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Comparison of Dualizing Complexes

Changlong Zhong

Abstract

We prove that there is a map from Bloch’s cycle complex to Kato’s com-
plex of Milnor K-theory, which induces a quasi-isomorphismfrom étale
sheafified cycle complex to the Gersten complex of logarithmic de Rham–
Witt sheaves. Next we show that the truncation of Bloch’s cycle complex at
−3 is quasi-isomorphic to Spiess’ dualizing complex.

1 Introduction

Using Lichtenbaum’s weight-two motivic complex, M. Spiess[22] constructed a
complex of étale sheavesKX on arithmetic surfaces and used it to prove a duality
of constructible sheaves. T. Moser [17] also defined a Gersten type complex of
logarithmic de Rham–Witt sheavesν̃r,X and showed that it is a dualizing complex
for constructibleZ/pr-sheaves. In more general cases, for instance, schemes over
algebraically closed fields, finite fields, local fields and some Dedekind domains,
T. Geisser [7] proved that the étale sheafified version of Bloch’s cycle complex
ZcX of relative dimension 0 [2] is a dualizing complex for constructible sheaves.
A natural question arises: are these complexes quasi-isomorphic to each other?

Theorem 1.1(Main Theorem 1). For X a scheme separated and essentially of fi-
nite type over a perfect fieldk of characteristicp > 0, there is a map̂ψ : ZcX/p

r →
ν̃r,X which is a quasi-isomorphism.

Theorem 1.2(Main Theorem 2). LetX be a surface over a fieldk, thenτ≥−3Z
c
X

is quasi-isomorphic toKX . If X is smooth, assuming the Beilinson–Soulé Con-
jecture for smooth surfaces, thenZcX is quasi-isomorphic toKX .

To compare Bloch’s complex with Moser’s complex, first note that the niveau
spectral sequence of higher Chow groups induces a canonicalmapφ : ZcX(X)→
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CHC
∗ (X), the latter being the Gersten complex of higher Chow groups.After

showing thatCHC
∗ (X) is isomorphic to Kato’s complex of Milnor K-theoryCM

∗ (X)
[14] via the Nesterenko–Suslin isomorphism [19], we obtaina mapψ : ZcX(X)→
CM

∗ (X), which is similar to a map defined by Landsburg ([15], p.621).When
composing with the isomorphism between Milnor K-theory andglobal sections
of logarithmic de Rham–Witt sheaves of fields (Bloch–Kato, [3], Theorem 2.1),ψ
induces a map̂ψ : ZcX/p

r → ν̃r,X . Moreover, it induces an isomorphism of their
cohomology groups by a result of Geisser–Levine ([9], Theorem 1.1). Hence we
conclude that̂ψ is a quasi-isomorphism.

In this proof, one of the main tools is the Nesterenko–SuslinisomorphismχF :
CH0(F, n)→ KM

n (F ) of a fieldF ([19], or see Definition 2.5). Another property
is that, in Moser’s definition of̃νr,X , the differentials are defined so that they are
compatible withCM

∗ (X) via the Bloch–Kato isomorphismKM
n (F )/pr ∼= νnr,F (F )

([3], Theorem 2.1). However, one can also define differentials in ν̃r,X from the
niveau filtrations of the logarithmic de Rham–Witt sheafνdr,X . According to Gros–
Suwa ([10], Lemma 4.11), these two definitions coincide, henceCM

∗ (X)/pr ∼=
ν̃r,X(X) (see Jannsen-Saito-Sato, [11], Theorem 2.1.1 and Theorem 2.11.3(3) for
a more detailed proof).

To prove Main Theorem 2, we define an intermediate complexCX and show
that it is quasi-isomorphic toτ≥−3Z

c
X andKX , respectively. Hence,τ≥−3Z

c
X is

quasi-isomorphic toKX . Assuming the Beilinson–Soulé Conjecture for smooth
surfaces, we can drop the truncation and conclude thatZcX is quasi-isomorphic to
KX . A key ingredient in this proof is the quasi-isomorphism between a trunca-
tion of Bloch’s complex andZ(F, 2) of a fieldF , which induces an isomorphism
θ : CH0(F, 2) → K2(F ) ([4], §7). HereZ(F, 2) is Lichtenbaum’s weight-two
motivic complex (see [16], Definition 2.1). We prove thatθ agrees with an edge
morphismθ′ : CH0(F, 2)→ K2(F ) of the spectral sequence relating motivic co-
homology and Quillen K-theory of fields [4]. Therefore, according to [9], Propo-
sition 3.3,θ = θ′ = s ◦ χF : CH0(F, 2)

χF−→ KM
2 (F )

s
−→ K2(F ), wheres is the

Steinberg symbol.
The paper is organized as follows: in Section 2, we recall thedefinitions of

Bloch’s cycle complex and Moser’s complex, as well as the duality results of
T. Geisser and T. Moser. We also recall the construction of the niveau spec-
tral sequence of higher Chow groups. This spectral sequence, together with the
Nesterenko–Suslin isomorphism, induces the map of complexesψ : ZcX(X) →
CM

∗ (X). When composing with the Bloch–Kato isomorphism,ψ induces the
quasi-isomorphism̂ψ : ZcX/p

r → ν̃r,X . As another application of this method,
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we show that, for smooth and projective varieties over finitefields, conjecture
A(0) of Geisser (part of Parshin’s Conjecture, see [8], Proposition 2.1) is true, if
and only ifψ is a quasi-isomorphism.

In Section 3, first we recall the dualizing complexKX of sheaves on surfaces
defined by M. Spiess and his duality results. Next we construct a new complexCX
and show that it is quasi-isomorphic toτ≥−3Z

c
X , as well as toKX . Consequently,

τ≥−3Z
c
X is quasi-isomorphic toKX .

