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Topological phases and flat surface bands in superconductors without inversion symmetry
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We examine different topological phases in three-dimensional non-centrosymmetric superconductors with
time-reversal symmetry by using three different types of topological invariants. Due to the bulk boundary
correspondence, a non-zero value of any of these topological numbers indicates the appearance of zero-energy
Andreev surface states. In fully gapped phases the presenceof these surface states is independent of the surface
orientation, whereas in nodal superconducting phases the Andreev states appear only for certain orientations of
the surface. We find that some of these boundary modes in nodalsuperconducting phases are dispersionless,
i.e., they form a flat surface band. These dispersionless Andreev surface bound states have many observable
consequences. In particular, they lead to a zero-bias conductance peak in the scanning tunneling spectra.

PACS numbers: 73.43.-f, 73.20.-r, 03.65.Vf, 74.55.+v, 74.45.+c, 73.20.Fz

The hallmark of topological insulators and superconduc-
tors (SCs) is the existence of topologically protected conduct-
ing boundary modes. The recent experimental observation of
these edge and surface states in spin-orbit inducedZ2 topo-
logical insulators in two and three dimensions [1, 2], respec-
tively, has lead to a surge of interest and excitement [3, 4].
An exhaustive classification of topologically protected bound-
ary modes occurring in gapped free fermion systems in terms
of symmetry and spatial dimension was given in Refs. [5–7].
Interestingly, this classification scheme, which is known as
the “periodic table” of topological insulators and SCs, pre-
dicts that in three dimensions (3D) there exists a topological
SC which satisfies time-reversal symmetry, but breaks spin-
rotation symmetry. Indeed, the B phase of3He is one exam-
ple of this so-called “class DIII” topological superfluid, whose
different topological sectors can be distinguished by an inte-
ger topological invariant. Recent ultrasonic attenuationmea-
surements in3He-B confirmed the existence of the predicted
zero-energy surface Majorana bound state [8].

However, finding an electronic analog of the superfluid B
phase of3He remains an outstanding challenge. In this pa-
per we argue that some of the 3D non-centrosymmetric SCs
might be examples of electronic topological SCs in symmetry
class DIII. We analyze the topological phase diagram of these
systems and demonstrate quite generally that adjacent to fully
gapped topological phases there exist non-trivial gaplesssu-
perconducting phases with topologically protected nodal lines
(rings). To characterize these gapless lines we introduce a
set of topological invariants and show that, due to the bulk-
boundary correspondence, the presence of topologically sta-
ble nodal rings implies the appearance of dispersionless zero-
energy Andreev surface states. These flat surface bands mani-
fest themselves in scanning tunneling measurements as a zero
bias conductance peak, a feature which could be used as an
experimental signature of the topological non-triviality.

In non-centrosymmetric SCs the absence of inversion in
the crystal structure generates antisymmetric spin-orbit(SO)
interactions and leads to a mixing of spin-singlet and spin-
triplet pairing states. These are the properties that give rise
to topologically non-trivial quasi-particle band structures in
these systems. Starting with CePt3Si [9], a multitude of new

non-centrosymmetric SCs has recently been discovered, in-
cluding, among others, Li2PdxPt3−xB [10, 11] CeRhSi3 [12],
and Mo3Al2C [13].

Model HamiltonianAs a generic phenomenological de-
scription applicable to any of the aforementioned materi-
als we employ a single band model with antisymmetric SO
coupling and treat superconductivity at the mean field level.
Thus, let us considerH =

∑

k
Ψ†

k
H(k)Ψ

k
with Ψk =

(ck↑, ck↓, c
†
−k↑, c

†
−k↓)

T , wherec†σk is the electron creation
operator with spinσ and momentumk and the Bogoliubov-de
Gennes (BdG) Hamiltonian is given by

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

. (1a)

The normal state Hamiltonianh(k) describes non-interacting
electrons in a crystal without inversion center

h(k) = εkσ0 + γk · σ, (1b)

whereεk = ε−k is the spin-independent part of the spec-
trum,σ1,2,3 stand for the three Pauli matrices, andσ0 denotes
the 2 × 2 unit matrix. The second term inh(k) represents
an antisymmetric SO interaction with pseudovector coupling
constantγk, which satisfiesγ−k = −γk.

