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Topological phases and flat surface bands in superconductemwithout inversion symmetry
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We examine different topological phases in three-dimaraimon-centrosymmetric superconductors with
time-reversal symmetry by using three different types giotogical invariants. Due to the bulk boundary
correspondence, a non-zero value of any of these topolagicabers indicates the appearance of zero-energy
Andreev surface states. In fully gapped phases the presétivese surface states is independent of the surface
orientation, whereas in nodal superconducting phases tides&v states appear only for certain orientations of
the surface. We find that some of these boundary modes in sagatconducting phases are dispersionless,
i.e., they form a flat surface band. These dispersionlesse®vdsurface bound states have many observable
consequences. In particular, they lead to a zero-bias ctewdce peak in the scanning tunneling spectra.

PACS numbers: 73.43.-f, 73.20.-1, 03.65.Vf, 74.55.+v4B4tc, 73.20.Fz

The hallmark of topological insulators and superconduchon-centrosymmetric SCs has recently been discovered, in-
tors (SCs) is the existence of topologically protected cmtd  cluding, among others, tPd,Pt;_,B [10,[11] CeRhS;j [12],
ing boundary modes. The recent experimental observation and MgAl ,C [13].
these edge and surface states in spin-orbit ind#eetbpo- Model HamiltonianAs a generic phenomenological de-
logical insulators in two and three dimensionis[[1, 2], respe scription applicable to any of the aforementioned materi-
tively, has lead to a surge of interest and excitemigntl[3, 4]als we employ a single band model with antisymmetric SO
An exhaustive classification of topologically protectedibd-  coupling and treat superconductivity at the mean field level
ary modes occurring in gapped free fermion systems in term$hus, let us conside = S \IJLH(k)\I}k with ¥, =
of symmetry and spatial dimension was given in_Ré]sD[S—?].(C% exy, el gr el )T, whereel, is the electron creation
Interesu_ngl_y, this classmca'uon_ scheme, which is known a operator with spim and momenturk and the Bogoliubov-de
th_e “perlo_dlc table”_of top_olog|cal msulators_ and SCs,-pre Gennes (BdG) Hamiltonian is given by
dicts that in three dimensions (3D) there exists a topokigic
SC which satisfies time-reversal symmetry, but breaks spin- H(k) = h(k) A(k)
rotation symmetry. Indeed, the B phase’bfe is one exam- — \Af(k) —hT(—k)
ple of this so-called “class DIlI” topological superfluidhase o ) ) )
different topological sectors can be distinguished by ae-in | he normal state Hamiltonidn(k) describes non-interacting
ger topological invariant. Recent ultrasonic attenuatira- ~ ©/€Ctrons in a crystal without inversion center
surements irfHe-B confi_rmed the existence of the predicted h(k) = o0 + Vi - O, (1b)
zero-energy surface Majorana bound state [8].

However, finding an electronic analog of the superfluid Bwheree, = c_x is the spin-independent part of the spec-
phase ofHe remains an outstanding challenge. In this patrum,oi 2 3 stand for the three Pauli matrices, anddenotes
per we argue that some of the 3D non-centrosymmetric SC#€ 2 x 2 unit matrix. The second term ih(k) represents
might be examples of electronic topological SCs in symmetryan antisymmetric SO interaction with pseudovector cogplin
class DIIl. We analyze the topological phase diagram of¢hesconstanty, which satisfiesy_, = —vx.
systems and demonstrate quite generally that adjacerityo fu  Due to the presence of the parity breaking SO coupling
gapped topological phases there exist non-trivial gapless the order parameter in Eq.{1a) is in general an admixture of
perconducting phases with topologically protected nadasl ~ Spin-singlet), and spin-tripletd,, pairing states
(rings). To characterize these gapless lines we introduce a . .
set of topological invariants and show that, due to the bulk- A(k) = (¥xoo + di - o) (i02) (10)
boundary correspondence, the presence of topologically stwhere;, andd; are even and odd functions &f respec-
ble nodal rings implies the appearance of dispersionless ze tively. The direction of the spin-triplet componed, is as-
energy Andreev surface states. These flat surface bands masumed to be parallel ey, as for this choice the antisym-
fest themselves in scanning tunneling measurements as a zenetric SO coupling is not destructive for triplet pairingi[1
bias conductance peak, a feature which could be used as &ence, we parametrize tlievector and the SO interaction as
experimental signature of the topological non-triviality di. = Ay, and~, = aly, respectively. For the spin-singlet

