THE VOLUME OF AN ISOLATED SINGULARITY

SEBASTIEN BOUCKSOM, TOMMASO DE FERNEX, AND CHARLES FAVRE

Abstract

We introduce a notion of volume of a normal isolated singularity that generalizes Wahl's characteristic number of surface singularities to arbitrary dimensions. We prove a basic monotonicity property of this volume under finite morphisms. We draw several consequences regarding the existence of non-invertible finite endomorphisms fixing an isolated singularity. Using a cone construction, we deduce that the anticanonical divisor of any smooth projective variety carrying a non-invertible polarized endomorphism is pseudoeffective.

Our techniques build on Shokurov's b-divisors. We define the notion of nef Weil b divisors, and of nef envelopes of b-divisors. We relate the latter notion to the pull-back of Weil divisors introduced by de Fernex and Hacon. Using the subadditivity theorem for multiplier ideals with respect to pairs recently obtained by Takagi, we carry over to the isolated singularity case the intersection theory of nef Weil b-divisors formerly developed by Boucksom, Favre and Jonsson in the smooth case.

Contents

Introduction 2

1. Shokurov's b-divisors1.1. The Riemann-Zariski space7
81.2. Divisors on the Riemann-Zariski space1.3. Examples of b-divisors8
1.4. Numerical classes of b-divisors 9
1.5. Functoriality 11
2. Nef envelopes 12
2.1. Graded sequences and nef envelopes 13
2.2. Variational characterization of nef envelopes 14
2.3. Nef envelopes of Weil b-divisors 16
2.4. The case of surfaces and toric varieties 18
2.5. Defect ideals 19
3. Multiplier ideals and approximation 22
3.1. Log-discrepancies 22
3.2. Multiplier ideals 24
3.3. Subadditivity and approximation 26
4. Normal isolated singularities 28
4.1. $\quad b$-divisors over 0 28
4.2. Nef b-divisors over 0 29

[^0]4.3. Intersection numbers of nef b-divisors 31
4.4. The volume of an isolated singularity 33
5. Comparison with other invariants of isolated singularities 34
5.1. Wahl's characteristic number 34
5.2. Plurigenera and Fulger's volume 35
6. Endomorphisms 36
6.1. Proofs of Theorems B and C 36
6.2. Simple examples of endomorphisms. 37
6.3. Endomorphisms of cusp singularities 37
References 38

Introduction

Wahl's characteristic number Wah90] is a topological invariant of a normal surface singularity. Its simple behavior under finite morphisms enables one to characterize surface singularities that carry finite non-invertible endomorphisms. Our main goal is to generalize Wahl's invariant to higher dimensional isolated normal singularities, and to present a few applications to the description of singularities admitting non-trivial finite endomorphisms. Our main result can be stated as follows.

Theorem A. To any normal isolated singularity $(X, 0)$ is associated a non-negative real number $\operatorname{Vol}(X, 0)$ that we call its volume, satisfying the following properties:
(i) For every finite morphism $\phi:(X, 0) \rightarrow(Y, 0)$ of degree $e(\phi)$ we have

$$
\operatorname{Vol}(X, 0) \geq e(\phi) \operatorname{Vol}(Y, 0)
$$

and equality holds when ϕ is étale in codimension one.
(ii) If $\operatorname{dim} X=2$ then $\operatorname{Vol}(X, 0)$ coincides with Wahl's characteristic number.
(iii) If X is \mathbb{Q}-Gorenstein then $\operatorname{Vol}(X, 0)=0$ if and only if X has log-canonical $(=l c)$ singularities.

Our result generalizes in particular the well-known fact that \mathbb{Q}-Gorenstein lc singularities are preserved under finite morphism (see for instance Kol97, Proposition 3.16]).

Just as in dimension 2 one infers restrictions on isolated singularities admitting finite endomorphisms.

Theorem B. Suppose $\phi:(X, 0) \rightarrow(X, 0)$ is a finite non-invertible endomorphism of an isolated singularity. Then $\operatorname{Vol}(X, 0)=0$.

If X is \mathbb{Q}-Gorenstein then X has lc singularities, and it furthermore has klt singularities if ϕ is not étale in codimension one.

To obtain a more precise classification of singularities carrying finite endomorphisms one would need to get deeper into the structure of singularities with $\operatorname{Vol}(X, 0)=0$. This can be done in dimension 2, see Wah90, Fav10, but unfortunately, this task seems very difficult at the moment in arbitrary dimension. To illustrate the previous result, we construct however several classes of (non-necessarily \mathbb{Q}-Gorenstein) isolated normal singularities carrying finite endomorphisms, see 96.2
singularities, Tsuchihashi's cusp singularities [Oda, Tsu83, toric singularities, and certain simple singularities obtained from cone or deformation constructions.

In dimension 2, the conclusion of Theorem B plays a key role in the classification of projective surfaces admitting non-invertible endomorphisms, which is by now essentially complete, see [FN05, Naka08]. In higher dimensions, classifying projective varieties carrying a non-invertible endomorphism has recently attracted quite a lot of attention, see dqZ06 and the references therein, but the general problem remains largely open.

The assumption on the singularity being isolated in Theorem B is too strong to be directly useful in this perspective. Nevertheless we observe that Theorem B has some consequences in the more rigid case of so-called polarized endomorphisms. Recall that an endomorphism $\phi: V \rightarrow V$ of a projective variety is said to be polarized if there exists an ample line bundle L on V such that $\phi^{*} L=d L$ in $\operatorname{Pic}(V)$ for some $d \geq 1$ (cf. swZ06 for a nice survey). By looking at the affine cone over X induced by L, we obtain:

Theorem C. If V is a smooth projective variety carrying a non-invertible polarized endomorphism ϕ then $-K_{V}$ is pseudoeffective.

Observe that the ramification formula implies $K_{V} \cdot L^{n-1} \leq 0$. If K_{V} is pseudoeffective then $K_{V} \equiv 0$ and (V, ϕ) is then an endomorphism of an abelian variety up to finite étale cover (see [Fakh03, Theorem 4.2]). If K_{V} is not pseudoeffective then V is uniruled by [BDPP04, and our result then puts further constraints on the geometry of V.

Throughout the paper, we insist on working with arbitrary non \mathbb{Q}-Gorenstein singularities. This degree of generality is crucial to obtain Theorem C since the cone over V is \mathbb{Q}-Gorenstein iff $\pm K_{V}$ is either \mathbb{Q}-linearly trivial or ample, see Example 2.28 below.

In order to understand our construction, and the difficulties that one has to overcome to define the volume above, let us recall briefly Wahl's definition for a normal surface singularity $(X, 0)$.

Pick any log-resolution $\pi: Y \rightarrow X$ of $(X, 0)$, i.e. a birational morphism which is an isomorphism above $X \backslash\{0\}$, and such that Y is smooth and the scheme-theoretic inverse image $\pi^{-1}(0)$ is a divisor with simple normal crossing support E. Let K_{X} be a canonical divisor on X and let K_{Y} be the induced canonical divisor on Y. Denote by $\pi^{*} K_{X}$ Mumford's numerical pull-back of K_{X} to Y, which is uniquely determined as a \mathbb{Q} divisor by the conditions $\pi_{*}\left(\pi^{*} K_{X}\right)=K_{X}$ and $\pi^{*} K_{X} \cdot C=0$ for any π-exceptional curve C. The log-discrepancy divisor is then defined by the relation $A_{Y / X}:=K_{Y}+E-\pi^{*} K_{X}$. Recall that X is (numerically) lc iff $A_{Y / X} \geq 0$ while X is (numerically) klt iff $A_{Y / X}>0$ on the whole of E.

Wahl's invariant measures the degree of positivity of the log-discrepancy divisor. The positivity is here relative to the contraction morphism $Y \rightarrow X$, and it is thus natural to consider the relative Zariski decomposition $A_{Y / X}=P+N$ in the sense of Sak77], where N is the smallest effective π-exceptional \mathbb{Q}-divisor such that $P=A_{Y / X}-N$ is π-nef. Finally one sets:

$$
\begin{equation*}
\operatorname{Vol}(X, 0):=-P^{2} \in \mathbb{Q} \geq 0 . \tag{1}
\end{equation*}
$$

Two (related) difficulties arise in generalizing Wahl's construction to higher dimensions: first, one needs to introduce a notion of pull-back for Weil divisors; and second one needs
to find a replacement for the relative Zariski decomposition. These problems have already been addressed in dFH09, and in BFJ08, KuMa08 respectively. Building on these works our first objective is to explain how these difficulties can be conveniently addressed using Shokurov's language of b-divisors. In $\S \S 1[3$, we define and study the notion of nef Weil b-divisor in the general setting of a normal variety X. This leads to the notion of nef envelope and relative Zariski decomposition as follows.

Let us recall some terminology. A Weil b-divisor W over X is the data of Weil divisors W_{π} on all birational models $\pi: X_{\pi} \rightarrow X$ of X that are compatible under push-forward. A Cartier b-divisor C is a Weil b-divisor determined by some π in the sense that its incarnations $C_{\pi^{\prime}}$ on all higher models $\pi^{\prime} \geq \pi$ are obtained by pulling-back C_{π} (all the divisors we consider for the time being have \mathbb{R}-coefficients).

A Cartier b-divisor C is said to be nef (relatively to a given projective morphism $X \rightarrow S$) if C_{π} is nef for one (hence any) determination π of C. Generalizing BFJ08, KuMa08 we say that a Weil b-divisor W is nef iff its numerical class is a limit of classes of nef Cartier b-divisors, or equivalently iff W_{π} lies in the closed movable cone $\overline{\operatorname{Mov}}\left(X_{\pi} / S\right)$ for all smooth models X_{π} (cf. Lemma 2.9 below).