Due to the presence of the parity breaking SO couplingγk

the order parameter in Eq. (1a) is in general an admixture of
spin-singletψk and spin-tripletdk pairing states

∆(k) = (ψkσ0 + dk · σ) (iσ2) , (1c)

whereψk anddk are even and odd functions ofk, respec-
tively. The direction of the spin-triplet componentdk is as-
sumed to be parallel toγk, as for this choice the antisym-
metric SO coupling is not destructive for triplet pairing [14].
Hence, we parametrize thed-vector and the SO interaction as
dk = ∆tlk andγk = αlk, respectively. For the spin-singlet
component we assumes-wave pairingψk = ∆s and choose
the amplitudes∆t,s to be real and positive.

In order to exemplify the topological properties of
the BdG Hamiltonian (1), we consider a normal state
tight-binding band structure on the cubic latticeεk =
t1 (cos kx + cos ky + cos kz) − µ, with hopping amplitude
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FIG. 1. (color online). Phase diagram as a function of spin-singlet
pairing amplitude∆s and spin-orbit couplingg2 [see Eqs. (2) and
(3)] for the point group (a)O and (b)C4v . Blue shaded and dotted
regions are nodal superconducting phases withNC1

= ±1 (red/black
dotted),NC2

= ±1 (light/dark blue),NC3
= +1 (white dotted),

andNC4
= +1 (blue). The gapped phases are characterized by the

winding numberν with ν = 0 (white), ν = ±1 (dark/light grey),
ν = −5 (light brown), andν = +7 (dark brown).

t1 and chemical potentialµ. We will set (t1, µ, α,∆t) =
(4.0, 4.8, 1.0, 1.0) henceforth. The specific form of the SO
coupling γk depends on the non-centrosymmetric crystal
structure [15], i.e.,gγg−1k = γk, whereg is any symmetry
operation in the point groupG of the crystal. Having in mind
Li2PdxPt3−xB, we assume for the pseudovectorlk the fol-
lowing form compatible with the symmetry requirements of
the cubic point groupO

lk =





sin kx
sin ky
sin kz



− g2





sin kx(cos ky + cos kz)
sin ky(cos kx + cos kz)
sin kz(cos kx + cos ky)



 , (2)

with the constantg2, and where we neglect higher order terms.
Furthermore, we also consider the point groupC4v, relevant
for CePt3Si, in which caselk reads

lk = (sinkyêx − sinkxêy) (3)

+g2 sinkx sin ky sin kz (cos kx − cos ky) êz.

It is important to note that the quasi-particle band topology
of H(k), as defined by Eq. (1), is mainly determined by the
momentum dependence oflk along the Fermi surface sheets.
Hence, the results we obtain are expected to remain qualita-
tively unchanged upon inclusion of further-neighbor hopping
terms in the band structureεk.

Topological InvariantsTo characterize the topological
properties ofH(k) we introduce three different topological
invariants. But before doing so, we observe thatH(k) satis-
fies both time-reversal symmetry (TRS), withT 2 = −1, and
particle-hole symmetry (PHS), withC2 = +1, which are the
defining symmetry properties of symmetry class DIII in the
terminology of Ref. [5]. Combining TRS and PHS yields a
third discrete symmetry, the “chiral” symmetryS = T C, i.e.,
there is a unitary matrixS which anticommutes withH(k). It
is important to note that while both TRS and PHS relateH(k)

to HT (−k), S is a symmetry which is satisfied byH(k) at
any given pointk in the Brillouin zone (BZ).

As shown in Ref. [5] different topological sectors in the
fully gapped phases ofH(k) are distinguished by the class
DIII winding number

ν =

∫

BZ

d3k

24π2
εµνρ Tr

[

(q−1∂µq)(q
−1∂νq)(q

−1∂ρq)
]

, (4)

where the integral is over the 1st (BZ) andq(k) is the off-
diagonal block of the flat-band matrix ofH(k) [16].

