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FAITHFUL ACTIONS OF AUTOMORPHISMS ON THE

SPACE OF ORDERINGS OF A GROUP

THOMAS KOBERDA

Abstract. We study the space of left– and bi–invariant orderings on
a torsion–free nilpotent group G. We will show that generally the set of
such orderings is equipped with a faithful action of the automorphism
group of G. We prove an extension result which allows us to establish
the same result when G is assumed to be merely residually torsion–
free nilpotent. In particular, we obtain faithful action of mapping class
groups of surfaces. We will draw connections between the structure
of orderings on residually torsion–free nilpotent, hyperbolic groups and
their Gromov boundaries, and we show that in those cases a faithful
Aut(G)–action on the boundary is equivalent to a faithful Aut(G) action
on the space of left–invariant orderings.
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1. Introduction

Let G be a finitely generated group. A fundamental and often quite
difficult problem in the combinatorial group theory of G is to describe the
space of orderings on G. A left–invariant ordering on G is a relation
≤ on G which is a total ordering on the elements of G, together with the
following left–invariance property: for all triples a, b, c ∈ G, a ≤ b implies
ca ≤ cb. An ordering is called right–invariant if the analogous right–
invariance property holds. An ordering is called bi–invariant if it is both
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2 T. KOBERDA

left– and right–invariant. It is easy to check that an ordering is bi–invariant
if and only if it is left–invariant and conjugation–invariant.

Many groups admit no left–invariant orderings at all. For instance, the
presence of torsion precludes orderability. Some groups admit finitely many
orderings, and these groups have been completely classified by Tararin. See
the book of Botto Mura and Rhemtulla [MR] for more details. It is some-
times useful to observe that orderings on a group naturally occur in pairs.
For each ordering ≤, there is a natural ordering ≤op called the opposite

ordering, given by g ≤op h if and only if h ≤ g. On the other hand, many
groups admit uncountably many orderings. To organize the set of all order-
ings of a group, one defines the space of orderings on the group, denoted
LO(G) in the case of left–invariant orderings and O(G) in the case of bi–
invariant orderings. To define this space and equip it with a good topology,
we first define the notion of a positive cone P of an ordering. Given an
ordering ≤∈ LO(G) or O(G), we set

P = P(≤) = {g ∈ G such that 1 < g}.

This gives us a canonical bijective correspondence between orderings and
certain subsets of G, since to recover an ordering, we declare g < h if and
only if g−1h ∈ P.

In order for a subset of G to be the positive cone of some left–invariant
ordering, it must satisfy some axioms:

(1) P∪P−1 = G\{1}, where P−1 denotes the set of inverses of elements
of P.

(2) P ∩ P−1 = ∅.
(3) P · P ⊂ P.

P will be the positive cone of some bi–invariant ordering if in addition P
is G–conjugation invariant.

The power set of subsets of G comes with a natural topology which gives
it the structure of a Cantor set. This Cantor set will be metrizable whenever
G is countable. In particular, the power set of G can be viewed as

{0, 1}G,

where the two point set has the discrete topology and the product has the
product topology. Two points in the power set of G are close in this topology
if they agree on a large finite subset.

It is not difficult to show that the conditions for a set to be the positive
cone of a left– or bi–invariant ordering are closed conditions in the natural
topology on the power set. The details of the proof can be found in chap-
ter 14 of the book [DDRW] by Dehornoy, Dynnikov, Rolfsen and Wiest,
which has served as the primary inspiration for the material in this paper.
Therefore, LO(G) and O(G) can be viewed as closed subsets of a Cantor
set. The topology of this space for various groups has been studied by var-
ious authors, such as by Navas for free groups in in [N1], by Navas and
Rivas for Thompson’s group F in [NR], and by Sikora for finitely generated
torsion–free abelian groups in [S].

The groups Aut(G) and Out(G) both have natural actions on LO(G) and
O(G) respectively. G acts on LO(G) by conjugation, so Out(G) also acts
on the G–orbits in this space. These actions are given by pulling back and
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ordering ≤ to an ordering ≤φ via the automorphism φ. Precisely, we define
g ≤φ h if and only if φ(g) ≤ φ(h). It is easy to check that the two actions
are by homeomorphisms. One sees that this way we get maps

Aut(G) → Homeo(LO(G))

and

Out(G) → Homeo(O(G)).

These maps are the primary focus of this paper. Recall that a group G
is called residually torsion–free nilpotent if every non–identity element
of G persists in some torsion–free nilpotent quotient of G. Examples of
residually torsion–free nilpotent groups include free groups, surface groups,
right-angled Artin groups and pure braid groups. With this terminology, we
can state the main result of this paper:

Theorem 1.1. Let G by a finitely generated, residually torsion–free nilpo-

tent group. Then the map

Aut(G) → Homeo(LO(G))

is injective.

