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0 Backward uniqueness for the heat equation in cones

Lu Li∗ Vladimı́r Šverák†

Abstract

It was shown in [5, 13] that a bounded solution of the heat equation
in a half-space which becomes zero at some time must be identically
zero, even though no assumptions are made on the boundary values of
the solutions. In a recent example, Luis Escauriaza showed that this
statement fails if the half-space is replaced by cones with opening angle
smaller than 90◦. Here we show the result remains true for cones with
opening angle larger than 110◦.

1 Introduction

Consider an open set Ω ⊂ R
n. Let u be a bounded solution of the equation

ut −∆u+ b(x, t)∇u+ c(x, t)u = 0 in Ω× (0, T ), (1)

where the coefficients b = (b1, . . . , bn), c are measurable and bounded. We
say that Ω has the backward uniqueness property if the following statement
holds:

(BU) If a bounded u : Ω × (0, T ) → R satisfies (1) and u( · , T ) = 0, then
u ≡ 0 in Ω× (0, T ).

It is important to emphasize that no assumptions are made about u
at the parabolic boundary ∂Ω × (0, T ) ∪ (Ω × {0}). In fact, we can think
about the problem in terms of the control theory: we are given some initial
data u0 : Ω → R, and we wish to find a suitable boundary condition g on
the lateral boundary ∂Ω × (0, T ) so that when we solve equation (1) with
u0 as the initial condition and g as the boundary condition, the solution
will become exactly zero at time t = T . In this interpretation condition
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(BU) means that we can never achieve the exact boundary control of any
non-trivial solution.

While the control theory for PDEs seems to be the most natural back-
ground for (BU), the problem also appeared in regularity theory of parabolic
equations, such as the Navier-Stokes equations, harmonic map heat flows, or
semi-linear heat equations, see [5, 11, 14]. The specific unbounded domains
which arise in this connection are complements of closed balls (for interior
regularity), half-spaces (for boundary regularity at C1 boundaries), or cones
(for boundary regularity in Lipschitz domains).

By classical results we know that in bounded domains we can achieve ex-
act control, and therefore any domain satisfying (BU) has to be unbounded.
Classical backward uniqueness results for parabolic equations imply that
Ω = R

n satisfies (BU). It turns out the the half-space Ω = R
n
+ also satisfies

(BU), although this is harder to prove, see [5]. In general, the smaller the
domain, the harder it will be to show that it satisfies (BU). It is immediate
that if Ω1 ⊂ Ω2 and Ω1 satisfies (BU), then also Ω2 satisfies (BU).

In this paper we consider the question for cones with opening angle θ.
In suitable coordinates

Oθ = {x = (x1, x
′), x′ ∈ R

n−1, x1 > |x| cos(θ/2)}. (2)

Luis Escauriaza [1] recently showed that - surprisingly - (BU) fails when
θ < π/2. We briefly recall the counterexample. Let us denote by Γ the stan-
dard heat kernel, i. e. Γ(x, t) = (4πt)−n/2 exp (|x|2/4t), and recall Appell’s
transformation

u(x, t) = Γ(x, t)v(y, s), y =
x

t
, s =

1

t
. (3)

This transformation takes the solutions u(x, t) of the heat equation into
the solutions v(y, s) of the backward heat equation

vs +∆v = 0 . (4)

By taking u(x, t) = h(x) for a suitable harmonic function h in Oθ, we can
get a counterexample to the backward heat equation form of (BU) for θ <
π/2. In dimension 2 we can use the real part of the holomorphic function
z → exp(−Azα) (for suitable A > 0 and a parameter α > 2) to obtain an
explicit formula:

v(y, s) = Re
1

s
exp(−A(y1 + iy2)

α

sα
+

|y|2
4s

) . (5)
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The function v(y1, y2, s) is bounded in a sector that | arctan y2
y1
| < π/(2α),

away from the origin. We can shift it to v(y1+1, y2, s). The resulted function
is bounded in a sector with angle π/α satisfying the backward heat equation
vs +△v = 0, and v(·, ·, 0) = 0.

We note that it is enough to construct a counterexample in dimension
n = 2. The higher-dimensional example can then be constructed by sim-
ply considering the two-dimensional function as a function of n variables,
independent of x3, . . . , xn.