In 42, we prove that the following definitions make sense (under suitable conditions), and introduce the following two notions of nef envelopes.

- The nef envelope $\operatorname{Env}_{X}(D)$ of a Weil divisor D on X is the largest nef Weil b-divisor Z that is both relatively nef over X and satisfies $Z_{X} \leq D$.
- The nef envelope $\operatorname{Env}_{\mathfrak{X}}(W)$ of a Weil b-divisor W is the largest nef Weil b-divisor Z that is both relatively nef over X and satisfies $Z \leq W$.
In dimension two, nef envelopes recover the notions of numerical pull-back and relative Zariski decomposition. Specifically, if D is a divisor on a normal surface X then the incarnation $\operatorname{Env}_{X}(D)_{\pi}$ on a given model X_{π} coincides with the numerical pull-back of D by π, while if D is a divisor on a smooth model X_{π} over X, then the nef part of D in its relative Zariski decomposition is given by $\operatorname{Env}_{\mathfrak{X}}(\bar{D})_{\pi}$ where \bar{D} is the Cartier b-divisor induced by D.

In higher dimensions $D \mapsto \operatorname{Env}_{X}(D)$ is non-linear in general, and $\operatorname{Env}_{X}(D)_{\pi}$ coincides up to sign with the pull-back $\pi^{*} D$ defined in dFH09. It is however this approach via b-divisors and nef envelopes that brings to light the crucial positivity properties of the pull-back of Weil divisors.

We are now in a position to generalize the log-discrepancy divisor and its relative Zariski decomposition. The choice of a canonical divisor K_{X} on X induces a canonical divisor K_{Y} for each model $Y \rightarrow X$, hence a canonical b-divisor $K_{\mathfrak{X}}$ over X. The log-discrepancy b-divisor is then defined as

$$
A_{\mathfrak{X} / X}:=K_{\mathfrak{X}}+1_{\mathfrak{X} / X}+\operatorname{Env}_{X}\left(-K_{X}\right),
$$

where the incarnation of $1_{\mathfrak{X} / X}$ in any model is equal to the reduced exceptional divisor over X. The log-discrepancy b-divisor is exceptional over X and does not depend on the choice of K_{X}. Its coefficients are given by the (usual) \log-discrepancies of X when the latter is \mathbb{Q}-Gorenstein. The role of the nef part of $A_{\mathfrak{X} / X}$ in its relative Zariski decomposition is in turn played by the nef envelope

$$
P:=\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right) .
$$

To generalize (1), we now face the problem of defining the intersection product of nef b-divisors. This step is non-trivial. The intersection of Cartier b-divisors is defined as their intersection in a common determination. However it cannot be extended to a multilinear intersection product on the space of Weil b-divisors having reasonable continuity properties. As it turns out, it is nevertheless possible to extend it to a multilinear intersection pairing on nef Weil b-divisors lying over a point $0 \in X$. This is done following the approach of [BFJ08], in which multiplier ideals appear as a prominent tool.

Assume from now on that $(X, 0)$ is an n-dimensional isolated normal singularity. For all (relatively) nef b-divisors W_{1}, \ldots, W_{n} above 0 , we set:

$$
W_{1} \cdot \ldots \cdot W_{n}:=\inf \left\{C_{1} \cdot \ldots \cdot C_{n} \mid C_{j} \text { nef Cartier, } C_{j} \geq W_{j}\right\} \in[-\infty, 0]
$$

To develop a reasonable calculus of these intersection numbers, additivity in each variable is a desirable property. We obtain this result as a consequence of the fact that any nef envelope of a Cartier b-divisor is the decreasing limit of a sequence of nef Cartier b-divisors C_{k}.

Let us explain how to get this crucial approximation property. The first observation is that the nef envelope of a Cartier b-divisor C is a limit of the graded sequence of ideals $\mathfrak{a}_{m}:=\mathcal{O}_{X}(m C), m \geq 0$ (see $\% 2.1$). For any fixed $c>0$, we use the general notion of (asymptotic) multiplier ideal $\mathcal{J}\left(X ; \mathfrak{a}_{\boldsymbol{0}}^{c}\right)$ introduced in dFH09] for any ambient variety X with normal singularities. As was shown in [dFH09] this multiplier ideal can also be computed using compatible boundaries: namely, there exist effective \mathbb{Q}-boundaries Δ such that $\mathcal{J}\left(X ; \mathfrak{a}_{\mathbf{0}}^{\boldsymbol{c}}\right)$ coincides with the standard (asymptotic) multiplier ideal $\mathcal{J}\left((X, \Delta) ; \mathfrak{a}_{\mathbf{0}}^{c}\right)$ with respect to the pair (X, Δ).

This connection enables us to make use of a recent result of Takagi [Tak10], which extends the usual subadditivity property of multiplier ideals [DEL00] to multiplier ideals with respect to a pair (X, Δ), up to an (inevitable) error term involving Δ and the Jacobian ideal of X. The approximation we are looking for then follows by taking the nef Cartier b-divisor C_{k} associated to $\mathcal{J}\left(X ; \mathfrak{a}_{\bullet}^{k}\right)$.

Now that we have defined the intersection product of nef Weil b-divisors, we can come back to the definition of the volume. We set

$$
\operatorname{Vol}(X, 0):=-\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right)^{n},
$$

which is shown to be finite (and non-negative). Once the volume is defined, the properties stated in Theorem A follow smoothly from transformation laws of envelopes under finite morphisms, see Proposition 2.17.

The volume relates to other kind of invariants that were previously defined and are connected to growth rate of pluricanonical forms.

In the 2-dimensional case, we first note that the definition (1) admits an equivalent formulation in terms of the growth rate of a certain quotient of sections. It was indeed shown in Wah90 that if X is a surface then

$$
\operatorname{dim}\left(H^{0}\left(X \backslash\{0\}, m K_{X}\right) / H^{0}\left(Y, m\left(K_{Y}+E\right)\right)\right)=\frac{m^{2}}{2} \operatorname{Vol}(X, 0)+o\left(m^{2}\right)
$$

where the left-hand side is independent of the choice of Y and is equal by definition to the m-th log-plurigenus $\lambda_{m}(X, 0)$ in the sense of Morales Mora87, a notion which makes sense in all dimensions.

In line with this point of view M. Fulger Fulg has recently considered the following invariant of an isolated singularity $(X, 0)$:

$$
\operatorname{Vol}_{F}(X, 0):=\limsup _{m} \frac{n!}{m^{n}} \operatorname{dim}\left(H^{0}\left(X \backslash\{0\}, m K_{X}\right) / H^{0}\left(Y, m\left(K_{Y}+E\right)\right)\right)
$$

It measures by definition the growth rate of $\lambda_{m}(X, 0)$, or equivalently that of Watanabe's L^{2}-plurigenera $\delta_{m}(X, 0)$ Wat80, Wat87], and yields a finite number since

$$
\delta_{m}(X, 0)=\lambda_{m}(X, 0)+O\left(m^{n-1}\right)=O\left(m^{n}\right)
$$

(see [Ish90], which contains a thorough introduction to these notions, and 95.2 below).
The notion of volume considered by Fulger also behaves well under finite morphisms, and the analog of Theorem A holds true. Moreover, in contrast to our volume, $\operatorname{Vol}_{F}(X, 0)$ is more accessible to explicit computations. On the other hand, our volume $\operatorname{Vol}(X, 0)$ relates more closely to lc singularities (see question (c) below).

Fulger explores in Fulg how the two approaches compare to one another, proving that $\operatorname{Vol}(X, 0) \geq \operatorname{Vol}_{F}(X, 0)$ for any isolated normal singularity $(X, 0)$. Equality holds when X is \mathbb{Q}-Gorenstein, but can fail otherwise (cf. Example 5.4).

This paper leaves several questions open.
(a) Is $\operatorname{Vol}(X, 0)$ a topological invariant of the link of the singularity?
(b) Does there exists a positive lower bound, only depending on the dimension, for the volume of isolated Gorenstein singularities with positive volume?
(c) Is it true that $\operatorname{Vol}(X, 0)=0$ implies the existence of an effective \mathbb{Q}-boundary Δ such that the pair (X, Δ) is log-canonical? (the converse being easily shown).
As explained in Wah90, question (a) has a positive answer in dimension two. And question (b) was solved by Ganter Gan for surfaces. In case of a positive answer to (a) in general, it would follow (as in the two-dimensional case) that the volume $\operatorname{Vol}(X, 0)$ is a characteristic number of the link of the singularity. It is to be noted that (c) fails with $\operatorname{Vol}_{F}(X, 0)$ in place of $\operatorname{Vol}(X, 0)$, again by Example 5.4.

It seems likely that there should be examples where the volume $\operatorname{Vol}(X, 0)$ is irrational. In Urb10] Urbinati constructs examples where the log-discrepancy takes irrational values, and in Fulg Fulger shows that similar examples have irrational volume $\operatorname{Vol}_{F}(X, 0)$ in his sense.

$$
* * *
$$

The plan of our paper is the following. In the first four sections, we work over a normal algebraic variety. Section 1 contains basics on b-divisors. The notion of envelope is analyzed in detail in 92 , In this section we also formalize a measure of the failure of a Weil divisor to be Cartier in terms of certain defect ideals, which are related to the notion of compatible boundary. In 63 we turn to the definition of the log-discrepancy b-divisor and of multiplier ideals. The key result of this section is the subadditivity theorem (Theorem 3.13) that we deduce from Takagi's work.

