) (i) andM0 ∈ I(M/K), thenM/M0
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andM0/K satisfy (2.6) (i) as well. When (2.6) (iii) holds, the assertion that
M/K is quasiinertial is standardly proved by assuming the opposite, using
again trace transitivity. Let r ∈ Ov(M) be a primitive element of M/K.
It is easily obtained (by applying in an obvious manner basic linear alge-
bra, including Vandermonde’s determinant) that if r′ ∈ Ov(M) \ {0} and
TrMK (r′−1rj−1) ∈ Ov(K), j = 1, . . . , [M : K], then 2vM (r′) ≤ v(dr). Hence,
M/K is quasiinertial when (2.6) (ii) holds. As to (2.6) (i), it is satisfied in
caseM/K is quasiinertial (because if a ∈Mv(K)\{0} and a′ ∈ Ov(M), then
TrMK (a−1a′) ∈ Ov(K) if and only if v(a) ≤ v(TrMK (a′))). We show that (2.6)
(i)→(2.6) (ii). Note first that if the set v(K)0 = {γ ∈ v(K) : γ > 0} contains
a minimal element, then the fulfillment of (2.6) (i) or (2.6) (iii) is equivalent
to the condition that M/K is inertial (in the sense of [13]). Therefore, it
suffices to prove that (2.6) (i)→(2.6) (ii) in case v(K)0 does not contain a
minimal element. Assume that (2.6) (i) holds, [M : K] = pn and α is an
element of Ov(M), such that v(TrMK (α)) < v(p). It is easily verified that
α is a primitive element of M/K. Put M ′ = K(α1, . . . , αpn), where αu,
u = 1, . . . , [M : K], are the roots in K(p) of the minimal polynomial fα. We
prove the validity of (2.6) (ii) by showing that vM ′(αu′ −αu′′) ≤ v(TrMK (α)),
for 1 ≤ u′ < u′′ ≤ pn. Suppose first that [M : K] = p and ϕ is a generator
of G(M/K). Then vM (ϕν(α) − α) = vM (ϕ(α) − α), for ν = 1, . . . , p − 1.
As α ∈ Ov(M) and v(TrMK (α)) < v(p), this implies the stated inequality.
The proof in general is carried out by induction on n, under the inductive
hypothesis that n ≥ 2 and, for a field K ′ ∈ I(M/K) of degree [K ′ : K] = p,

TrMK ′ is subject to analogous inequalities. Since TrMK (α) = TrK
′

K (TrMK ′(α)),

whence vK ′(TrMK ′(α)) ≤ v(TrMK (α)) < v(p), this yields vM ′(αu′ − αu′′) ≤

vK ′(TrMK ′(α)), provided that u′ 6= u′′ and αu′ and αu′′ are conjugate over
K ′. Now take indices u′ and u′′ so that αu′ and αu′′ are not conjugate over
K ′. Then we have αu′′ = ψ(αu′), for some ψ ∈ G(M ′/K), which induces
on K ′ a generator, say, ψ′ of G(K ′/K). Denote by Su′ and Su′′ the sets
of roots in M ′ of the minimal polynomials over K ′ of αu′ and αu′′ , respec-
tively. Using the normality of G(M ′/K ′) in G(M ′/K), one obtains that
if vM ′(αu′ − αu′′) > v(TrMK (α)), then there is a bijection ǫ of Su′ on Su′′ ,

such that vM ′(αu−ǫ(αu)) > v(TrMK (α)) whenever αu ∈ Su′ . Our conclusion,
however, contradicts the inequality vK ′(ψ′(TrMK ′(α))−TrMK ′(α)) ≤ v(TrMK (α))

and thereby proves that vM ′(αu′ − αu′′) ≤ v(TrMK (α)). This completes the
proof of the equivalence (2.6) (i)↔(2.6) (ii). The obtained results also indi-
cate that if M/K is quasiinertial, then so are M/M0 and M0/K, for every
M0 ∈ I(M/K). Moreover, it becomes clear that each condition in (2.6) is
equivalent to the one that M/K is quasiinertial. When M/K is Galois, one
concludes in addition that (2.6) (ii) can be restated as follows:

(2.7) For each γ ∈ v(K), γ > 0, there exists βγ ∈ Ov(M), such that
vM (ϕ(βM )− βM ) < γ, for every ϕ ∈ G(M/K), ϕ 6= 1.