In particular, the conclusions of Theorem 1.1 hold for mapping class
groups of surfaces and automorphism and outer automorphism groups of
free groups. Theorem 1.1 shows that there are many essentially different
positive cones in residually torsion–free nilpotent groups which are not pre-
served by automorphisms of the group.

The proof of Theorem 1.1 is of a very similar flavor to the proof of as-
ymptotic linearity of the mapping class group, one of the principle results
in [K]. Asymptotically faithful actions of mapping class groups have been
of recent to various authors, such as Andersen in [A].

As an alternative perspective on Theorem 1.1, we will show that when
G is residually torsion–free nilpotent and hyperbolic, LO(G) recovers the
boundary ∂G. We will be able to show:

Theorem 1.2. Suppose that G is residually torsion–free nilpotent and hy-

perbolic. We have that Aut(G) acts faithfully on ∂G if and only if Aut(G)
acts faithfully on LO(G).

In the case that G is a surface group, Theorem 1.2 can be viewed as a
generalization of the classical result of Nielsen, namely that the mapping
class group Modg,1 of a surface of genus g ≥ 2 with one marked point acts
faithfully on the circle. For more details, consult the book of Casson and
Bleiler [CB]. It seems that there were few if any connections between order-
ings on groups and geometric group theory appearing anywhere in literature.
It thus appears that Theorem 1.2 gives an example of such a connection.

It is unlikely that one can easily remove the residual condition on G in
the statement of Theorem 1.2, since hyperbolic groups can be so diverse.
It is not even known whether or not every hyperbolic group is residually
finite or virtually torsion–free. For some discussion of virtual properties of
hyperbolic groups, the reader might consult the paper [KW] of I. Kapovich
and D. Wise.
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3. Abelian groups and extension theorems

In order to prove Theorem 1.1, we will need to understand the conclusion
of the theorem for finitely generated torsion–free abelian groups. Our goal
is to prove:

Lemma 3.1. GLn(Z) acts faithfully on O(Zn).

First, we must understand the structure of LO(Zn) = O(Zn). When
n = 1, it is evident that this set has exactly two points. When n > 1, Sikora
proved in [S] that O(Zn) is a Cantor set. To adapt Sikora’s Theorem to our
setup, we will be quite explicit about a construction of certain orderings on
Zn.

We begin by identifying some useful orderings on Zn. Let Z denote an
rational hyperplane in Rn. Then Z will help determine many positive cones
on Zn as follows: choose a half of Rn to be positive. Then choose a hy-
perplane within Z and declare a half of Z to be positive. Continuing this
process, we eventually declare each nonzero integral point in Rn to be either
positive or negative. It is easy to see that we in fact obtain a positive cone
on Zn this way.

It follows that a flag of rational subspaces of Rn together with a choice of
half–space in each dimension gives rise to an ordering on Zn. We will call
orderings which arise in this fashion flag orderings. Note that if Z is an
irrational hyperplane in the sense that it contains no rational points other
than the origin, Z automatically already determines exactly two orderings:
one for each choice of positive half–space.

We have two perspectives on orderings of Zn. One comes from choosing
irrational hyperplanes and rational flags, and the other comes from choosing
a positive cone. It is not immediately clear how to reconcile these two
descriptions of the orderings on Zn, even in the case n = 2. When n = 2, we
have a map from O(Z2) to RP1. This map is given by sending an ordering
to the line which separates the positive half–plane from the negative half.
The fiber over an irrational point in RP1 consists of two points, one for
each choice of positive half–plane. The fiber over a rational point consists
of four points, corresponding to the two choices for positive half–plane and
the two choices for positive half–line. Thus, one can see that the space of
orderings should not be considered with an analytic topology, but rather
with a topology which more closely resembles a totally disconnected one.

The rational flag orderings occupy a special place in the study of orderings
on Zn:

Lemma 3.2. Let V = {v1, . . . , vn+1} ⊂ Zn be nonzero vectors that do not lie

within a single closed rational half space in Rn. Let S denote the semigroup

generated by these vectors. Then 0 ∈ S.
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Proof. The case where n = 1 is trivial. Clearly we may assume that the real
span of V is n-dimensional, and indeed that the span of any n vectors in V is
n-dimensional. Indeed, otherwise we can take n vectors in V that lie within
a proper subspace which is contained in a hyperplane. This hyperplane will
divide Rn into two components. But then V is contained in the closed half
space that consists of this hyperplane and the half space which contains the
last vector. Consider the line ℓ spanned by vn+1 and the set P of positive
integral linear combinations of the other n vectors. The positive real span of
{v1, . . . , vn} determines a cone PR in Rn, and since the span of {v1, . . . , vn}
is n-dimensional and because V is not contained in a closed half-space, it
follows that the interior of ℓ intersects the interior of PR.

