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Comparison of Dualizing Complexes

Changlong Zhong

Abstract

We prove that there is a map from Bloch’s cycle complex to katom-
plex of Milnor K-theory, which induces a quasi-isomorphigrom étale
sheafified cycle complex to the Gersten complex of logarithdei Rham—
Witt sheaves. Next we show that the truncation of Bloch'deygomplex at
—3 is quasi-isomorphic to Spiess’ dualizing complex.

1 Introduction

Using Lichtenbaum’s weight-two motivic complex, M. Spi¢28] constructed a
complex of étale sheavéSy on arithmetic surfaces and used it to prove a duality
of constructible sheaves. T. Moser [17] also defined a Getgyge complex of
logarithmic de Rham—Witt sheavesx and showed that it is a dualizing complex

for constructibleZ/p"-sheaves. In more general cases, for instance, schemes over
algebraically closed fields, finite fields, local fields anchededekind domains,

T. Geisser[[7] proved that the étale sheafified version otB&cycle complex

75 of relative dimension 0_[2] is a dualizing complex for constible sheaves.

A natural question arises: are these complexes quasi-iginedo each other?

Theorem 1.1(Main Theorem 1) For X a scheme separated and essentially of fi-
nite type over a perfect fiekdof characteristipp > 0, thereisamap : Z5 /p" —
v, x Which is a quasi-isomorphism.

Theorem 1.2(Main Theorem 2) Let X be a surface over a field, thenrs_3Z5
is quasi-isomorphic tdCx. If X is smooth, assuming the Beilinson—S%oGbn-
jecture for smooth surfaces, théty is quasi-isomorphic téCy.

To compare Bloch’s complex with Moser’s complex, first ndtattthe niveau
spectral sequence of higher Chow groups induces a canonégap : Z5 (X) —
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CHC(X), the latter being the Gersten complex of higher Chow groupfter
showing that"H¢(X) is isomorphic to Kato's complex of Milnor K-theoy™ (X)
[14] via the Nesterenko—Suslin isomorphismi[19], we obgaimapy : Z5 (X) —
CM(X), which is similar to a map defined by Landsburg {[15], p.62%hen
composing with the isomorphism between Milnor K-theory ghabal sections
of logarithmic de Rham—-Witt sheaves of fields (Bloch—K&8}, Theorem 2.1)y
induces a mapj) Z%/p" — v. x. Moreover, it induces an isomorphism of their
cohomology groups by a result of Geisser—Levine ([9], Teeod.1). Hence we
conclude that) is a quasi-isomorphism.

In this proof, one of the main tools is the Nesterenko—Sustimorphismy - :
CHy(F,n) — KM(F) of afield F ([19], or see Definitioh 215). Another property
is that, in Moser’s definition of, x, the differentials are defined so that they are
compatible withC} (X)) via the Bloch—Kato isomorphisi,) (F)/p" = v} (F)
([3], Theorem 2.1). However, one can also define differéniiaz, x from the
niveau filtrations of the logarithmic de Rham—Wiitt she@‘(. According to Gros—
Suwa ([10], Lemma 4.11), these two definitions coincide,ceer (X)/p" =
v, x(X) (see Jannsen-Saito-Safo,/[11], Theorem 2.1.1 and Theafdn83) for
a more detailed proof).

To prove Main Theorem 2, we define an intermediate com@lexand show
that it is quasi-isomorphic te-_;ZS and Ky, respectively. Hencers_3Z% is
guasi-isomorphic tdCx. Assuming the Beilinson—Soulé Conjecture for smooth
surfaces, we can drop the truncation and concludezfas quasi-isomorphic to
Kx. A key ingredient in this proof is the quasi-isomorphismviesn a trunca-
tion of Bloch’s complex and(F, 2) of a field £, which induces an isomorphism
0 : CHy(F,2) — Ky(F) ([4], §7). HereZ(F,2) is Lichtenbaum’s weight-two
motivic complex (se€ [16], Definition 2.1). We prove tlaagrees with an edge
morphism¢’ : CHy(F,2) — K,(F') of the spectral sequence relating motivic co-
homology and Quillen K-theory of fieId: [4]. Therefore, aatiag to [9], Propo-
sition 3.3,0 = ¢’ = s o yp : CHy(F,2) 25 KM(F) - K,(F), wheres is the
Steinberg symbol.

The paper is organized as follows: in Section 2, we recalldigfenitions of
Bloch’s cycle complex and Moser’s complex, as well as theligueesults of
T. Geisser and T. Moser. We also recall the construction efrtiveau spec-
tral sequence of higher Chow groups. This spectral sequéngether with the
Nesterenko—Suslin isomorphism, induces the map of coraplex Z5 (X) —
CM(X). When composing with the Bloch—Kato isomorphisim,induces the
quasi-isomorphismp : Z; %/p" — v, x. As another application of this method,
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we show that, for smooth and projective varieties over fifigkls, conjecture
A(0) of Geisser (part of Parshin’s Conjecture, s€e [8], Bsion 2.1) is true, if
and only ify is a quasi-isomorphism.