The rest of the paper deals with normal isolated singularities. We define the volume of such a singularity and prove Theorem A (i) and (iii) in $\S 4$. In $\$ 5$ we complete the proof of Theorem A, and compare our notion with the approaches via plurigenera and Fulger's work. Finally 66 focuses on endomorphisms, and contains a proof of Theorem B and C.

Acknowledgements We would like to thank S. Takagi and M. Fulger for sharing with us preliminary versions of their work. We are also very grateful to Fulger for many precious comments. This project started during the stay of the second author in Paris which was sponsored by the Fondation Sciences Mathématiques de Paris and the Institut de Mathématiques de Jussieu. It was completed when the first and last authors visited the University of Utah in Salt Lake City. We thank warmly all these institutions for their hospitality.

1. SHOKUROV'S b-DIVISORS

In this section X denotes a normal variety defined over an algebraically closed field of characteristic 0 and we set $n:=\operatorname{dim} X$. The goal of this section is to gather general properties of Shokurov's b-divisors over X, for which [Isk03] and Cor constitute general references. Proposition 1.11 seems to be new.
1.1. The Riemann-Zariski space. The set of all proper birational morphisms $\pi: X_{\pi} \rightarrow$ X modulo isomorphism is (partially) ordered by $\pi^{\prime} \geq \pi$ iff π^{\prime} factors through π, and the order is inductive (i.e. any two proper birational morphisms to X can be dominated by a third one). The Riemann-Zariski space of X is defined as the projective limit

$$
\mathfrak{X}=\lim _{\pi} X_{\pi}
$$

taken in the category of locally ringed topological spaces, each X_{π} being viewed as a scheme with its Zariski topology (note that \mathfrak{X} itself is not a scheme anymore).

As a topological space \mathfrak{X} may alternatively be viewed as the set of all valuation subrings $V \subset k(X)$ with non-empty center on X, endowed with the Krull-Zariski topology. Indeed given a Krull valuation V the center $c_{\pi}(V)$ of V on X_{π} is non-empty for each π by the valuative criterion for properness, and the collection of all scheme-theoretic points $c_{\pi}(V)$ defines a point in $c(V)$ in \mathfrak{X}. By [ZS, p. 122 Theorem 41] the mapping $V \mapsto c(V)$ so defined is a homeomorphism.
1.2. Divisors on the Riemann-Zariski space. Following Shokurov we define the group of Weil b-divisors over X (where b stands for birational) as

$$
\operatorname{Div}(\mathfrak{X}):=\lim _{幺} \operatorname{Div}\left(X_{\pi}\right)
$$

where $\operatorname{Div}\left(X_{\pi}\right)$ denotes the group of Weil divisors of X_{π}. It can alternatively be thought of as the group of Weil divisors on the Riemann-Zariski space \mathfrak{X} (hence the notation).

The group of Cartier b-divisors over X is in turn defined as

$$
\operatorname{CDiv}(\mathfrak{X}):=\lim _{\longrightarrow} \operatorname{CDiv}\left(X_{\pi}\right)
$$

with $\operatorname{CDiv}\left(X_{\pi}\right)$ denoting the group of Cartier divisors of X_{π}. One can easily check that

$$
\operatorname{CDiv}(\mathfrak{X})=H^{0}\left(\mathfrak{X}, \mathcal{M}_{\mathfrak{X}}^{*} / \mathcal{O}_{\mathfrak{X}}^{*}\right)
$$

is indeed the group of Cartier divisors of the locally ringed space \mathfrak{X}.

There is an injection $\operatorname{CDiv}(\mathfrak{X}) \hookrightarrow \operatorname{Div}(\mathfrak{X})$ determined by the cycle maps on birational models X_{π}.

An element of $\operatorname{Div}_{\mathbb{R}}(\mathfrak{X}):=\operatorname{Div}(\mathfrak{X}) \otimes \mathbb{R}\left(\operatorname{resp} . \operatorname{CDiv}_{\mathbb{R}}(\mathfrak{X}):=\operatorname{CDiv}(\mathfrak{X}) \otimes \mathbb{R}\right)$ will be called an \mathbb{R}-Weil b-divisor (resp. \mathbb{R}-Cartier b-divisor), and similarly with \mathbb{Q} in place of \mathbb{R}.

Let us now interpret these definitions in more concrete terms. A Weil divisor W on \mathfrak{X} consists of a family of Weil divisors $W_{\pi} \in \operatorname{Div}\left(X_{\pi}\right)$ that are compatible under push-forward, i.e. such that $W_{\pi}=\mu_{*} W_{\pi^{\prime}}$ whenever π^{\prime} factors through a morphism $\mu: X_{\pi^{\prime}} \rightarrow X_{\pi}$. We say that W_{π} (also denoted by $W_{X_{\pi}}$) is the incarnation of W on the model X_{π}. By contrast, a Cartier divisor C on \mathfrak{X} is determined by its incarnation on a high enough model, i.e. there exists π such that $C_{\pi^{\prime}}=\mu^{*} C_{\pi}$ for every $\pi^{\prime} \geq \pi$, where $\mu: X_{\pi^{\prime}} \rightarrow X_{\pi}$ is the induced morphism. We shall say that C is determined on X_{π} (or by π).

Weil b-divisors can also be interpreted as certain functions on the set of divisorial valuations of X. Recall first that a divisorial valuation of X is a rank 1 valuation of transcendence degree $\operatorname{dim} X-1$ of the function field $k(X)$, whose center on X is non-empty. By a classical result of Zariski (see e.g. KoMo, Lemma 2.45]) the divisorial valuations on X are exactly those of the form $\nu=t \operatorname{ord}_{E}$ where $t \in \mathbb{R}_{+}^{*}$ and E is a prime divisor on some birational model X_{π} over X.

Given an \mathbb{R}-Weil b-divisor W over X we can then define $\left(t \operatorname{ord}_{E}\right)(W)$ as t times the coefficient of E in W_{π}. Setting $g_{W}(\nu):=\nu(W)$ yields an identification $W \mapsto g_{W}$ between $\operatorname{Div}_{\mathbb{R}}(\mathfrak{X})$ and the space of all real-valued 1-homogeneous functions g on the set of divisorial valuations of X satisfying the following finiteness property: the set of prime divisors $E \subset X$ (or equivalently on X_{π} for any given π) such that $g\left(\operatorname{ord}_{E}\right) \neq 0$ is finite.

The topology of pointwise convergence therefore induces a topology of coefficient-wise convergence on $\operatorname{Div}_{\mathbb{R}}(\mathfrak{X})$, for which $\lim _{j} W_{j}=W$ iff $\lim _{j} \operatorname{ord}_{E}\left(W_{j}\right)=\operatorname{ord}_{E}(W)$ for each prime divisor E over X.
1.3. Examples of b-divisors. We introduce the main types of b-divisors we shall consider.

Example 1.1. The choice of a non-zero rational form ω of top degree on X induces a canonical b-divisor $K_{\mathfrak{X}}$ whose incarnation on X_{π} is equal to the canonical divisor determined by ω on X_{π}.

Example 1.2. A Cartier divisor D on a given model X_{π} induces a Cartier b-divisor \bar{D}, its pull-back to \mathfrak{X}. It is simply defined by pulling-back D to all models dominating X_{π}. By definition all Cartier b-divisors are actually obtained this way.
Example 1.3. Given a coherent fractional ideal sheaf \mathfrak{a} on X we denote by $Z(\mathfrak{a})$ the Cartier b-divisor determined on the normalized blow-up X_{π} of X along \mathfrak{a} by

$$
\mathfrak{a} \cdot \mathcal{O}_{X_{\pi}}=\mathcal{O}_{X_{\pi}}\left(Z(\mathfrak{a})_{\pi}\right)
$$

In particular we have $Z(f)_{\pi}=-\pi^{*} \operatorname{div}(f)$ when f is a rational function on X. Note that with this convention $Z(\mathfrak{a})$ is anti-effective when \mathfrak{a} is an actual ideal sheaf.

We record the following easy properties.
Lemma 1.4. Let $\mathfrak{a}, \mathfrak{b}$ be two coherent fractional ideal sheaves on X.

- $Z(\mathfrak{a}) \leq Z(\mathfrak{b})$ whenever $\mathfrak{a} \subset \mathfrak{b}$.
- $Z(\mathfrak{a} \cdot \mathfrak{b})=Z(\mathfrak{a})+Z(\mathfrak{b})$.
- $Z(\mathfrak{a}+\mathfrak{b})=\max \{Z(\mathfrak{a}), Z(\mathfrak{b})\}$, where the maximum is defined coefficient-wise.
- $Z(\mathfrak{a})=Z(\mathfrak{b})$ iff the integral closures of \mathfrak{a} and \mathfrak{b} are equal.

Remark 1.5. Given an ideal sheaf \mathfrak{a} and a positive number $s>0$ we set $Z\left(\mathfrak{a}^{s}\right):=s Z(\mathfrak{a})$. Then (basically by definition) we have $Z\left(\mathfrak{a}^{s}\right)=Z\left(\mathfrak{b}^{t}\right)$ iff the ' \mathbb{R}-ideals' \mathfrak{a}^{s} and \mathfrak{b}^{t} are equivalent in the sense of Teissier and Kawakita.