In non-centrosymmetric SCs the absence of inversion itomponent we assumewave pairingy, = Ag and choose
the crystal structure generates antisymmetric spin-¢8€)  the amplitudes\, ; to be real and positive.
interactions and leads to a mixing of spin-singlet and spin- In order to exemplify the topological properties of
triplet pairing states. These are the properties that gae r the BdG Hamiltonian [[1), we consider a normal state
to topologically non-trivial quasi-particle band struets in  tight-binding band structure on the cubic lattieg =
these systems. Starting with Ce8t[J], a multitude of new (cosky + cosk, + cosk,) — u, with hopping amplitude

(1a)
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() o) (b) C,, to H'(—k), S is a symmetry which is satisfied by (k) at
S ‘ — 2 ] any given point in the Brillouin zone (BZ).

As shown in Ref.[[5] different topological sectors in the
fully gapped phases off (k) are distinguished by the class
DIl winding number

3
V= /BZ 263:2 e’ Tr [(qflau(J)((fl&jq)(q’lapq)] .(4)

] where the integral is over the 1st (BZ) antk) is the off-
25 diagonal block of the flat-band matrix éf (k) [16].

In the nodal superconducting phases the winding number
is no longer quantized. However, we can consiték) re-
FIG. 1. (color online). Phase diagram as a function of spigist  stricted to 1D loops in reciprocal space and define a topolog-
pairing amplitudeA; and spin-orbit couplingy [see Eqgs.(2) and jcal number in terms of a 1D momentum space loop integral
(3)] for the point group (a)) and (b)Cls.. Blue shaded and dotted 4, characterize the topology of the gapless phases. We ob-
(rjeggiog)s ?\;e nOdaj'jug.erﬁt(l)gd“kcg?g ‘;rﬁses WiEh 1:( ihl. t(reg/ ?tlag;‘ serve thatH (k) confined to a generic momentum space loop

otted), N¢, = ight/dark blue),N¢, = +1 (white dotted), - o ;

and N, :2+1 (blue). The gapped phages are characterized by h@o longer satisfies TRS nor PHS, but it st|_II obeys chiral sym-
winding number with v — 0 (white), v — +1 (dark/light grey), metryS. Hence,H (k) restrlcted_ to a loop in the BZ bel_o_ngs
v = —5 (light brown), and = +7 (dark brown). to symmetry class AllI[[5] and its topological charactedst
are described by the 1D winding number

1 —1
t; and chemical potentigh. We will set (t1,p, o, Ay) = Ne 2w Ldl Trla™ (k)Vig(k)l, ®)
(4.0,4.8,1.0,1.0) henceforth. The specific form of the SO
coupling v, depends on the non-centrosymmetric crysta
structure [15], i.e.gvy-1k = Yk, Whereg is any symmetry
operation in the point grou@ of the crystal. Having in mind
LioPd,Pt;_,B, we assume for the pseudovecigrthe fol-
lowing form compatible with the symmetry requirements of
the cubic point grou®

Iwhere the integral is evaluated along the lafpn the BZ.
Observe that foanyclosed loopC that does not intersect with
gapless regions in the B2y is quantized to integer values.
If £ is chosen such that it encircles a line node, thgnde-
termines the topological stability (i.e., the topologichhrge)
of the gapless IinéﬁﬂS].