Escauriaza’s example shows that (BU) fails for θ < π/2. Since we also
know that (BU) is true for θ = π, it is easy to see that there exists a
borderline angle θ0 ∈ [π/2, π] such that (BU) is true for θ > θ0, and (BU)
fails for θ < θ0. The borderline case θ = θ0 might perhaps present an extra
difficulty.

The main result of this paper is the following:

Theorem 1.1. The cones Oθ satisfy (BU) for

θ > 2 arccos(1/
√
3) ∼ 109.52◦ .

In other words, the critical angle θ0 introduced above satisfies

θ0 ≤ 2 arccos(1/
√
3).

It is tempting to conjecture that θ0 = π/2. This is supported by the fact
that θ = π/2 is the borderline case for the above construction of Escauriaza,
as can be seen from the Phragmén-Lindölef principle.

For the classical heat equation, corresponding to the case b = 0 and c = 0
in (1), and θ = π (the half-space), the statement (BU) can be proved by
a relatively simple application of Fourier transformation and some classical
complex analysis results, see [13]. We were not able to find such simple proof
of the case b = 0, c = 0 when θ < π.

While completing this paper, we learned about reference [8].1 Theorem
6 in [8] states that for the classical heat equation (corresponding to b =
0, c = 0), (BU) holds if and only if θ ≤ π/2. Unfortunately, it seems the
proof is not available in print.

Our proof of Theorem (1.1) relies on two Carleman-type inequalities,
along lines similar to [5]. The first inequality, Proposition 2.1, is taken from
[5] and is applied in the same way to obtain fast decay rates for the solutions,
see Lemma 2.2. We note that Carleman inequalities of this type are can be
found already in [2, 6, 3, 4].

1We thank Gregory Seregin for pointing out this article.
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The second inequality, Proposition 2.3, is the main new tool used in
our proof. The heuristics behind this inequality is somewhat similar to the
heuristics behind the second Carleman-type inequality in [5] (Proposition
6.2). However, the proof of Proposition 2.3 requires a new idea, as for
θ < π certain critical terms appearing in the proofs of the inequalities lose
convexity.

In addition to determining the critical angle, another interesting open
problem is to optimize the assumptions on the coefficient b(x, t) and c(x, t),
in the spirit of [9]. For example, it is conceivable that the result remains

true for b ∈ Ln+2
x,t and c ∈ L

(n+2)/2
x,t , but it might be a difficult problem to

decide whether this is the case.
In what follows we will work with the inequality

|ut −∆u| ≤ c1(|∇u|+ |u|) (6)

rather than (8). It is not hard to see that when assuming the boundedness
of b and c, the two formulations are equivalent.

2 Backward uniqueness

Without loss of generality we assume T = 1 and work with the backward
form of (6).

Recall that

Oθ = {x = (x1, x
′), x′ ∈ R

n−1, x1 > |x| cos(θ/2)}. (7)

Suppose that u(x, t) is a solution to the backward heat equation for some
θ > 2 arccos(1/

√
3).

|ut +∆u| ≤ c1(|∇u|+ |u|) in Oθ ×(0, 1), (8)

u(·, 0) = 0 in Oθ . (9)

In addition,
|u| < M in Oθ ×(0, 1). (10)

Then u ≡ 0.
To prove the above statement we firstly need the following Carleman in-

equality from [5], by which we obtain a decay result for solutions of backward
heat equation.
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Proposition 2.1 ([5]). For any function u ∈ C∞
0 (Rn × (0, 2);Rn) and any

positive number a,

∫

Rn×(0,2)
h−2a(t)e−

|x|2

4t

(a

t
|u|2 + |∇u|2

)

dxdt

≤ c0

∫

Rn×(0,2)
h−2a(t)e−

|x|2

4t |∂tu+∆u|2dxdt, (11)

where c0 is a positive absolute constant and h(t) = te
1−t
3 .

Lemma 2.2 below immediately implies exponential decay of the solution
u. The proof is by using the Carleman inequality in Proposition 2.1. The
decay of u enables us to apply the Carleman inequality in Proposition 2.3
and reach the conclusion in Theorem 1.1.