Terminology: Throughout this paper, the concepts chain complex and cochain
complex are used interchangeably. For instance, ifA is a chain complex, we think
of it as a cochain complex by lettingAn = A−n. We useX to denote a scheme
separated and of finite type over a perfect fieldk with characteristicp ≥ 0, X(n)

to denote the set of dimensionn points ofX, andd = dim(X).
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2 Comparison between Bloch’s Complex and Moser’s
Complex

Following the notation in [7], we definez0(X, n) to be the free abelian group
generated by cyclesZ ⊂ X × ∆n that intersect all the faces properly andk(Z)
has transcendental degreen overk. Thenz0( , n) is an étale sheaf. LetZcX be
Bloch’s cycle complex of étale sheaves (of relative dimension 0) ([2], [7]):

→ z0( , n)
d
→ ...→ z0( , 1)→ z0( , 0)→ 0,

and
d(Z) =

∑

i

(−1)i[Z ∩ V (ti)],

where[Z ∩ V (ti)] denotes the linear combination of irreducible components of
Z ∩ V (ti) with coefficients intersection multiplicities. We putz0( , n) in (homo-
logical) degreen, and define the motivic Borel–Moore homology to be

Hc
n(X,Z)

def
= Hn(Z

c
X(X)) = CH0(X, n).
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The complexZcX(X) is covariant for proper maps and contravariant for quasi-
finite, flat maps.

Theorem 2.1(Geisser, [7],§5). Let k be a finite field andF be a constructible
sheaf onX, then there are perfect pairings of finite groups

H i
c(Xét,F)× Ext2−iX (F ,ZcX)→ H2

c (Xét,Z
c
X)

∼
→ Q/Z.

Theorem 2.2(Geisser, [7],§5). Let k be an algebraically closed field andF be
a constructible sheaf onX. Then there are perfect pairings of finitely generated
groups

H i
c(Xét,F)× Ext1−iX (F ,ZcX)→ H1

c (Xét,Z
c
X)

∼
→ Q/Z.

If p > 0, we definẽνr,X to be the Gersten complex of logarithmic de Rham–
Witt sheaves:

0→
⊕

X(d)

ix∗ν
d
r,k(x) → ...→

⊕

X(1)

ix∗ν
1
r,k(x) →

⊕

X(0)

ix∗ν
0
r,k(x) → 0.

Here for a schemeX over k, νnr,X is the the logarithmic de Rham–Witt sheaf
WrΩ

n
X,log, i.e., the subsheaf ofWrΩ

n
X generated byd log f1 ∧ ... ∧ d log fn, and

ix∗ is the push-forward map of sheaves defined byix : Spec(k(x)) → X. We put⊕
X(n)

ix∗ν
n
r,k(x) in (homological) degreen. The differentials are induced from the

niveau filtrations of the complexνdr,X .

Theorem 2.3(Moser, [17], Theorem 5.6). Let k be a finite field of characteristic
p andX be ak-scheme of pure dimensiond. Then for everyr ≥ 1 and every
constructibleZ/pr-sheafF , there are perfect pairings of finite groups

H i
c(Xét,F)× Ext2−iX (F , ν̃r,X)→ H2

c (Xét, ν̃r,X)
∼
→ Z/pr.

LetCM
∗ (X) be Kato’s complex of Milnor K-theory (cf. K. Kato, [14]):

0→
⊕

X(d)

KM
d (k(x))

d′
−→ ...→

⊕

X(1)

KM
1 (k(x))→

⊕

X(0)

KM
0 (k(x))→ 0.

The differentiald′ is defined as follows: for anyx ∈ X(n) and anyy ∈ {x} ∩
X(n−1), we take the normalization{x′} of {x} with x′ its generic point, and define
a map

∂y : K
M
n (k(x)) = KM

n (k(x′))

∑
∂y′
−→

⊕

y′|y

KM
n−1(k(y

′))

∑
Nk(y′)/k(y)
−→ KM

n−1(k(y)).
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Here the notationy′|y means thaty′ ∈ {x′}(n−1) is in the fiber ofy,

Nk(y′)/k(y) : K
M
n−1(k(y

′))→ KM
n−1(k(y))

is the norm map of Milnor K-theory (see Bass–Tate, [1] and Kato, [13], Section

1.7), and∂y′ is the tame symbol defined byy′. Thend′
def
=

∑

y∈X(n−1)∩{x}

∂y. Note

that the sum in∂y is finite since elements inKM
n (k(x′)) are represented byn

elements ink(x′)∗, and each element ink(x′)∗ has a finite number of poles and
zeros. When applying the tame symbol, only a finite number of terms in the sum
are non-zero. We put

⊕
X(n)

KM
n (k(x)) in (homological) degreen. The complex

CM
∗ (X) is covariant for proper maps and contravariant for quasi-finite and flat

maps (see Rost, [21], Proposition 4.6(1),(2)).

Theorem 2.4(Bloch–Kato, Gros–Suwa, Moser).

CM
∗ (X)/pr ∼= ν̃r,X(X). (2.0.1)

Proof. By Bloch–Kato, [3], Theorem 2.1, for any fieldF , there is an isomorphism

KM
n (F )/pr ∼= νnr,F (F )

sending{f1, ..., fn} to d log f1 ∧ ... ∧ d log fn. By [10], Lemma 4.1, this iso-
morphism respects the differentials inCM

∗ (X) andν̃r,X(X). Hence it induces an
isomorphism of complexesCM

∗ (X)/pr → ν̃r,X(X). Q.E.D.

The Niveau Spectral Sequence:Let us recall the construction of the niveau spec-
tral sequence of higher Chow groups withZ-coefficients. Letp be the projec-
tion X × ∆n → X. Let Fs(n) ⊂ z0(X, n) be generated by cyclesZ with
dim p(Z) ≤ s, andFs be the corresponding subcomplex ofZcX(X). There is
a short exact sequence of complexes:

0→ Fs−1 → Fs → Fs/Fs−1 → 0,

which induces a long exact sequence of abelian groups

→ Hs+t+1(Fs/Fs−1)→ Hs+t(Fs−1)→ Hs+t(Fs)→ Hs+t(Fs/Fs−1)→ .
(2.0.2)
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Moreover, by the localization property of higher Chow groups, we have

Hs+t(Fs/Fs−1) ∼=
⊕

X(s)

Hc
s+t(k(x),Z).