Finally, we also considef] (k) restricted to a time-reversal

sin kg sin k; (cos ky + cos k) invariant (TRI) loop£, which is mapped onto itself under

L, = [sink, | —gs | sinky(cosky +cosk.) |, @ F— —k.In that case we obtain a 1D Hamiltonian satisfying
‘ ‘ both TRS and PHS (i.e., belonging to symmetry class DIII).
The topological properties of such a 1D system are character
with the constangs, and where we neglect higher order terms.ized by the followingZ, invariant [16]
Furthermore, we also consider the point gratip, relevant

sin k., sin k. (cos ky + cos ky)

for CePtSi, in which casdy, reads W Pf [¢" (K)] 5
L = H ’ ( )
o & Vdet[g(K)]
lp = (sink,é, —sink,é,) (3)
+g2sink, sin ky sink, (cosky — cosky) é.. where K denotes the two TRI momenta on the loBpNote

thatW, is either +1 or -1 for any TRI loop that does not cross

It is important to note that the quasi-particle band topglog gapless regions in the BZ.
of H(k), as defined by Eq[1), is mainly determined by the Topological Phase diagranNumerical evaluation of the
momentum dependence kf along the Fermi surface sheets. topological numberg{4) anfll(5) yields the topological ghas
Hence, the results we obtain are expected to remain qualitaiagram ofH (k), which is shown in Figl]l as a function of
tively unchanged upon inclusion of further-neighbor howgpi  second order SO coupling and relative strength of singlet
terms in the band structueg. and triplet pairing components. Fully gapped phases with di

Topological InvariantsTo characterize the topological ferent topological properties (i.e., the phases labelethby
properties ofH (k) we introduce three different topological winding numberr = +1,0,-5,+7) are separated in the
invariants. But before doing so, we observe thdt) satis- phase diagram by regions of nodal superconducting phases
fies both time-reversal symmetry (TRS), wifif = —1, and  (blue shaded and dotted areas). The fully gapped phases with
particle-hole symmetry (PHS), witt* = +1, which are the v = 41 are electronic analogs éHe-B. The nodal super-
defining symmetry properties of symmetry class DIII in the conducting phases exhibit topologically stable nodal sjng
terminology of Ref.[[5]. Combining TRS and PHS yields a which are centered around high symmetry axes of the BZ (see
third discrete symmetry, the “chiral” symmetsy= 7C, i.e.,  Figs[2a anfll3a). In order to determine the topological chara
there is a unitary matri$ which anticommutes witli7 (k). It ter of these nodal lines (and hence of the corresponding gap-
is important to note that while both TRS and PHS reldig) less phases) itis sufficient to consider the topologicaiiant
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FIG. 2. (color online) Nodal rings (a) and (111) surfaceestdt,d) FIG. 3. (color online) Same as Fig. 2 but for the point gratip,
for the point groupO with (g2, A) = (0.3,0.5). This parameter for a slab with (012) face, and witfy», As) = (0.0,0.5). This
choice corresponds to the red dotted region in[Hig. 1a. (ppby- parameter choice corresponds to the white dotted area iflEig
ical invariant N(111), Eq. [8), as a function of surface momentum
k). Grey and dark blue indicat&/(;,,) = =1, while light blue
is N111y = 0. (c) Band structure for a slab with (111) face as a ] ] ] ]
function of surface momentuvﬁz‘ with k! = 0.757. (d) Energy dis- ter_there appear linearly d'Sp(_:"rs'ng _Majorana surface siode
persion of the lowest lying state with positive energy. Tolecscale 1 Nis has been discussed previously in the literatdre [521P-
is such that dark blue corresponds to zero energy. The stazeso In order to understand the appearance of zero-energy An-
energy in (c) and (d) are localized at the surface. The fladbam(c)  dreev surface states in the gapless phases, we now make use
and (d) are singly degenerate (i.e., one branch per surfabeyeas of the topological invarianfV, with a cleverly chosen loop
the linearly dispersing zero mode at the center of the BZ )nigd L. Let us consider Eg[{1) in a slab configuration w(ithn)
doubly degenerate. face. In this geometry the Hamiltonid#y,.,,,, retains transla-
tional invariance along the two independent directionsfbelr
to the (Imn) surface. Henceld(;,,,,) (k) can be viewed as a

