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Abstract

We determine the uniqueness on starlike obstacles by using the cross section data. We see cross
section data as spectral measure in polar coordinate at far field. Cross section scattering data
suffice to give the local behavior of the wave trace. These local trace formulas contain the geometric
information on the obstacle. Local wave trace behavior is connected to the cross section scattering
data by Lax-Phillips’ formula. Once the scattering data are identical from two different obstacles,
the short time behavior of the localized wave trace is expected to give identical heat/wave invariants.

1 Introduction and the Statement of Main Result

Let H be an embedded hypersurface in R
n such that

R
n \H = Ω ∪ O, with O compact and Ω connected , (1.1)

where both O and Ω are open. We call O an obstacle and Ω as its exterior. Without loss of generality,
we assume O contains the origin.

Mathematically, exterior scattering problem is formulated as follows. Let u ∈ C∞(Ω) be the solution
to the following exterior problem

{
∆u + λ2u = 0 in Ω,

u = 0 on H,
(1.2)

for Dirichlet condition;

{
∆u + λ2u = 0 in Ω,

∂
∂νu = 0 on H,

(1.3)

for Neumann condition. Let us call the Laplacian defined above as ∆O.
Let u = u(x, ω, λ) be the corresponding incoming solution. Let x := |x| x

|x| = rθ. We have the

following asymptotic behavior when r := |x| → ∞, for λ near R,

u(x, ω, λ) = e−iλω·x + vω(x), (1.4)

where

vω(x) :=
eiλr

r(n−1)/2
(A(λ, θ, ω) +O(

1

r
)), as r = |x| → ∞. (1.5)

The function A(λ, θ, ω) ∈ C∞(R \ {0} × Sn−1 × Sn−1) is the scattering amplitude related to obstacle O.
Note that, in the sense of distribution on S

n−1
θ ,

e−iλrθ·ω = (
2πi

λ
)

n−1

2 r−
n−1

2 {e−iλr(δω(θ) +O(
1

r
)) + in−1eiλr(δ−ω(θ) +O(

1

r
))}. (1.6)
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We define scattering matrix S(λ) as the operator with C∞-Schwartz kernel

S(λ, ω, θ) = δω(θ) + cnλ
(n−1)/2A(λ,−θ, ω), cn = (2π)−

n−1

2 e−
iπ

4
(n−1). (1.7)

A scattering matrix in this form is close to the one in Lax and Phillips [13]. In Melrose [15, p.23], we
have the ”absolute scattering matrix” defined as

Ŝ(λ, ω, θ) = in−1δ−ω(θ) + cnλ
(n−1)/2A(−λ, θ, ω), where A(λ, θ, ω) ∈ C∞(R \ {0} × S

n−1 × S
n−1), (1.8)

which is obtained by comparing the coefficient of the e−iλr and the one of eiλr as an operator image
in (1.4).

Alternatively, scattering matrix can be derived from Poisson operator P (λ) : L2(Sn−1) → L2(Ω),
which has L2-kernel defined as

P (λ, x, ω) := λ
n−1

2 cnu(x, ω, λ). (1.9)

To understand S(λ), we begin with the spectral theory of its resolvent. We define

P := {λ ∈ C|ℑλ > 0}

as the physical plane in this paper. According to Sjöstrand and Zworski [20], the scattering matrices
S(λ) has the meromorphic extension to C when n is odd; Λ, logarithmic plane, when n is even. We use

(∆O − λ2)−1 : L2(Ω) → H2(Ω) (1.10)

as the scattered resolvent, imposed with scatterers described above, which is defined over P by spectral
analysis. As a special case of black-box formalism of Sjöstrand and Zworski [20], (∆O−λ2)−1 : L2(Ω) →
H2(Ω) meromorphically extends from P , λ2 6∈ Specpp(∆O), to C if n is odd; to Λ, the logarithmic plane,
if n is even, as an operator

R(λ) : L2
comp(Ω) → H2

loc(Ω) (1.11)

In this paper, n is odd. R(λ) shares the same spectral structure as the corresponding scattering matrix
S(λ). The resolvent operator R(λ) that we will use in this paper are meromorphically extended. That
means they are spatially cut offs. So do the wave groups.