Each point in P has some distance to ℓ. We may assume that each
such distance is nonzero, for otherwise we are done. Consider the (n −
1)–dimensional real plane spanned by ℓ and {v1, . . . , vn−2}. This plane H
intersects the interior of PR. H divides Rn into two halves, and since H
intersects the interior of PR, vn−1 and vn cannot lie in the same half space.
Positive linear combinations of vn−1 and vn have some distances toH. These
distances are either rationally related or not. If they are rationally related,
then some positive combination of vn−1 and vn lies in H. If they are not
rationally related, the possible distances from positive linear combinations of
vn−1 and vn toH accumulate at zero. This observation uses the ergodicity of
an irrational rotation on the circle. However, a positive linear combination
of vn−1 and vn is always a lattice point. Since H is a rational hyperplane,
the set of distances from lattice points to H is a discrete subset of R. It
follows that some positive linear combination of vn−1 and vn lies in H.

Let w be a positive combination of vn−1 and vn which lies in H. Then w is
linearly independent from {v1, . . . , vn−2}. Indeed, this would contradict the
assumption that the span of {v1, . . . , vn} is n-dimensional. By induction,
we have the claim. We remark that it is obvious that all the hyperplanes
constructed in the proof can by taken to be rational. �

Proposition 3.3. The set of flag orderings on Zn is dense in the space of

orderings on Zn.

Proof. Let {(a1, b1), . . . , (am, bm)} be a collection of pairs of distinct lattice
points and let P ∈ O(Zn). Suppose that in P , ai < bi for all i. We will
show that there is a flag ordering in which these relations also hold. This
will imply that in any open subset of O(Zn) containing P , there is a flag
ordering.

By definition, bi − ai ∈ P for each i. By Lemma 3.2, all the (bi − ai)’s
must lie in a closed rational halfspace. If there is a rational hyperplane H
such that all the (bi−ai)’s are in one open half space defined by H, then we
are done. Otherwise, we consider the (bi − ai)’s which lie in H. A repeated
application of Lemma 3.2 shows that there is a flag ordering on Zn where
all the (bi − ai)’s are positive. �

We are now ready to prove Lemma 3.1. The following proof’s strategy
was suggested by C. McMullen:

First proof of Lemma 3.1. To each P ∈ Zn we associate a hyperplane HP

in Rn, namely the one which separates Zn into positive and negative half
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spaces. This hyperplane is uniquely determined, as can be seen from Lemma
3.2. Thus the map which associates HP to the cone P gives a map

O(Zn) → Pn−1(R).

Observe that GLn(Z) acts on Pn−1(R) and that the map above commutes
with the action of GLn(Z) by its very definition. Note that O(Zn) is
compact and nonempty, and GLn(Z) has dense orbits in Pn−1(R). It fol-
lows that the image of O(Zn) is all of Pn−1(R). The faithfulness of the
GLn(Z)/Z(GLn(Z)) action shows that GLn(Z) acts faithfully on O(Zn),
possibly modulo the center. The center of GLn(Z) consists of integral scalar
matrices of determinant one, so that the center is ±I. It is evident that the
nontrivial element of the center of GLn(Z) has no fixed points in O(Zn). �

Second proof of Lemma 3.1. We claim that in fact GLm(Z) acts faithfully
on the set of flag orderings of Zn. Let A ∈ GLn(Z). Suppose A is a rational
hyperplane preserved by A and v is a nonzero rational vector orthogonal to
Z which sits in the positive half–space of some ordering determined by Z.
If A(v) 6= λ · v for some λ > 0 then there is clearly an ordering which is not
preserved by A. Indeed, either A(v) = λ · v for some λ < 0, in which case
any order determined by Z is taken to an order which swaps the signs of the
two half–spaces determined by Z, or there is a rational hyperplane in Rn

which contains v and which does not contain A(v). In the latter case, we
can choose a flag ordering on Zn for which v is positive but A(v) is negative.