N only for loops that run along high symmetry axes. Thus, family of 1D systems parametrized by the two surface mo-

— (2l ; ;
for the cubic point group we choose the loops as follows ~ Mentaky = (k;,k;). SinceH ., (k) obeys chiral sym-
metry (but breaks in general TRS and PHS), its topological

Ci:T—M-—>X T, C:T—M-—R—T, (7a) Propertiesare given by the 1D winding number of class Alll

1 _
whereas for the tetragonal point grodp, we take Nmn) (k) = 33 /d/ﬂ Tr [¢~ ' (k)OLq(k)], (8)
C3:I'-Z—>R—>X—T, wherek is the bulk momentum perpendicular to the surface,
Ci:T>Z—A—>M-=T. (7p) andd. = 0/0k.. Note thatN,,) is the same asv,,
Eq. (3), with£ chosen along | , following a non-contractible
For the cubic point group we find that whene(ai:,, N¢,) =  cycle of the BZ torug™.

(+1,0) there are topologically stable nodal rings centered Now, the key observation is that the above line integral is

around the (100) axis (and symmetry related directions)closely related the loop integré¥., with £ = C;, that de-

When (Ng,, Ne,) = (0,+1) the gapless lines are oriented termines the topological charge of the superconductinghod

along the (111) axis, whereas whéNc,, N¢,) = (+1,4+1)  lines. That is, for those surface momeita for which the

the rings are located around the (110) direction. (A similarloop alongk, in Eq. [3) passes through just one non-trivial

analysis also holds for the point grodh,,.) nodal ring, N, (k) is equal to the topological charge of
Andreev surface state’s non-zero quantized value of any this given nodal ring. Hence, if we plo;,..,,) (k) as a func-

of the three topological numbeis (4] (5) ahdl (6) implies thetion of surface momenta (see Fig$.[2b,3b), we find that the

existence of zero-energy Andreev surface states. Firdt,of aboundaries separating regions with different winding num-

in fully gapped phases with topologically non-trivial cher  ber are identical to the projection of the nodal lines ont th
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(b) additional linear contribution to the tunneling conductan
Caspos — 1 b " 125005 ~ | The zero-bias peak in the SDOS is strongly dependent on
U - bakpos — | LA [ bulkDOS — _ the surface orientation. From this dependence it is in prin-
) “ - \\ : A\ T ciple possible to (partially) map out the location of thedep
_ , \ i N, / \ logically stable nodal lines in the bulk BZ. In addition, one
N /\/ e \\ // can take advantage of the fact that an applied magnetic field
N NS ‘ leads to a splitting of the zero-energy peak. Again, thig-spl
o ! 2o o ting is strongly dependent on the orientation of the magneti
field axis with respect to the nodal lines. Another possibil-

FIG. 4. (color online). Surface and bulk density of statasthe ity is to use spatially resolved STS to investigate the SDOS