In Section 3, first we recall the dualizing compl€x of sheaves on surfaces
defined by M. Spiess and his duality results. Next we cons&rnew complex x
and show that it is quasi-isomorphicto_3;Z$, as well as tdCx. Consequently,
T>_31% 1S quasi-isomorphic t&Cx.

Terminology: Throughout this paper, the concepts chain complex and aocha
complex are used interchangeably. For instancé,igfa chain complex, we think
of it as a cochain complex by letting” = A_,,. We useX to denote a scheme
separated and of finite type over a perfect fielith characteristipp > 0, X,

to denote the set of dimensiarpoints of X, andd = dim(X).
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2 Comparison between Bloch’'s Complex and Moser’s
Complex

Following the notation in[[7], we defingy(X,n) to be the free abelian group
generated by cycle§ C X x A" that intersect all the faces properly ah@)
has transcendental degreever k. Thenz,(_,n) is an étale sheaf. Lét be
Bloch’s cycle complex of étale sheaves (of relative diniem®) ([2], [7]):

= z(n) S o 20(L 1) = 20(-,0) = 0,

and ‘

d(Z) =Y (-1)'[ZnV(H)],
where[Z N V(¢;)] denotes the linear combination of irreducible componehts o
Z NV (t;) with coefficients intersection multiplicities. We put(_, n) in (homo-
logical) degree:, and define the motivic Borel-Moore homology to be

H(X,Z) < H,(Z5(X)) = CHo(X,n).
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The complexZ$ (X) is covariant for proper maps and contravariant for quasi-
finite, flat maps.

Theorem 2.1(Geisser,[[7],5). Let k be a finite field andF be a constructible
sheaf onX, then there are perfect pairings of finite groups

H!(Xey, F) x Exty “(F,Z%) — H2(Xer, Z5) = Q/Z.

Theorem 2.2(Geisser,[[7]85). Let k£ be an algebraically closed field and be
a constructible sheaf oX. Then there are perfect pairings of finitely generated
groups
H!(Xer, F) x Exty (F, Z2%) — H} (Xer, Z5) = Q/Z.
If p > 0, we definer, x to be the Gersten complex of logarithmic de Rham-—
Witt sheaves:

0—>@zx*yk — . %@zx*yk %@zx*urk(x

X(a) X() X(0)

Here for a schemeX' over k, v’y is the the logarithmic de Rham-Witt sheaf
Wi 10 1-€., the subsheaf diﬂ/ 2% generated byllog fi A ... A dlog f,,, and
i+ 1S the push-forward map of sheaves definedlbySpec(k;(x)) — X. We put
@X(n) LoV k() in (homological) degree. The differentials are induced from the

niveau filtrations of the complex’ .

Theorem 2.3(Moser, [17], Theorem 5.6)Let £ be a finite field of characteristic
p and X be ak-scheme of pure dimensiah Then for every- > 1 and every
constructibleZ /p"-sheafF, there are perfect pairings of finite groups

H(Xer, F) x Ext (F,0px) = HX(Xet, U x) — Z/D"
Let CM(X) be Kato's complex of Milnor K-theory (cf. K. Kato, [14]):

O%@Kd )L a@KM )%@Ké”(k:(x))%o

X(a) X() X(0)

The differentiald’ is defined as follows: for any € X, and anyy € {z} N
X(,_1), we take the normalizatiofw’} of {=} with 2’ its generic point, and define
amap

8, : KM (k(x)) = ) =X @M (k() " KM (k(y)).

y'ly
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Here the notation’|y means thay’ € {z'},_,, is in the fiber ofy,

Niwyi) - KL (k) = K (k(y))

is the norm map of Milnor K-theory (see Bass—Tate, [1] andoK{3], Section

1.7), andd,, is the tame symbol defined by. Thend’ </ > 9, Note
yGX(nﬂ)ﬂm

that the sum in, is finite since elements ik (k(z2')) are represented by

elements ink(z")*, and each element ik(z')* has a finite number of poles and

zeros. When applying the tame symbol, only a finite numbeeiwhs$ in the sum

are non-zero. We pL@X(n) KM (k(z)) in (homological) degrea. The complex

CM(X) is covariant for proper maps and contravariant for quagtefiand flat
maps (see Rost, [21], Proposition 4.6(1),(2)).

Theorem 2.4(Bloch—Kato, Gros—Suwa, Moser)
CM(X) /P = By x (X). (2.0.1)
Proof. By Bloch—Kato, [3], Theorem 2.1, for any field, there is an isomorphism
K (F) /" = v p(F)

sending{ fi, ..., fn} to dlog f1 A ... A dlog f,. By [10], Lemma 4.1, this iso-
morphism respects the differentials@'(X) andz, x(X). Hence it induces an
isomorphism of complexe8M (X) /p" — 7. x (X). Q.E.D.