We may therefore assume that A preserves Z and the positive projective
class of v. Since we are now free to order Zn ∩ Z, we may repeat the same
argument as above with a hyperplane Z ′ in Z and an orthogonal vector v′.
By induction we may assume that we have a flag of hyperplanes

Z ⊃ Z ′ ⊃ · · · ⊃ Z(n) = {0}

and a sequence of nonzero rational vectors {v, v′, . . . , v(n−1)} orthogonal to

the first n − 1 of these, together with a nonzero vector v(n) in Z(n−1) such
that {v, v′, . . . , v(n)} form a basis for Rn and such that the positive pro-
jective class of each of these vectors is preserved by A. It follows that up
to conjugacy over Q, A is a diagonal matrix with positive rational entries
along the diagonal. Note that each entry of this matrix is an eigenvalue of
A, which must therefore be a rational algebraic integer since A is an integral
matrix. It follows that the entries are all integral, so that A is in fact the
identity. �

Together with Lemma 3.1 concerning orderings on abelian groups, cer-
tain extension theorems for orderings on torsion–free nilpotent groups will
be very important for the proof of Theorem 1.1. Up to this point in our
discussion of orderings on groups, we have been considering positive cones
which contain “half” of the nonidentity elements in a group. If we are given
a positive cone P which is partial in the sense that P ∪ P−1 is properly
contained in G\{1}, we call P a partial ordering. A partial ordering P is
bi–invariant if it is conjugation–invariant. We now quote the following two
strong theorems, the first due to Rhemtulla in [Rh] and the second due to
Mal’cev in [M] (see also [MR]):
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Theorem 3.4. Let N be a finitely generated torsion–free nilpotent group

and P a partial ordering on N . Then P extends to a total ordering on N .

Theorem 3.5. Let N be a finitely generated torsion–free nilpotent group

and P a bi–invariant partial ordering on N . Then P extends to a total

bi–invariant ordering on N .

Mal’cev actually proved that it suffices for N to be locally torsion–free
nilpotent.

The two extension theorems above can be restated as follows:

Theorem 3.6. Let N be a torsion–free nilpotent group and let N ′ < N be

a subgroup. Then the restriction maps

ρL : LO(N) → LO(N ′)

and

ρB : O(N) → O(N ′)

are both surjective.

4. Representations of automorphism groups and the boundary

of a hyperbolic group

In this section, we prove Theorem 1.1:

Theorem 4.1. Let G be a residually torsion–free nilpotent group and let

φ ∈ Aut(G). Then φ acts nontrivially on LO(G).

Proof. Clearly we may suppose that φ acts trivially on Gab ⊗Q, since oth-
erwise we may choose an ordering on Gab which is not preserved by φ by
Lemma 3.1, and then extend it to all of G by a standard ordering.

Suppose φ(g) 6= g. Then there is a torsion–free nilpotent quotient N for
which φ(g)g−1 is central and nontrivial. Choose an ordering on the abelian
subgroup of N generated by g and φ(g)g−1 and extend it to an ordering on
N using Rhemtulla’s Extension Theorem. By Lemma 3.1, we see that there
are orderings on the subgroup of N generated by g and φ(g)g−1 which are
not preserved by φ. Since φ acts trivially on the center of N , this subgroup
is φ–invariant, so that it makes sense to consider the action of φ on the
orderings on that subgroup. Having chosen such an ordering, we can then
extend it to all of G using the standard ordering construction. �

In the remainder of this section we shall develop an alternative viewpoint
on Theorem 1.1 which makes the result more transparent, at least in the
case of surface groups. Recall that a finitely generated group G is called
hyperbolic, Gromov hyperbolic or negatively curved if there is a
δ ≥ 0 such that whenever g, h ∈ G, any geodesic in G (with respect to
the word metric) connecting g and h is contained in a δ–neighborhood of
the union of two geodesics connecting the identity to g and h respectively.
Being δ–hyperbolic is a quasi–isometry invariant, though the precise value
of δ which witnesses δ–hyperbolicity depends on the generating set of G.

For basics on hyperbolic groups, the reader is referred to [G]. The prop-
erty of hyperbolic groups we will be most interested in presently is the notion
of the Gromov boundary of G, denoted ∂G. Recall that to define ∂G,
we fix a basepoint in G and consider equivalence classes of geodesic rays
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emanating from the basepoint. Two geodesic rays are equivalent if they
remain bounded distance from each other. Using the δ–hyperbolicity of G,
it is possible to check that ∂G is independent of the basepoint.

If two geodesic rays agree along long initial segments, then they are close.
It is therefore easy to produce a dense set of points in ∂G using the elements
of G itself. Indeed, note that each primitive g ∈ G gives rise to a point
xg ∈ ∂G given by the geodesic ray determined by powers of g.

Lemma 4.2. The set {xg | g ∈ G} is dense in ∂G.