: : ._in the presence of impurities on the surface. It is expected
Eg?ttc?;ﬁgrzl(i)lo) ::g ((8)1% gngyerzggggﬁse?;e%:fgﬁg@;%ﬁ_d'c that surface impurities yviII Iegd to strong spatia.l modiolas
eter values are the same as in Figs. 2@nd 3. of the SDOS, which might give some information about the
topological characteristics of the nodal lines in the bulk.
Low-temperature thermal conductivity measurements pro-
vide a further experimental tool that could be used to deter-
(Imn) plane. Furthermore, since a non-zero quantized valuenine the topological characteristics of non-centrosynimet
of Numn) implies the existence of zero energy states at theSCs. While it is in general rather challenging to measuré hea
end points of the 1D HamiltoniaH ;) (k) [5,22], we find  transport properties of surface states, thermal condtyctsy
that there are zero-energy Andreev bound states ofiithe) an excellent probe of the superconducting gap nodes. Hence,
surface located within the projected nodal rings. This aonc by measuring thermal conductivity for different directsoof
sion is corroborated by numerical computations of the zerothe heat current relative to the orientation of the nodajsin
energy surface states both for the point greupndCy, (see  one could obtain indirect information on the topologicahch
Figs.[2 andB). When two nodal rings overlap in {fien)  acter of the nodal lines.
projection of the BZ, then the quantized valuegf,,,, in In conclusion, using three different topological invat@n
the overlapping region is determined by the additive cootri we examined the topological properties of general 3D non-
tion of the topological charges of the two rings. In partiul  centrosymmetric superconductors with TRS. We emphasize
one can have a situation where the two contributions cancethat the presented formalism (or a generalization thereof)
in which case there is no zero-energy surface state witlein thcan be applied to any 3D unconventional SC that preserves
overlapping region. TRS. One particularly interesting family of compounds is
Finally, using an analogous argument as in the previou&i,Pd,Pt;_,B. In these SCs the substitution of Pd by Pt
paragraph, we can also employ the number[(6) to deduce seems to be related to the relative strength of singlet &pidtr
the presence of zero energy modes at TRl momenta of thgairing states [24]. Hence, it might be possible to obsemve i
surface BZ[[16]. One example of this is the Kramers pair ofLi,Pd,Pt;_,B the transition between two topologically dis-
surface zero modes located at the center of the surface BZ tinct quantum phases as a function of Pt concentration. An-
Fig.[2d (cf. Refs.[[2d, 21]). Remarkably, this is a surface Ma other fascinating system is CgBt, where experimental mea-
jorana mode in gaplesgnodal) superconducting phasel[23]. surements point to the existence of line nodes in the order
Experimental signature®ne of the most direct signatures parameter and a large upper critical fi¢ld, indicates spin-
of the topological aspects of non-centrosymmetric SCs arriplet pairing [25]. Thus, CeRSi might be one of the best
the surface Andreev bound states. These can be probed lbgndidates for the observation of dispersionless Andreev s
angle-resolved photoemission measurements, or by s@anniface bound states.
tunneling spectroscopy (STS) of the surface density oéstat AcknowledgmentShe authors thank B. Béri, A. Furusaki,
(SDOS). The bulk density of states of 3D gapless SCs with.. Klam, A. Ludwig, R. Nakai, P. Horsch, and M. Sigrist for
nodal lines vanishes linearly at zero energy. In contréagt, t discussions. A.P.S. is grateful to the Aspen Center for iekys
flat surface bands lead to a diverging zero-energy peak in thi®r hospitality during the preparation of this work. S.Rsig-
SDOS (see Fid.l4), whereas the linearly dispersing Majoranported by Center for Condensed Matter Theory at UC Berke-
modes located at TRI momenta in the surface BZ generate day.
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Supplementary Materials where the unitary transformatidnis given by

1 [lon +iur
We first discuss basic symmetry properties of superconduc- V= ﬁ (1121\/ —iuT) ) (A6)
tors with time-reversal invariance and then go on to dehee t
topological numberg{4)[15), and (6) from the main text. Weand the block off-diagonal component reddék) = h(k) +
shall keep the analysis as general as possible, such thayit miA(k)uTT. In the off-diagonal basis the unitary matiik; is

be applied to arbitrary superconducting systems. In Selflio given asUy = VUrVT = oy ® up. Thus, time-reversal
we will then specialize to the Bogoliubov-de Gennes Ham”'symmetry acts o (k) as follows

tonian [1) describing a single-band non-centrosymmetric s

perconductor. uTDT(—k)uTT = D(k). (A7)
To compute theZ, invariant, Eq.[(B), it is advantageous to

Appendix A: Symmetries of the Bogoliubov-de Gennes perform a second basis transformation which bribigsinto