Therefore, there is a spectral sequence:

E1
s,t =

⊕

X(s)

Hc
s+t(k(x),Z)⇒ Hc

s+t(X,Z). (2.0.3)

From the construction we know that

Hc
s(X,Z) = lim−→(...→ Hs(Fs−1)→ Hs(Fs) ։ Hs(Fs+1)→ ...)

which induces a filtration

NsH
c
n(X,Z)

def
= Im(Hn(Fs)→ Hc

n(X,Z)).

This filtrationN·H
c
n(X,Z) is called the niveau filtration of higher Chow groups.

The complexCHC
∗ (X)

def
= E1

∗,0 is the Gersten complex of higher Chow groups
and the differentialsd′′ in E1

∗,0 are induced by the localization property ofZcX(X).
Moreover, there is a map of complexesφ : ZcX(X) → CHC

∗ (X) which induces
the edge morphisms of the spectral sequence. More specifically, φ satisfies the
following properties:

i) if n > d, φn = 0;
ii) if n ≤ d, φn is the composition:

z0(X, n) = Fn(n) ։
Fn(n)

Fn−1(n)

∼
−→

⊕

X(n)

z0(k(x), n) ։
⊕

X(n)

Hc
n(k(x),Z).

For any abelian groupA, there is the niveau spectral sequence of higher Chow
groups withA-coefficients as well.

To connectCHC
∗ (X) with CM

∗ (X), we need the Nesterenko–Suslin isomor-
phism.

Definition 2.5 (Nesterenko–Suslin, [19], Theorem 4.9). For any generatorz ∈
z0(F, n), the Nesterenko–Suslin isomorphismχF : CH0(F, n) → KM

n (F ) is de-
fined so thatχF (z̄) = N(βz), where z̄ is the image ofz in CH0(F, n), N :
KM
n (k(z))→ KM

n (F ) is the norm map of Milnor K-theory, and

βz = {
−t0
tn

, ...,
−tn−1

tn
} ∈ KM

n (k(z)).

Hereti’s are the coordinates ofz in ∆n
F . Sincez intersects all the faces properly,

ti ∈ k(z)
∗.
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Lemma 2.6.The Nesterenko–Suslin isomorphism induces an isomorphismof com-
plexesχ : CHC

∗ (X)→ CM
∗ (X).

Proof. The Gersten complex of higher Chow groupCHC
∗ (X) is the following com-

plex:

0→
⊕

X(d)

Hc
d(k(x),Z)

d′′
−→ ...→

⊕

X(1)

Hc
1(k(x),Z)→

⊕

X(0)

Hc
0(k(x),Z)→ 0.

To prove the lemma, it suffices to show that the following diagram is commutative:

⊕

X(n)

Hc
n(k(x),Z)

χ

��

d′′ //
⊕

X(n−1)

Hc
n−1(k(x),Z)

χ

��⊕

X(n)

KM
n (k(x))

d′ //
⊕

X(n−1)

KM
n−1(k(x)).

LetX ′ → X be the normalization ofX, andx be a codimension 1 point ofX.
Consider the following commutative diagram:

CH0(k(X
′), n)

d′′
X′ //

⊕

x′|x

CH0(k(x
′), n− 1)

∑
N

��
CH0(k(X), n)

d′′X // CH0(k(x), n− 1).

Hered′′X andd′′X′ are differentials inCHC
∗ (X) andCHC

∗ (X ′), respectively, andN =
Nk(x′)/k(x) is the push-forward of higher Chow groups of finite field extensions,
namely, the norm map of higher Chow groups. This diagram is commutative by
the covariance of Gersten complex. Sod′′X =

∑
N ◦ d′′X′.

To prove the lemma, consider the following diagram:

CH0(k(X
′), n)

d′′
X′ //

χk(X′)

��

⊕

x′|x

CH0(k(x
′), n− 1)

χk(x′)

��

// CH0(k(x), n− 1)

χk(x)

��
KM
n (k(X ′))

∂x′ //
⊕

x′|x

KM
n−1(k(x

′)) // KM
n−1(k(x)).
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The horizontal maps on the right hand square are norm maps. Bydefinition, the
composition of the maps at the bottom is the differentiald′ in CM

∗ (X). By the first
part of the proof, the composition of the maps on the top is thedifferentiald′′ in
CHC

∗ (X). Hence it suffices to prove commutativity of this diagram. The right hand
diagram commutes by [19], Lemma 4.7. On the other hand, Geisser and Levine
showed commutativity of the left hand square ([9], Lemma 3.2) (even though their
statement is forZ/p-coefficients, their proof is forZ-coefficients). Thus the right
hand square commutes. Hence we prove the lemma. Q.E.D.

Definition 2.7. We defineψ = χ ◦ φ : ZcX(X)→ CHC
∗ (X)

∼
→ CM

∗ (X).

Explicitly,

Definition 2.8. Given a generatorZ ∈ z0(X, n), We defineψn(Z) ∈ ⊕X(n)
KM
n (k(x))

as follows:

1) if n > d = dimX, ψn(Z)
def
= 0.

2) if n ≤ d anddim p(Z) < n, ψn(Z)
def
= 0.

3) if n ≤ d and dim p(Z) = n, thenZ is dominant over somex ∈ X(n).
Pulling backZ alongSpec k(x)→ X, we obtainZx ∈ z0(k(x), n), which is sent
to Zx by the quotientz0(k(x), n) ։ CH0(k(x), n). Applying the Nesterenko–
Suslin isomorphismχk(x), we defineψn(Z) = χk(x)(Zx) ∈ K

M
n (k(x)). SinceZ

is dominant overx, Zx is a closed point in∆n
k(x) with residue fieldk(Zx) = k(Z).