Inverse scattering theory asks for the information on the scatterer O given the knowledge provided
by S(λ). In particular, let O1 and O2 be two obstacles, uniqueness problem asks that if O1 = O2 given
the information of S1(λ, ω, θ) = S2(λ, ω, θ) on partial or complete set of (λ, ω, θ) ∈ F × S

n−1 × S
n−1,

where F = C or Λ. Theoretically, the singularity structure of the scattering matrix may determine the
obstacle. We refer to Isakov’s papers [7, 8] for an earlier review on the uniqueness and the stability
results for obstacle scattering. We refer the inverse scattering problem for convex bodies to [4, Theorem
3.2] in which the case for sound-hard and convex obstacle are discussed. However, there are not too
many results on the inverse scattering problem by cross section data. There are some numerical results
involved with the determination of the obstacle O by the corresponding scattering cross section which is
defined in this paper as

C(λ, θ) :=

∫

Sn−1

|A(λ, θ, θ′)|2dθ′. (1.12)

As asked by Colton and Sleeman [4], how far can we determine the obstacle O from the cross section
C(λ, θ) provided the obstacle is convex and sound-soft? In [4], the capacity of the obstacle O and the
areas of the shadow projections of O of all directions can be uniquely determined. In this paper, we
will connect the cross section C(λ, θ) to spectral measure and Birman-Krein formula or Hille-Yoshida
formula. Therefore, some geometric invariants can be obtained via the asymptotic spectral expansion of
heat/wave propagator in short time. Cross section C(λ, θ) can be interpreted as a directional spectral
measure propagating along direction θ. How far can we go to tell the geometric difference of these two
obstacles by comparing their heat/wave invariants?

Assuming the boundary defining function of obstacle Ok, denoted as xk, k = 1, 2, is of the form

xk := rk(θ), where θ ∈ S
n−1 and rk ∈ R

+, (1.13)

we state the main result in this paper as
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Theorem 1.1 Let Ok, k = 1, 2, be two starlike obstacles containing the origin in Rn, n ≥ 3, odd, with
smooth boundary imposed either with (1.2) or (1.3). Let Ck(λ, θ) be the cross section data corresponding
to obstacle Ok. If, in the neighborhood of one fixed λ0 ∈ R \ {0},

C1(λ, θ) = C2(λ, θ), for all θ ∈ S
n−1, (1.14)

then we have
r1(θ) = r2(θ), ∀θ ∈ S

n−1. (1.15)

In particular,
O1 = O2. (1.16)

2 On the Both Sides of Trace Formulas

We recall the following theorem from Lax-Phillips’ scattering theory [13].

Theorem 2.1 (Lax and Phillips) The scattering amplitude satisfies the following relations:

A(λ,−ω, θ) + (−1)
n−1

2 A(λ,−θ, ω)

= −(
λ

2πi
)

n−1

2

∫

Sn−1

A(λ,−ω, θ′)A(λ,−θ, θ′)dθ′

= −(
λ

2πi
)

n−1

2

∫

Sn−1

A(λ,−θ′, ω)A(λ,−θ′, θ)dθ′. (2.1)

Moreover,
A(λ, ω, θ) = A(λ, θ, ω) and A(−λ, ω, θ) = A(λ, ω, θ). (2.2)

Furthermore,

Lemma 2.2 In the setting from (1.4) to (1.7), we have

S−1(λ, ω, θ) = S(−λ, ω, θ) (2.3)

and, formally as coefficient in the spectral expansion (1.4),

Ŝ−1(λ, ω, θ) = in−1δ−ω(θ) + (
λ

2πi
)

n−1

2 e−2iλrA(−λ, θ,−ω). (2.4)