Definition 1.6. Let W be an \mathbb{R}-Weil b-divisor over X. We denote by $\mathcal{O}_{X}(W)$ the fractional ideal sheaf of X whose sections on an open set $U \subset X$ are the rational functions f such that $Z(f) \leq W$ over U.

We emphasize that the sheaf of \mathcal{O}_{X}-modules $\mathcal{O}_{X}(W)$ is not coherent in general, since we are imposing infinitely many (even uncountably many) conditions on f (compare [Isk03]). Note that $\pi_{*} \mathcal{O}_{X_{\pi}}\left(W_{\pi}\right) \subset \tau_{*} \mathcal{O}_{X_{\tau}}\left(W_{\tau}\right)$ whenever $\pi \geq \tau$ and

$$
\mathcal{O}_{X}(W)=\bigcap_{\pi} \pi_{*} \mathcal{O}_{X_{\pi}}\left(W_{\pi}\right)
$$

However if C is an \mathbb{R}-Cartier b-divisor then we have $\mathcal{O}_{X}(C)=\pi_{*} \mathcal{O}_{X_{\pi}}\left(C_{\pi}\right)$ for each determination π of C, and $\mathcal{O}_{X}(C)$ is in particular coherent in that case.

Cartier b-divisors associated with coherent fractional ideal sheaves can be characterized as follows:

Lemma 1.7. A Cartier b-divisor $C \in \operatorname{CDiv}(\mathfrak{X})$ is of the form $Z(\mathfrak{a})$ for some coherent fractional ideal sheaf \mathfrak{a} on X iff C is relatively globally generated over X.

In particular the Cartier divisors $Z(\mathfrak{a})$ with \mathfrak{a} ranging over all coherent (fractional) ideal sheaves of X generate $\operatorname{CDiv}(\mathfrak{X})$ as a group.

Here we say that C is relatively globally generated over X iff so is C_{π} for one (hence any) determination π of C.
Proof. Let C be a Cartier b-divisor determined by π. To say that C is relatively globally generated over X means by definition that the evaluation map

$$
\pi^{*} \pi_{*} \mathcal{O}_{X_{\pi}}\left(C_{\pi}\right) \rightarrow \mathcal{O}_{X_{\pi}}\left(C_{\pi}\right)
$$

is surjective. If this is the case we thus see that $C=Z(\mathfrak{a})$ with $\mathfrak{a}:=\pi_{*} \mathcal{O}_{X_{\pi}}\left(C_{\pi}\right)=\mathcal{O}_{X}(C)$, while the converse direction is equally clear. The second assertion now follows from the fact that any Cartier divisor on a given model X_{π} can be written as a difference of two π-very ample (hence π-globally generated) Cartier divisors.
1.4. Numerical classes of b-divisors. Let $X \rightarrow S$ be a projective morphism. We define the space of 1-codimensional numerical classes by

$$
N^{1}(\mathfrak{X} / S):=\lim _{\rightarrow} N^{1}\left(X_{\pi} / S\right)
$$

where the maps are given by pulling-back. We define in turn the space of $(n-1)$ dimensional numerical classes by

$$
N_{n-1}(\mathfrak{X} / S):=\varliminf_{\longleftarrow} N^{1}\left(X_{\pi} / S\right)
$$

where the maps are given by pushing-forward and π now runs over all smooth (or at least \mathbb{Q} factorial) birational models of X - so that the push-forward map $N^{1}\left(X_{\pi^{\prime}} / S\right) \rightarrow N^{1}\left(X_{\pi} / S\right)$ is well-defined for $\pi^{\prime} \geq \pi$.

Each $N^{1}\left(X_{\pi} / S\right)$ is a finite dimensional \mathbb{R}-vector space and we endow $N^{1}(\mathfrak{X} / S)$ and $N_{n-1}(\mathfrak{X} / S)$ with their natural inductive and projective limit topologies respectively. The cycle maps induce a natural continuous injection with dense image $N^{1}(\mathfrak{X} / S) \rightarrow$ $N_{n-1}(\mathfrak{X} / S)$. There are also natural surjections $\operatorname{CDiv}_{\mathbb{R}}(\mathfrak{X}) \rightarrow N^{1}(\mathfrak{X} / S)$ and $\operatorname{Div}_{\mathbb{R}}(\mathfrak{X}) \rightarrow$ $N_{n-1}(\mathfrak{X} / S)$, but one should be careful that the latter map is not continuous with respect to coefficient-wise convergence in general.

Example 1.8. Consider an infinite sequence C_{j} of (-1)-curves on $X=\mathbb{P}^{2}$ blown-up at 9 points. We then have $C_{j} \rightarrow 0$ coefficient-wise but the numerical classes $\left[C_{j}\right] \in N^{1}(X)$ do not tend to zero since $C_{j}^{2}=-1$ for each j.

Lemma 1.9. Let $\pi: X_{\pi} \rightarrow X$ be a birational model of X and let $\alpha \in N^{1}\left(X_{\pi} / X\right)$. Then there exists at most one π-exceptional \mathbb{R}-Cartier divisor D on X_{π} whose numerical class is equal to α.

Proof. Let D be a π-exceptional and π-numerically trivial \mathbb{R}-Cartier divisor. We are to show that $D=0$. Upon pulling-back D to a higher birational model, we may assume that π is the blow-up of X along a subscheme of codimension at least two. If we denote by E_{j} the π-exceptional divisors we then have on the one hand $D=\sum_{j} d_{j} E_{j}$ and on the other hand there exists positive integers a_{j} such that $F:=\sum_{j} a_{j} E_{j}$ is π-antiample. Now set $t:=\max _{j} d_{j} / a_{j}$. If we assume by contradiction that $D \neq 0$ then upon replacing D by $-D$ we may assume that $t>0$. Now $D-t F$ is effective and there exists j such that E_{j} is not contained in its support. If $C \subset E_{j}$ is a general curve in a fiber of π we then have $(D-t F) \cdot C \geq 0$ since C is not contained in the support of the effective divisor $D-t F$, which contradicts the fact that $D-t F$ is π-ample.

Even assuming that X_{π} is smooth, it is not true in general that any class $\alpha \in N^{1}\left(X_{\pi} / X\right)$ can be represented by a π-exceptional \mathbb{R}-divisor (since π might for instance be small, i.e. without any π-exceptional divisor). It is however true when X is \mathbb{Q}-factorial, and for any normal X when $\operatorname{dim} X=2$ thanks to Mumford's numerical pull-back.

Using these remarks we may now prove the following simple lemma which enables to circumvent the discontinuity of the quotient map $\operatorname{Div}_{\mathbb{R}}(\mathfrak{X}) \rightarrow N_{n-1}(\mathfrak{X} / S)$.

Lemma 1.10.

(a) Let W_{j} be a sequence (or net) of \mathbb{R}-Weil b-divisors which converges to an \mathbb{R}-Weil b-divisor W coefficient-wise. If there exists a fixed finite dimensional vector space V of \mathbb{R}-Weil divisors on X such that $W_{j, X} \in V$ for all j then $\left[W_{j}\right] \rightarrow[W]$ in $N_{n-1}(\mathfrak{X} / S)$.
(b) Let conversely $\alpha_{j} \rightarrow \alpha$ be a convergent sequence (or net) in $N_{n-1}(\mathfrak{X} / S)$. Then there exist representatives $W_{j}, W \in \operatorname{Div}_{\mathbb{R}}(\mathfrak{X})$ of α_{j} and α respectively and a finite dimensional vector space V of \mathbb{R}-Weil divisors on X such that

- $W_{j} \rightarrow W$ coefficient-wise.
- $W_{j, X} \in V$ for all j.

If $\alpha_{j} \in N^{1}(\mathfrak{X} / S)$ then W_{j} can be chosen to be \mathbb{R}-Cartier.
Proof. For each smooth model π the existence of V yields a finite dimensional space V_{π} of \mathbb{R}-divisors on X_{π} such that $W_{j, \pi} \in V_{\pi}$ for all j. The natural linear map $V_{\pi} \rightarrow N^{1}\left(X_{\pi} / S\right)$ is of course continuous since both spaces are finite dimensional, and it follows that $\left[W_{j, \pi}\right] \rightarrow$
[W_{π}] in $N^{1}\left(X_{\pi} / S\right)$ for each smooth model. Since smooth models are cofinal in the family of all models we conclude as desired that $\left[W_{j}\right] \rightarrow[W]$ in $N_{n-1}(\mathfrak{X} / S)$.

We now consider the converse. Let X_{π} be a fixed smooth model of X. For each $j \alpha_{j}-\bar{\alpha}_{j, \pi}\left(\right.$ resp. $\alpha-\bar{\alpha}_{\pi}$) is exceptional over X_{π}. By the above remarks it is thus uniquely represented by an \mathbb{R}-Weil b-divisor Z_{j} (resp. Z) that is exceptional over X_{π}. Since $\left(\alpha_{j}-\bar{\alpha}_{j, \pi}\right)_{\pi^{\prime}}$ converges to $\left(\alpha-\bar{\alpha}_{\pi}\right)_{\pi^{\prime}}$ in $N^{1}\left(X_{\pi^{\prime}} / X_{\pi}\right)$ for each $\pi^{\prime} \geq \pi$ it follows by uniqueness of Z_{j} that $Z_{j} \rightarrow Z$ coefficient-wise.