Proof. Let γ be an arbitrary geodesic ray. Then any initial segment of γ is
an element of G. But then each longer initial segment g gives rise to an xg
which is closer to the equivalence class of γ in ∂G. �

The points {xg} should be thought of as the rational points in ∂G.
The motivation for this terminology is taken from lattices in Rn. Notions
akin to the Gromov boundary can be defined for non–negatively curved
metric spaces, such as Rn. From Rn we obtain a natural boundary which
is homeomorphic to Sn−1. In this same way, the boundary of Zn should be
thought of as Sn. Then the rational points on the boundary are obviously
given by lines through the origin, all of whose slopes are rational.

When G is a surface group (i.e. the fundamental group of a closed sur-
face of genus g), G is quasi–isometric to hyperbolic space H2, whose Gromov
boundary is homeomorphic to the circle S1. Some standard results in hy-
perbolic geometry show that the mapping class group Modg acts on the
Gromov boundary (see for instance the book of Casson and Bleiler [CB]):

Lemma 4.3. Let h be a homeomorphism of a closed, orientable surface of

genus g and let h′ be a lift to H2. Then h′ has a unique continuous extension

to the boundary of H2.

Lemma 4.4. Let h0 and h1 be two homotopic homeomorphisms of a closed,

orientable surface of genus g and let h′0 be a lift of h0 to H2. Then there is

a lift h′1 of h1 such that h′0 = h′1 on the boundary of H2.

Recall that an element 1 6= g ∈ G is called primitive if it cannot be writ-
ten in the form hn = g for some h 6= g and n 6= ±1. Our main observation
in this section is the following:

Lemma 4.5. Let G be a hyperbolic, residually torsion–free nilpotent, let

g ∈ G be primitive, let {Pα} be the set of positive cones on G which contain

g and let {P ′
α} be the set of bi–invariant positive cones on G which contain

g. Then ⋂

α

Pα = {gn | n > 0}.

We require G to be hyperbolic, since then there are always primitive
elements.

Proof. We must first check that this intersection is nonempty. Clearly, g is
nontrivial in some torsion–free nilpotent quotient N of G. We may declare
g to be positive, thus defining a partial ordering on N . By Rhemtulla’s or
Mal’cev’s Theorems we can extend this partial ordering to all of N , and
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then to all of G. Therefore there is at least one positive cone which contains
g.

Suppose that h 6= gn for all n. There is a torsion–free nilpotent quotient
N of G where both g and h are nontrivial, and we may assume that the
subgroup of N which they generate is abelian. If this subgroup is even
virtually cyclic then we may find a larger torsion–free nilpotent quotient N ′

of G where g and h are nontrivial and differ by an element of the center
of N ′. We may declare h to be negative in N ′ and g to be positive, thus
partially ordering N ′. We may then extend this ordering to an ordering on
N ′ and then on G. It follows that for every nonidentity element h which
differs from every power of g, there is a positive cone Ph on G which contains
g but not h. �

It follows that the space LO(G) recovers the Gromov boundary of a hy-
perbolic group.

Proof of Theorem 1.2. Suppose Aut(G) acts faithfully on ∂G. Then it must
act faithfully on the rational points of ∂G. If a nontrivial automorphism
φ preserves each left–invariant ordering on G, then φ preserves each subset
of G of the form {gn | n > 0} by Lemma 4.5. But then φ preserves each
rational point in ∂G, a contradiction.

Conversely, suppose Aut(G) acts faithfully on the set of left–invariant
orderings on G. Then for each φ ∈ Aut(G) there is an ordering P and a
g ∈ P such that g /∈ φ(P). It follows that g and all of its powers are negative
in the ordering φ(P ). It follows that Aut(G) acts faithfully on the rational
points in ∂G and hence on ∂G. �

5. Homology, orderings, residual finiteness and faithful

representations

In this section we will make some remarks about homology representations
of Out(G), O(G) and residual finiteness. Recall that a group is conjugacy
separable with respect to a class of groups K if whenever g and h
are not conjugate in G, there is a quotient G ∈ K wherein the images of g
and h are not conjugate. It is classical that surface groups and free groups
are conjugacy separable with respect to the class of p–groups for any prime
p. For a proof of this fact, the reader should consult Lyndon and Schupp’s
book [LS]. It is easy to see then that free and surface groups are conjugacy
separable with respect to the class of torsion–free nilpotent groups.

We say that a group has property C if whenever an automorphism φ of
G preserves the conjugacy class of each element of G, then φ is inner. The
fact that free and surface groups satisfy property C was first demonstrated
by E. Grossman in [Gr] in the course of her proof that mapping class groups
are residually finite.