With assumptions being as above, let I∞ be a field from I(K(p)/K). We
say that I∞/K is norm-inertial, if I/K is norm-inertial, for finite extension
I of K in I∞. The extension I∞/K is called quasiinertial, if finite extensions
of K in I∞ are is quasiinertial. The defined notions are related as follows:

(2.8) (i) I∞/K is norm-inertial, provided that it is quasiinertial;
4



(ii) If I∞/K is norm-inertial and H 6= pH whenever H is a nontrivial
isolated subgroup of v(K), then I∞/K is quasiinertial; when this holds,
I∞/I is quasiinertial, for every I ∈ I(I∞/K).

Statement (2.8) (i) is easily proved by applying (2.2) and (2.6). The
latter assertion of (2.8) (ii) is implied by (2.6) and the former one. As in
the proof of implication (2.6) (i)→(2.6) (ii), one sees that it suffices to prove
the former part of (2.8) (ii) in the special case where v(K) ≤ R and v(K)
is noncyclic. Moreover, for each finite extension I of K in I∞, one obtains
that if θ ∈ ∇0(I), N

I
K(θ) = 1 + θ0, v(θ0) < v(p) and v(θ0) /∈ pv(K), then

vK(p)(θ− θ
′) ≤ v(θ0), provided θ

′ ∈ K(p), θ′ 6= θ and fθ(θ
′) = 0. Since v(K)

is dense in R, the obtained result proves the former assertion of (2.8) (ii).

3. Preparation for the proof of Theorem 1.2

Our proof is constructive and relies on the following two lemmas.

Lemma 3.1. Let (E, v) be a Henselian valued field with char(Ê) = p 6= 0.
Assume that p ∈ P (E), E(p)/E is immediate, r(p)E ∈ N, and in the mixed

characteristic case, E contains a primitive p-th root of unity. Then:

(i) Ê is perfect, v(E) = pv(E) and Br(E)p = {0};
(ii) G(E(p)/E) is a free pro-p-group; in particular, every cyclic extension

L of E in E(p) lies in I(L∞/E), for some Zp-extension L∞/E, L ⊆ E(p);
(iii) If E is perfect and v(E) ≤ R, then finite extensions of E in E(p) are

quasiinertial, whence every Zp-extension of E is quasiinertial.

Proof. The immediacy of E(p)/E ensures that v(E) = pv(E) (cf. [6], Re-

mark 4.2). Hence, by [3], Lemma 3.2, and our assumption on r(p)E , Ê is
perfect. We show that Br(E)p = {0} and G(E(p)/E) is a free pro-p-group.
When char(E) = p, this is a special case of [14], Proposition 4.4.8, and
[22], Ch. II, Proposition 2, respectively. If E contains a primitive p-th
root of unity, the two assertions are equivalent (by Galois cohomology, see
[24], page 265, [22], Ch. I, 4.2, and [26], page 725), so their validity fol-
lows from [9], Proposition 3.4 (or [3], Proposition 2.5). This indicates that
G(E(p)/E) ∼= GY , for some field Y of characteristic p [16], (4.8) (see also [1],
Remark 2.6). The obtained result, combined with Galois theory and Witt’s
lemma (see [7], Sect. 15), completes the proof of Lemma 3.1 (i) and (ii).
Since the class of free pro-p-groups is closed under the formation of open
subgroups (cf. [22], Ch. I, 4.2 and Proposition 14), the former assertion of
Lemma 3.1 (iii) can be deduced from the latter one. When E contains a
primitive p-th root of unity, the latter part of Lemma 3.1 has been proved
in [6], Sect. 5, so we assume that char(E) = p and E is perfect. Let F
be an extension of E in E(p) of degree p. Then the Artin-Schreier theorem
implies the existence of a sequence t = {tn ∈ Mv(E) : n ∈ N}, such that
tpn+1 = tn 6= 0 and the polynomial Xp −X − t−1

n is irreducible over E with

a root ξn ∈ F , for each index n. Observing that ξ−1
n = tn

∏p−1
j=1(ξn + j)

and vF (ξn) = p−1v(t−1
n ), one obtains by direct calculations that vF (ξ

−1
n ) =

p−1v(tn) and vF (ψ(ξ
−1
n )− ξ−1

n ) = 2vF (ξ
−1
n ). Therefore, ∇0(F ) contains the

elements λn = ξnψ(ξ
−1
n ), n ∈ N, and vF (λn − 1) = p−1v(tn), for every index

n. In view of (2.6) and (2.7), this result proves Lemma 3.1 (iii). �
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Lemma 3.2. Let (E,w) be a Henselian valued field with char(Ê) = q > 0,
w(E) 6= qw(E) and Br(E)q = {0}. Assume also that w(E) is Archimedean

and E′ ∈ I(Esep/E) is the root field over E of the binomial Xq − 1. Then:

(i) Ê is perfect, w(E)/qw(E) is of order q, q ∈ P (E) and finite extensions

of E in E(q) are totally ramified;

(ii) For any cyclic extension Φ of E in E(q), there exists Γ0 ∈ I(E′(q)/E),
such that E′(q)/Γ0 is a Zq-extension and Φ ∩ Γ0 = E.

Proof. The assertion that q ∈ P (E) is implied by the fact that (E,w) satis-
fies condition (i) of (2.4). Since, by [15], Theorem 3.16, E is a nonreal field,
[27], Theorem 2, indicates that E(q) contains as a subfield a Zq-extension
Γ of E. In particular, [E(q) : E] = ∞. Let L be a finite extension of E in
E(q), and let [L : E] = qk. It is clear from [4], Theorem 3.1, and the trivial-
ity of Br(E)q that N(L/E) = E∗. Hence, by the Henselian property of w,

qkw(L) = w(E), which implies in conjunction with (2.3) and the inequality

w(E) 6= qw(E) that Φ̂ = Ê and w(E)/qkw(E) is a cyclic group of order qk.
These observations prove Lemma 3.2 (i). For the proof of Lemma 3.2 (ii), it
suffices to observe that the set Y (Φ) = {Y ∈ I(E′(q)/E) : Y ∩Φ = E}, par-
tially ordered by inclusion, satisfies the conditions of Zorn’s lemma, to take
as Γ0 any maximal element of Y (Φ), and again to apply [27], Theorem 2. �

Remark 3.3. Retaining assumptions and notation as in Lemma 3.2 with its
proof, put Γ∗ = E(q) ∩ Γ0 and denote by Γn the extension of Γ0 in E′(q) of
degree qn, for each n ∈ N. Observing that E′/E is cyclic and [E′ : E] | (q−1),
one obtains that E′(q)/E is Galois and Γ0 contains a primitive q-th root of
unity unless char(E) = q. Note further that [Γ∗ : E] = ∞. Indeed, it follows
from Lemma 3.2 (i), [6], Remark 4.2, [4], Remark 2.8, and the triviality of
Br(E)q that r(q)E = ∞. Hence, by Galois theory and Lemma 3.2 (ii), there
are infinitely many extensions of E in Γ∗ of degree q, so we have [Γ∗ : E] = ∞,
as claimed. It is therefore clear from Lemmas 3.1 and 3.2, Galois theory and
(2.3) that E′(q)/Γ0 is an immediate quasiinertial Zq-extension.

4. Proof of Theorem 1.2

Fix an algebraic closure Φ of Φsep, put S(T ) = {p ∈ P : Tp 6= {0}},
S′(T ) = {q} ∪ (P \ S(T )), and let U be the compositum of the inertial
extensions of Φ in Φsep. Denote by U0 the maximal extension of Φ in U whose
finite subextensions have degrees not divisible by any p ∈ S(T ) \ {q}. The

assumptions on Φ, ω and Φ̂ and the definition of U0 indicate that U0/Φ is a
Galois extension with G(U0/Φ) isomorphic to the topological group product∏

π′∈S′(T ) Zπ′ ; this implies that q /∈ Π(Û0), whence Û0 is infinite. As Φ

is quasilocal, the obtained result proves that Br(U0)π′ = {0}, for each π′ ∈
S′(T ). At the same time, it follows from (2.4) and the equality ω(U0) = ω(Φ)
that Φ(q) /∈ I(U0/Φ), which ensures that q ∈ P (U0). Observing that ωU0

is discrete and Henselian, one obtains from [25], Proposition 2.2, that finite

extensions of U0 in Φsep are defectless. Since Φ̂ is perfect, U0 does not possess
inertial proper extensions in U0(q), and Br(U ′