On the other hand since $N^{1}\left(X_{\pi} / S\right)$ is finite dimensional there exists a finite dimensional \mathbb{R}-vector space V of \mathbb{R}-divisors on X_{π} such that $V \rightarrow N^{1}\left(X_{\pi} / X\right)$ is surjective. This map is therefore open and we may thus find representatives $C_{j} \in V$ of $\alpha_{j, \pi}$ converging to a representative $C \in V$ of α_{π}. Setting $W_{j}:=Z_{j}+\bar{C}_{j}$ concludes the proof.
1.5. Functoriality. Given a morphism $\phi: X \rightarrow Y$ between normal varieties it is immediate to see that pushing forward and pulling back respectively induce homomorphisms $\phi_{*}: \operatorname{Div}(\mathfrak{X}) \rightarrow \operatorname{Div}(\mathfrak{Y})$ and $\phi^{*}: \operatorname{CDiv}(\mathfrak{Y}) \rightarrow \operatorname{CDiv}(\mathfrak{X})$ in a functorial way.

In what follows we furthermore assume that $\phi: X \rightarrow Y$ is dominant and generically finite.

Proposition 1.11. Let $\phi: X \rightarrow Y$ be a dominant generically finite morphism. Then $\phi_{*} \operatorname{CDiv}(\mathfrak{X}) \subset \operatorname{CDiv}(\mathfrak{Y})$.
Proof. The assertion is obvious when ϕ is birational because we are just shifting models in that case. Using the Stein factorization of ϕ we may thus assume that ϕ is finite (and still dominant). By Lemma 1.7 it is then enough to show that for every coherent fractional ideal sheaf \mathfrak{a} on X there exists a coherent fractional ideal sheaf \mathfrak{b} on Y such that $\phi_{*} Z(\mathfrak{a})=Z(\mathfrak{b})$. In fact we claim that

$$
\begin{equation*}
\phi_{*} Z(\mathfrak{a})=Z\left(N_{X / Y}(\mathfrak{a})\right) \tag{2}
\end{equation*}
$$

where $N_{X / Y}(\mathfrak{a})$ denotes the image of \mathfrak{a} under the norm homomorphism (compare EGA4, Définition 21.5.5]).

More precisely pick an affine chart $U \subset Y$. Since the restriction $\phi^{-1}(U) \rightarrow U$ is finite, $\phi^{-1}(U)$ is affine and \mathfrak{a} is thus generated by its global sections g on $\phi^{-1}(U)$. For each such g its norm is defined by setting

$$
N_{X / Y}(g)(x)=\prod_{\phi(y)=x} g(y)
$$

for every smooth point $x \in U$ over which ϕ is étale and by extending it to a regular function on U by normality. We then define $N_{X / Y}(\mathfrak{a})(U)$ as the \mathcal{O}_{U}-module generated by all $N_{X / Y}(g)$ with g as above.

Let us now prove (2). Pick a prime divisor E on a birational model $Y^{\prime} \rightarrow Y$ and choose a birational model $X^{\prime} \rightarrow X$ such that ϕ lifts to a morphism $\phi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$. Note that ϕ^{\prime} is proper and generically finite. Let $\left(E_{i}\right)_{i}$ be the (finitely many) prime divisors of X^{\prime} dominating E, so that $\phi_{*} E_{i}=c_{i} E$ for some positive integer c_{i}. Then we have

$$
\operatorname{ord}_{E}\left(\phi_{*} Z(\mathfrak{a})\right)=\sum_{i} c_{i} \operatorname{ord}_{E_{i}} Z(\mathfrak{a})=-\sum_{i} c_{i} \operatorname{ord}_{E_{i}}(\mathfrak{a})
$$

by definition of ϕ_{*}. On the other hand, let $V \subset Y^{\prime}$ be an affine chart containing a point of E. The ideal sheaf $N_{X / Y}(\mathfrak{a}) \cdot \mathcal{O}_{Y^{\prime}}$ is generated, over V, by the functions $N_{X^{\prime} / Y^{\prime}}(g)$ where
g ranges over all global sections of $\mathfrak{a} \cdot \mathcal{O}_{X^{\prime}}$ on $\left(\phi^{\prime}\right)^{-1}(V)$. We have

$$
\operatorname{ord}_{E} N_{X^{\prime} / Y^{\prime}}(g)=\sum c_{i} \operatorname{ord}_{E_{i}}(g)
$$

hence

$$
\begin{gathered}
\operatorname{ord}_{E} N_{X / Y}(\mathfrak{a})=\min \left\{\operatorname{ord}_{E} N_{X^{\prime} / Y^{\prime}}(g), g \in H^{0}\left(\left(\phi^{\prime}\right)^{-1}(V), \mathfrak{a} \cdot \mathcal{O}_{X^{\prime}}\right)\right\} \\
=\min \left\{\sum c_{i} \operatorname{ord}_{E_{i}}(f), f \in \mathfrak{a}\right\}
\end{gathered}
$$

which proves the claim since we have $\operatorname{ord}_{E_{i}}(f)=\operatorname{ord}_{E_{i}}(\mathfrak{a})$ for each i if $f \in \mathfrak{a}$ is a general element.

Let us now consider the pull-back operator $\phi^{*}: \operatorname{CDiv}(\mathfrak{Y}) \rightarrow \operatorname{CDiv}(\mathfrak{X})$. Still assuming that ϕ is generically finite and dominant we are going to show that ϕ^{*} extends in a natural way to $\operatorname{Div}(\mathfrak{Y}) \rightarrow \operatorname{Div}(\mathfrak{X})$. Indeed given a divisorial valuation ν on X it is well-known that the valuation $\phi_{*} \nu$ defined by

$$
\left(\phi_{*} \nu\right)(f):=\nu(f \circ \phi)
$$

is a divisorial valuation on Y (since the restriction of the valuation ring of ν to $\mathbb{C}(Y)$ has transcendence degree $\operatorname{dim} Y-1$ by [ZS, VI.6, Corollary 1]).

Given a prime divisor E over X we thus have $\phi_{*} \operatorname{ord}_{E}=b \operatorname{ord}_{F}$ for some positive number b and some prime divisor F over Y. The coefficient b is actually an integer and can be described as follows: there exist birational models $X^{\prime} \rightarrow X$ and $Y^{\prime} \rightarrow Y$ such that E (resp. F) is a prime divisor on $X^{\prime}\left(\right.$ resp. $\left.Y^{\prime}\right)$ and such that the rational lift $\phi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ of ϕ sends the generic point of E to that of F. We then have $b=\operatorname{ord}_{E}\left(\left(\phi^{\prime}\right)^{*} F\right)$ (the pull-back is well-defined since it is only considered at the generic point of F and Y^{\prime} is regular in codimension 1).

Definition 1.12. Let $\phi: X \rightarrow Y$ be a generically finite dominant morphism. If W is a Weil b-divisor over Y we define its pull-back $\phi^{*} W$ to be the b-divisor over X characterized by $\nu\left(\phi^{*} W\right)=\left(\phi_{*} \nu\right)(W)$ for every divisorial valuation ν.

This is indeed a Weil b-divisor since each prime divisor E on X such that $\left(\phi_{*} \operatorname{ord}_{E}\right)(W) \neq 0$ is either mapped to a prime divisor F on Y such that $\operatorname{ord}_{F}(W) \neq 0$ or is contracted by ϕ, so that the set of all such prime divisors E is finite.

Proposition 1.13. Suppose $\phi: X \rightarrow Y$ is a generically finite dominant morphism of normal varieties, and let $e(\phi) \in \mathbb{N}^{*}$ be its degree. Then we have

$$
\phi_{*} \phi^{*} W=e(\phi) W
$$

for every $W \in \operatorname{Div}(\mathfrak{Y})$.
The proof is left to the reader.

2. Nef envelopes

In this section X still denotes an arbitrary normal variety (over an algebraically closed field of characteristic zero). We reinterpret the pull-back construction of dFH09 as a nef envelope, which shows in particular that it coincides with Mumford's numerical pull-back on surfaces. Section 2.5 introduces the defect ideal of a Weil divisor, measuring its failure to be Cartier, and a precise description of the defect ideal is obtained.
2.1. Graded sequences and nef envelopes. Recall that $\mathfrak{a}_{\mathbf{\bullet}}=\left(\mathfrak{a}_{m}\right)_{m \geq 0}$ is a graded sequence of fractional ideal sheaves if $\mathfrak{a}_{0}=\mathcal{O}_{X}$, each \mathfrak{a}_{m} is a coherent fractional ideal sheaf of X and $\mathfrak{a}_{k} \cdot \mathfrak{a}_{m} \subset \mathfrak{a}_{k+m}$ for every k, m. We shall say that \mathfrak{a}_{\bullet} has linearly bounded denominators if there exists a (fixed) Weil divisor D on X such that $\mathcal{O}_{X}(m D) \cdot \mathfrak{a}_{m} \subset \mathcal{O}_{X}$ for all m.

Let us first attach an \mathbb{R}-Weil b-divisor to any graded sequence of ideal sheaves with linearly bounded denominators:

Proposition 2.1. Suppose that $\mathfrak{a}_{\bullet}=\left(\mathfrak{a}_{m}\right)_{m \geq 0}$ is a graded sequence of fractional ideals sheaves \mathfrak{a}_{m} with linearly bounded denominators. Then we have

$$
\frac{1}{l} Z\left(\mathfrak{a}_{l}\right) \leq \frac{1}{m} Z\left(\mathfrak{a}_{m}\right)
$$

for every m divisible by l and the sequence $\frac{1}{m} Z\left(\mathfrak{a}_{m}\right)$ converges coefficient-wise to an \mathbb{R}-Weil b-divisor $Z\left(\mathfrak{a}_{\mathbf{\bullet}}\right)$.
Proof. All this follows from the super-additivity property

$$
Z\left(\mathfrak{a}_{m}\right)+Z\left(\mathfrak{a}_{n}\right) \leq Z\left(\mathfrak{a}_{m+n}\right)
$$

since the condition that $\mathfrak{a}_{\boldsymbol{\bullet}}$ has linearly bounded denominators guarantees that the sequence $\frac{1}{m} \operatorname{ord}_{E} Z\left(\mathfrak{a}_{m}\right)$ is bounded below for each prime divisor E over X and even identically zero for all but finitely many prime divisors E on X.