It would be nice if we could formulate and prove analogous theorems to
Theorems 1.1 and 1.2 for the action of Out(G) on O(G), but unfortunately
we encounter various difficulties. The proofs as they are given for LO(G)
will not work for O(G). One difficulty is the following: any residually finite
group has a residually finite automorphism group. On the other hand, it is
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not true that each residually finite group has a residually finite outer auto-
morphism group. In fact, Wise proves in [W] that every finitely generated
group embeds in the outer automorphism group of some residually finite
group.

Whether or not Out(G) is residually finite for some group G is a question
about the closure of G inside Aut(G) in the profinite topology. In this paper,
we have been restricting the topology on Aut(G) even more by using the
pro–nilpotent topology, thus making it even more difficult for G to be closed
in Aut(G). The reason we care about the residual finiteness of Out(G) is
that given a non–inner automorphism φ and g ∈ G such that φ(g) is not
conjugate to g, we can always find some finite (or even better, nilpotent)
quotient of G where the images of g and φ(g) are not conjugate. Thus, unless
we have good control over the algebraic properties of Out(G), even knowing
that G has property C will not help us distinguish inner automorphism from
non–inner automorphisms on proper quotients of G.

Forgetting automorphisms for the moment, suppose we simply want to
construct a bi–invariant ordering on G where two non–conjugate elements g
and h are separated in the sense that one is positive and the other is negative.
Suppose that we have a nilpotent quotient N of G where g and h remain
non–conjugate. Note that this uses some sort of conjugacy separability of
G. Suppose furthermore that when we quotient out N by its center Z(N),
g and h become conjugate to each other. In that case we can write h = h′z,
where h′ is conjugate to g and z ∈ Z(N). We might then try to order the
group generated by g and z and maybe its conjugates as well, in such a
way so that g > 1 and h < 1. It is conceivable on the other hand that for
some n, h′zn is conjugate to g, in which case h′zn is also positive. It is easy
to check that then it is impossible to choose an ordering which meets our
specifications, using the theory of orderings on abelian groups we developed
above.

For certain residually torsion–free nilpotent groups however, it is possible
to make Out(G) act faithfully on O(G) just by exploiting the fact that the
homology representation

Out(G) → Out(H1(G,Q)

is faithful. Consider Out(AΓ), where Γ is a finite graph and AΓ is the
associated right-angled Artin group. Recall that this is the free group on
the vertices of Γ together with the commutation relations between vertices
whenever they are connected by an edge. See Charney’s expository article
[C] for instance.

Whereas abelian and free groups have large and very complicated auto-
morphism groups, it is often the case that right-angled Artin groups have
finite outer automorphism groups. In fact, Charney and Farber have re-
cently proved in [ChFar] that a “generic” right-angled Artin group has a
finite outer automorphism group.

Consider the following automorphisms of right-angled Artin groups (see
Laurence’s article [Lau], also Day’s article [Day], for instance):

(1) Automorphisms induced by isomorphisms of Γ.
(2) Inversions of the vertices of Γ.
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(3) Dominated transvections: we say that a vertex y of Γ dominates
a vertex x if the link of x is contained in the star of y. The map which
sends x to xy and fixes the rest of the vertices is an automorphism
of AΓ.

(4) Partial conjugacies: suppose the star of a vertex x separates Γ
into components Γ1, . . . ,Γk. Replacing the vertices in a union of
these components by their conjugates by x is an automorphism of
AΓ.

It had been a conjecture of Servatius in [Se] and is a theorem of Laurence
that these four types of automorphisms generate all of Aut(AΓ). Suppose
Γ is a finite graph with no separating stars. Then each partial conjugacy
is actually inner. If there is no pair of vertices in Γ with the link of one
contained in the star of the other, there are no dominated transvections in
Aut(AΓ). An example of a graph Γ with no transvections and no non–inner
partial conjugacies is an n–cycle, n ≥ 5. Note also that inversions of the
vertices and automorphisms induced by isomorphisms of Γ all act nontriv-
ially on the homology of AΓ and are thus non–inner. We thus immediately
obtain the following:

Corollary 5.1. Let AΓ be a right-angled Artin group admitting no domi-

nated transvections and no non–inner partial conjugacies. Then Out(AΓ)
acts faithfully on H1(AΓ,Q). In particular, Out(AΓ) acts faithfully on the

subset of O(G) consisting of standard orderings.