The Niveau Spectral Sequendeet us recall the construction of the niveau spec-
tral sequence of higher Chow groups withcoefficients. Letp be the projec-
tion X x A" — X. Let Fi(n) C zy(X,n) be generated by cycleg with
dimp(Z) < s, and Fy be the corresponding subcomplex®@f (X). There is

a short exact sequence of complexes:

0= Fsy > F,— F,/F, 1 —0,
which induces a long exact sequence of abelian groups

— Hs+t+1(Fs/Fs—l) — Hs+t(Fs—1) — Hs-i—t(Fs) — Hs—l—t(Fs/Fs—l) .
(2.0.2)
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Moreover, by the localization property of higher Chow greuwe have
Hgyy F/Fs 1 @H§+t
X(s)
Therefore, there is a spectral sequence:
El, =@ H:, (k ) = HS, ,(X,Z). (2.0.3)
X(s)
From the construction we know that
H(X, Z) =lim(... = Hy(Fs1) = Hy(Fy) —» Hy(Fop1) = ..)
which induces a filtration
NHE(X,Z) < Im(H,(F,) —» HS(X,Z)).
This filtration N. H¢ (X, Z) is called the niveau filtration of higher Chow groups.

The complexCHC(X) = ElO is the Gersten complex of higher Chow groups
and the differentialg” in E ; are induced by the localization propertyZs{ (X).
Moreover, there is a map of complex¢s Z5 (X) — CH(X) which induces
the edge morphisms of the spectral sequence. More spdgifioadatisfies the
following properties:

)if n>d, ¢, =0;

i) if n <d, ¢, is the composition:

o(Xn) = o) = 0 @ k(o)) €D 1K) 2

X(n) X(n)

For any abelian group, there is the niveau spectral sequence of higher Chow
groups withA-coefficients as well.

To connectCHC(X) with CM(X), we need the Nesterenko—Suslin isomor-
phism.

Definition 2.5 (Nesterenko—Suslin,_[19], Theorem 4.%pr any generator: €
20(F,n), the Nesterenko—Suslin isomorphigm: CHy(F,n) — KM(F) is de-
fined so thatyr(zZ) = N(B.), wherez is the image of: in CHy(F,n), N :
KM(k(z)) — KM(F) is the norm map of Milnor K-theory, and

—to —tn—1
Bo= {0 =) € KV (K(:)).
Heret,’s are the coordinates of in A%. Sincez intersects all the faces properly,
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Lemma 2.6. The Nesterenko—Suslin isomorphism induces an isomor ot isom-
plexesy : CHC(X) — CM(X).

Proof. The Gersten complex of higher Chow gratif(X) is the following com-
plex:

0— P H(k(x).2) % ... — ) Hi(k(),2) — @) Hi(k(x), Z) — 0.
Xay X X(0)
To prove the lemma, it suffices to show that the following dgayis commutative:
P Hi(k(x),2) —~ P H;-
Xn) Xn-1)
) A
P K (k(2) —— P KLi(k(x)
Xn) Xn-1)

Let X’ — X be the normalization oK', andx be a codimension 1 point of.
Consider the following commutative diagram:

C'Hy(k( @CHO n—1)
/|m
T
CHy(k(X),n) —= CHy(k(z),n — 1).

Hered’ andd’, are differentials irCH®(X) andCHC(X"), respectively, andV =
Ni@) k@) 1S the push-forward of higher Chow groups of finite field esiens,
namely, the norm map of higher Chow groups. This diagram msroatative by
the covariance of Gersten complex. 8o= > N o d%..

To prove the lemma, consider the following diagram:

C'Hy(k( EB(JHO n—1)—= CHy(k(z),n —1)
/|SC
le(X') le(w’) Xk (x)

@ KL k() KM (k(x)).

x|z

K (R(X

n
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The horizontal maps on the right hand square are norm mapsleyition, the
composition of the maps at the bottom is the differentiah CM(X). By the first
part of the proof, the composition of the maps on the top igdifierential d” in
CHC(X). Hence it suffices to prove commutativity of this diagrame Tight hand
diagram commutes by [19], Lemma 4.7. On the other hand, Eesxl Levine
showed commutativity of the left hand square ([9], Lemma @2en though their
statement is foZ /p-coefficients, their proof is foZ-coefficients). Thus the right
hand square commutes. Hence we prove the lemma. Q.E.D.

Definition 2.7. We define) = y o ¢ : Z5(X) — CHC(X) 5 CM(X).

Explicitly,

Definition 2.8. Given a generatoZ € z(X,n), We define),(Z) € @x,, K, (k(z))
as follows:

1) ifn > d=dim X, ¥, (2) € o,

2)ifn < danddimp(Z) < n, ¥,(2) “o.