Lemma 2.2. Let \mathfrak{a}. be a graded sequence of fractional ideal sheaves on X with linearly bounded denominators. Then we have $Z\left(\mathfrak{a}_{\bullet}\right)=\frac{1}{m_{0}} Z\left(\mathfrak{a}_{m_{0}}\right)$ for some m_{0} iff the graded \mathcal{O}_{X}-algebra $\bigoplus_{m \geq 0} \overline{\mathfrak{a}_{m}}$ of integral closures is finitely generated.
Proof. Assume that $Z\left(\mathfrak{a}_{\bullet}\right)=\frac{1}{m_{0}} Z\left(\mathfrak{a}_{m_{0}}\right)$ for a given m_{0}, so that $Z\left(\mathfrak{a}_{k m_{0}}\right)=k Z\left(\mathfrak{a}_{m_{0}}\right)$ for all k. Let π be the normalized blow-up of X along $\mathfrak{a}_{m_{0}}$. One then easily checks that

$$
\overline{\mathfrak{a}_{k m_{0}}}=\pi_{*} \mathcal{O}_{X_{\pi}}\left(k Z\left(\mathfrak{a}_{m_{0}}\right)\right)
$$

for all k. Since $Z\left(\mathfrak{a}_{m_{0}}\right)_{\pi}$ is π-globally generated this implies that the \mathcal{O}_{X}-algebra $\bigoplus_{k} \overline{\mathfrak{a}_{k m_{0}}}$ is finitely generated, hence so is its finite integral extension $\bigoplus_{m} \overline{\mathfrak{a}_{m}}$. The converse implication is left to the reader.

Definition 2.3. Let D be an \mathbb{R}-Weil divisor on X_{π} for a given π. The nef envelope $\operatorname{Env}_{\pi}(D)$ of D is defined as the \mathbb{R}-Weil b-divisor associated with the graded sequence $\pi_{*} \Theta_{X_{\pi}}(m D), m \geq 0$.

When π is the identity we write Env_{X} for Env_{π}.
Remark 2.4. If D is an \mathbb{R}-Weil divisor on X then $-\operatorname{Env}_{X}(-D)_{\pi}$ coincides by definition with $\pi^{*} D$ in the sense of [dFH09, Definition 2.9].

Proposition 2.5. Let D, D^{\prime} be two \mathbb{R} - Weil divisors on a model X_{π}. Then we have:

- $\operatorname{Env}_{\pi}\left(D+D^{\prime}\right) \geq \operatorname{Env}_{\pi}(D)+\operatorname{Env}_{\pi}\left(D^{\prime}\right)$.
- $\operatorname{Env}_{\pi}(t D)=t \operatorname{Env}_{\pi}(D)$ for each $t \in \mathbb{R}_{+}$

Proof. For each $m \geq 0$ we have

$$
\left(\pi_{*} \mathcal{O}_{X_{\pi}}(m D)\right) \cdot\left(\pi_{*} \mathcal{O}_{X_{\pi}}\left(m D^{\prime}\right)\right) \subset \pi_{*} \mathcal{O}_{X_{\pi}}\left(m\left(D+D^{\prime}\right)\right)
$$

whence the first point.

In order to prove the second point we may assume that D is effective (since we may add to D the pull-back of an appropriate Cartier divisor of X to make it effective). Now observe that $\operatorname{Env}_{\pi}(m D)=m \operatorname{Env}_{\pi}(D)$ for each positive integer m since $\operatorname{Env}_{\pi}(D)=$ $\lim \frac{1}{m} Z\left(\pi_{*} \mathcal{O}_{X_{\pi}}(m D)\right)$, hence $\operatorname{Env}_{\pi}(t D)=t \operatorname{Env}_{\pi}(D)$ for each $t \in \mathbb{Q}_{+}^{*}$. On the other hand $D \mapsto \operatorname{Env}_{\pi}(D)$ is obviously non-decreasing, so if we pick $t \in \mathbb{R}_{+}^{*}$ and approximate it from below and from above by rational numbers s_{j}, t_{j} we get

$$
s_{j} \operatorname{Env}_{\pi}(D)=\operatorname{Env}_{\pi}\left(s_{j} D\right) \leq \operatorname{Env}_{\pi}(t D) \leq \operatorname{Env}_{\pi}\left(t_{j} D\right)=t_{j} \operatorname{Env}_{\pi}(D)
$$

hence the result.
Linearity of nef envelopes fails in general. The obstruction to linearity will be studied in greater detail in Section [2.5 (see also Example 2.21 and dFH09]).
Corollary 2.6. For every finite dimensional vector space V of \mathbb{R}-Weil divisors on X_{π} and every divisorial valuation ν the map $D \mapsto \nu\left(\operatorname{Env}_{\pi}(D)\right)$ is continuous on V.
Proof. Proposition [2.5 implies that $D \mapsto \nu\left(\operatorname{Env}_{\pi}(D)\right)$ is a concave function on V and the result follows.
Proposition 2.7. For every \mathbb{R}-Weil divisor D on X the incarnation $\left(\operatorname{Env}_{X}(D)\right)_{X}$ of $\operatorname{Env}_{X}(D)$ on X coincides with D.

Proof. If D is a Weil divisor on X then we have $Z\left(\mathcal{O}_{X}(D)\right)_{X}=D$. Indeed this means that $\operatorname{ord}_{E} \mathcal{O}_{X}(D)=-\operatorname{ord}_{E} D$ for each prime divisor E of X, which holds true since X, being normal, is regular at the generic point of E.

As a consequence we get $D=\left(\operatorname{Env}_{X}(D)\right)_{X}$ when D is a \mathbb{Q}-Weil divisor on X, and the general case follows by density, using Corollary 2.6.
2.2. Variational characterization of nef envelopes. Let $X \rightarrow S$ be a projective morphism. In the usual theory of b-divisors one says that an \mathbb{R}-Cartier b-divisor C is relatively nef over S (or S-nef for short) if C_{π} is S-nef for one (hence any) determination π of C. Following [BFJ08, KuMa08] we extend this definition to arbitrary \mathbb{R}-Weil b-divisors:
Definition 2.8. Let $X \rightarrow S$ be a projective morphism. We define $\operatorname{Nef}(\mathfrak{X} / S) \subset N_{n-1}(\mathfrak{X} / S)$ as the closed convex cone generated by all S-nef classes $\beta \in N^{1}(\mathfrak{X} / S)$, i.e. all classes of S-nef \mathbb{R}-Cartier b-divisors.

Since the usual notion of nefness is preserved by pull-back, it is immediate to check that S-nef classes in the sense of the above definition are also preserved by pull-back. On the other hand nefness is in general not preserved under push-forward when $\operatorname{dim} X>2$, and the incarnations W_{π} of an S-nef \mathbb{R}-Weil b-divisor are therefore not S-nef in general.

Given a projective morphism $Y \rightarrow S$ recall that the S-movable cone $\overline{\operatorname{Mov}}(Y / S) \subset$ $N^{1}(Y / S)$ is the closed convex cone $\overline{\operatorname{Mov}}(Y / S)$ generated by the numerical classes of all Cartier divisors D on Y whose S-base locus has codimension at least two.

We now have the following alternative description of nef b-divisors:
Lemma 2.9. Let $X \rightarrow S$ be a projective morphism. Then we have

$$
\operatorname{Nef}(\mathfrak{X} / S)=\underset{\pi}{\operatorname{proj}} \lim \overline{\operatorname{Mov}}\left(X_{\pi} / S\right)
$$

where the limit is taken over all smooth (or \mathbb{Q}-facforial) models X_{π}. In other words an \mathbb{R}-Weil b-divisor W is S-nef iff W_{π} is S-movable on each smooth (or \mathbb{Q}-factorial) model
X_{π}. In particular the restriction of (the class of) W_{π} to any prime divisor of X_{π} is S-pseudoeffective.

Proof. Let $\alpha \in N_{n-1}(\mathfrak{X} / S)$. Since the latter is endowed with the product topology the sets

$$
V_{\pi, U}:=\left\{\beta \in N_{n-1}(\mathfrak{X} / S), \beta_{\pi} \in U\right\}
$$

where π ranges over all smooth models of X and $U \subset N^{1}\left(X_{\pi} / S\right)$ ranges over all conical open neighborhoods of α_{π} form a neighborhood basis of α.

We infer by definition that α is S-nef iff for every π and U there exists an S-nef class $\beta \in N^{1}(\mathfrak{X} / S)$ such that $\beta_{\pi} \in U$. On the other hand since U is conical it is immediate to see that β may be assumed to be the class of an S-globally generated Cartier b-divisor, and the result follows.