Lemma 2.2. Let BR denote the ball with radius R in R
n. Assume that

R > 2. Consider a function u satisfying the following conditions, with some
positive constants c1 and M .

|ut +△u| ≤ c1(|∇u|+ |u|) in BR × (0, T ), (12)

u(x, 0) = 0 in BR, (13)

|u| < M in BR × (0, T ). (14)

Then there exist some constants β, γ, such that for t ∈ (0, γ),

u(0, t) ≤ c2
min{1, T}Me−βR2

t , (15)

where β is a small enough absolute constant, c2 depends on c1, γ depends
on c1 and T .

We will give the proof of the lemma in the next section.
The following Carleman inequality in Proposition 2.1 is a key tool used

in our proof of the backward uniqueness in cones. We define the set

Qθ = (Oθ ∩{x1 > 1})× (0, 1).

The purpose of “cutting off the corner” is to avoid singularities at the origin.

Proposition 2.3. Let φ(x, t) = aΛ(t)ϕ(x) + t2, where Λ(t) =
1− t

tα/2
, and

ϕ(x) = xα1 − εα rα, where r = |x|, and ε = cos(θ/2). For any ε ∈ (0, 1/
√
3),

that is, θ ∈ (2 arccos(1/
√
3), π), there exists some α = α(ε) ∈ (1, 2) such
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that the following inequality holds for u ∈ C∞
0 (Qθ) and a > a0 for some

constant a0.
∫

Qθ

e2φ(x,t)
[

a (Λ(t) + ϕ(x)) u2 + |∇u|2
]

dxdt

≤ 4

∫

Qθ

e2φ(x,t)|∂tu+∆u|2dxdt. (16)

We apply this Carleman inequality to prove the main result of the pa-
per in the remaining part of this section. The proof of Proposition 2.3 is
postponed to the last section.

For x ∈ Oθ we denote by dθ(x) the distance between x and the boundary
of Oθ, explicitly given by

dθ(x) = x1 sin(θ/2)− |x′| cos(θ/2). (17)

Let Oθ
+2 = {x ∈ Oθ | dθ(x) > 2}. With any other number c, the set Oθ

+c

is defined in the same way.
The next lemma is a consequence of the decay result from Lemma 2.2

and Proposition 2.3 . It implies Theorem 1.1 immediately.

Lemma 2.4. Assume that for some θ ∈ (2 arccos(1/
√
3), π) a function u

satisfies (8) – (10), then there is a number γ1(c1) ∈ (0, γ/2) such that

u(x, t) ≡ 0 (18)

in Oθ ×(0, γ1).

Proof. Lemma 2.2 implies that

|u(x, t)| ≤ c2Me−β
d2θ(x)

t (19)

for all (x, t) ∈ Oθ
+2×(0, γ). By local gradient estimates for the heat equa-

tion [10] we can assume that

|u(x, t)|+ |∇u(x, t)| ≤ c3Me−
βd2θ(x)

2t (20)

for all (x, t) ∈ Oθ
+3 ×(0, γ/2].

By scaling we define a function v by

v(y, s) = u(λy, λs2 − γ1) (21)
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for (y, s) ∈ Oθ ×(0, 1) with λ =
√
2γ1. This function satisfies the relations

|∂sv +∆v| ≤ c1λ(|∇v|+ |v|) in Oθ ×(0, 1) (22)

v(y, s) = 0 in Oθ ×(0, 1/2), (23)

and

|v(y, s)|+ |∇v(y, s)| ≤ c3Me
−

βλ2d2θ(y)

2(λ2s−γ1) ≤ c3Me−β
d2θ(y)

2s (24)

for 1/2 < s < 1 and y ∈ Oθ
+3/λ = {y ∈ Oθ | dθ(y) > 3/λ}.

To apply Proposition 2.3, we need certain decay of |v(y, s)| when |y|
is large. Notice that the preferred decay can be obtained by considering
a cone with slightly small opening. Proposition 2.3 holds for angles in
(2 arccos(1/

√
3), π). We thus consider the median of θ and 2 arccos(1/

√
3),

δ =
θ + 2arccos(1/

√
3)

2
.