Proof The first equality comes from Shenk and Thoe [18]. The proof on the second equality is a
straightforward inverse correspondence in (1.4): let dn := c−1

n . We alternatively rewrite (1.4) and (1.5),

u(x, ω, λ) = λ−n−1

2 dnr
− n−1

2 e−iλrδω(θ) + λ−n−1

2 dni
n−1r−

n−1

2 eiλrδ−ω(θ)

+r−
n−1

2 e−iλre2iλrA(λ, θ, ω) + · · · . (2.5)

Hence,

u(x, ω, λ) = in−1r−
n−1

2 λ−n−1

2 dn{eiλrδ−ω(θ)

+e−iλr[in−1δω(θ) + in−1λ
n−1

2 d−1
n e2iλrA(λ, θ, ω)]} + · · · . (2.6)

Observing the correspondence from the coefficient of eiλr to e−iλr , we obtain the kernel of Ŝ−1(λ). �

To connect C(λ, θ) to spectral analysis, we look at the following lemma.

Lemma 2.3 Under the theorem assumption, we let Rk(λ, x, y) be the resolvent kernel corresponding to
Ok with exterior Ωk, k = 1, 2. Then, in a neighborhood of λ0 in 0i+ R,

2λ{R1(λ, x, y) −R1(−λ, x, y)} = 2λ{R2(λ, x, y)−R2(−λ, x, y)}, ∀x, y ∈ Ω1 ∩ Ω2. (2.7)
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Proof Starting with
[R(λ)−R(−λ)]dλ2 = (2π)−1P (λ)P ∗(λ)dλ, (2.8)

in which either quantities can serve as the definition of spectral measure. See Reed and Simon [17].
Letting Rk, P k, uk, Ak and Ck be the corresponding quantities related to obstacle Ok, we have

2λ{R1(λ, x, x) −R1(−λ, x, x)} − 2λ{R2(λ, x, x) −R2(−λ, x, x)}

=
1

2π

∫

Sn−1

P 1(λ, x, ω)P 1(λ, ω, x)dω − {similar terms from R2}

=
λn−1|cn|2

2π

∫

Sn−1

1 +
e−iλω·xe−iλr

r
n−1

2

A1(λ, ω, θ) +
eiλω·xeiλr

r
n−1

2

A1(λ, θ, ω) +
A1(λ, ω, θ)A1(λ, ω, θ)

rn−1
dω

−{similar terms from R2}+O(
1

rn
), by (1.4), (1.5), (1.6), (1.9),

=
λn−1|cn|2

2π

∫

Sn−1

−eiλω·xe−iλr

r
n−1

2

A1(λ, θ, ω) +
eiλω·xeiλr

r
n−1

2

A1(λ, θ, ω) +
A1(λ, θ, ω)A1(λ, θ, ω)

rn−1
dω

−{similar terms from R2}+O(
1

rn
)

=
λn−1|cn|2

2π

e−iλr

r
n−1

2

∫

Sn−1

e−iλω·xA1(λ, θ, ω)dω +
λn−1|cn|2

2π

eiλr

r
n−1

2

∫

Sn−1

eiλω·xA1(λ, θ, ω)dω

+
(2π)−1λn−1|cn|2

rn−1

∫

Sn−1

A1(λ, θ, ω)A1(λ, θ, ω)dω

−{similar terms from R2}+O(
1

rn
). (2.9)

We compute this term by term. Using (1.6),

∫

Sn−1

eiλω·xAk(λ, θ, ω)dω

→
x→∞

∫

Sn−1

(
2π

iλ
)

n−1

2 r−
n−1

2 [eiλrδω(θ) + in−1e−iλrδ−ω(θ)]A
k(λ, θ, ω)dω

= (
2π

iλ
)

n−1

2 r−
n−1

2 eiλrAk(λ, θ, θ) + (
2π

iλ
)

n−1

2 r−
n−1

2 in−1e−iλrAk(λ, θ,−θ) + · · · . (2.10)