In the nodal superconducting phases the winding numberν
is no longer quantized. However, we can considerH(k) re-
stricted to 1D loops in reciprocal space and define a topolog-
ical number in terms of a 1D momentum space loop integral
to characterize the topology of the gapless phases. We ob-
serve thatH(k) confined to a generic momentum space loop
no longer satisfies TRS nor PHS, but it still obeys chiral sym-
metryS. Hence,H(k) restricted to a loop in the BZ belongs
to symmetry class AIII [5] and its topological characteristics
are described by the 1D winding number

NL =
1

2πi

∮

L

dlTr [q−1(k)∇lq(k)], (5)

where the integral is evaluated along the loopL in the BZ.
Observe that foranyclosed loopL that does not intersect with
gapless regions in the BZ,NL is quantized to integer values.
If L is chosen such that it encircles a line node, thenNL de-
termines the topological stability (i.e., the topologicalcharge)
of the gapless line [17, 18].

Finally, we also considerH(k) restricted to a time-reversal
invariant (TRI) loopL, which is mapped onto itself under
k → −k. In that case we obtain a 1D Hamiltonian satisfying
both TRS and PHS (i.e., belonging to symmetry class DIII).
The topological properties of such a 1D system are character-
ized by the followingZ2 invariant [16]

WL =
∏

K

Pf
[

qT (K)
]

√

det [q(K)]
, (6)

whereK denotes the two TRI momenta on the loopL. Note
thatWL is either +1 or -1 for any TRI loop that does not cross
gapless regions in the BZ.

Topological Phase diagramNumerical evaluation of the
topological numbers (4) and (5) yields the topological phase
diagram ofH(k), which is shown in Fig. 1 as a function of
second order SO couplingg2 and relative strength of singlet
and triplet pairing components. Fully gapped phases with dif-
ferent topological properties (i.e., the phases labeled bythe
winding numberν = ±1, 0,−5,+7) are separated in the
phase diagram by regions of nodal superconducting phases
(blue shaded and dotted areas). The fully gapped phases with
ν = ±1 are electronic analogs of3He-B. The nodal super-
conducting phases exhibit topologically stable nodal rings,
which are centered around high symmetry axes of the BZ (see
Figs. 2a and 3a). In order to determine the topological charac-
ter of these nodal lines (and hence of the corresponding gap-
less phases) it is sufficient to consider the topological invariant
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FIG. 2. (color online) Nodal rings (a) and (111) surface states (c,d)
for the point groupO with (g2,∆s) = (0.3, 0.5). This parameter
choice corresponds to the red dotted region in Fig. 1a. (b) Topolog-
ical invariantN(111), Eq. (8), as a function of surface momentum
k‖. Grey and dark blue indicateN(111) = ±1, while light blue
is N(111) = 0. (c) Band structure for a slab with (111) face as a

function of surface momentumk‖
2 with k

‖
1 = 0.75π. (d) Energy dis-

persion of the lowest lying state with positive energy. The color scale
is such that dark blue corresponds to zero energy. The statesat zero
energy in (c) and (d) are localized at the surface. The flat bands in (c)
and (d) are singly degenerate (i.e., one branch per surface), whereas
the linearly dispersing zero mode at the center of the BZ in (d) is
doubly degenerate.

NL only for loopsL that run along high symmetry axes. Thus,
for the cubic point groupO we choose the loops as follows

C1 : Γ →M → X → Γ, C2 : Γ →M → R → Γ, (7a)

whereas for the tetragonal point groupC4v we take

C3 : Γ → Z → R→ X → Γ,

C4 : Γ → Z → A→M → Γ. (7b)

For the cubic point group we find that whenever(NC1
, NC2

) =
(±1, 0) there are topologically stable nodal rings centered
around the (100) axis (and symmetry related directions).
When (NC1

, NC2
) = (0,±1) the gapless lines are oriented

along the (111) axis, whereas when(NC1
, NC2

) = (±1,±1)
the rings are located around the (110) direction. (A similar
analysis also holds for the point groupC4v.)

Andreev surface statesA non-zero quantized value of any
of the three topological numbers (4), (5) and (6) implies the
existence of zero-energy Andreev surface states. First of all,
in fully gapped phases with topologically non-trivial charac-
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FIG. 3. (color online) Same as Fig. 2 but for the point groupC4v,
for a slab with (012) face, and with(g2,∆s) = (0.0, 0.5). This
parameter choice corresponds to the white dotted area in Fig. 1b.

ter there appear linearly dispersing Majorana surface modes.
This has been discussed previously in the literature [5, 19–21].