Therefore, by the definition ofχk(x),

ψn(Z) = Nk(Z)/k(x)(βZ)

with ti ∈ k(Z)∗ and

βZ = βZx = {
−t0
tn

, ...,
−tn−1

tn
}.

Note that in Definition 2.8, case 3),Zx = φn(Z).

Theorem 2.9. The mapψ defined above is a map of complexes, and it is functo-
rial with respect to pullbacks defined by quasi-finite, flat maps and push-forwards
defined by proper maps.

Proof. Sinceψ = χ ◦ φ, it is a map of complexes.
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For the functoriality, first, we show thatψ is compatible with pull-backs de-
fined by quasi-finite, flat mapsf : X → Y . We have to prove that the following
diagram is commutative:

z0(Y, n)

f∗

��

ψY //
⊕

Y(n)

KM
n (k(y))

f∗
′

��

z0(X, n)
ψX //

⊕

X(n)

KM
n (k(x)).

Heref ∗ sends a cycleZ ∈ z0(Y, n) to its cycle theoretic pull-backf−1(Z) ∈
z0(X, n) and

f ∗′ : KM
n (k(y))→ KM

n (k(x))

is defined by the field extensionk(y) ⊂ k(x) if x ∈ X(n), y ∈ Y(n) andf(x) = y.
Let pX : X×∆n → X andpY : Y ×∆n → Y be the projections. Ifdim pY (Z) <
n, thendim pX(f

−1(Z)) < n, soψXf ∗(Z) = 0 = f ∗′ψY (Z).
Suppose thatdim pY (Z) = n. Without loss of generality, replacingY by

pY (Z) andX byX ×Y p(Z), we can assume thatY is irreducible of dimensionn
andZ is dominant overY . Sincef is quasi-finite and flat,X is of equi-dimension
n. LetX = ∪iXi, Xi be the irreducible components ofX andxi be the generic
points ofXi. ThendimXi = n. Therefore it suffices to prove commutativity of
the following diagram:

z0(Y, n)

f∗

��

// Hc
n(k(Y ),Z)

��

// KM
n (k(Y ))

f∗
′

��

z0(X, n) //
⊕

i

Hc
n(k(xi),Z)

//
⊕

i

KM
n (k(xi))

.

The square on the left commutes by functoriality of higher Chow groups with
respect to flat pull back, the square on the right commutes since the Nesterenko–
Suslin isomorphism is covariant with respect to finite field extensions. Therefore
ψ commutes with quasi-finite and flat pull-backs.

If g : X → Y is a proper map, thenψ is also covariant for the push-forward.
To see that, it suffices to assume thatX is irreducible of dimensionnwith function
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fieldK and prove that the following diagram is commutative:

z0(X, n)

g∗

��

ψX // KM
n (K)

g′
∗

��

z0(Y, n)
ψY //

⊕

Y(n)

KM
n (k(y)).

Hereg∗ is defined as follows: for any generatorZ ∈ z0(X, n),

g∗(Z) =

{
0, if dim g(Z) < n;
mZ · g(Z), if dim g(Z) = n,

with mZ = [k(Z) : k(g(Z))], and

g′∗ =

{
0, if dim g(X) < n;
NK/k(y), if X dominant overy ∈ Y(n).

To show thatg′∗ψX(Z) = ψY g∗(Z), there are three cases:
1) if dim g(X) < n, theg′∗ = 0. Moreover, for anyZ ∈ z0(X, n),

dim pY (g∗(Z)) = dim g(pX(Z)) ≤ dim g(X) < n.

HenceψY (g∗(Z)) = 0.
2) if X is dominant over somey ∈ Y(n) anddim pX(Z) < n, theng′∗ψX(Z) =

g′∗(0) = 0. dim pX(Z) < n also impliesdim pY (g(Z)) < n, henceψY g∗(Z) =
ψY (0) = 0.

3) if X is dominant over somey ∈ Y(n) anddim pX(Z) = n, thendim pY (g(Z)) =
dim g(pX(Z)) = n. Therefore,Z is dominant overX andg(Z) is irreducible and
dominant overy. We have a commutative diagram of field extensions:

k(Z) Koo

k(g(Z))

OO

k(y)

OO

oo

ThenψY g∗(Z) = ψY (mZ · g(Z)) = Nk(g(Z))/k(y)(mZ · βg(Z)) andg′∗ψX(Z) =
NK/k(y)Nk(Z)/K(βZ) = Nk(g(Z))/k(y)Nk(Z)/k(g(Z))(βZ). SinceβZ is the image of
βg(Z) under the mapKM

n (k(g(Z))) → KM
n (k(Z)), Nk(Z)/k(g(Z))(βZ) = mZ ·

βg(Z). ThereforeψY g∗(Z) = g′∗ψX(Z).
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Q.E.D.

Remark 1. In [15], Langsburg defined a map fromZcX(X) toCM
∗ (X) exactly the

same as the one in Definition 2.8, except in case 3), instead ofusingβZ , he used

β ′
Z = {

t0
tn
, ...,

tn−1

tn
}.

By multilinearity of Milnor K-theory, it is easy to see thatβZ = β ′
Z up to a

2-torsion element. Therefore, the mapψ is equal to Langdsburg’s map up to a 2-
torsion. The advantage of usingβZ is that one can use the results in [19]. On the
other hand, using the idea in Landsburg’s proof of showing that his map is a map
of complexes, together with properties ofχ in [19], we can give another proof of
showing thatψ is a map of complexes. This proof is lengthy, comparing to the
one we give in Theorem 2.9. (There is a small gap in Landsburg’s proof, as he
only checks compatibility of his map with the differentialsin the case of discrete
valuation rings).
Remark 2. It is easy to see that the mapψ can be generalized to define a map from
Bloch’s cycle complex (of arbitrary relative dimensions) to the corresponding cy-
cle complex with coefficients in Milnor K-groups or Quillen K-groups defined by
M. Rost [21].