In the smaller cone Oδ = {x ∈ Rn, x1 > |x| cos(δ/2)} we have the estimate
dθ(y) ≥ |y| sin

(

θ−δ
2

)

. It follows (24) that

|v(y, s)|+ |∇v(y, s)| ≤ c3Me−β′ |y|
2

s (25)

for 1/2 < s < 1 and y ∈ Oδ ∩Oθ
+3/λ, with the constant β′ = β sin2(θ−δ

2 ).
We can further have

|v(y, s)|+ |∇v(y, s)| ≤ c′3Me−β′ |y|
2

s (26)

for 1/2 < s < 1 and y ∈ Oδ ∩{y1 > 3/λ} for some other constant c′3.
Next we work on the smaller cone Oδ with opening δ, where we have

exponential decay (26) and the following properties inherited from Oθ.

|∂sv +∆v| ≤ c1λ(|∇v|+ |v|) in Oδ ×(0, 1), (27)

v(y, s) = 0 in Oδ ×(0, 1/2). (28)

Proposition 2.3 requires support condition for the Carleman inequality.
For that purpose, let us fix two smooth cut-off functions such that

ψ1(y1) =

{

0, y1 < 3/λ+ 2,
1, y1 > 3/λ+ 3,

ψ2(τ) =

{

0, τ < −3/4,
1, τ > −1/2.

7



We set (for the definition of φ, see Proposition 2.3)

φB(y, s) =
1

a
φ(y, s)−B = (1− s)

yα1 − εα |y|α
sα/2

+
s2

a
−B,

where ε = cos(δ/2), B = 2
aφ(yλ,

1
2 ), with yλ = (3/λ+ 3, 0, · · · , 0) and

η(y, s) = ψ1(y1)ψ2(
φB
B

), w(y, s) = η(y, s)v(y, s).

The function w is not compact supported in Qδ (recall that Qδ = (Oδ ∩{x1 >
1}) × (0, 1)). However, it follows from (24) and the special structure of
the weight function φ in Proposition 2.3 that, with w replacing u in (2.3),
integrals on both sides converge. If we multiply w by an additional cut-off
function ξ such that

ξ(x) =

{

1, τ < R
0, τ > 2R

and |∇ξ| < c/R, |∇2ξ| < c/R2, apply Proposition 2.3 to the compact sup-
ported function wξ, then let R→ ∞, we finally obtain

∫

Qδ

e2aφB
[

a (Λ(s) + ϕ)w2 + |∇w|2
]

dyds

≤ 4

∫

Qδ

e2aφB |∂sw +∆w|2dyds. (29)

From (27) we have

|∂sw +△w| ≤ c1λ(|∇w|+ |w|)
+c4(|∇v| + |v|)(|∂sη + |∇η|+ |∆η|). (30)

Refer to the definition of ψ2 we know that φB/B ≥ −3/4 in the support of
w. In other words aΛ(s)ϕ(y) + s2 > aB/4. For a large enough, this implies
that a(Λ(s) + ϕ(y)) > 1 by Cauchy-Schwartz inequality. In addition, we
take γ1(c1) small enough such that 16c21λ

2 < 1/2. We then have

I ≡
∫

Qδ

e2aφB
(

w2 + |∇w|2
]

)dyds (31)

≤ 32c24

∫

Qδ

e2aφB (|v|2 + |∇v|2)(|∂sη|+ |∇η|+ |∆η|)2dyds. (32)

To estimate the right hand side, we need to look into the detail of deriva-
tives of η. In view of the definitions of ψ1 and ψ2, the support of derivatives
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of η(y, s) is the closure of the set

{y1 > 3/λ+ 2, −3B/4 < φB < −B/2}
∪ {3/λ+ 2 < y1 < 3/λ+ 3, φB > −B/2}.

However, the second set has empty intersection with Oδ ×(1/2, 1), where
the function v is nonzero. Hence the support of the term (|∇v|+ |v|)(|∂sη+
|∇η|+ |∆η|) is closure of the set

ω = {y1 > 3/λ+ 2, 1/2 < s < 1,−3B/4 < φB(y, s) < −B/2}.