In order to understand the appearance of zero-energy An-
dreev surface states in the gapless phases, we now make use
of the topological invariantNL with a cleverly chosen loop
L. Let us consider Eq. (1) in a slab configuration with(lmn)
face. In this geometry the HamiltonianH(lmn) retains transla-
tional invariance along the two independent directions parallel
to the(lmn) surface. Hence,H(lmn)(k‖) can be viewed as a
family of 1D systems parametrized by the two surface mo-
mentak‖ = (k

‖
1 , k

‖
2). SinceH(lmn)(k‖) obeys chiral sym-

metry (but breaks in general TRS and PHS), its topological
properties are given by the 1D winding number of class AIII

N(lmn)(k‖) =
1

2πi

∫

dk⊥ Tr
[

q−1(k)∂⊥q(k)
]

, (8)

wherek⊥ is the bulk momentum perpendicular to the surface,
and ∂⊥ = ∂/∂k⊥. Note thatN(lmn) is the same asNL,
Eq. (5), withL chosen alongk⊥, following a non-contractible
cycle of the BZ torusT 3.

Now, the key observation is that the above line integral is
closely related the loop integralNL, with L = Ci, that de-
termines the topological charge of the superconducting nodal
lines. That is, for those surface momentak‖ for which the
loop alongk⊥ in Eq. (5) passes through just one non-trivial
nodal ring,N(lmn)(k‖) is equal to the topological charge of
this given nodal ring. Hence, if we plotN(lmn)(k‖) as a func-
tion of surface momenta (see Figs. 2b,3b), we find that the
boundaries separating regions with different winding num-
ber are identical to the projection of the nodal lines onto the
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FIG. 4. (color online). Surface and bulk density of states for the
point group (a)O and (b)C4v. The surfaces are oriented perpendic-
ular to the (111) and (012) axes, respectively. The employedparam-
eter values are the same as in Figs. 2 and 3.

(lmn) plane. Furthermore, since a non-zero quantized value
of N(lmn) implies the existence of zero energy states at the
end points of the 1D HamiltonianH(lmn)(k‖) [5, 22], we find
that there are zero-energy Andreev bound states on the(lmn)
surface located within the projected nodal rings. This conclu-
sion is corroborated by numerical computations of the zero-
energy surface states both for the point groupO andC4v (see
Figs. 2 and 3). When two nodal rings overlap in the(lmn)
projection of the BZ, then the quantized value ofN(lmn) in
the overlapping region is determined by the additive contribu-
tion of the topological charges of the two rings. In particular,
one can have a situation where the two contributions cancel,
in which case there is no zero-energy surface state within the
overlapping region.

Finally, using an analogous argument as in the previous
paragraph, we can also employ theZ2 number (6) to deduce
the presence of zero energy modes at TRI momenta of the
surface BZ [16]. One example of this is the Kramers pair of
surface zero modes located at the center of the surface BZ in
Fig. 2d (cf. Refs. [20, 21]). Remarkably, this is a surface Ma-
jorana mode in agapless(nodal) superconducting phase [23].

Experimental signaturesOne of the most direct signatures
of the topological aspects of non-centrosymmetric SCs are
the surface Andreev bound states. These can be probed by
angle-resolved photoemission measurements, or by scanning
tunneling spectroscopy (STS) of the surface density of states
(SDOS). The bulk density of states of 3D gapless SCs with
nodal lines vanishes linearly at zero energy. In contrast, the
flat surface bands lead to a diverging zero-energy peak in the
SDOS (see Fig. 4), whereas the linearly dispersing Majorana
modes located at TRI momenta in the surface BZ generate an

additional linear contribution to the tunneling conductance.
The zero-bias peak in the SDOS is strongly dependent on

the surface orientation. From this dependence it is in prin-
ciple possible to (partially) map out the location of the topo-
logically stable nodal lines in the bulk BZ. In addition, one
can take advantage of the fact that an applied magnetic field
leads to a splitting of the zero-energy peak. Again, this split-
ting is strongly dependent on the orientation of the magnetic
field axis with respect to the nodal lines. Another possibil-
ity is to use spatially resolved STS to investigate the SDOS
in the presence of impurities on the surface. It is expected
that surface impurities will lead to strong spatial modulations
of the SDOS, which might give some information about the
topological characteristics of the nodal lines in the bulk.