Hamiltonian the simple formU; = WUrW7T = ioy @ Loy. This

can be achieved with the help of the unitary matiix =
Let us consider a general time-reversal invariant supercoriliag (1L, ur). In this new basis the Bogoliubov-de Gennes
ductor belongiﬁ to symmetry class DIII in the terminology Hamiltonian reads
7

of Refs. [5] 25| 27] ~
() =wiw' = (o Y00). 6o
H(k):<h(k) A(k) ) (A1) (k)
Af(k) —hT(~k) )"

with the block off-diagonal component

with the N-band normal state Hamiltoniah(k) and the _ i P
superconducting gap matria(k), which obeyesA(k) = D(k) = D(k)up = h(k)up —iA(k). (A9)
—AT(—k) because of Fermi statistics. WitN bands (or-

bitals) and two spin degrees of freedom, the total dimensio
of the Bogoliubov-de Gennes Hamiltonian at momentkim

is4N x 4N. A class DIl superconductor satisfies two in-
dependent anti-unitary symmetries: time-reversal symmet

We note that time-reversal symmetry operates/ofk) as

DT (~k) = —D(k).

Appendix B: Flat Band Hamiltonian and Winding Number

T = KUr, with 72 = —1, and particle-hole symmetry
C = KUg, with C? = +1. Here, K stands for the com-
plex conjugation operator. Time-reversal symmetry cassr For the derivation of the topological invariants it is conve
H(k) as nient to adiabatically deforn/ (k), Eq. [AT), into a flat band
HamiltonianQ (k). The only assumptions that we need for
UTH*(—k)U} = +H(k), (A2) computingQ(k) are: (i) the Hamiltonian has a full spectral

gap and (ii) there is a unitary matriXg anticommuting with
with Ur = diag(ur, u7) andur is a2N x 2N unitary matrix  H (k). Thus, the following derivation of)(k) is applicable
that implements time-reversal invariance of the normaesta to any chiral symmetric Hamiltonian with a full bulk gap, in
Hamiltonian, i.e.,uTh*(—k:)u} = h(k) andul = —ur.  particular also to the three-dimensional to olo%al sope-
Observe, Eq.[TA2) impliesir At (k) = A(k)uTT. Particle- ductors in symmetry class Alll, DIll, and [EL 32].
hole symmetry acts on the Bogoliubov-de Gennes Hamilto- In what follows, we work in a basis in whicH (k) takes
nian H (k) as block off-diagonal form. The flat band Hamiltonian is defined
in terms of the projection operatét(k) which projects onto
UCH*(—k)Ug = —H(k), (A3) filled Bloch eigenstates df (k) at a given momenturk. The
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projectorP(k), in turn, is defined in terms of the eigenfunc- Examples of topological insulators and superconductoiis wi

tions ofﬁ(k) com%etely degenerate bands are the Dirac representafives
Ref. [1].
< TO D(k)) (X?:_E(k’)> =+, (k) <X§(k)> . (B1) The integer-valued topological invariant characterizing
D(k) 0 na (k) 1 (F) topological superconductors is now simply given by the wind
wherea = 1,...,2N is the combined band and spin index. ing number ofg(k). It can be defined in any odd spatial di-
We assume there is a spectral gap around zero energy witAension. In three dimensions we have
|Xa (k)| > 0, and for definitiveness we choosg(k) > 0 for B ) . )
all a. Multiplying equation[[B1) from the left by7 (k) yields vy = /BZ CyPoRh (¢ '0ua) (¢ 0uq)(a " 0,p0)] ,
DDT i(k) Aa.Xa ’ DTDT]G. - A0.770. . (BZ) (812)

Hence, the eigenfunctiorig”, n) can be obtained fromthe and in one spatial dimension it reads

eigenvectors oD D' or DTD
1

DD, = N2u,, D'Duv, = A2v,. (B3) m=g— | dkTr [q " Onq] - (B13)
BZ
The eigenvectors,, v, are taken to be normalized to one, i.e.,
ulu, = viv, = 1, for all a (here, the index is not summed _ _
over). The eigenstates @' D follow from the eigenstates of Appendix C: Z, Invariant for Symmetry Class DIII