We denote by χ(y, s) the characteristic function of the set ω.
Next we estimate the rate of increasing at infinity of derivatives of η(y, s)

in the set ω. Recall that φ(y, s) = aΛ(s)ϕ(y) + s2, where Λ(s) =
1− s

sα/2
and

ϕ(y) = yα1 −εα |y|α. The function Λ(s) and the derivative Λ′(s) are bounded
for s ∈ (1/2, 1). The function ϕ and its derivatives up to the second order are
bounded by (const. |y|α). The cut-off functions ψ1 and ψ2 and derivatives
up to the second order are bounded by some absolute constant. The value
of B is bounded from below regardless of the value of the parameter a. Thus

(|∂sη|+ |∇η|+ |∆η|)2 < c5|y|2α (33)

in the set ω.
We now estimate (32) by using (25) and (33). We see that

I ≤ c6Me−Ba

∫

Qδ

|y|2αe−2β′ |y|
2

s χ(y, s)dyds

for some constant c6. The last integral in bounded. Passing to the limit as
a→ ∞ we see that v(y, s) = 0 for 1/2 < s < 1 and φB(y, s) > 0. Using the
property of unique continuation across the spatial boundaries (see Theorem
4.1 in [5]), we show that v(y, s) = 0 if y ∈ Oθ and 0 < s < 1. This proves
the lemma.

3 Proof of Lemma 2.2

The proof of Lemma 2.2 is based on the Carleman inequality in [5], which
we quoted in Proposition 2.1.

Proof of Lemma 2.2. The proof is similar to the one in [5]. We still include
the proof here for the convenience of the reader.
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In what follows, we always assume that the function u is extended by
zero to negative values of t.

The assumption that R > 2 results in no loss, since the conclusion is
only useful when R is large. According to the local gradient estimates of the
heat equation [10], in the smaller cylinder (x, t) ∈ BR−1 × (0, T/2), we can
assume that

|u|+ |∇u(x, t)| ≤ c7
min{1, T}M (34)

with some absolute constant c7.
We fix t ∈ (0, min{1, T}/12) and introduce a new function v by the usual

parabolic scaling:
v(y, s) = u(λy, λ2s− t/2).

The function v is well defined on the set Qρ = B(ρ) × (0, 2), where
ρ = (R − 1)/λ and λ =

√
3t ∈ (0, min{1,

√
T}/2). We have the following

relations for v.
|∂sv +∆v| ≤ c1λ(|∇v| + |v|), (35)

|v(y, s)| + |∇v(y, s)| < c7
min{1, T}M (36)

for all (y, s) ∈ Qρ,
v(y, s) = 0 (37)

for (y, s) ∈ B(ρ)× (0, 1/6].
By the assumption that R > 2 and λ < 1/2, we have ρ > 2. In order to

apply Proposition 2.1, we take two smooth cut-off functions in Qρ:

ψρ(y) =

{

0, |y| > ρ− 1/2,
1, |y| < ρ− 1,

ψt(s) =

{

0, 7/4 < s < 2,
1, 0 < s < 3/2.

By assumption, these functions take values in [0, 1] and are such that |∇kψρ| <
Ck, k = 1, 2, and |∂sψt| < C0. We set η(y, s) = ψρ(y)ψt(s) and

w(y, s) = η(y, s)v(y, s). (38)

It follows from (35) that

|∂sw +∆w| ≤ c1λ(|∇w| + |w|) + c8χ(|∇v|+ |v|), (39)

where c8 is a positive constant depending only on c1 and Ck, k = 0, 1, 2,
χ(y, s) = 1 for (y, s) ∈ ω = {ρ− 1 < |y| < ρ, 0 < s < 2}∪{|y| < ρ− 1, 3/2 <
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s < 2}, and χ(y, s) = 0 for (y, s) /∈ ω. The set ω is where the cut-off
function η is not constantly 1 in Qρ. Obviously, the function w is compactly
supported on R

2 × (0, 2), we may apply Proposition 2.1 and obtain

∫

Qρ

h−2a(s)e−
|y|2

4s

(a

s
|w|2 + |∇w|2

)

dyds

≤ c0

∫

Qρ

h−2a(s)e−
|y|2

4s |∂sw +∆w|2dyds. (40)

Taking a > 2, and applying (39) we finally obtain that

I ≡
∫

Qρ

h−2a(s)e−
|y|2

4s (|w|2 + |∇w|2)dyds ≤ 4c0(c
2
1λ

2I + c28I1), (41)

where

I1 =

∫

Qρ

χ(y, s)h−2a(s)e−
|y|2

4s (|∇v|2 + |v|2)dyds.