Low-temperature thermal conductivity measurements pro-
vide a further experimental tool that could be used to deter-
mine the topological characteristics of non-centrosymmetric
SCs. While it is in general rather challenging to measure heat
transport properties of surface states, thermal conductivity is
an excellent probe of the superconducting gap nodes. Hence,
by measuring thermal conductivity for different directions of
the heat current relative to the orientation of the nodal rings
one could obtain indirect information on the topological char-
acter of the nodal lines.

In conclusion, using three different topological invariants,
we examined the topological properties of general 3D non-
centrosymmetric superconductors with TRS. We emphasize
that the presented formalism (or a generalization thereof)
can be applied to any 3D unconventional SC that preserves
TRS. One particularly interesting family of compounds is
Li2PdxPt3−xB. In these SCs the substitution of Pd by Pt
seems to be related to the relative strength of singlet and triplet
pairing states [24]. Hence, it might be possible to observe in
Li2PdxPt3−xB the transition between two topologically dis-
tinct quantum phases as a function of Pt concentration. An-
other fascinating system is CePt3Si, where experimental mea-
surements point to the existence of line nodes in the order
parameter and a large upper critical fieldHc2 indicates spin-
triplet pairing [25]. Thus, CePt3Si might be one of the best
candidates for the observation of dispersionless Andreev sur-
face bound states.
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Supplementary Materials

We first discuss basic symmetry properties of superconduc-
tors with time-reversal invariance and then go on to derive the
topological numbers (4), (5), and (6) from the main text. We
shall keep the analysis as general as possible, such that it may
be applied to arbitrary superconducting systems. In Section D
we will then specialize to the Bogoliubov-de Gennes Hamil-
tonian (1) describing a single-band non-centrosymmetric su-
perconductor.

Appendix A: Symmetries of the Bogoliubov-de Gennes
Hamiltonian

Let us consider a general time-reversal invariant supercon-
ductor belonging to symmetry class DIII in the terminology
of Refs. [5, 26, 27]

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

, (A1)

with the N -band normal state Hamiltonianh(k) and the
superconducting gap matrix∆(k), which obeyes∆(k) =
−∆T (−k) because of Fermi statistics. WithN bands (or-
bitals) and two spin degrees of freedom, the total dimension
of the Bogoliubov-de Gennes Hamiltonian at momentumk

is 4N × 4N . A class DIII superconductor satisfies two in-
dependent anti-unitary symmetries: time-reversal symmetry
T = KUT , with T 2 = −1, and particle-hole symmetry
C = KUC , with C2 = +1. Here,K stands for the com-
plex conjugation operator. Time-reversal symmetry constrains
H(k) as

UTH
∗(−k)U †

T = +H(k), (A2)

with UT = diag(uT , u
∗
T ) anduT is a2N×2N unitary matrix

that implements time-reversal invariance of the normal state
Hamiltonian, i.e.,uTh∗(−k)u†T = h(k) anduTT = −uT .
Observe, Eq. (A2) impliesuT∆†(k) = ∆(k)u†T . Particle-
hole symmetry acts on the Bogoliubov-de Gennes Hamilto-
nianH(k) as

UCH
∗(−k)U †

C = −H(k), (A3)

whereUC = σ1 ⊗ 12N , σ1,2,3 stand for the three Pauli matri-
ces, and12N is the2N × 2N unit matrix. Combining time-
reversal and particle-hole symmetry we obtain a third discrete
symmetry, which is given by

U †
SH(k)US = −H(k), (A4)

with US = iUTUC . In other words, there is a unitary ma-
trix US that anticommutes withH(k) and thereby endows the
Hamiltonian with a “chiral” structure. Namely, in the basisin
whichUS is diagonal,H(k) takes block off-diagonal form

H̃(k) = V H(k)V † =

(

0 D(k)
D†(k) 0

)

, (A5)

where the unitary transformationV is given by

V =
1√
2

(12N +iuT12N −iuT

)

, (A6)

and the block off-diagonal component readsD(k) = h(k) +

i∆(k)u†T . In the off-diagonal basis the unitary matrixUT is
given asŨT = V UTV

T = σ1 ⊗ uT . Thus, time-reversal
symmetry acts onD(k) as follows

uTD
T (−k)u†T = D(k). (A7)

To compute theZ2 invariant, Eq. (6), it is advantageous to
perform a second basis transformation which bringsUT into
the simple formŪT = WUTW

T = iσ2 ⊗ 12N . This
can be achieved with the help of the unitary matrixW =
diag(12N , uT ). In this new basis the Bogoliubov-de Gennes
Hamiltonian reads

H̄(k) =WH̃(k)W † =

(

0 D̄(k)
D̄†(k) 0

)

, (A8)

with the block off-diagonal component

D̄(k) = D(k)u†T = h(k)u†T − i∆(k). (A9)

We note that time-reversal symmetry operates onD̄(k) as
D̄T (−k) = −D̄(k).