DD' via
ve = NuD'ug, (B4) In this section we compute thie, topologlcal_lnvanant for
symmetry class DIl inl = 1 andd = 2 spatial dimensions. It
with the normalization facton,. Using Eq. [[BB) one can is most convenientto perform this derivation in the bdsB)(A

check that, is indeed an eigenvector a1t D, in which the4 N x 4N Bogoliubov-de Gennes Hamiltonian
n t t 2 Mt 9 takes the form
D'"Dv, = D'D(N,D"uy) = NoAi D'y = Aiva, (B5)
izat s g 0 D(k) r
for all . The normalization factal, is given by H(k) = < Dik) 0 ) , D(k)=-D"(-k). (C1)

1
ul DD, = Nulu, = \2 = N, = SR

for all . It follows that the eigenfunctions d (k) are

(B6) : : . ,
In this representation, the time-reversal symmetry opeiat

given by7T = KUr = Kios ® 1on and the flat band Hamil-
tonian reads

(xi)zi(%):i< Ua ) (B7) 0 q(k)
nr) = V3 &) = 73 \entun ) a0 = (il “F ) a0 = ") (€2
With this, the projecto”(k) onto the filled Bloch states be-

The presence of time-reversal s mmetry allows us to define

comes Hme-
the Kane-MeleZ, invariant [7 3B

p=1 > (};@) (ul, —ol) (B8)

1<]12N o> 1Z< oTuaU;). " H\/det

T2\ 0 L) 24 0

(C3)

with K a time-reversal invariant momentum. Hetgk) de-

Finally, we obtain for the flat band Hamiltoniap, which is notes the "sewing matrix

defined ag) = 1,y — 2P [5], wap(k) = (u) (—k)|T uj (k)), (C4)
D
0= Z ( 0 uavl) _ Z 0 Ualth 3> wherea, b = 1,...,2N anduZ (k) is thea-th eigenvector of
— \vquf 0 — \ Zuquf 0 ' Q(k) with eigenvaluet1.
(B9) Due to the block off-diagonal structure of EQ.{C2) a set of

eigen Bloch functions of) (k) can be constructed ds [7]
In other words, the off-diagonal block ¢f(k) reads

+ _ L Na
£)= Y el D), (B10) 0 =75 (i, )0 ©

whereu, (k) denotes the eigenvectors 6fDT. For a sys-

tem with completely degenerate bandls,= A, for all a, the lu () = 1 xq(k)n, (C6)
above formula simplifies to 5 V2 N '
1

Z (k)ul (k)D(k) = 1 D(k). (B11) wheren,, are2N momentum independent orthonormal vec-
a a k .

k =
a(k) (k) tors. For simplicity we choose,), = 4. In passing, we

k)



note that bothuF (k))x and|ut (k))s are well-defined glob-
ally over the entire Brillouin zone. To compute tig topo-
logical number we choose the basigt (k))x. Combining

Eqgs. [C%) and(d5) yields

wap (k) = %( anp TL:; (k) )i0'2 ® Loy < qT(Tliib)nb >
_ ! T(k)n
_E(njl, niq(—k)) (Q_nb b)
= % (nfq" (k)n, — nla(—k)n,)
= ng(k)' (C7)

In the second last line we used EQ.1C2), i.g+k) =
—q* (k). In conclusion, théZ, topological number in spatial
dimensions! = 2 andd = 1 is given by

Pf [¢7(K)]

i Vdet [g(K)]

W= (C8)

where K denotes the four (two) time-reversal invariant mo-
menta of the two-dimensional (one-dimensional) Brillouin

zone.

Appendix D: Flat Band Hamiltonian for the
Non-centrosymmetric Superconductor, Eq. (1)

Let us now apply the formalism developed in the pre-obtained by diagonalizing, - o .

FIG. 5. (a) Band structure of Hamiltonidd (1) for the poinbigp O

in a slab geometry witli111) face as a function of surface momen-
tum k! with kg = 0, i.e., along the dashed line in panel (b). Here,
we set(g2, As) = (0.3, 0.5). (b) Brillouin zone of the (111) surface
with the values ofV(,11)(K), Eq. [DI2), at the four time reversal
invariant momentd< € {T', M1, Mo, Ms}.