0)q = {0}, for every U ′

0 ∈

I(Φ/U0), one also concludes that finite extensions of U0 in U0(q) are totally
6



ramified and G(U0(q)/U0) is a free pro-q-group. Note that r(q)U0
= ∞; since

ωU0
is Henselian and discrete, this follows from [20], (2.7), and the infinity of

Û0 (as well as from Remark 3.3 and the fact that Br(U0)q = {0}). The rest
of our proof relies on the observation that the set Σ of all Θ ∈ I(Φsep/U0)
with Θ ∩ U = U0, and such that the degrees of finite extensions of U0 in Θ
are not divisible by q, satisfies the conditions of Zorn’s lemma with respect
to the partial ordering by inclusion. Fix a maximal element Θ′ ∈ Σ and put
ω′ = ωΘ′ . Then it follows from Galois theory, (2.3) and the noted properties
of U0 that Θ′ satisfies the following:

(4.1) (i) ω′(Θ′) 6= qω′(Θ′) and ω′(Θ′) = pω′(Θ′), for each p ∈ P \ {q}.
(ii) Finite extensions of Θ′ in Θ′(q) are totally ramified.
(iii) G(Θ′(q)/Θ′) is a free pro-q-group, r(q)Θ′ = ∞ and Br(Θ′′)q = {0},

for every Θ′′ ∈ I(Φ/Θ′).

Galois theory and the former assertion of (4.1) (iii) imply the existence
of a Zq-extension Γ of Θ′ in Φsep. Put Γ0 = Θ′, and for each n ∈ N, let
Γn be the extension of Θ′ in Γ of degree qn. It follows from Galois theory

and the assumption on Φ̂ that the compositum U ′ = Θ′ΓU is a Galois
extension of Θ′ with G(U ′/Θ′) ∼=

∏
π∈S(T ) Zπ. In particular, this implies

cd(G(U ′/Θ′)) = 1, which means that G(U ′/Θ′) is a projective profinite group

(cf. [12], Theorem 1). Note also that the set Σ̃ = {Θ̃ ∈ I(Φ/Θ′) : Θ̃ ∩ U ′ =
Θ′}, partially ordered by inclusion, satisfies the conditions of Zorn’s lemma.

Let K̃ be a maximal element of Σ̃, ṽ = ωK̃ and k̃ the residue field of (K̃, ṽ).

It is easily verified that K̃ and k̃ are perfect fields, and it follows from the

projectivity of G(U ′/Θ′) that Φ = U ′K̃. Hence, by Galois theory and the

equality K̃ ∩ U ′ = Θ′, G
K̃

∼= G(U ′/Θ′). Our argument, combined with the
former part of (4.1) (iii), also proves that there exists a Zq-extension of Θ′

in K̃. Since ω is discrete, this enables one to deduce the former part of the
following assertion from (4.1) (i), (ii) and (2.3):

(4.2) ṽ(K̃) = Q, k̃/Φ̂ is an algebraic extension and ΓK̃/K̃ is immediate.

Moreover, K̃(q) = ΓK̃, ΓK̃/K̃ is a Zq-extension with [ΓnK̃ : Γn−1K̃] = q,

for each n ∈ N, and UK̃(q)/UK̃ is quasiinertial.

As Γ/Θ′ is a Zq-extension and K̃∩U ′ = Θ′, the latter part of (4.2) follows at
once from the former one, Galois theory and Lemma 3.1 (iii). Fix a positive

number γ ∈ R \Q and a rational function field K̃(X) in one indeterminate.

It is easily verified that ṽ is uniquely extendable to a valuation vγ of K̃(X) so

that vγ(X) = γ. In addition, it follows from the choice of γ that vγ(K̃(X))
is Archimedean and equal to the sum of Q and 〈γ〉. In addition, it becomes

clear that vγ(K̃(X)) ∼= Q ⊕ 〈γ〉 (as abstract groups) and the residue field

of (K̃(X), vγ) coincides with k̃. Note also that v̄γ(Φ(X)) = vγ(K̃(X)),

where v̄γ is the valuation of Φ(X) naturally extending ṽΦ and vγ . Now fix

a Henselization K of K̃(X) relative to vγ , and denote by v the Henselian

valuation of K , extending vγ . The established properties of vγ(K̃(X)) and

the equality vγ(K̃(X)) = v(K) indicate that v(K)/pv(K) is of order p and
v(γ) /∈ pv(K), for any p ∈ P; in particular, v(K) is totally indivisible. We
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show that K, v and I∞/K have the properties required by Theorem 1.2,
where I∞ = ΓK. As a first step towards this, we prove the following:

(4.3) (i) K̃ is algebraically closed in K and ΦK/K is a Galois extension
with G(ΦK/K) ∼= G

K̃
∼=

∏
p∈S(T ) Zp; in addition, v(ΦK) = v(K), ΓK/K is

an immediate Zq-extension, [ΓnK : K] = qn, for each n ∈ N;

(ii) ΓΩ/Ω is a quasiinertial extension, for every Ω ∈ I(Φ/K).

As v(K) ≤ R, K is K̃(X)-isomorphic to the algebraic closure of K̃(X) in

K̃(X)vγ . At the same time, it follows from the definition of vγ that an

element ρ ∈ Φ lies in K̃(X)vγ if and only if ρ ∈ K̃ṽ. Observing finally that

K̃ is algebraically closed in K̃ṽ (because K̃ is perfect and ṽ is Henselian),

one concludes that K̃ is algebraically closed in K. In view of Galois theory,
this means that ΦK/K is a Galois extension with G(ΦK/K) ∼= GK̃ . Using

the equalities v̄γ(Φ(X)) = vγ(K̃(X)) = v(K), and replacing K̃ by any of

its finite extensions in Φ, one obtains further that v(ΦK) = v(K). As
cdp′(Gk̃) = 0, for every p′ ∈ P \S(T ), this result implies in conjunction with
(2.3) and (4.2) that ΓK/K is immediate and Γ ∩ K = Θ′, so (4.3) (i) is

proved. Note that ΓK̃/K̃ is quasiinertial; this follows from the concluding
assertion of (4.2), trace transitivity in towers of finite separable extensions,

and the fact that q does not divide the degree of any finite extension of K̃

in UK̃. Since v(K) ≤ R, v prolongs ṽ upon K, and K̃ is algebraically closed
in K, this enables one to deduce (4.3) (ii) from Galois theory and (2.6).

Our next objective is to show that Br(K)p 6= {0} if and only if p ∈ S(T ).

Suppose first that p /∈ S(T ). Then p † [M̃ : K̃], for any finite extension M̃

of K̃, which ensures that Br(K)p ∩ Br(ΦK/K) = {0} (cf. [19], Sect. 13.4).

On the other hand, ΦK/Φ is a field extension of transcendency degree 1, so
it follows from Tsen’s theorem (see [19], Sect. 19.4) that Br(ΦK) = {0}.
It is therefore easy to see that Br(K) = Br(ΦK/K) and Br(K)p = {0}.
Assume now that p ∈ S(T ). Then it follows from Galois theory and (4.3)
that I(ΦK/K) contains a cyclic extension Yp of K of degree p. Moreover,
(4.3) (i) ensures that v(Yp) = v(K), whence the uniqueness of vYp

implies
N(Yp/K) ⊆ {λ ∈ K∗ : v(λ) ∈ pv(K)}. Since v(K) 6= pv(K), this means
that Br(Yp/K) 6= {0} 6= Br(K)p. In order to complete the proof of Theorem
1.2 it remains to be shown that Br(Kp) ∼= Z(p∞) andK is quasilocal (see [2],
I, Lemma 8.3, and [3], Lemma 3.3 (i)). Let Gp be a Sylow pro-p-subgroup

of GK and Kp the fixed field of Gp. The equality v(K) = vγ(K̃(X)) and the
isomorphism v(Kp)/pv(Kp) ∼= v(K)/pv(K) guarantee that v(Kp)/pv(Kp) is
of order p. When p 6= q, this enables one to deduce from (4.3) and [10],
Lemma 1.2, that K∗

p/K
∗p
p is a group of order p2. As Kp contains a primitive

p-th root of unity and Br(K)p ∩ Br(Kp/K) = {0}, the obtained results and
Galois cohomology (see [26], Lemma 7, [18], (11.5), and [22], Ch. I, 4.2)
prove that Gp is a Demushkin group, r(p)Kp