Taking a sufficiently small value for γ = γ(c1) such that in the range λ ∈
(0, γ), we can assume that the inequality 4c0c

2
1λ

2 ≤ 1/2 holds, and therefore
(41) implies that

I ≤ 8c0c
2
8I1. (42)

Notice that near the origin {y = 0, s = 0}, where the parametric function

h−2a(s)e−
|y|2

4s is not integrable, our characteristic function χ is 0. By (36)
we have

I1 ≤ c27M
2

min{1, T 2}

{

∫ 2

3/2

∫

|y|<ρ−1
h−2a(s)e−

|y|2

4s dyds

+

∫ 2

0

∫

ρ−1<|y|<ρ
h−2a(s)e−

|y|2

4s dyds

}

(43)

≤ c9M
2

min{1, T 2}

[

h−2a(3/2) +

∫ 2

0
h−2a(s)e−

(ρ−1)2

4s ds

]

, (44)

where c9 is an absolute constant.
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Using (44) we obtain the estimate

D ≡
∫

B(1)

∫ 1

1/2
|w|2dyds =

∫

B(1)

∫ 1

1/2
|v|2dyds

≤ c10

∫

Qρ

h−2a(s)e−
|y|2

4s (|w|2 + |∇w|2)dyds

≤ c11M
2

min{1, T 2}

[

h−2a(3/2) +

∫ 2

0
h−2a(s)e−

ρ2

16s ds

]

=
c11M

2

min{1, T 2}e
−βρ2

[

h−2a(3/2)eβρ
2
+

∫ 2

0
h−2a(s)eβρ

2− ρ2

16s ds

]

.

We take β < 1/64 and then let

a = βρ2/(2 log h(3/2)).

This choice of a leads to the estimate

D ≤ c11e
−βρ2

[

1 +

∫ 2

0
g(s)ds

]

,

where g(s) = h−2a(s)e−
ρ2

32s . By simple calculation we have that

g′(s) = h−2a(s)e−
ρ2

32s

[

− βρ2

log h(3/2)
(
1

s
− 1

3
) +

ρ2

32s2

]

.

One can readily verify that g(2) < 1 and g′(s) ≥ 0 for any s ∈ (0, 2) if
β < 1

64 log h(3/2). Therefore,

D ≤ 3
c11M

2

min{1, T 2}e
−βρ2 = 3

c11M
2

min{1, T 2}e
−β R2

12t .

On the other hand, the regularity theory implies that

|u(0, t)|2 = |v(0, 1/2)|2 ≤ c12D.

Finally we obtain that

|u(0, t)| ≤ c2
min{1, T}Me−β R2

24t .

Taking another constant equals β/24, and still denotes by β, we reach the
conclusion of the lemma.
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4 Proof of the Carleman inequality

One of the difficulties in the proof of the Carleman inequality in Proposi-
tion 2.3 is that – by comparison with the case θ = π – some loss of the
convexity of the weight ϕ cannot be avoided. Therefore we have to investi-
gate in more detail some of the terms which can be neglected when θ0 ≥ π.

Proof of Proposition 2.3. We denote φ = aΛ(t)ϕ(x) + t2. Let u be an arbi-
trary function in C∞

0 (Qθ) and v = eφu. Then

Lv ≡ eφ(∂tu+∆u) = ∆v + |∇φ|2v − ∂tφv + ∂tv − 2∇φ∇v −∆φv. (45)

We decompose L into symmetric and skew-symmetric parts

L = S +A,

where
Sv = ∆v + |∇φ|2v − ∂tφv (46)

and
Av = ∂tv − 2∇φ∇v −∆φv. (47)

The right hand side of the inequality (16) is

∫

|Lv|2dxdt =
∫

|Sv|2dxdt+
∫

|Av|2dxdt+
∫

([S,A]v)vdxdt, (48)

where [S,A] = SA−AS is the commutator of S and A. By simple calcula-
tions we have that

([S,A]v, v) =

∫

4φ,klv,kv,ldxdt (49)

+

∫

(

2∇φ∇|∇φ|2 −∆2φ+ ∂2t φ− 2∂t|∇φ|2
)

|v|2dxdt.(50)

The Hessian of the function φ = aΛ(t)(xα1−εα rα) is not positive-definite.
To compensate the term

∫

4φ,klv,kv,ldxdt in (49) we introduce a function
F (x, t) to be determined.