Taking conjugate,

∫

Sn−1

e−iλω·xAk(λ, θ, ω)dω

→
x→∞

(
2πi

λ
)

n−1

2 r−
n−1

2 e−iλrAk(λ, θ, θ) + (
2πi

λ
)

n−1

2 r−
n−1

2 in−1eiλrAk(λ, θ,−θ) + · · · . (2.11)

However, from the identities in Lemma 2.2,

Sk(−λ, ω, θ) = δω(θ) + (
−λ

2πi
)

n−1

2 Ak(λ,−θ, ω); (2.12)

{Ŝk}−1(λ, ω, θ) = in−1δ−ω(θ) + (
λ

2πi
)

n−1

2 e−2iλrAk(−λ, θ,−ω). (2.13)

Using (1.8) we have

Ak(λ, θ, ω) = e2iλrAk(λ, θ,−ω). (2.14)

Let ω = −θ. We obtain
Ak(λ, θ,−θ) = e2iλrAk(λ, θ, θ). (2.15)
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Therefore, as |x| → ∞,

λn−1|cn|2
∫

Sn−1

eiλω·xeiλr

r
n−1

2

Ak(λ, θ, ω) +
e−iλω·xe−iλr

r
n−1

2

Ak(λ, θ, ω)dω

= λ
n−1

2 cn
1

rn−1
(Ak(λ, θ,−θ) + (−1)

n−1

2 Ak(λ, θ,−θ))

+λ
n−1

2 cn
1

rn−1
(e2iλrAk(λ, θ, θ) + (−1)

n−1

2 e−2iλrAk(λ, θ, θ)) + O(
1

rn
), using (2.1), (2.15),

= −2(
λ

2π
)n−1r−(n−1)Ck(λ, θ) +O(

1

rn
). (2.16)

Hence, (2.9) and (2.16) sum up to give

2λ{R1(λ, x, x) −R1(−λ, x, x)} − 2λ{R2(λ, x, x) −R2(−λ, x, x)}

→
x→∞

(
−1

2π
)r−(n−1)(

λ

2π
)n−1{C1(λ, θ) − C2(λ, θ)} + O(

1

rn
). (2.17)

Furthermore, we see that
∫
|x|=s

2λ{R1(λ, x, y) − R1(−λ, x, y) − R2(λ, x, y) + R2(−λ, x, y)}dSx is a

solution of the exterior problem (1.2) or (1.3) for |y| ≫ d, ∀s ∈ [c, d] ⊂ R, c ≫ 1. Therefore, using
Jensen’s inequality, for some constant C depending only on n and s,

∫

|y|=r

{
∫

|x|=s

2λ{R1(λ, x, y) −R1(−λ, x, y)−R2(λ, x, y) +R2(−λ, x, y)}dSx}2dSy

≤ C

∫

|y|=r

∫

|x|=s

{2λ{R1(λ, x, y) −R1(−λ, x, y)−R2(λ, x, y) +R2(−λ, x, y)}}2dSxdSy

≤ C

∫

|y|=r

∫

|x|=r

|2λ{R1(λ, x, y)−R1(−λ, x, y)−R2(λ, x, y) +R2(−λ, x, y)}|2dSxdSy

≤ C{
∫

|x|=r

|2λ{R1(λ, x, x) −R1(−λ, x, x) −R2(λ, x, x) +R2(−λ, x, x)}|dSx}2, (2.18)

where the last inequality comes from the fact that Hilbert-Schmidt norm is controlled by trace norm.
The theorem assumption C1(λ, θ) = C2(λ, θ), (2.17) and (2.18) yield

∫

|y|=r

{
∫

|x|=s

2λ{R1(λ, x, y)−R1(−λ, x, y)−R2(λ, x, y) +R2(−λ, x, y)}dSx}2dSy

. C{
∫

|x|=r

|x|−ndSx}2

≤ Cr−2, where C′s are constants. (2.19)