= 2 and Br(Kp) ∼= Z(p∞).
Hence, by [2], I, Lemma 3.8, Kp is p-quasilocal. To conclude with, we show

that Kq is q-quasilocal and Br(Kq) ∼= Z(q∞). As k̃ is perfect, cdq(Gk̃) = 0

and K̂ = k̃, K̂q is an algebraic closure of k̃, so we have Ẑ = K̂q, for each
Z ∈ I(Ksep/Kq). In addition, it follows from Tsen’s theorem that Br(Kq) =
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Br(ΓKq/Kq). Applying (4.3), (2.8) and (2.6), one also sees that ∇0(Γ1) ⊆
N(ΓnKq/Γ1Kq), for each n ∈ N. As Γ1Kq/Kq is immediate, this enables
one to deduce from (2.5) and Hilbert’s Theorem 90 that an element θ ∈ K∗

q

lies in N(ΓνKq/Γ1Kq), for a given index ν, if and only if θq ∈ N(ΓνKq/Kq).
Since Br(ΓKq/Kq) = ∪∞

n=1Br(ΓnKq/Kq), these observations and the canon-
ical isomorphisms Br(ΓnKq/Kq) ∼= K∗

q /N(ΓnKq/Kq), n ∈ N (cf. [19],
Sect. 15.1, Proposition b), prove that qBr(Kq) = Br(Γ1Kq/Kq). The ob-

tained result, combined with the fact that K̂q is algebraically closed and
v(Kq)/qv(Kq) is of order q, proves that N(Γ1Kq/Kq) = {µ ∈ K∗

q : v(µ) ∈
qv(Kq)}, qBr(Kq) is of order q and Br(Kq) ∼= Z(q∞). Let now Λ be an
extension of Kq in Ksep, such that [Λ: Kq] = q and Λ 6= Γ1Kq, and let
Vq(Λ) = {λ ∈ Λ: vΛ(λ) ∈ qv(Λ)}. Applying (4.3) and (2.5), and arguing as
in the proof of the isomorphism Br(Kq) ∼= Z(q∞), one obtains consecutively
the following results:

(4.4) (i) Vq(Λ) ⊆ N(Γ1Λ/Λ); τ(λ
′)λ′−1 ∈ N(Γ1Λ/Λ), for each λ′ ∈ Λ∗

and every generator τ of G(Λ/Kq);
(ii) Br(Γ1Λ/Λ) = qBr(Λ) 6= {0}; hence N(Γ1Λ/Λ) 6= Λ∗.

Since Λ̂ is algebraically closed and v(Λ)/qv(Λ) is of order q, one also proves
the following:

(4.5) (i) N(Γ1Λ/Λ) = Vq(Λ) and Γ1Λ/Λ is immediate.
(ii) K∗ ⊆ N(Γ1Λ/Λ), provided that Λ is totally ramified over Kq; when

this holds, Br(Γ1/Kq) ⊆ Br(Λ/Kq) = qBr(Kq).

In view of (4.4) (ii) and (4.5) (ii), it suffices, for the proof of the q-quasilocal
property of Kq, to show that Λ/Kq is totally ramified. Assuming the oppo-

site, one gets from (2.3) and the equality Λ̂ = K̂q that Λ/Kq is immediate.
Fix a generator τ of G(Λ/Kq), denote by τ ′ the Γ1-automorphism of Γ1Λ
extending τ , and put Dρ = (Λ/Kq, τ, ρ), ∆ρ = (Γ1Λ/Γ1, τ

′, ρ), for some
ρ ∈ K∗

q . Clearly, ∆ρ
∼= Dρ⊗Kq

Γ1 over Γ1. Hence, the equality Br(Γ1/Kq) =

qBr(Kq) requires that [∆ρ] = 0 in Br(Γ1). On the other hand, (4.5) (i) and
the assumption on Λ/Kq imply Γ1Λ/Γ1 is immediate. This shows that if
v(ρ) /∈ qv(Kq), then Dρ ∈ d(Kq) and ∆ρ ∈ d(Γ1), whence [∆ρ] 6= 0. The ob-
served contradiction proves that Λ/Kq is totally ramified, soKq is q- quasilo-
cal (as seen, with Br(Kq) ∼= Z(q∞)). As S(T ) = {p ∈ P : Br(K)p 6= {0}},
this result, [3], Lemma 3.3 (i), and isomorphisms Br(Kp) ∼= Z(p∞), p ∈ S(T ),
yield Br(K) ∼= T . Theorem 1.2 is proved.
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