Appendix B: Flat Band Hamiltonian and Winding Number

For the derivation of the topological invariants it is conve-
nient to adiabatically deformH(k), Eq. (A1), into a flat band
HamiltonianQ(k). The only assumptions that we need for
computingQ(k) are: (i) the Hamiltonian has a full spectral
gap and (ii) there is a unitary matrixUS anticommuting with
H(k). Thus, the following derivation ofQ(k) is applicable
to any chiral symmetric Hamiltonian with a full bulk gap, in
particular also to the three-dimensional topological supercon-
ductors in symmetry class AIII, DIII, and CI [5, 7, 28–32].

In what follows, we work in a basis in whichH(k) takes
block off-diagonal form. The flat band Hamiltonian is defined
in terms of the projection operatorP (k) which projects onto
filled Bloch eigenstates ofH(k) at a given momentumk. The

http://arxiv.org/abs/1001.2486
http://arxiv.org/abs/1007.4369
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projectorP (k), in turn, is defined in terms of the eigenfunc-
tions ofH̃(k)
(

0 D(k)
D†(k) 0

)(

χ±
a (k)
η±a (k)

)

= ±λa(k)
(

χ±
a (k)
η±a (k)

)

, (B1)

wherea = 1, . . . , 2N is the combined band and spin index.
We assume there is a spectral gap around zero energy with
|λa(k)| > 0, and for definitiveness we chooseλa(k) > 0 for
all a. Multiplying equation (B1) from the left bỹH(k) yields

DD†χ±
a (k) = λ2aχ

±
a , D†Dη±a = λ2aη

±
a . (B2)

Hence, the eigenfunctions(χ±
a , η

±
a ) can be obtained from the

eigenvectors ofDD† orD†D

DD†ua = λ2aua, D†Dva = λ2ava. (B3)

The eigenvectorsua, va are taken to be normalized to one, i.e.,
u†aua = v†ava = 1, for all a (here, the indexa is not summed
over). The eigenstates ofD†D follow from the eigenstates of
DD† via

va = NaD
†ua, (B4)

with the normalization factorNa. Using Eq. (B3) one can
check thatva is indeed an eigenvector ofD†D,

D†Dva = D†D(NaD
†ua) = Naλ

2
aD

†ua = λ2ava, (B5)

for all a. The normalization factorNa is given by

u†aDD
†ua = λ2au

†
aua = λ2a ⇒ Na =

1

λa
, (B6)

for all a. It follows that the eigenfunctions of̃H(k) are
(

χ±
a

η±a

)

=
1√
2

(

ua
±va

)

=
1√
2

(

ua
±D†ua/λa

)

. (B7)

With this, the projectorP (k) onto the filled Bloch states be-
comes

P =
1

2

∑

a

(

ua
−va

)

(

u†a −v†a
)

(B8)

=
1

2

(12N 0
0 12N

)

− 1

2

∑

a

(

0 uav
†
a

vau
†
a 0

)

.

Finally, we obtain for the flat band HamiltonianQ, which is
defined asQ = 14N − 2P [5],

Q =
∑

a

(

0 uav
†
a

vau
†
a 0

)

=
∑

a

(

0 uau
†
a

D
λa

D†

λa

uau
†
a 0

)

.

(B9)

In other words, the off-diagonal block ofQ(k) reads

q(k) =
∑

a

1

λa(k)
ua(k)u

†
a(k)D(k), (B10)

whereua(k) denotes the eigenvectors ofDD†. For a sys-
tem with completely degenerate bands,λa = λ, for all a, the
above formula simplifies to

q(k) =
1

λ(k)

∑

a

ua(k)u
†
a(k)D(k) =

1

λ(k)
D(k). (B11)

Examples of topological insulators and superconductors with
completely degenerate bands are the Dirac representativesof
Ref. [7].