Using the Kato’s uniqueness theorem as in Shenk and Thoe [19, Lemma 4.4], we have

∫

|x|=s

2λ{R1(λ, x, y)−R1(−λ, x, y)−R2(λ, x, y)+R2(−λ, x, y)}dSx ≡ 0, ∀y ∈ Ω1∩Ω2, ∀s ∈ [c, d]. (2.20)

By Lebesgue integration theory, ∀y ∈ Ω1∩Ω2, {R1(λ, x, y)−R1(−λ, x, y)−R2(λ, x, y)+R2(−λ, x, y)} is
a.e. zero with respect to |x| ∈ [c, d]. Since it is continuous to x, provided by Theorem 5.1 part(3) in [19],
it is identically zero with respect to |x| ∈ [c, d], ∀y ∈ Ω1 ∩ Ω2. Now we apply the unique continuation
property of elliptic differential equation with analytic coefficients. See, Bers, John and Schechter [1].
Here, we have Helmholtz equation as a special case.

Again, using the unique continuation property of Helmholtz equation with respect to x, we have

2λ{R1(λ, x, y) −R1(−λ, x, y)−R2(λ, x, y) +R2(−λ, x, y)} ≡ 0, ∀x, y ∈ Ω1 ∩ Ω2. (2.21)

�

As a result of continuation outside all possible poles, we have in particular that
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Corollary 2.4 In 0i+R, there exist a cutoff function χ ∈ C∞
0 (Rn; [0, 1]) which is 1 near O1 ∪O2 such

that

(1− χ){R1(λ, ·, ·)−R1(−λ, ·, ·)} ≡ (1− χ){R2(λ, ·, ·)−R2(−λ, ·, ·)}. (2.22)

Let the naturally regularized wave trace

u(t) := 2{cos t
√
∆O − cos t

√
∆0}, (2.23)

where ∆0 := −∆Rn = − ∂2

∂x2
1

− ∂2

∂x2
2

− · · · − ∂2

∂x2
n

. cos t
√
∆O has a kernel satisfying the following Cauchy

problem: 



( ∂2

∂t2 +∆O) cos t
√
∆O(x, y) = 0;

cos t
√
∆O(x, y)|t=0 = δ(x− y);

∂ cos t
√
∆O(x,y)
∂t |t=0 = 0.

(2.24)

Furthermore, u(t) has a distributional trace. See Zworski [22]. We recall from Petkov and Stoyanov [16]
that, for a non-trapping obstacle,

singular support of Tr{u(t)} = {0}. (2.25)

Moreover, cos t
√
∆O(x, y), t ≥ 0, is interpreted as the data given at (0, y) received at (t, x) along the

geodesic. Hence, we see cos t
√
∆O(x, x), t ≥ 0, as the data given at (−t/2, x) received at (t/2, x) along

the geodesic.
Furthermore, u(t) has a spectral representation.

u(t) =

∫

R

e−iλt{R(λ)−R0(λ) −R(−λ) +R0(−λ)}dλ2. (2.26)

{R(λ)−R0(λ)−R(−λ)+R0(−λ)}dλ2 is the spectral measure, where R0(λ) := (∆0−λ2)−1. There is no
Neumann or Dirichlet eigenvalue of ∆O in obstacle scattering problem. Furthermore, when n ≥ 3, 0 is
neither a resonance nor an eigenvalue of R(λ). The continuous spectrum is actually where the scattering
phenomenon happens. We consider the Fourier inversion formula of (2.26) over P

∫

R

eiλtu(t)dt = 2λ{R(λ)−R0(λ) −R(−λ) +R0(−λ)}. (2.27)

Or, locally,
∫

R

eiλtfu(t)dt = 2λf{R(λ)−R0(λ) −R(−λ) +R0(−λ)}, where f ∈ C∞
0 (Ω). (2.28)