Theorem 2.10.For anyX separated and essentially of finite type overk of char-
acteristicp > 0, the mapψ induces a quasi-isomorphism̂ψ : ZcX/p

r → ν̃r,X .

Proof. Composingψ/pr with the isomorphismCM
∗ (X)/pr

∼
−→ ν̃r,X(X), we get

a map of complexes
ψ̂ : ZcX/p

r(X)→ ν̃r,X(X).

To compare the cohomology ofZcX/p
r andν̃r,X , consider the niveau spectral se-

quence of higher Chow groups:

E1
s,t =

⊕

X(s)

Hc
s+t(k(x),Z/p

r)⇒ Hc
s+t(X,Z/p

r).

By [9], Theorem 1.1, this spectral sequence collapses to give edge isomorphisms

Γ : Hc
s(X,Z/p

r) ∼= Hs(E
1
∗,0). (2.0.4)

Composing with the isomorphismsE1
∗,0
∼= CM

∗ (X)/pr (Lemma 2.6) and

CM
∗ (X)/pr ∼= ν̃r,X(X),
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we get an isomorphism̂Γ : Hc
s(X,Z/p

r) ∼= Hs(ν̃r,X(X)). Sinceφ induces edge
morphisms of the spectral sequence, andψ = χ ◦ φ, we see that̂ψ inducesΓ̂.
Henceψ̂ is a quasi-isomorphism.

Q.E.D.

Q-coefficients:Let k be a finite field with characteristicp andX be smooth and
projective overk. Let Qc

X = ZcX ⊗ Q. In [8], Proposition 2.1, conjecture A(0)
(part of Parshin’s conjecture) is equivalent to that, in theniveau spectral sequence

E1
s,t =

⊕

X(s)

Hc
s+t(k(x),Q)⇒ Hc

s+t(X,Q),

E1
s,t = 0 for t 6= 0. In other words, it is equivalent to the existence of the following

isomorphism:
Hs(E

1
∗,0)
∼= Hc

s(X,Q).

HereE1
∗,0 is the Gersten complex of higher Chow groups withQ-coefficients:

⊕

X(d)

Hc
d(k(x),Q)→ ...→

⊕

X(1)

Hc
1(k(x),Q)→

⊕

X(0)

Hc
0(k(x),Q).

Similar to the case as above for theZ/pr-coefficients, we obtain the following
theorem:

Theorem 2.11.For smooth and projective varieties over finite fields, conjecture
A(0) is true if and only ifψ induces a quasi-isomorphism fromQc

X(X) to the
Gersten complex of higher Chow groups inQ-coefficients.

3 Comparison between Bloch’s Complex and Spiess’
Complex

In this section, we assumedimX = 2. Spiess’s dualizing complex of étale
sheaves for surfaces uses the weight-two motivic complex defined by S. Lichtenbaum
[16]. For regular Noetherian ringA, letW = SpecA[T ],Z = SpecA[T ]/T (T − 1),
andB = {b1, ..., bn} a finite set of exceptional units ofA (i.e. bi and1 − bi are
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units). LetYB = SpecA[T ]/
∏n

i=1(T − bi). Then there is an exact sequence
induced from relative K-theory

K3(A)→ K2(W − YB, Z)
φA,B
−→ K ′

1(YB)
ωA,B
−−−→ K2(A).

Taking the limits among all theB’s, we obtain an exact sequence

K3(A)→ C2,1(A)
φA
−→ C2,2(A)

ωA−→ K2(A)

with C2,1(A) = lim−→K2(W − YB, Z), C2,2(A) = lim−→K
′
1(YB). WhenX is a

regular Noetherian scheme, associating the groupC2,i(A) to each regular affine
schemeU = SpecA which is étale overX, we get a presheaf onXét. Denote
by C2,i(X) the associated étale sheaf. Then Lichtenbaum’s weight-two motivic
complexZ(2, X) is defined as the (cochain) complex

C2,1(X)
φX→ C2,2(X)

with the terms in degree 1 and 2, respectively. IfA = k is a field, there is an exact
sequence [16]

K3(k)→ C2,1(k)
φk−→ C2,2(k)

ωk−→ K2(k)→ 0. (3.0.5)

Moreover,C2,2(k) =
∐

x∈k\{0,1}K1(k)x, andωk(γ) = (γ, x−1
x
) for γ ∈ K1(k)x

with ( , ) : K1(k)⊗K1(k)→ K2(k) the product of Quillen K-theory.

Definition 3.1 (Spiess, [22]). Define the complex ofétale sheavesKX as follows:

⊕

X(2)

ix∗C2,1(k(x))
c3→

⊕

X(2)

ix∗C2,2(k(x))
c2→

⊕

X(1)

ix∗Gm
c1−→

⊕

X(0)

ix∗Z.

Herec3 = φk(x), c1 is the map sending a rational function to its associate divisors,
andc2 is the composition

⊕

X(2)

ix∗C2,2(k(x))
ωk(x)
−→

⊕

X(2)

ix∗K2(k(x))
∂′
→

⊕

X(1)

ix∗Gm,

with ∂′ the map from Gersten resolution of K-theory ([20]). The terms are put in
(cohomological) degree -3, -2, -1, 0, respectively.

Note that the degrees are different from the ones in [22].



3 COMPARISON BETWEEN BLOCH’S COMPLEX AND SPIESS’ COMPLEX14

Theorem 3.2(Spiess, [22], Theorem 2.2.2). For X an equidimensional surface
overZ satisfying the (NR) condition and every constructible sheaf F onX, there
are perfect pairings of finite groups

H i
c(Xét,F)× Ext2−iX (F ,KX)→ H2

c (Xét,KX)
∼
→ Q/Z.

Here we say thatX satisfies the (NR) condition if

(NR) k(x) is not formally real for everyx ∈ X.