6. Some remarks on orderings of nilpotent groups

Let N be a finitely generated torsion–free nilpotent group. In general, it is
an open problem to describe the set of all bi–invariant orderings on an arbi-
trary torsion–free nilpotent group (see Example 1.4.1 in Navas’ notes [N2]).
Theorem 2.2.19 in the same notes shows that every non–cyclic torsion–free
nilpotent group has a Cantor set worth of left–invariant orderings. In some
simpler cases, one can describe the space of orderings. We will do this here
for the standard integral Heisenberg group

H = 〈x, y, z | [x, y] = z, [x, z] = [y, z] = 1〉.

First, we shall illustrate a well–known method for producing bi–invariant
orderings on torsion–free nilpotent groups, and indeed on residually torsion–
free nilpotent groups. This method can be found in the book [DDRW], and
the interested reader should consult the references therein. Recall that the
lower central series of a group G is defined by γ1(G) = G, γi+1(G) =
[γi(G), G]. A group is nilpotent if γn(G) = {1} for some n, and is residually
nilpotent (sometimes called ω–nilpotent) if

∞⋂

i=1

γi(G) = {1}.

For more details about the lower central series and nilpotent groups in gen-
eral, see Raghunathan’s book [R] for example.

For the remainder of the construction, we will assume that G is residually
nilpotent and that the quotients γi(G)/γi+1(G) are all torsion–free. If G is
residually torsion–free nilpotent then the quotients γi(G)/γi+1(G) may not
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be torsion–free, but one can modify the construction with little difficulty to
accommodate that case.

Choose an arbitrary ordering on each Ai = γi(G)/γi+1(G). If g, h ∈ G,
we consider g−1h. Consider the minimal i so that g−1h ∈ γi(G) \ γi+1(G).
We set g ≤ h if and only if the image of g−1h in Ai is positive. Since each Ai

is equipped with a trivial conjugation action by G, it is immediately clear
that all these orderings are bi–invariant.

An ordering on a residually torsion–free nilpotent group which arises in
this way shall be called standard. All other orderings will be called exotic.
Standard orderings are not good for the study of the action of Aut(G) and
Out(G) on orderings, since if φ is an automorphism which acts trivially on
H1(G,Z), φ preserves all standard orderings. This results from a standard
result on the lower central series of a group (see the paper [BL] of Bass and
Lubotzky for instance):

Lemma 6.1. Let φ ∈ Aut(G) and suppose that φ acts trivially on H1(G,Z) =
Gab. Then φ acts trivially on γi(G)/γi+1(G) for all i.

Proof. The proof is by induction on commutator depth. Suppose that a ∈
γi−1(G) and t ∈ G is arbitrary. We may assume that φ(t) = t · c where
c ∈ [G,G] and φ(a) = a · c′, where c′ ∈ γi(G). The commutator [t, a] lies in
γi(G), and it suffices to show that φ([t, a]) differs from [t, a] by an element
of γi+1(G). We have

φ([t, a]) = φ(t)−1φ(a)−1φ(t)φ(a) = c−1t−1c′−1a−1tcac′.

Switching t−1 with c′−1 perturbs c′−1 by an element of γi+1(G), since c′ ∈
γi(G). So, there is a c′′ ∈ γi+1(G) such that

φ([t, a]) = c′′c−1t−1a−1tcac′.

Since c ∈ [G,G] already, conjugating t−1a−1t by c perturbs it by an element
of γi+1(G). The claim follows. �

Standard orderings will allow us to extend orderings on nilpotent quo-
tients of a group G to G in the following manner: assume we are given
a (bi–invariant) ordering on G/γi(G). Choosing an arbitrary ordering on
γj(G)/γj+1(G) for j ≥ i will give rise to a (bi–invariant) ordering on G.

Proposition 6.2. Every bi–invariant ordering on the integral Heisenberg

group H is standard.

Before we produce a proof of Proposition 6.2, we will need the notion of
an isolated ordering. It is important not to confound an isolated ordering
in the context here with an isolated ordering in the topology of LO(G) or
O(G), which is to say simply an isolated point. An ordering P is isolated
if for each g ∈ G, gn ∈ P for n > 0 implies g ∈ P. It is easy to see
that orderings on Zn which are induced either by rational flags or irrational
hyperplanes are all isolated.

Proof of Proposition 6.2. We use the generators x, y and z above for H.
There are two obvious choices for maximal abelian subgroups of H, which
we write Mx = 〈x, z〉 and My = 〈y, z〉. Note that since [x, y] = z, both
of these subgroups are normal. Suppose that P ∈ O(H) is a bi–invariant
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ordering. Clearly P restricts to an ordering on Mx and My. Furthermore,
if P contains x, it also contains xzn for all n ∈ Z, by bi–invariance. More
generally, if xayb ∈ P, so is xaybzc, where c is any integral linear combination
of a and b. If gcd(a, b) = ±1 then c can be any integer. If gcd(a, b) = d 6= ±1
then we can use the fact that any ordering on 〈xayb, z〉 is isolated to conclude
that if xayb ∈ P then so is xa/dyb/d.