We will focus at the behavior of the localized cutoffed resolvents on the boundary H .
Using Birman-Krein type of theory, we see that, for λ ∈ R,

2λTr{R(λ)−R0(λ)−R(−λ) +R0(−λ)} = σ′(λ). (2.29)

A general treatment in proving the Birman-Krein theorem in black box formalism setting when n is odd
can be found in Zworski [22]. Therefore, we can rewrite (2.27) in a distributional sense as

σ′(λ) =

∫

R

eiλtTr{u(t)}dt, λ ∈ 0 + iR. (2.30)

Locally, we can define

σf
′(λ) := 2λTr{f(R(λ)−R0(λ) −R(−λ) +R0(−λ))}, ∀f ∈ C∞

0 (Rn). (2.31)

In this notation, we can convert (2.28) to a local formula:

σf
′(λ) =

∫

R

eiλtTr{fu(t)}dt. (2.32)

Let σk′

f (λ) be the quantity corresponding to Ok. Timing f on the distributional resolvent kernel

Rk(λ, x, x) and carrying out the trace integration, Lemma 2.3 tells us

σ1
f
′
(λ) = σ2

f
′
(λ), in a neighborhood of λ0, ∀f ∈ C∞

0 (Ω1 ∩ Ω2)). (2.33)

Now we prove

6



Proposition 2.5 Under the same assumption as in the introduction, the inverse Fourier transform
corresponding to Ok

∫
R
eiλtTr{fuk(t)}dt, which is valid for λ ∈ 0i + R, depends only on its short time

behavior in the following sense:

∫

R

eiλtTr{f(u1(t)− u2(t))}dt =
∫

R

eiλtTr{f(u1(t)− u2(t))}ρ1(t)dt + rapidly decreasing term, (2.34)

whenever λ ∈ 0i + R and where ρ1(t) ∈ C∞
0 (R; [0, 1]) is a cutoff function supported at t = 0. Moreover,

f ∈ C∞
0 (Rn; [0, 1]) is 1 near O1 ∪O2.

Proof We divide the inverse Fourier transform into three time intervals:
∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}dt

:=

∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}ρ1(t)dt+

∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}ρ2(t)dt

+

∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}ρ3(t)dt

:= I1(λ) + I2(λ) + I3(λ), (2.35)

where ρi ∈ C∞(R; [0, 1]), i = 1, 2, 3. Let ρ1, ρ3 ∈ C∞(R; [0, 1]) be two cutoff functions such that ρ1 is 1
with small compact support at t = 0 and ρ3 is 1 near t = ±∞. We take ρ1(t) + ρ2(t) + ρ3(t) = 1. We
take β such that supp(ρ3(t)) ⊂ (−∞,−β) ∪ (β,∞). β is to be chosen. This is a partition of unity.

Using Paley-Wiener’s theorem for I1(λ),

|
∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}ρ1(t)dt| ≤ C(1 + |λ|)Neh(−ℑλ), (2.36)

for some N ∈ N and for some constant C. h is the support function of Tr{f(u1(t) − u2(t))}ρ1(t). We
just keep I1(λ). N will be specified by Ivrii’s result [9]. I1(λ) is holomorphic and well-defined as a
Fourier-Laplace transform.

We also apply Paley-Wiener’s theorem to I2(λ). By (2.25), for each β, Tr{f(u1(t)− u2(t))}ρ2(t) is a
smooth function with compact support. By construction ρ2(t) is the union of two cutoff functions. One,
denoted as ρ+2 (t), is supported on R+ while the other one, denoted as ρ−2 (t), supported on R−. For the
first one, we choose ℑλ > 0, the upper half complex plane, for

|I+2 (λ)| := |
∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}ρ+2 (t)dt| ≤ CN (1 + |λ|)−Nea