The integer-valued topological invariant characterizing
topological superconductors is now simply given by the wind-
ing number ofq(k). It can be defined in any odd spatial di-
mension. In three dimensions we have

ν3 =

∫

BZ

d3k

24π2
εµνρTr

[

(q−1∂µq)(q
−1∂νq)(q

−1∂ρq)
]

,

(B12)

and in one spatial dimension it reads

ν1 =
1

2πi

∫

BZ

dkTr
[

q−1∂kq
]

. (B13)

Appendix C: Z2 Invariant for Symmetry Class DIII

In this section we compute theZ2 topological invariant for
symmetry class DIII ind = 1 andd = 2 spatial dimensions. It
is most convenient to perform this derivation in the basis (A8),
in which the4N × 4N Bogoliubov-de Gennes Hamiltonian
takes the form

H(k) =

(

0 D(k)
D†(k) 0

)

, D(k) = −DT (−k). (C1)

In this representation, the time-reversal symmetry operator is
given byT = KUT = K iσ2 ⊗ 12N and the flat band Hamil-
tonian reads

Q(k) =

(

0 q(k)
q†(k) 0

)

, q(k) = −qT (−k). (C2)

The presence of time-reversal symmetry allows us to define
the Kane-MeleZ2 invariant [7, 33–37],

W =
∏

K

Pf [w(K)]
√

det [w(K)]
, (C3)

with K a time-reversal invariant momentum. Here,w(k) de-
notes the “sewing matrix”

wab(k) = 〈u+a (−k)|T u+b (k)〉, (C4)

wherea, b = 1, . . . , 2N andu±a (k) is thea-th eigenvector of
Q(k) with eigenvalue±1.

Due to the block off-diagonal structure of Eq. (C2) a set of
eigen Bloch functions ofQ(k) can be constructed as [7]

|u±a (k)〉N =
1√
2

(

na

±q†(k)na

)

, (C5)

or, alternatively, as

|u±a (k)〉S =
1√
2

(

±q(k)na

na

)

, (C6)

wherena are2N momentum independent orthonormal vec-
tors. For simplicity we choose(na)b = δab. In passing, we
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note that both|u±a (k)〉N and|u±a (k)〉S are well-defined glob-
ally over the entire Brillouin zone. To compute theZ2 topo-
logical number we choose the basis|u±a (k)〉N. Combining
Eqs. (C4) and (C5) yields

wab(k) =
1

2

(

n†
a, n

†
aq(−k)

)

iσ2 ⊗ 12NK
(

nb

q†(k)nb

)

=
1

2

(

n†
a, n

†
aq(−k)

)

(

qT (k)nb

−nb

)

=
1

2

(

n†
aq

T (k)nb − n†
aq(−k)nb

)

= qTab(k). (C7)

In the second last line we used Eq. (C2), i.e.,q(−k) =
−qT (k). In conclusion, theZ2 topological number in spatial
dimensionsd = 2 andd = 1 is given by

W =
∏

K

Pf
[

qT (K)
]

√

det [q(K)]
, (C8)

whereK denotes the four (two) time-reversal invariant mo-
menta of the two-dimensional (one-dimensional) Brillouin
zone.

Appendix D: Flat Band Hamiltonian for the
Non-centrosymmetric Superconductor, Eq. (1)

Let us now apply the formalism developed in the pre-
ceding sections to the Bogoliubov-de Gennes Hamiltonian
(1) from the main text, describing a single band non-
centrosymmetric superconductor [38, 39]. First, we note that
time-reversal symmetry forH(k), Eq. (1), is implemented by
UTH

∗(−k)U †
T = +H(k) with UT = σ0 ⊗ iσ2. Hence,

we need to setuT = iσ2 in Eq. (A2). It then follows from
Eq. (A6) thatH(k) can be brought into block off-diagonal
form by the unitary transformation

V =
1√
2

( 12 −σ212 +σ2

)

. (D1)

The transformed Hamiltonian is given by

V H(k)V † =

(

0 D(k)
D†(k) 0

)

, (D2)

with the off-diagonal block

D(k) =

(

Bk +Alz
k

A(lx
k
− ily

k
)