(Sv, Fv) =

∫

∆vFv + (|∇φ|2 − ∂tφ)Fv
2dx

=

∫

−F |∇v|2 + (
1

2
△F + |∇φ|2F − ∂tφF )v

2dxdt.
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Cauchy-Schwartz inequality implies that

(Sv, Sv) ≥ −(Sv, Fv) − 1

4

∫

F 2v2dxdt

≥
∫

F |∇v|2 − (
1

2
△F + |∇φ|2F − ∂tφF +

1

4
F 2)v2dxdt.(51)

Combining (49) and (51) we have

([S,A]v, v) + (Sv, Sv) ≥
∫

4φ,klv,kv,l + F |∇v|2dxdt (52)

+

∫

(

2∇φ∇|∇φ|2 −∆2φ+ ∂2t φ− 2∂t|∇φ|2
)

v2dxdt (53)

+

∫

−(
1

2
△F + |∇φ|2F − ∂tφF +

1

4
F 2)v2dxdt. (54)

By calculation the Hessian of ϕ is

D2ϕ(x) = α(α − 1)











xα−2
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











− αεα rα−2En (55)

+α(2− α) εα rα−4xTx, (56)

where En reprensent the n dimensional identity matrix, x = (x1, . . . , xn) is
the row vector and xT denotes the transpose of x. It is easy to see that

D2ϕ(x) + α εα rα−2En ≥ 0.

We thus let f(x) = α εα rα−2 and

F (x, t) = 4aΛ(t)f(x) + 1. (57)

With this choice of F (x, t), the right hand side of line (52) is positive and
∫

4φ,klv,kv,l + F |∇v|2dxdt ≥
∫

|∇v|2dxdt.

Grouping the remaining terms according to the orders of the parameter a,
with A3 denoting the terms with a3 and etc, we have that

([S,A]v, v) + (Sv, Sv) ≥
∫

|∇v|2dxdt

+

∫

(A3 +A2 +A1 +A0)v
2dxdt (58)
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where

A3 = 4a3Λ3ϕ,klϕ,kϕ,l − 4a3Λ3f |∇ϕ|2, (59)

A2 = −4a2ΛΛ′|∇ϕ|2 + 4a2ΛΛ′ϕf − 4a2Λ2(t)f2 − a2Λ2|∇ϕ|2, (60)

A1 = −aΛ∆2ϕ+ aΛ′′ϕ− 2aΛ(t)∆f + aΛ′ϕ− 2aΛ(t)f + 8atΛf, (61)

A0 = 7/4 + 2t. (62)

We analyze A3 first. With a3 as a coefficient A3 must be non-negative in
the set Qθ. By letting x1/r → ε, we see easily that ε < 1/

√
3 is a necessary

condition for A3 ≥ 0. This could be seen by letting . Next we show that
under the condition ε < 1/

√
3, we indeed have that A3 ≥ 0. Denoting by

∇ϕT the transpose of the row vector ∇ϕ, we notice that

A3 = 4a3Λ3(t)∇ϕ
(

D2ϕ(x)− αεα rα−2
)

∇ϕT . (63)

It is easy to see that

D2ϕ(x)− α εα rα−2

≥ α(α− 1)











xα−2
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











− 2α εα rα−2En (64)

Apply the fact that xα−2
1 > rα−2, we have

D2ϕ(x) − α εα rα−2 ≥ αrα−2

(

α− 1− 2 εα 0
0 −2 εαEn−1

)

, (65)

where En−1 is the n− 1 dimensional identity matrix.
The first derivatives of φ are as follows.

ϕ,1(x, t) = αxα−1
1 − αεα rα−2x1, ϕ,k(x, t) = −α εα rα−2xk, k = 2, . . . , n.

We notice that ϕ,1 ≥ α(1 − εα)xα−1
1 . Thus

A3 ≥ 4a3Λ3(t)α3rα−2
[

(α− 1− 2 εα)(1 − εα)2x2α−2
1 − 2 ε3α r2α−4|x′|2

]

.

Taking into account that x1/r > ε and |x′|2/r2 < 1− ε2,

A3 ≥ 4a3Λ3(t)α3r3α−4 ε2α−2
[

(α− 1− 2 εα)(1− εα)2 − 2 εα+2(1− ε2)
]

.