Theorem 3.3(Spiess, [22], Proposition 2.3.2). Let k be an algebraically closed
field of characteristicp,X be an irreducible surface overk andF be an-torsion
constructible sheaf onX, where(n, p) = 1. LetKX(n) = RHomX(Z/n,KX).
Then there are perfect pairings of finitely generated groups:

H i
c(Xét,F)× Ext1−iX (F ,KX(n))→ H1

c (Xét,KX(n))
∼
→ Z/n.

In [5], Deninger defined a dualizing complex of étale sheaves

GY : 0→
⊕

Y(1)

iy∗Gm →
⊕

Y(0)

iy,∗Z→ 0

for curves, and E. Nart [18] compared it with cycle complex byconstructing a map
from cycle complex toGY which induces a quasi-isomorphism. In what follows
we generalize the method, and define a similar complex for surfaces.

Consider the niveau spectral sequence of higher Chow groupsfor surfaces

E1
s,t =

⊕

X(s)

Hc
s+t(k(x),Z)⇒ Hc

s+t(X,Z).

OnlyE1
0,0,E

1
1,0 andE1

2,t(t ≥ 0) are non-vanishing,

Hc
s+2(X,Z)

∼=
⊕

X(2)

Hc
s+2(k(x),Z)

for s > 0, and in the bottom of the spectral sequence, the only nonvanishing terms
in E1

∗,0 are: ⊕

X(2)

Hc
2(k(x),Z)

f
−→

⊕

X(1)

k(x)∗
d1−→

⊕

X(0)

Z (3.0.6)

with

coker d1 ∼= Hc
0(X,Z),

ker d1
Im f

∼= Hc
1(X,Z), ker f

∼= Hc
2(X,Z).
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We define a cochain complex of étale sheavesCX :

⊕

X(2)

ix∗
z0(k(x), 3)

Ix

d3−→
⊕

X(2)

ix∗z0(k(x), 2)
d2−→

⊕

X(1)

ix∗Gm
d1−→

⊕

X(0)

ix∗Z.

HereIx = Im(dx : z0(k(x), 4) → z0(k(x), 3)), d3 is the map induced bygx :
z0(k(x), 3)→ z0(k(x), 2), d1 = c1, andd2 is the composition

⊕

X(2)

z0(k(x), 2)
π
։

⊕

X(2)

Hc
2(k(x),Z)

f
−→

⊕

X(1)

k(x)∗

with π the projection:

z0(k(x), 2) ։
z0(k(x), 2)

Im gx
∼= Hc

2(k(x),Z).

The (cohomological) degrees of the terms are -3, -2, -1, 0, respectively.

Theorem 3.4. LetX be a surface, then there is a mapψ′ fromZcX to CX which
induces isomorphisms

H−i(ZcX)
∼= H−i(CX)

for 0 ≤ i ≤ 3.

Proof. Following the same idea of the definition ofψ in §2, we can define a map
from τ≥−3Z

c
X(X) to CX(X):

z0(X, 3)/I
′ d //

ψ′

3

��

z0(X, 2)
d //

ψ′

2

��

z0(X, 1)

ψ′

1

��

d // z0(X, 0).

ψ′

0

��⊕

X(2)

z0(k(x), 3)/Ix
d3 //

⊕

X(2)

z0(k(x), 2)
d2 //

⊕

X(1)

k(x)∗
d1 //

⊕

X(0)

Z

HereI ′ = Im(z0(X, 4) → z0(X, 3)), ψ
′
0

def
= ψ0, ψ′

1

def
= ψ1. For i = 2, 3, ψ′

i is
defined as follows: ifdim p(Z) ≤ 1, ψ′

i(Z) = 0; if dim p(Z) = 2, thenZ is
dominant over{x} for somex ∈ X(2), so pulling backZ alongSpec k(x) → X,
we get an elementψ′

i(Z) ∈ z0(k(x), i).
By similar argument as in§2, we see that the diagram is commutative. More-

over,ψ′
i’s induce the corresponding isomorphisms from the degeneration of the

niveau spectral sequence:

Hc
0(X,Z)

∼= coker d1 ∼= H0(CX(X)),
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Hc
1(X,Z)

∼=
ker d1
Im f

=
ker d1
Im d2

= H1(CX(X)),

Hc
3(X,Z)

∼=
⊕

X(2)

Hc
3(k(x),Z)

∼= ker d3 ∼= H3(CX(X)),

Hc
2(X,Z)

∼= ker f.

To show thatker f ∼= H2(CX(X)), consider the following diagram which defines
d2: ⊕

X(2)

z0(k(x), 2)
π // //

d2
&&MMMMMMMMMMM

⊕

X(2)

Hc
2(k(x),Z)

f

��⊕

X(1)

k(x)∗.

There is an exact sequence

0→ ker π → ker d2 → ker f → coker π → coker d2 → coker f → 0.

Sinceπ is surjective,coker π = 0, soker f ∼= ker d2/ ker π. But ker π = Im d3.
Hence

Hc
2(X,Z)

∼= ker f ∼= ker d2/ Im d3 ∼= H2(CX(X)).

Q.E.D.

Remark In the above proof,ψ1 is similar to the map defined by Nart ([18]).
As noted by Nart, there are only two types of generators inz0(X, 1), the vertical
ones and the horizontal ones. The vertical ones are thoseZ ’s with dim p(Z) = 0,
and the horizontal ones are thoseZ ’s with p(Z) = {x} for somex ∈ X(1).
Nart defined a map sending the first type to 0 and the second typetoN( t0

t1
) with

N : k(Z)∗ → k(x)∗ the norm map of fields. In our situation, according to the
Nesterenko–Suslin isomorphism,ψ1 sends the first type to 0 and the second type
toN(−t0

t1
).

Theorem 3.5.For a surfaceX, CX ∼= KX in the derived category ofétale sheaves.