3) if n < danddimp(Z) = n, thenZ is dominant over some € X,).
Pulling backZ alongSpec k(z) — X, we obtainZ, € zy(k(x),n), which is sent
to Z, by the quotientq(k(x),n) — CHy(k(z),n). Applying the Nesterenko—
Suslin isomorphismyy.), we define),(2) = xxw)(Z.) € KM (k(z)). SinceZ
is dominant over, Z, is a closed pointin\} ., with residue field:(Z,) = k(Z).
Therefore, by the definition af;,),

Vu(Z) = Niz) k@) (Bz)
witht; € k(Z)* and

_tO _tn—l

52 = BZ;E = ?7"'7 tn

}.

Note that in Definitio 218, case 3%, = ¢,.(2).

Theorem 2.9. The mapy defined above is a map of complexes, and it is functo-
rial with respect to pullbacks defined by quasi-finite, flapsiand push-forwards
defined by proper maps.

Proof. Sincey = x o ¢, itis a map of complexes.
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For the functoriality, first, we show that is compatible with pull-backs de-
fined by quasi-finite, flat mapg: X — Y. We have to prove that the following
diagram is commutative:

o(Y,n) —>@KM
Yin)

Here f* sends a cycleZ € z,(Y,n) to its cycle theoretic pull-back—!(7) e
2o(X,n) and
f Ky k() — K (k())

is defined by the field extensidily) C k(z) if v € X(»), y € Yy and f(z) =
Letpx : X x A" — X andpy : Y x A" — Y be the projections. I(ﬂlmpy(Z)
n, thendimpx (f~(2)) < n, s0vx f*(Z) = 0 = f*¢y(2).

Suppose thallim py (Z) = n. Without loss of generality, replacing by
py(Z) andX by X xy p(Z), we can assume thatis irreducible of dimension
andZ is dominant ovel’. Sincef is quasi-finite and flatX is of equi-dimension
n. Let X = U; X;, X; be the irreducible components &f andz; be the generic
points of X;. Thendim X; = n. Therefore it suffices to prove commutativity of
the following diagram:

z0(Y;n) H(k(Y), Z)

[ - l L o

a(X,n) —= €D Hi k(). 2) — D K2 (k(z)

The square on the left commutes by functoriality of higheo@lgroups with
respect to flat pull back, the square on the right commute® ghe Nesterenko—
Suslin isomorphism is covariant with respect to finite fietteasions. Therefore
1» commutes with quasi-finite and flat pull-backs.

If g : X — Y is a proper map, then is also covariant for the push-forward.
To see that, it suffices to assume thais irreducible of dimension with function



2 COMPARISON BETWEEN BLOCH’S COMPLEX AND MOSER’S COMPLBX

field K and prove that the following diagram is commutative:
20(X,n) —— KM (K)
Ig* [g;

o(Y,n) 2 @KM
Yn)

Heregy. is defined as follows: for any generatére z(X, n),

(o, if dimg(Z) <mn;
2=, a2, 1t )

with my = [k(Z) : k(g(Z))], and

, |0, if dimg(X) < n;
P\ Nijue), if X dominant ovey € Y,,,.

To show thay v x (Z) = ¥y g.(Z), there are three cases:
1) if dim g(X) < n, theg, = 0. Moreover, for any? € z,(X, n),

dim py (9.(2)) = dim g(px (%)) < dim g(X) < n.

Henceyy (¢.(Z)) = 0.

2) if X is dominant over somg € Y|,y anddim px(Z) < n, theng,yx(Z) =
g.(0) = 0. dimpx(Z) < n also impliesdim py (¢(Z)) < n, henceyyg.(Z) =
Yy (0) =

3) if X is dominant over somg € Y,y anddim px(Z) = n, thendim py (9(2)) =
dim g(px(Z)) = n. ThereforeZ is dominant overX andg(~7) is irreducible and
dominant overy;. We have a commutative diagram of field extensions:

k(Z) K
]
k(9(Z)) <—k(y)

Thenyyg.(Z) = Yy (mz - 9(Z)) = Nigz) k) (mz - Byz)) andgiypx(Z) =
Nk iy Niz)x(B2) = Nio(2)) k) Ni(2)/k0(2)) (Bz)- Sincepy is the image of
Bg(z) under the mapk (k(g ( )) — KM (k(Z)), Nezymgz)(Bz) = mz -
5g(Z)- Thereforez/)yg*( ) = g*@DX(Z)
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Q.E.D.

Remark 1. In [15], Langsburg defined a map frads, (X) to CM(X) exactly the
same as the one in Definition 2.8, except in case 3), insteasliofS,, he used

By multilinearity of Milnor K-theory, it is easy to see thal, = 5/, up to a
2-torsion element. Therefore, the maps equal to Langdsburg’s map up to a 2-
torsion. The advantage of using is that one can use the results(in/][19]. On the
other hand, using the idea in Landsburg’s proof of showiag ltiis map is a map
of complexes, together with propertiesyofn [19], we can give another proof of
showing that) is a map of complexes. This proof is lengthy, comparing to the
one we give in Theoreim 2.9. (There is a small gap in Landsbymgiof, as he
only checks compatibility of his map with the differentiatsthe case of discrete
valuation rings).