The next result is a limiting case of Lemma 1.7
Lemma 2.10. Let \mathfrak{a}_{\bullet} be a graded linearly bounded denominators. Then the \mathbb{R}-Weil bdivisor $Z\left(\mathfrak{a}_{\bullet}\right)$ is X-nef.
Proof. Since \mathfrak{a}_{\bullet} has linearly bounded denominators it is in particular clear that there exists a finite dimensional vector space V of \mathbb{R}-Weil divisors on X such that $Z\left(\mathfrak{a}_{m}\right) \in V$ for all m. By Lemma 1.10 it thus follows that $\left[\frac{1}{m} Z\left(\mathfrak{a}_{m}\right)\right]$ converges to $\left[Z\left(\mathfrak{a}_{\bullet}\right)\right]$ in $N_{n-1}(\mathfrak{X} / X)$. But each $Z\left(\mathfrak{a}_{m}\right)$ is X-globally generated by Lemma 1.7, and we thus conclude that $Z\left(\mathfrak{a}_{\mathbf{0}}\right)$ is X-nef

Proposition 2.11 (Negativity Lemma). Let W be an X-nef \mathbb{R}-Weil b-divisor over X. Then for each π we have $W \leq \operatorname{Env}_{\pi}\left(W_{\pi}\right)$.

The following argument provides in particular an alternative proof of the well-known negativity lemma KoMo, Lemma 3.39].

Proof. Let X_{π} be a fixed model of X.
Step 1. Let C be an X-globally generated Cartier b-divisor, determined on some model X_{τ} that may be assumed to dominate X_{π}. As in the proof of Lemma 1.7 we have $C=Z\left(\mathcal{O}_{X}(C)\right)$ since C is X-globally generated, and we infer that $C \leq \operatorname{Env}_{\pi}\left(C_{\pi}\right)$ since $\tau \geq \pi$ implies

$$
\mathcal{O}_{X}(C)=\tau_{*} \mathcal{O}_{X_{\tau}}\left(C_{\tau}\right) \subset \pi_{*} \mathcal{O}_{X_{\pi}}\left(C_{\pi}\right) .
$$

Step 2. Let C be an X-nef \mathbb{R}-Cartier b-divisor, determined on a model X_{τ} that may again be assumed to dominate X_{π}. We may then find a sequence of X-very ample Cartier divisors A_{j} on X_{τ} and a sequence $t_{j} \in \mathbb{R}_{+}^{*}$ such that $t_{j} A_{j} \rightarrow C_{\tau}$ coefficient-wise while staying in a fixed finite dimensional vector space of \mathbb{R}-divisors on X_{τ}. By Step 1 and Proposition 2.5 we have $t_{j} \overline{A_{j}} \leq \operatorname{Env}_{\pi}\left(t_{j}\left(\overline{A_{j}}\right)_{\pi}\right)$ for each j, hence $C \leq \operatorname{Env}_{\pi}\left(C_{\pi}\right)$ by Corollary [2.6. This step recovers in particular the usual statement of the negativity lemma.

Step 3. Let W be an arbitrary X-nef \mathbb{R}-Weil b-divisor. By Lemma 1.10 there exists a net W_{j} of X-nef \mathbb{R}-Cartier divisors such that $W_{j} \rightarrow W$ coefficient-wise and $W_{j, X}$ stays in a fixed finite dimensional space of \mathbb{R}-Weil divisors on X. The result now follows by another application of Corollary 2.6.

As a consequence we get the following variational characterization of nef envelopes.

Corollary 2.12. If D is an \mathbb{R}-Weil divisor on X_{π} then $\operatorname{Env}_{\pi}(D)$ is the largest X-nef \mathbb{R}-Weil b-divisor W such that $W_{\pi} \leq D$. In particular we have:

- $\operatorname{Env}_{\pi}(D)=\bar{D}$ if D is \mathbb{R}-Cartier and X-nef.
- The b-divisor $\operatorname{Env}_{\pi}(D)$ is \mathbb{R}-Cartier, determined by a given $\tau \geq \pi$, iff the incarnation of $\operatorname{Env}_{\pi}(D)$ on X_{τ} is \mathbb{R}-Cartier and X-nef.

Proof. The \mathbb{R}-Weil b-divisor $\operatorname{Env}_{\pi}(D)$ is X-nef by Lemma 2.10. We also clearly have $\frac{1}{m} Z\left(\pi_{*} \mathcal{O}_{X_{\pi}}(m D)\right)_{\pi} \leq D$, hence $\operatorname{Env}(D)_{\pi} \leq D$ in the limit. Conversely if Z is an X-nef \mathbb{R}-Weil b-divisor such that $Z_{\pi} \leq D$ then $Z \leq \operatorname{Env}_{\pi}\left(Z_{\pi}\right) \leq \operatorname{Env}_{\pi}(D)$ by the negativity lemma.

As an illustration we now prove:
Proposition 2.13. Assume that X has klt singularities in the sense of dFH09, i.e. there exists an effective \mathbb{Q}-Weil divisor Δ such that $K_{X}+\Delta$ is \mathbb{Q}-Cartier and (X, Δ) is klt. Then $\operatorname{Env}_{X}(D)$ is an \mathbb{R}-Cartier b-divisor for every \mathbb{R}-Weil divisor D on X. When D has \mathbb{Q}-coefficients we even have $\operatorname{Env}_{X}(D)=\frac{1}{m} Z\left(\mathcal{O}_{X}(m D)\right)$ for some m.

The result easily follows from Kol08, Exercise 109], but we provide some details for the convenience of the reader.
Note that the analogous result for $\operatorname{Env}_{\pi}(D), D$ being a Weil divisor on a higher model X_{π}, fails even when X is smooth (cf. Cut00, Kür03 for an explicit example).

Proof. Since (X, Δ) is klt it follows from [BCHM10] that there exists a \mathbb{Q}-factorialization $\pi: X_{\pi} \rightarrow X$, i.e. a small birational morphism π such that X_{π} is \mathbb{Q}-factorial. Denote by $\hat{\Delta}_{\pi}$ and \hat{D}_{π} the strict transforms on X_{π} of Δ and D respectively. Since π is small we have $\pi^{*}\left(K_{X}+\Delta\right)=K_{X_{\pi}}+\hat{\Delta}_{\pi}$, which shows that $\left(X_{\pi}, \hat{\Delta}_{\pi}\right)$ is klt, hence so is $\left(X_{\pi}, \hat{\Delta}_{\pi}+\varepsilon \hat{D}_{\pi}\right)$ for $0<\varepsilon \ll 1$. By applying [BCHM10] to $\varepsilon \hat{D}_{\pi}$, which is π-numerically equivalent to $K_{X_{\pi}}+\hat{\Delta}+\varepsilon \hat{D}$ as well as π-big (since π is birational) we infer the existence of a new \mathbb{Q} factorialization $\tau: X_{\tau} \rightarrow X$ such that the strict transform \hat{D}_{τ} of D on X_{τ} is furthermore X-nef. Since τ is small it is easily seen that $\tau_{*} \mathcal{O}_{X_{\tau}}\left(m \hat{D}_{\tau}\right)=\mathcal{O}_{X}(m D)$ for all m, hence $\operatorname{Env}_{\tau}\left(\hat{D}_{\tau}\right)=\operatorname{Env}_{X}(D)$, and it follows by Corollary 2.12 that $\operatorname{Env}_{X}(D)$ is the \mathbb{R}-Cartier b-divisor determined by \hat{D}_{τ}.

When D has rational coefficients the base-point free theorem shows that \hat{D}_{τ} is X globally generated, so that

$$
\bigoplus_{m \geq 0} \mathcal{O}_{X}(m D)=\bigoplus_{m \geq 0} \tau_{*} \mathcal{O}_{X_{\tau}}\left(m \hat{D}_{\tau}\right)
$$

is finitely generated over \mathcal{O}_{X}. We thus have $\operatorname{Env}_{X}(D)=\frac{1}{m} Z\left(\mathcal{O}_{X}(m D)\right)$ for some m.
2.3. Nef envelopes of Weil b-divisors. The next result is a variant in the relative case of [BFJ08, Proposition 2.13] and KuMa08, Theorem D]:

Proposition 2.14. Let W be an \mathbb{R}-Weil b-divisor. If the set of X-nef \mathbb{R}-Weil b-divisors Z such that $Z \leq W$ is non-empty then it admits a largest element.

We shall say that the nef envelope of W is well-defined if the assumption of the lemma holds. We then denote the largest element in question by $\operatorname{Env}_{\mathfrak{X}}(W)$ and call it the nef envelope of W.

Proof. Every Z as in the lemma satisfies $Z \leq \operatorname{Env}_{\pi}\left(W_{\pi}\right)$ for all π by Corollary 2.12, which also implies that $\pi \mapsto \operatorname{Env}_{\pi}\left(W_{\pi}\right)$ is non-increasing, i.e.

$$
\operatorname{Env}_{\pi^{\prime}}\left(W_{\pi^{\prime}}\right) \leq \operatorname{Env}_{\pi}\left(W_{\pi}\right)
$$

whenever $\pi^{\prime} \geq \pi$. If there exists at least one Z as above then it follows that $\operatorname{Env}_{\mathfrak{X}}(W):=$ $\lim _{\pi} \operatorname{Env}_{\pi}\left(W_{\pi}\right)$ is well-defined as a b-divisor and satisfies $\operatorname{Env}_{\mathfrak{X}}(W) \geq Z$ for every such Z. There remains to show that $\operatorname{Env}_{\mathfrak{X}}(W)$ is X-nef and satisfies $\operatorname{Env}_{\mathfrak{X}}(W) \leq W$. But the existence of Z guarantees the existence a finite dimensional vector space V of \mathbb{R}-Weil divisors on X such that $\operatorname{Env}_{\pi}\left(W_{\pi}\right)_{X} \in V$ for all π. Since $\operatorname{Env}_{\pi}\left(W_{\pi}\right)$ converges to $\operatorname{Env}_{\mathfrak{X}}(W)$ coefficient-wise, we conclude as before by Lemma 1.10 that $\operatorname{Env}_{\mathfrak{X}}(W)$ is X-nef, whereas $\operatorname{Env}_{\mathfrak{X}}(W) \leq W$ follows from $\operatorname{Env}_{\pi}\left(W_{\pi}\right)_{\tau} \leq W_{\tau}$ for $\tau \leq \pi$ by letting $\pi \rightarrow \infty$.