Proof. Let us first define a mapCX → KX in the derived category. For any
x ∈ X(2), there is a quasi-isomorphism from the complexz0(k(x), 3)/Ix →
z0(k(x), 2) to the complexC2,1(k(x)) → C2,2(k(x)) ([4], Theorem 7.2). In par-
ticular, it induces an isomorphism between the cokernels ofthe two complexes
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Hc
2(k(x),Z)

θx−→
∼

K2(k(x)) (see (3.0.8) below). Recall that the complexCX (resp.,

KX) is defined by connecting

⊕

X(2)

(z0(k(x), 3)/Ix)
d3−→

⊕

X(2)

z0(k(x), 2)

(resp.,
⊕

X(2)

C2,1(k(x))
c3→

⊕

X(2)

C2,2(k(x)))

with ⊕

X(1)

k(x)∗
d1−→

⊕

X(0)

Z.

via⊕X(2)
Hc

2(k(x),Z) (resp.,⊕X(2)
K2(k(x))). Sincec1 = d1, it suffices to show

that there is a (anti-)commutative diagram of abelian groups:

⊕

X(2)

H2(k(x),Z
c)

f //

θx
��

⊕

X(1)

k(x)∗

⊕

X(2)

K2(k(x))
∂′ //

⊕

X(1)

k(x)∗.

Let η ∈ X(2) andK = k(η), consider the following diagram:

Hc
2(K,Z)

χ
$$IIIIIIIIIIII

f

))TTTTTTTTTTTTTTTTTTTTT

θ

��

KM
2 (K)

∂ //

s

zzuuuuuuuuuuuu

⊕

X(1)

k(x)∗

K2(K)

∂′

55jjjjjjjjjjjjjjjjjjjjjj

.

Heres is the Steinberg symbol,∂ is the tame symbol,χ is the Nesterenko–Suslin
isomorphism. We have to show that the outside triangle is (anti-)commutative,
so it suffices to show that the three small triangles are (anti-)commutative. The
triangle on the top is commutative by Lemma 2.6. For the triangle on the left,
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note that there is an isomorphismθ′ : Hc
2(K,Z)

∼
→ K2(K) induced by an edge

morphism of the spectral sequence

Ep,q
2 = Hp−q(SpecK,Z(−q))⇒ K−p−q(K) (3.0.7)

proved in [4]. HereZ(−q) is the motivic complex defined by Bloch’s cycle com-
plex. By Lemma 3.6 below,θ = θ′. Then by [9], Proposition 3.3, which claims
thats ◦ χ = θ′, we conclude that the triangle on the left is commutative.

For the triangle on the bottom, we have to show commutativityof the follow-
ing diagram:

KM
2 (K)

∂ //

s

��

k∗

K2(K)

∂′

;;
wwwwwwwwww

.

Herek is the residue field of a valuationv of K, with π a prime element. From
[21], Definition 1.1 R3e,∂′ has the following property: for anyρ, u ∈ K∗ with
v(u) = 0, ∂′({u} · ρ) = −{ū} · v(ρ), i.e. ∂′ ◦ s({u, ρ}) = {ū}−v(ρ). Hereū is the
residue class ofu in k∗. But

∂({u, ρ}) = (−1)v(u)v(ρ){
uv(ρ)

ρv(u)
} = {ū}v(ρ).

By multilinearity of Milnor K-theory, any element{u1πn, u2πm} with v(ui) = 0
can be decomposed into a product of elements of the form{u, π} and{π, π} =
{−1, π} with v(u) = 0. Therefore, the diagram commutes up to sign. So the
triangle outside is commutative. In conclusion, there is anmorphism fromCX to
KX in the derived category of étale sheaves.

Now let us compare the (co)homology groups. It is clear thatH0(CX(X)) ∼=
H0(KX(X)). From [4], Theorem 7.2,H3(CX(X)) ∼= H3(KX(X)). To compare
c2 andd2, consider the diagrams defining them

⊕

X(2)

z0(k(x), 2)
π //

d2
&&MMMMMMMMMMM

⊕

X(2)

Hc
2(k(x),Z)

f

��

⊕

X(2)

C2,2(k(x))
ωk(x) //

c2

%%KKKKKKKKKK

⊕

X(2)

K2(k(x))

∂′

��⊕

X(1)

k(x)∗
⊕

X(1)

k(x)∗.
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Hereπ andωk(x) are both surjective onto groups that are isomorphic, and∂′θ = f ,
soIm d2 = Im f = Im ∂′ = Im c2. Therefore,

H1(CX(X)) ∼= ker d1/ Im d2 ∼= ker c1/ Im c2 ∼= H1(KX(X)).

Similar to the proof of Theorem 3.4, we have that

H2(CX(X)) ∼= ker f ∼= ker ∂′ ∼= H2(KX(X)).

To finish the proof of Theorem 3.5, we have to prove the following Lemma
3.6. Let us recall the notations from [4]. LetF be a field, and∆p = ∆p

F . A closed
subvarietyσ : ti1 = ti2 = ... = tiq = 0 is called a codimensionq face. A closed
subvarietyV ⊂ ∆p is said to be in good position ifV ∩ σ has codimension≥ q in
V for any codimensionq faceσ. LetVn = Vn(∆p) ⊂ ∆p denote the union of all
codimensionn closed subvarieties of∆p in good position. Given a schemeX, we
write K(X) for some space, functorial inX, whose homotopy groups calculate
the Quillen K-theory ofX. For Y ⊂ X a closed subset, we writeK(X, Y ) for
the homotopy fibre ofK(X) → K(Y ). This construction can be iterated. Given
Y1, ..., Yn ⊂ X, we define the multi-relative K-space

K(X ; Y1, ..., Yn)
def
= homotopy fibre of

(K(X ; Y1, ..., Yn−1)→ K(Yn; Y1 ∩ Yn, ..., Yn−1 ∩ Yn)).