Remark 2. Itis easy to see that the magpcan be generalized to define a map from
Bloch’s cycle complex (of arbitrary relative dimensions}he corresponding cy-
cle complex with coefficients in Milnor K-groups or Quilleng¢toups defined by
M. Rost [21].

Theorem 2.10.For any X separated and essentially of finite type oweaf char-
acteristicp > 0, the mapy induces a quasi-isomorphism: Z% /p" — v, x.

Proof. Composing)/p” with the isomorphisnCM (X)) /p" — 7, x(X), we get
a map of complexes R
U L [p"(X) = v x (X).
To compare the cohomology @f /p” andv, x, consider the niveau spectral se-
guence of higher Chow groups:

Bl =@ HS(k(2),2/p") = HEL(X, L)),
X(s)

By [9], Theorem 1.1, this spectral sequence collapses ®ejlge isomorphisms
U H(X,Z/p") = Hy(EL,). (2.0.4)
Composing with the isomorphisnts ; = CY(X)/p" (Lemmd2.6) and

CMNX) /P = T x (X)),
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we get an isomorphisii : HS(X,Z/p") = H,(7.x(X)). Since¢ induces edge
morphisms of the spectral sequence, ane- x o ¢, we see that/) inducesl.

Hence@b is a quasi-isomorphism.
Q.E.D.

Q-coefficients:Let k be a finite field with characteristicand X be smooth and
projective overk. Let Q% = ZS ® Q. In [8], Proposition 2.1, conjecture A(0)
(part of Parshin’s conjecture) is equivalent to that, innheau spectral sequence

El, =P H:,(k(2),Q) = HE,(X,Q),
X(s)

E;,t = 0fort # 0. In other words, it is equivalent to the existence of thediwihg
isomorphism:
H(E.o) = H{(X, Q).

HereEi,O is the Gersten complex of higher Chow groups vitfcoefficients:

P Hi(k(x).Q) — ... - D Hi(k(x),Q) — €D H(k(z), Q

X(d) X(1) X(0)

Similar to the case as above for thgp"-coefficients, we obtain the following
theorem:

Theorem 2.11.For smooth and projective varieties over finite fields, conjes
A(0) is true if and only ify) induces a quasi-isomorphism fro@x, (X) to the
Gersten complex of higher Chow groupsJrcoefficients.

3 Comparison between Bloch’'s Complex and Spiess’
Complex

In this section, we assumém X = 2. Spiess’s dualizing complex of étale
sheaves for surfaces uses the weight-two motivic complexettby S. Lichtenbaum
[16]. For regular Noetherian ring, letW = Spec A[T], Z = Spec A[T|/T(T — 1),
andB = {by,...,b,} a finite set of exceptional units of (i.e. b, and1 — b; are
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units). LetYp = Spec A[T]/]]_,(T — b;). Then there is an exact sequence
induced from relative K-theory

Ky(A) = Ka(W = Y3, Z) 25 K{(V) “2% Ko(A).
Taking the limits among all th&’s, we obtain an exact sequence
K3(A) — Coi(A) 24 Coa(A) £ Ky(A)

with Cg,l(A) = llgl’lKg(W — YB,Z), 0272(A> = llgl’lK{(YB) When X is a
regular Noetherian scheme, associating the gi@upgA) to each regular affine
schemel/' = Spec A which is étale overX, we get a presheaf oNg. Denote
by C, ,(X) the associated étale sheaf. Then Lichtenbaum’s weighttativic
complexZ(2, X ) is defined as the (cochain) complex

Cor(X) B3 Cyy(X)

with the terms in degree 1 and 2, respectivel I & is a field, there is an exact
sequence [16]

Ks(k) = Car(k) 25 Coalk) % Ky(k) — 0. (3.0.5)

Moreover,Cos(k) = [T er 01y K1(k)ey @andwi(y) = (v, %52) for v € Ky (k).
with (_, ) : Ki(k) ® K;(k) — Ks(k) the product of Quillen K-theory.
Definition 3.1 (Spiess,[[22]) Define the complex @&tale sheavek x as follows:

i0:C 1 (k(2)) S @ i0sCo s (k(2)) B D iniGm = @D i Z.

X(2) X(2) X X(0)

Herecs = ¢y, c1 is the map sending a rational function to its associate ords
andc, is the composition

X (2 X(2) X

with &’ the map from Gersten resolution of K-theory ([20]). The terane put in
(cohomological) degree -3, -2, -1, 0, respectively.

Note that the degrees are different from the ones in [22].