Let Z = 〈z〉. It follows that PZ is a positive cone on H/Z and hence P
descends to an ordering on H/Z. The proposition follows. �

There are often more orderings on torsion–free nilpotent groups than just
the standard ones. Indeed, the following will be an immediate consequence
of the proof of Theorem 1.1:

Corollary 6.3. There exist finitely generated torison–free nilpotent groups

with nonstandard bi–invariant orderings.

We remark that the set of bi–invariant orderings is properly contained in
the set of left–invariant orderings by a result of Darnel, Glass and Rhemtulla
in [DGR].

7. Some final examples

It is not true in general that Aut(G) acts faithfully on the left orderings
LO(G), nor is it true that Out(G) acts faithfully on the conjugacy classes
in LO(G) or on O(G). Consider, for instance, the fundamental group K of
the Klein bottle. We have the presentation

K = 〈x, y | x−1yx = y−1〉.

If P is an ordering on K then P is certainly not bi-invariant. Indeed, either
y ∈ P or y ∈ P−1, but conjugation by x takes y to y−1.

It is known that K admits exactly four left-invariant orderings. Aut(K)
is infinite, so it cannot act faithfully on the space of left-invariant orderings
LO(K). On the other hand, it is obvious that there are no more than
two conjugacy classes of orderings on K by the remarks above. However,
|Out(K)| = 4, so that Out(K) cannot act faithfully on conjugacy classes
in LO(K). We can compute the outer automorphism group of K in two
different ways. The first illustrates that Out(K) can be computed directly
from the presentation for K we have above, which is generally a rarity for
groups:

Proposition 7.1. Out(K) ∼= Z/2Z × Z/2Z.

Proof. We first note that y−1xy = xy2, and this allows us to completely
understand inner automorphisms of K. Let α be an automorphism of K.
Then, α : x 7→ wx and α : y 7→ wy. We evidently must have

w−1
x wywx = w−1

y .

Given any element w ∈ K, there is a well-defined (which is to say conjugation-
invariant) notion of the x-exponent sum of w. It follows that the x-exponent
sum of wx must be odd. Furthermore, there can be no occurrences of x
in wy. It follows that the x-exponent sum of wx must be ±1. It follows



14 T. KOBERDA

that there are integers m,n, k with k 6= 0 such that under the action of α,
x 7→ ymx±1yn, and y 7→ yk.

We immediately obtain three non-inner automorphisms of K, namely
α1 : x 7→ xy, α2 : x 7→ yx, and α3 : x 7→ x−1, where these are extended to
K by letting them fix y in the first two cases and α3 : y 7→ y−1. Clearly α3

is distinct from both α1 or α2 in Out(K), but α1 and α2 differ by an inner
automorphism. Both α3 and α1 have order 2 in Out(K), which already
shows that Out(K) cannot act faithfully on conjugacy classes of orderings
on K. The definition of α3 is such that α1 ◦ α3 : x 7→ y−1x−1 and y 7→ y−1.
On the other hand, α3 ◦ α1 : x 7→ x−1y−1 and y 7→ y−1, so that α1 and α3

commute up to an inner automorphism.
It suffices to show that k = ±1. Let α(y) = yk and α(x) = ymxyn. We

must be able to write

y = ya1k(ymxyn)b1 · · · yaik(ymxyn)bi

for some integers a1, . . . , ai and b1, . . . bi. Clearly,

i∑

j=1

bj = 0.

It follows that there are powers of y nested between x, x−1-pairs. The group
law in K allows us to dispose of these pairs by considering innermost x, x−1

pairs, i.e. ones that only have powers of y separating them in the expansion
of y above. An easy computation shows that between an innermost x, x−1

pair there is a word of the form ynyajky−n. The conjugation law allows us
to delete the x, x−1 pair and replace ynyajky−n by y−ajk. We then have a
ym, y−m pair surrounding y−ajk which cancels.

An easy induction shows that we can reduce the expansion of y above to
a power of y whose exponent is divisible by k, the desired conclusion. It
follows that the automorphisms α1 and α3 generate Out(K). �

Another way to compute Out(K) relies on the observation thatK contains
a copy of Z2 with index 2. We thus have a homomorphism K → Z/2Z with
kernel Z2. One can argue that any automorphism of K must commute with
the deck group action on Z2 and conclude that Out(K) can be identified with
the Klein 4–group, which is embedded in GL2(Z) via diagonal matrices with
±1 along the diagonals.
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