For the computation of the flat band Hamiltoni@rk) it is,
however, more convenient to use Hg.[D3).

Repeating the steps of sect[oh B, we calcualte the eigenvec-
torsu, (k) of

DD}, = | APl + | Bel* + (AB;; + BeA")li - o, (D6)

wherely, = |lg|. The eigenfunctions, (k) of DkD,Tc can be
Hence, wher(i},1}) #

ceding sections to the Bogoliubov-de Gennes Hamiltoniart0,0), we find that the eigenvectous (k) are given by

(@ from the main text, describing a single band non-

centrosymmetric superconductor|[88, 39]. First, we no& th
time-reversal symmetry fail (k), Eq. [3), is implemented by
UTH*(—k)U} = +H(k) with Ur = 0 ® ioy. Hence,
we need to setir = io, in Eq. (A2). It then follows from
Eq. (AB) thatH (k) can be brought into block off-diagonal
form by the unitary transformation

_ 1 (1 —oo
V_\/§<112 +02). (D1)
The transformed Hamiltonian is given by
0 D(k)
T
VH(K)VT = <DT(k) 0 ), (D2)
with the off-diagonal block
~( Be+ Al A(lf —il}])
D(k) = < A +ilY) By — AL
= Brog + Aly - o, (D3)

and where we have introduced the short-hand notation

A=a+il;, Br=c¢cr+iAs. (D4)

Alternatively, we can also choose to work in the bdsis| (A8), i
which case the off-diagonal component reads

A(lg —il]) —Bx — Al )

B — Al; —A(IE +il?) (D3)

D(k) = (

x _ 7Y
1 ( Iy zlkz ) (D7)
(I 7 17) \ Tl — Ik
According to Eq.[(BIN), the off-diagonal block of the flat
band HamiltoniamQ (k) is defined in terms of the eigenvec-
torsu, (k). Thus, we need to compute

Ul/z(k) -

g (k)ug (k) (D8)
/\ak'
a=1,2
! (Ak + Aak)oo + (Ao — A )l’“
= - o’ —_— _ 0'
2)\1k)\2k 1k 2k )00 2k 1k lk 9
with the two positive eigenvalues,, = |Br — Alx| and

Aok = |Bg + Alg|. Note that the last term in the second
line of Eq. [D8) contains removable singularities at thenpoi
ko wherel;, = 0. For those points in the Brillouin zone one
needs to carefully take the limkt — k, to obtain the correct
value of Eq.[[D8). Finally, by use of Eq._(Bl11) together with
Eqgs. [D3) and(DB) we find for the off-diagonal block of the
flat band Hamiltonian

1
k)= ———
atk) 2M A2k

l
+ {Al (M + A2k) + Be(A2k — Mk)} i : U] (D9)

{Alk(Mak — Mk) + Bre(Mk + Xak)} oo

Now, for theZ, invariant we need to bring(k) into the
basis in whichUr = iogs ® 15. This is achieved by letting

q(k) —  —ig(k)os. (D10)



Using Eq.[C8) we get

B Pf [ioog" (K)] Bik
vl ey e o

K

where we have made use of the fact that an antisymmetric
function, i.e.l_p = —l.

1. Z- surface state

As discussed in the main text, t@g number[(DIlL) can be
used to deduce the presence of Andreev surface states at time
reversal invariant momenta of the surface BZ. To exemplify
this, let us consider Hamiltoniahl(1) in a slab geometry with
(Imn) face. At the four time-reversal invariant mome
of the (Imn) surface BZ theZ, invariant is defined by

Pf [iooq” (K1, K))]
Witmn) (K)) =
(tmn) (B ,11 \/det [io2q" (KL, K )]

Eq. (B12) is quantized te-1 or —1, with W(;,,,,,) (K)) = —1
indicating the presence of Kramers degenerate surfacesnode
at the surface momentulii (see Fig[b).
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