3 COMPARISON BETWEEN BLOCH'S COMPLEX AND SPIESS’ COMPLBX

Theorem 3.2(Spiess,[22], Theorem 2.2_2For X an equidimensional surface
overZ satisfying the (NR) condition and every constructible $l¥éan X, there
are perfect pairings of finite groups

H!(Xer, F) x ExtX (F,Kx) = H}(Xet, Kx) = Q/Z.
Here we say thak' satisfies the (NR) condition if

(NR)  k(x) is not formally real for every € X.

Theorem 3.3(Spiess,[[22], Proposition 2.3.2)et & be an algebraically closed
field of characteristigp, X be an irreducible surface ovdérand F be an-torsion
constructible sheaf oiX', where(n,p) = 1. LetKx(n) = RHomx(Z/n,Kx).
Then there are perfect pairings of finitely generated groups

H{(Xe, F) x Ext Y /(F, Kx(n)) — H:(Xer, Kx(n)) = Z/n.
In [5], Deninger defined a dualizing complex of étale sheave
Gy :0— @z’y*({}m — @i%*z — 0
Y Y(0)

for curves, and E. Nart [18] compared it with cycle complexbwstructing a map
from cycle complex tajy- which induces a quasi-isomorphism. In what follows
we generalize the method, and define a similar complex fdaces.

Consider the niveau spectral sequence of higher Chow grfougsrfaces

E;t @ ot ) = H{ (X, Z).
X(s)
Only Ej,E1 o and E; ,(t > 0) are non-vanishing,
HEo(X,Z) @H§+2
X(2)

for s > 0, and in the bottom of the spectral sequence, the only noslang terms

in £}, are:
P Hs(k(x),2) L P k(z) - Pz (3.0.6)
X2) X X0

with

T X, ) den = HY(X,2),

coker d; = H{(X,7Z), i
m



3 COMPARISON BETWEEN BLOCH'S COMPLEX AND SPIESS’ COMPLBE%

We define a cochain complex of étale shea¥gs
k(z),3
D e 2D By o(h0),2) 2 PG L B
X(2) X2 X X(0)

Herel, = Im(d, : z(k(x),4) — 20(k(z),3)), ds is the map induced by, :
20(k(z),3) = 20(k(x),2), d; = ¢, anddy is the composition

m c f x
P 2 (k(x),2) > P Hs(k(x), Z) = P k()
X(2) X2 X
with 7 the projection:

z0(k(2),2)

20(k(x),2) — I g,

= Hy(k(z),Z).

The (cohomological) degrees of the terms are -3, -2, -1 dpeetively.

Theorem 3.4.Let X be a surface, then there is a map from Z$ to Cx which
induces isomorphisms

H™(Z%) = H'(Cx)
for0 <i < 3.

Proof. Following the same idea of the definition©fin §2, we can define a map
from 7> _3Z5 (X) to Cx (X):

20(X,3)/T d 20(X,2) — = 25(X, 1) —1> (X, 0).

¥4 Lwé ng [%

D z0(k(2),3)/ L —2> @D z0(k(2),2) 2> P k(2) —~ Pz

X(2) X(2) X X(0)

Herel' = Im(z(X,4) — z0(X,3)), ¢, “ v, v < . Fori = 2,3, ¢! is
defined as follows: idimp(Z) < 1, ¢j(Z) = 0; if dimp(Z) = 2, thenZ is
dominant ove{x} for somex € X(,), so pulling back?Z alongSpeck(z) — X,
we get an element;(Z) € zy(k(x),1).

By similar argument as if2, we see that the diagram is commutative. More-
over, .’s induce the corresponding isomorphisms from the degéperaf the
niveau spectral sequence:

H{(X,7Z) = cokerd; = Hy(Cx (X)),
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kerd,  kerd,

H1<X7Z>: Imf - Imdg :H1<CX(X))7
HS(X,Z) = € H(k(z), Z) = ker d3 = Hs(Cx (X)),
X(2)

HS(X,Z) = ker f.
To show thaker f = H,(Cx (X)), consider the following diagram which defines

dg:
@ZO , —>>@HC

X(2) X(2)

D k()

Xq)
There is an exact sequence
0 — kerm — ker dy — ker f — coker m — coker dy — coker f — 0.

Sincer is surjectivecoker m = 0, soker f = kerd,/ ker 7. Butker 7 = Im ds.
Hence
HS(X,Z) = ker f 2 kerdy/Imds = Hy(Cx(X)).

Q.E.D.

Remark In the above proofy is similar to the map defined by Nart (]18]).
As noted by Nart, there are only two types of generators (X, 1), the vertical
ones and the horizontal ones. The vertical ones are thsseith dimp(Z) = 0,

and the horizontal ones are tho&es with p(Z) = {z} for somez € X).
Nart defined a map sending the first type to O and the seconddadyy i—g) with

N : k(Z)* — k(x)* the norm map of fields. In our situation, according to the
Nesterenko—Suslin isomorphisim, sends the first type to 0 and the second type
to N(52).