Let
K(∆p, ∂) = K(∆p; ∂0, ..., ∂p)

and
K(∆p,

∑
) = K(∆p; ∂0, ..., ∂p−1)

where∂i = ∂i(∆
p−1). LetΨ = ∂ or

∑
. Define

KV (∆
p,Ψ)

def
= homotopy fibre of(K(∆p,Ψ)→ K(∆p − V,Ψ− V )).

If W ⊂ V is inclusion of closed subvarieties, then there is a canonical map

KW (∆p,Ψ)→ KV (∆
p,Ψ).

Hence we can define

KVn(∆p,Ψ) = lim−→
V⊂Vn

KV (∆
p,Ψ)
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and
KVn−Vn+1(∆p,Ψ) = lim−→

V⊂Vn

lim−→
W⊂Vn+1

KV−W (∆p −W,Ψ−W ).

There are two maps fromCH0(F, 2) to K2(F ) in [4]: the first oneθ′ is an
edge morphism of the spectral sequence in (3.0.7), the second oneθ is induced
from the quasi-isomorphism betweenTF andZ(2, F ). HereTF is the following
truncation of cycle complex of fields:

z0(F, 3)/IF → z0(F, 2)

with IF
def
= Im(z0(F, 4) → z0(F, 3)). Hencecoker TF ∼= CH0(F, 2). From

(3.0.5), we know that this quasi-isomorphism induces an isomorphism:

θ : CH0(F, 2)→ K2(F ). (3.0.8)

Lemma 3.6. For any fieldF , θ = θ′ : CH0(F, 2)→ K2(F ).

Proof. By their definitions and the following identifications:

K0(∆
2, ∂)

∼=
←− K1(∆

1, ∂)
∼=
←− K2(∆

0),

we get that the two maps are induced by the two paths fromCH0(F, 2) toK1(∆
1, ∂)

and toK0(∆
2, ∂) shown in the following diagram:

K1,V1−V2(∆2,
∑

) // //

����

K0,V2(∆2,
∑

)

∼=
��

K0,V2(∆2, ∂)∼=
oo

����
K1,V1(∆1, ∂)

����

z0(F, 2)

����

K0,V1(∆2, ∂)

∼=
��

K1(∆
1, ∂) CH2(F, 2) K0(∆

2, ∂).

The mapθ′ is the path fromz0(F, 2) toK0,V2(∆2, ∂) and then toK0(∆
2, ∂), while

θ is the path fromz0(F, 2) toK1(∆
1, ∂) via K1,V1−V2(∆2,

∑
). In order to show

thatθ = θ′, it suffices to show commutativity of the following diagram:(starting
fromK1,V1−V2(∆2,

∑
) and end atK0(∆

2, ∂))

K0,V2(∆2,
∑

) K0,V2(∆2, ∂)∼=

3oo 4 // // K0,V1(∆2, ∂) // // K0(∆
2, ∂)

K1,V1−V2(∆2,
∑

) 2 // //

1

OOOO

K1,V1(∆1, ∂)

5

OOOO

// // K1(∆
1, ∂)

∼=

OO
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Here the right hand square is induced from the embedding(∆1, ∂0, ∂1) ⊂ (∆2, ∂0, ∂1),
so it is commutative. Therefore we have to show that the square on the left com-
mutes, or more precisely,5 ◦ 2 = 4 ◦ 3−1 ◦ 1.

Recall the long exact sequence of relative K-groups:

K1(Y )
i
→ K0(X, Y )

j
→ K0(X)

k
→ K0(Y ).

That is the only type of long exact sequence involved in the diagrams above. In
particular,

1 ∼ i, 2 ∼ k, 3 ∼ j, 4 ∼ k, 5 ∼ i.

Here1 is for the embedding(∆2 − V1,
∑

) ⊂ (∆2 − V2,
∑

), 4 is for the em-
bedding(∆2 − V1, ∂) ⊂ (∆2 − V2, ∂), and 2, 3 and 5 are for the embedding
(∆1, ∂) ⊂ (∆2,

∑
) (embedding of the last face). By functoriality of relative se-

quence of K-theory, we obtain the commutativity. Q.E.D.

Corollary 3.7. a) SupposeX is a two-dimensional scheme overk of p ≥ 0. For
any torsion sheafF , there is an isomorphism

RHomX(F ,Z
c
X)→ RHomX(F ,KX).

b) LetX be a smooth surface. Assuming the Beilinson–Soulé Conjecture for
smooth surfaces, thenZcX ∼= CX ∼= KX in the derived category.

Proof. a) From Theorem 3.8 and 3.9, we know that there is a mapZcX → KX
in the derived category. LetF be aZ/pr-sheaf. By the niveau spectral se-
quence of higher Chow groups withZ/pr coefficients, we haveHc

t (X,Z/p
r) ∼=

⊕X(2)
Ht(k(x),Z

c/pr) for t ≥ 3. By [9], Theorem 1.1, we get thatHc
t (X,Z/p

r) =
0. ThereforeZcX/p

r ∼= τ≥−3ZX/p
r ∼= KX/p

r in the derived category. In particu-
lar, for suchF ,

RHomX(F ,Z
c
X)→ RHomX(F ,KX).

LetF be aZ/n-sheaf withn coprime top. Since bothZcX andKX satisfy the
Kummer sequence:

→ ZcX
n
→ ZcX → Z/n(2)→,

→ KX
n
→ KX → Z/n(2)→,

We get thatZcX/n ∼= KX/n in the derived category. Hence

RHomX(F ,Z
c
X)
∼= RHomX(F ,KX).
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b) The Beilinson–Soulé Conjecture ([12], Conjecture 5) asserts that for a
smooth schemeX andn > 0, H i(X,Z(n)) = 0 for i ≤ 0 (hereZ(n) is Voevod-
sky’s motivic complex). WhenX is a smooth surface,Hc

n(X,Z) = H4−n(X,Z(2)) =
0 for n ≥ 4 . Hence we get thatZcX ∼= CX ∼= KX . Q.E.D.
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