Let us denote the quantity in the bracket above by m(α, ε).

m(α, ε) = (α− 1− 2 εα)(1 − εα)2 − 2 εα+2(1− ε2).
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A3 is non-negative if m(α, ε) is. In the set α ∈ (1, 2) and ε ∈ (0, 1/
√
3), the

function m(α, ε) is monotone increasing with respect to α and is monotone
decreasing with respect to ε. Notice that

m(2, 1/
√
3) = 0.

Hence for any ε < 1/
√
3, there exists a corresponding α(ε) < 2 such that

for α ∈ (α(ε), 2), m(α, ε) ≥ 0, and in turn A3 ≥ 0.
For the estimate of A2 we notice that ∇v = ∇φv+eφ∇u, as v = eφu. To

bound |eφ∇u|, we want to apply the inequality |eφ∇u|2/2 ≤ |∇v|2+|∇φ|2v2.
We thus look at the inequality (58) in the following way.

([S,A]v, v) + (Sv, Sv) ≥
∫

(|∇v|2 + |∇φ|2v2)dxdt

+

∫

[A3 + (A2 − |∇φ|2) +A1 +A0]v
2dxdt.

Next we estimate A2 − |∇φ|2.

A2 − |∇φ|2 = −4a2Λ(t)Λ′(t)

((

1 +
Λ(t)

2Λ′(t)

)

|∇ϕ|2 − ϕf +
Λ(t)

Λ′(t)
f2

)

. (66)

Λ(t) = 1−t
tα/2 and Λ′(t) = −α/2+(1−α/2)t

tα/2+1 . |Λ(t)/Λ′(t)| < 1
2α .

A2 − |∇φ|2 ≥ −4a2Λ(t)Λ′(t)

((

1− 1

4α

)

|∇ϕ|2 − ϕf − 1

2α
f2

)

. (67)

Notice that |∇ϕ|2 ≥ |ϕ,1|2 ≥ α2(1− εα)2x2α−2
1 and ϕf ≤ α εα(1− εα)x2α−2

1 .
From the expression of m(α, ε) in the estimation of A3 above, we know that
ε ≤ (α− 1)/2. Taking into account that r ≥ x1 > 1,

A2 − |∇φ|2 ≥ −4a2Λ(t)Λ′(t)

(

3

8
x2α−2
1 − 1

4
r2α−4

)

≥ −a
2

2
Λ(t)Λ′(t)x2α−2

1 .

(68)
Finally, we estimate A1. Recall that

A1 = −aΛ∆2ϕ+ aΛ′′ϕ− 2aΛ(t)∆f + aΛ′ϕ− 2aΛ(t)f + 8atΛf.

An simple observation is that

A1 ≥ a(Λ′′ϕ+ aΛ′)ϕ− aΛ(∆2ϕ+ 2∆f + 2f), (69)
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and Λ′′(t) + Λ′(t) > α − 1 > 0. The terms in the second parenthesis are of
homogeneity less than α − 2, thus under the control of A2. Consequently,
there exists some constant a0 depending on ϕ such that for a > a0,

A2 +A1 ≥ −a
2

4
Λ(t)Λ′(t)x2α−2

1 + a(α− 1)ϕ. (70)

In addition |Λ′(t)| ≥ 1 and x1 > 1. We thus have

([S,A]v, v) + (Sv, Sv) ≥
∫

(|∇v|2 + |∇φ|2v2)dxdt

+

∫

a2

4
Λ(t)v2dxdt+

∫

a(α− 1)ϕv2dxdt

In turn
∫

Qθ

e2aΛ(t)ϕ(x)+2t2
[(

a2

4
Λ(t) + a(α− 1)ϕ

)

u2 +
1

2
|∇u|2

]

dxdt

≤
∫

Qθ

e2aΛ(t)ϕ(x)+2t2 |∂tu+∆u|2dxdt. (71)

To simplify, we can assume α > 3/2, and a > 2, it follows that

∫

Qθ

e2aΛ(t)ϕ(x)+2t2
[

a (Λ + ϕ) u2 + |∇u|2
]

dxdt

≤ 4

∫

Qθ

e2aΛ(t)ϕ(x)+2t2 |∂tu+∆u|2dxdt. (72)
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