Theorem 3.5.For a surfaceX, Cy = Kx inthe derived category @tale sheaves.
Proof. Let us first define a magy — Kx in the derived category. For any
r € X, there is a quasi-isomorphism from the complgk(x),3)/1, —

z0(k(x),2) to the complexCy 1 (k(z)) — Caa(k(x)) ([4], Theorem 7.2). In par-
ticular, it induces an isomorphism between the cokernelh@ftwo complexes
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HS(k(x),Z) 225 Ky(k(z)) (see3.018) below). Recall that the complx(resp.,
Kx) is defined by connecting

@(20<k(x)7 3)/Im> d_3> @ ZO(k(x)v 2)

X(2) X(2)

(resp., D Ca1(k(x)) = € Coa(k(x)))

X(2) X(2)
with
P k) Pz
X X(0)

via ©x,, H3(k(z), Z) (resp.,@x, Ka(k(x))). Sincec; = di, it suffices to show
that there is a (anti-)commutative diagram of abelian gsoup

P ta(k(2). 7) > P k)’

X(2) X()
b
P Kalk(z)) —L—EP k(2)".
X(2) X

Letn € X(») andK = k(n), consider the following diagram:

H3(K,Z)

Heres is the Steinberg symbal, is the tame symboly is the Nesterenko—Suslin
isomorphism. We have to show that the outside triangle ifi-jaommutative,
so it suffices to show that the three small triangles are {fanthmutative. The
triangle on the top is commutative by Leminal2.6. For the gi@aron the left,
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note that there is an isomorphisih: HS(K,Z) — K,(K) induced by an edge
morphism of the spectral sequence

Ey? = HP™(Spec K, Z(—q)) = K_,_4(K) (3.0.7)

proved in [4]. HereZ(—q) is the motivic complex defined by Bloch’s cycle com-
plex. By Lemmd 3.6 below] = ¢'. Then by [9], Proposition 3.3, which claims
thats o y = ¢, we conclude that the triangle on the left is commutative.

For the triangle on the bottom, we have to show commutatofitye follow-
ing diagram:

K} (K) "= k"
;o
K (K)

Herek is the residue field of a valuatianof K, with = a prime element. From
[21], Definition 1.1 R3e@’ has the following property: for any, v € K* with
v(u) = 0,0 ({u}-p) = —{ua}-v(p),i.e & os({u,p}) = {u}~". Hereu is the
residue class of in £*. But

u(p

O({u, p}) = (=) FZ 7= {a}.

By multilinearity of Milnor K-theory, any elemenfu; 7", uom™} with v(u;) = 0
can be decomposed into a product of elements of the farm} and{r, 7} =
{—1,7} with v(u) = 0. Therefore, the diagram commutes up to sign. So the
triangle outside is commutative. In conclusion, there isrammphism fromCy to
Kx in the derived category of étale sheaves.

Now let us compare the (co)homology groups. It is clear figCx (X)) =
Hy(Kx(X)). From [4], Theorem 7.2[15(Cx (X)) = H3(Kx(X)). To compare
¢, andd,, consider the diagrams defining them

P z(k(2),2) > P Hy(k(x).Z) D Conlk(z)) 2> D Ka(k(x

X(2) X(2) X(2) X(2)
/
N lf N la
*

P k) P k)

X X
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Herer andwy,(,) are both surjective onto groups that are isomorphic,éfé- f,
solmd, = Im f = Im & = Im ¢,. Therefore,

H1(6X<X)) = kerdl/Imd2 = kercl/ImCQ = Hl(]CX(X))
Similar to the proof of Theorefn 3.4, we have that
HQ(C)((X)) = kerf = ker@' = HQ(IC)((X))

To finish the proof of Theorein 3.5, we have to prove the follgviemma
[3.6. Let us recall the notations from [4]. LEtbe a field, and\? = A”%.. A closed
subvarietyo : t;; = t;» = ... = t;, = 0 is called a codimensiopface. A closed
subvarietyy C AP is said to be in good position if N ¢ has codimensiol ¢ in
V for any codimension faceos. Let V" = V"(AP) C AP denote the union of all
codimensiom closed subvarieties a@f? in good position. Given a schenig, we
write K (X) for some space, functorial if, whose homotopy groups calculate
the Quillen K-theory ofX. ForY C X a closed subset, we write (X, Y") for
the homotopy fibre of{ (X) — K(Y'). This construction can be iterated. Given
Y, ..., Y, C X, we define the multi-relative K-space

K(X;Yi,....Y,)  homotopy fibre of

(K(X:;Yq, Y1) = K(Y: YiN Y, o Ya 1 N Y,).