+(−ℑλ); (2.37)

if supported on R−, we choose ℑλ < 0, the lower half complex plane, for

|I−2 (λ)| := |
∫ ∞

−∞
eiλtTr{f(u1(t)− u2(t))}ρ−2 (t)dt| ≤ CN (1 + |λ|)−Nea

−(−ℑλ), (2.38)

where a± is the supporting function of ρ±(t). This form of Paley-Wiener’s theorem appears in Hörmander’s
book [6]. In this case,

|I2(λ)| ≤ CN (1 + |λ|)−N , ∀N ∈ N, whenever λ ∈ 0i+ R. (2.39)

This is a rapidly decreasing term.
For I3(λ), we see ρ3(t) is also an union of two cutoff functions supported on (−∞,−β) and (β,∞)

respectively. By domain of dependence argument on uk(t, x, x) along the geodesic toward 0 ∈ Rn hitting
the obstacle boundaries and back to x such that ω = −θ, we choose β large such that

f(u1(t, rθ, rθ) − u2(t, rθ, rθ))ρ3(t) ≡ 0, ∀θ ∈ S
n−1. (2.40)

There are infinitely many geodesics starting at x and back to x. We consider only the one carries
backscattering information. Under starlike assumption, all such geodesics are transversal reflections.
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Henceforth,

Trf(u1(t)− u2(t))ρ3(t) =

∫ ∞

0

∫

Sn−1

f(rθ)(u1(t, rθ, rθ) − u2(t, rθ, rθ))ρ3(t)r
n−1dθdr ≡ 0. (2.41)

Therefore,
I3(λ) ≡ 0. (2.42)

�

Accordingly,

Corollary 2.6 I1(λ) and I2(λ) are entire functions.

Proof We see that ρ1(t) + ρ2(t) ∈ C∞
0 (R). �

3 Proof of Theorem 1.1

Let us define
Φk(t) := Fλ→t[|λ|k], (3.1)

where one needs to replace |λ|k by its certain regularization when k ≤ −1. According to Ivrii [9, 10],
when t → 0+, we have

Tr{f cos t
√
∆Oρ1(t)} =

∞∑

j=0

cjΦn−j−1(t), (3.2)

where cj ’s are nonzero multiples of heat invariants aj/2’s. See Branson and Gilkey [2]. In particular,

c0 = α0

∫

O
f(x)dx, where the constant α0 6= 0. (3.3)

Let

D(λ) :=

∫ ∞

−∞
eiλtTr{fu1(t)}ρ1(t)dt−

∫ ∞

−∞
eiλtTr{fu2(t)}ρ1(t)dt. (3.4)

By Lemma 2.3 and Proposition 2.5, as a result of analytic continuation,

D(λ) is rapidly decreasing on 0i+ R. (3.5)

Using (3.2), on the other hand, as λ → 0i±∞,

D(λ) → α0(a0(f,O1)− a0(f,O2))|λ|n−1 + α0.5(a0.5(f,O1)− a0.5(f,O2))|λ|n−2 + · · · . (3.6)

Combing (3.5) and (3.6), we obtain

aj(f,O1) = aj(f,O2), ∀j ≥ 0, where f ∈ C∞
0 (Ω1 ∩ Ω2). (3.7)

In particular, we have identical localized relative volume

a0(f,O1) = a0(f,O2), (3.8)

where we choose that f = f(x) = f(rω) = f(ω), where ω ∈ Sn−1. It suffices to show the obstacle can be
shaped by angular argument. By our starlike assumption, we have

rk(ω) := sup{v|vω ∈ Ok} (3.9)

as the radial function of Ok in the direction of ω ∈ Sn−1. According to [5] and [12, equation(2.4)], we
have for starlike sets

Volume(Ok) =

∫

Sn−1

(rk)n(ω)dω. (3.10)

Hence, (3.3) and (3.8) becomes
∫

Sn−1

(r1)n(ω)f(ω)dω =

∫

Sn−1

(r2)n(ω)f(ω)dω, ∀f ∈ C∞
0 (Sn−1). (3.11)

Therefore, we have r1(ω) = r2(ω). Theorem is proved.
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