A(lx
k
+ ily

k
) Bk −Alz

k

)

= Bkσ0 +A lk · σ, (D3)

and where we have introduced the short-hand notation

A = α+ i∆t, Bk = εk + i∆s. (D4)

Alternatively, we can also choose to work in the basis (A8), in
which case the off-diagonal component reads

D̄(k) =

(

A(lx
k
− ily

k
) −Bk −Alz

k

Bk −Alz
k

−A(lx
k
+ ily

k
)

)

. (D5)

-0.5-1 0 1

-0.6

0

0.5

-0.4

-0.2

0.2

0.4

0.6

 k||
 / 
π1

E

(a)

Γ

M2

+

+

+

(b)
M3

M1

FIG. 5. (a) Band structure of Hamiltonian (1) for the point groupO
in a slab geometry with(111) face as a function of surface momen-
tum k

‖
1 with k

‖
2 = 0, i.e., along the dashed line in panel (b). Here,

we set(g2,∆s) = (0.3, 0.5). (b) Brillouin zone of the (111) surface
with the values ofW(111)(K‖), Eq. (D12), at the four time reversal
invariant momentaK‖ ∈ {Γ,M1,M2,M3}.

For the computation of the flat band HamiltonianQ(k) it is,
however, more convenient to use Eq. (D3).

Repeating the steps of section B, we calcualte the eigenvec-
torsua(k) of

DkD
†
k
= |A|2l2

k
+ |Bk|2 + (AB∗

k
+BkA

∗)lk · σ, (D6)

wherelk = |lk|. The eigenfunctionsua(k) of D
k
D†

k
can be

obtained by diagonalizinglk · σ . Hence, when(lx
k
, ly

k
) 6=

(0, 0), we find that the eigenvectorsua(k) are given by

u1/2(k) =
1

√

2lk(lk ∓ lz
k
)

(

lx
k
− ily

k

±lk − lz
k

)

. (D7)

According to Eq. (B11), the off-diagonal block of the flat
band HamiltonianQ(k) is defined in terms of the eigenvec-
torsua(k). Thus, we need to compute

∑

a=1,2

1

λak
ua(k)u

†
a(k) (D8)

=
1

2λ1kλ2k

[

(λ1k + λ2k)σ0 + (λ2k − λ1k)
lk

lk
· σ
]

,

with the two positive eigenvaluesλ1k = |Bk − Alk| and
λ2k = |Bk + Alk|. Note that the last term in the second
line of Eq. (D8) contains removable singularities at the points
k0 wherelk0

= 0. For those points in the Brillouin zone one
needs to carefully take the limitk → k0 to obtain the correct
value of Eq. (D8). Finally, by use of Eq. (B11) together with
Eqs. (D3) and (D8) we find for the off-diagonal block of the
flat band Hamiltonian

q(k) =
1

2λ1kλ2k

[

{Alk(λ2k − λ1k) +Bk(λ1k + λ2k)}σ0

+ {Alk(λ1k + λ2k) +Bk(λ2k − λ1k)}
lk

lk
· σ
]

. (D9)

Now, for theZ2 invariant we need to bringq(k) into the
basis in whichUT = iσ2 ⊗ 12. This is achieved by letting

q(k) → −iq(k)σ2. (D10)



8

Using Eq. (C8) we get

W =
∏

K

Pf
[

iσ2q
T (K)

]

√

det [iσ2qT (K)]
=
∏

K

BK
√

B2
K

, (D11)

where we have made use of the fact thatlk is an antisymmetric
function, i.e.,l−k = −lk.

1. Z2 surface state

As discussed in the main text, theZ2 number (D11) can be
used to deduce the presence of Andreev surface states at time-
reversal invariant momenta of the surface BZ. To exemplify
this, let us consider Hamiltonian (1) in a slab geometry with
(lmn) face. At the four time-reversal invariant momentaK‖

of the(lmn) surface BZ theZ2 invariant is defined by

W(lmn)(K‖) =
∏

K⊥

Pf
[

iσ2q
T (K⊥,K‖)

]

√

det
[

iσ2qT (K⊥,K‖)
]

. (D12)

Eq. (D12) is quantized to+1 or−1, withW(lmn)(K‖) = −1
indicating the presence of Kramers degenerate surface modes
at the surface momentumK‖ (see Fig. 5).
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