Let
K(A?,0) = K(AP; 0y, ..., 0p)

and
K(AP)) ) = K(A”; 0, ..., 0p—1)

whered; = 0;(AP~1). Let ¥ = J or . Define
Ky (AP, 1) 2 homotopy fibre of K (A?, &) — K(A? — V, ¥ — V).
If W C V isinclusion of closed subvarieties, then there is a cabmap
Kw (AP W) — Ky (AP, ).
Hence we can define

KV'!L(AP, \I]) - hﬂ. KV(AP7 \Il>
vcyn
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and
Kyn ynt (AP, 0) = lim - lig Ky (A7 =W, ¥ — W),
Vcyrwcyntl

There are two maps frol@H(F,2) to Ky(F') in [4]: the first one¢’ is an
edge morphism of the spectral sequencé_in (8.0.7), the demoey¥ is induced
from the quasi-isomorphism betwe#&ir andZ(2, F'). HereT¥ is the following
truncation of cycle complex of fields:

ZQ(F,g)/IF — ZQ(F,Q)

with T Im(z(F,4) — 2(F,3)). Hencecoker Tr = C'Hy(F,2). From
(3.0.5), we know that this quasi-isomorphism induces ama@phism:

0 : CHy(F,2) — Ky(F). (3.0.8)
Lemma 3.6. For any fieldF", 0 = 0" : CHy(F,2) — Ky(F).
Proof. By their definitions and the following identifications:
Ko(A2%0) «+— K (AL, 0) «+— Ky(A),

we get that the two maps are induced by the two paths &dfy( £, 2) to K, (AL, 9)
and toK,(A?%, 9) shown in the following diagram:

Kl,Vl—VQ (A2, Z) —> K07v2 (A2, Z) <%— K07v2(A2, 0)

| A |

Kl,yl(Al,a) ZQ(F, 2) KO,Vl(AQ,ﬁ)
Ki(Al,9) CH?(F,?2) Ko(A2,9).

The mapy’ is the path frome,(F, 2) to K2 (A?, ) and then td<, (A2, 9), while

6 is the path from (£, 2) to K1(A',9) via K1 y2(A%37). In order to show
thatd = ¢, it suffices to show commutativity of the following diagrafstarting
from K1 _12(A%>7) and end af<,(A?, 9))

Koy (A2, 3)) <2— Ko 12 (A2, 0) —2 Ky i (A2, 0) — Ko(A?,9)

4 ;o

Ky 2 (A%3)) 2 Ky (AL 0) —= K (AL, 0)
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Here the right hand square is induced from the embeddiigd,, ;) C (A2, dy, 01),
so it is commutative. Therefore we have to show that the sqolrthe left com-
mutes, or more precisely,o2 =403 1o 1.

Recall the long exact sequence of relative K-groups:

Ki(Y) 5 Ko(X,Y) 5 Ko(X) & Ko(Y).

That is the only type of long exact sequence involved in tlag@dms above. In
particular,
1~i,2~ k3~ g4~k 5~

Herel is for the embeddingA? — V!, 37) c (A2 — V2 37), 4 is for the em-
bedding(A? — V1,9) c (A% — V2 9), and 2, 3 and 5 are for the embedding
(A, 9) C (A?, ") (embedding of the last face). By functoriality of relative s
guence of K-theory, we obtain the commutativity. Q.E.D.

Corollary 3.7. a) SupposeX is a two-dimensional scheme ovepfp > 0. For
any torsion sheaf-, there is an isomorphism

RHOmx(.F, ZE() — R[-IomX(}", IC)()

b) Let X be a smooth surface. Assuming the Beilinson-&G@Guainjecture for
smooth surfaces, théff, = Cx = Ky in the derived category.

Proof. a) From Theorem 3.8 and 3.9, we know that there is a Ffap— Ky
in the derived category. LeF be aZ/p"-sheaf. By the niveau spectral se-
quence of higher Chow groups wiftyp" coefficients, we havél(X,Z/p") =
Dx,, Hi(k(x),Z°/p") fort > 3. By [9], Theorem 1.1, we get thaf; (X, Z/p") =
0. ThereforeZs /p" = 7> _3Zx /p" = Kx/p" in the derived category. In particu-
lar, for suchF,

RHOmx(.F, ZS() — R[-IomX(}", IC)()

Let F be aZ/n-sheaf withn coprime top. Since bottZ, andCx satisfy the
Kummer sequence:
— 75 5 7% — Z/n(2) —,

— ICX i) ICX — Z/?’L(Q) —,

We get thatZ$; /n = Kx /n in the derived category. Hence

RHOmx(f, Zg() = RHOmx(f, IC)()
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b) The Beilinson—Soulé Conjecture ([12], Conjecture Heas that for a
smooth schem& andn > 0, H(X,Z(n)) = 0 fori < 0 (hereZ(n) is Voevod-
sky’s motivic complex). WheiX is a smooth surfacé]¢(X,Z) = H* (X, Z(2)) =
0forn > 4. Hence we get thét, = Cx = Kx. Q.E.D.
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