Remark 2.15. Note that the proof gives:

$$
\operatorname{Env}_{\mathfrak{X}}(W)=\inf _{\pi} \operatorname{Env}_{\pi}\left(W_{\pi}\right) .
$$

If W is an \mathbb{R}-Cartier b-divisor then we have

$$
\operatorname{Env}_{\mathfrak{X}}(W)=\operatorname{Env}_{\pi}\left(W_{\pi}\right)
$$

for each determination π.
Proposition 2.16. Let $\left(W_{i}\right)_{i \in I}$ be a net of b-divisors decreasing to W such that $\operatorname{Env}_{\mathfrak{X}}(W)$ is well-defined. Then $\operatorname{Env}_{\mathfrak{X}}\left(W_{i}\right)$ decreases to $\operatorname{Env}_{\mathfrak{X}}(W)$.

Proof. Since $W_{i} \geq W$ for all i, the net $\operatorname{Env}_{\mathfrak{X}}\left(W_{i}\right)$ decreases to a b-divisor $Z \geq \operatorname{Env}_{\mathfrak{X}}(W)$. Pick any π. Since $W_{i, \pi} \rightarrow W_{\pi}$, we have $\operatorname{Env}_{\mathfrak{X}}\left(W_{i}\right) \leq \operatorname{Env}_{\pi}\left(W_{i, \pi}\right) \rightarrow \operatorname{Env}_{\pi}\left(W_{\pi}\right)$. Letting $i \rightarrow \infty$, we get $Z \leq \operatorname{Env}_{\pi}\left(W_{\pi}\right)$. We conclude using the preceding remark.

Proposition 2.17. Suppose $\phi: X \rightarrow Y$ is a finite dominant morphism of normal varieties. Let W be any \mathbb{R}-Weil b-divisor over Y whose nef envelope $\operatorname{Env}_{\mathfrak{Y}}(W)$ is well-defined. Then $\operatorname{Env} \mathfrak{X}\left(\phi^{*} W\right)$ is also well-defined and we have

$$
\operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right)=\phi^{*} \operatorname{Env}_{\mathfrak{Y}}(W) .
$$

We similarly have

$$
\operatorname{Env}_{X}\left(\phi^{*} D\right)=\phi^{*} \operatorname{Env}_{Y}(D)
$$

for every \mathbb{R}-Weil divisor D on Y.
Proof. Since $\operatorname{Env}_{\mathfrak{Y}}(W)$ is Y-nef, its pull-back $\phi^{*} \operatorname{Env}_{\mathfrak{Y}}(W)$ is Y-nef as well, hence also X-nef. Since we have $\phi^{*} \operatorname{Env}_{\mathfrak{Y}}(W) \leq \phi^{*} W$ this shows that $\operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right)$ is well-defined and satisfies $\phi^{*} \operatorname{Env}_{\mathfrak{Y}}(W) \leq \operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right)$ by Proposition 2.14.

Conversely, Lemma 2.18 below shows that $\phi_{*} \operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right)$ is Y-nef. Since $\phi_{*} \operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right) \leq \phi_{*} \phi^{*} W=e(\phi) W$ by Proposition 1.13 it follows that

$$
\phi_{*} \operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right) \leq e(\phi) \operatorname{Env}_{\mathfrak{Y}}(W)=\phi_{*} \phi^{*} \operatorname{Env}_{\mathfrak{Y}}(W)
$$

by Proposition 1.13 again, and we conclude by applying Lemma 2.19 below to $Z:=$ $\operatorname{Env}_{\mathfrak{X}}\left(\phi^{*} W\right)-\phi^{*} \operatorname{Env}_{\mathfrak{Y}}(W)$.

Lemma 2.18. Let $\phi: X \rightarrow Y$ be a finite dominant morphism between normal varieties and let W be an X-nef \mathbb{R}-Weil b-divisor over X. Then $\phi_{*} W$ is Y-nef.

Proof. By Lemma 1.10 there exists a net W_{j} of X-nef \mathbb{R}-Cartier b-divisors such that $W_{j} \rightarrow W$ coefficient-wise and $W_{j, X}$ stays in a fixed finite dimensional vector of \mathbb{R}-Weil divisors on X. It follows that the divisors $\left(\phi_{*} W_{j}\right)_{Y}$ also stay in a fixed finite dimensional vector space of \mathbb{R}-Weil divisors on Y, and it is immediate to check from the definition that $\phi_{*} W_{j} \rightarrow \phi_{*} W$ coefficient-wise. It thus follows that $\left[\phi_{*} W_{j}\right] \rightarrow\left[\phi_{*} W\right]$ in $N_{n-1}(\mathfrak{Y} / Y)$ and we are thus reduced to the case where W is \mathbb{R}-Cartier.

Now let π be a determination of W. By Corollary [2.12 we have in particular $W=\operatorname{Env}_{\pi}\left(W_{\pi}\right)$, so that the fractional ideals $\mathfrak{a}_{m}:=\pi_{*} \mathcal{O}\left(m W_{\pi}\right)$ satisfy $W=\lim \frac{1}{m} Z\left(\mathfrak{a}_{m}\right)$ coefficient-wise, and it is clear that the $Z\left(\mathfrak{a}_{m}\right)_{X}$ stay in a fixed finite dimensional vector space by monotonicity. We are now reduced to the case where $W=Z(\mathfrak{a})$ for some fractional ideal, in which case we have $\phi_{*} Z(\mathfrak{a})=Z\left(N_{X / Y}(\mathfrak{a})\right)$ by (the proof of) Proposition 1.11. We conclude that $\phi_{*} Z(\mathfrak{a})$ is Y-globally generated, hence in particular Y-nef, by Lemma 1.7

Lemma 2.19. Let $\phi: X \rightarrow Y$ be a generically finite dominant morphism. Suppose $Z \geq 0$ is an \mathbb{R}-Weil b-divisor over X. Then $\phi_{*} Z=0$ only if $Z=0$.
Proof. Suppose that there is a prime divisor E lying in some model X^{\prime} over X such that $\operatorname{ord}_{E} Z>0$. Since ϕ is generically finite, we can choose a model Y^{\prime} over Y such that $E^{\prime}=\phi^{\prime}(E)$ is a prime divisor in Y^{\prime} (where ϕ^{\prime} is the rational lift of ϕ). Then $\operatorname{ord}_{E^{\prime}}\left(\phi_{*} Z\right) \geq \operatorname{ord}_{E} Z>0$, hence $\phi_{*} Z$ cannot be zero.

2.4. The case of surfaces and toric varieties.

Theorem 2.20. Let X be a normal surface and let $\pi: X_{\pi} \rightarrow X$ be a smooth (or at least \mathbb{Q}-factorial) model.
(i) If D is an \mathbb{R}-divisor on X_{π} then the b-divisor $\operatorname{Env}_{\pi}(D)$ is \mathbb{R}-Cartier, determined on X_{π}, and

$$
D=\operatorname{Env}_{\pi}(D)_{\pi}+\left(D-\operatorname{Env}_{\pi}(D)_{\pi}\right)
$$

coincides with the relative Zariski decomposition of D.
(ii) If D is an \mathbb{R}-Weil divisor on X then $\operatorname{Env}_{X}(D)=\overline{\pi^{*} D}$ where $\pi^{*} D$ is the numerical pull-back of D in the sense of Mumford.

Recall that the numerical pull-back of D is defined as the orthogonal projection of the strict transform of D parallel to the space of π-exceptional divisors, i.e. the unique \mathbb{R}-divisor D^{\prime} on X_{π} such that $\pi_{*} D^{\prime}=D$ and $D^{\prime} \cdot E=0$ for all π-exceptional divisors E.

Proof. Let us prove (i). The first assertion follows from Corollary 2.12, since each movable class is nef when $\operatorname{dim} X=2$.

The divisor $P:=\operatorname{Env}_{\pi}(D)_{\pi}$ is an X-nef \mathbb{R}-divisor on X_{π} such that $D \geq P$ and $P \geq Q$ for every X-nef divisor Q on X_{π} such that $D \geq Q$, by Corollary 2.12 again. This is one of the characterizations of the (relative) Zariski decomposition, which concludes the proof of (i).

Let us now prove (ii). Let $\pi^{*} D$ be the numerical pull-back of D to X_{π}. Since $\pi^{*} D$ is π-nef it follows that $C:=\overline{\pi^{*} D}$ is X-nef and satisfies $C_{X}=D$, hence $C \leq \operatorname{Env}_{X}(D)$ by Corollary 2.12, Conversely set $D^{\prime}:=\operatorname{Env}_{X}(D)_{\pi}$. We claim that $D^{\prime}=\pi^{*} D$. Taking this for granted for the moment we then get $\operatorname{Env}_{X}(D) \leq C$ by the negativity lemma and the result follows.

Since we have $\pi_{*} D^{\prime}=D$ by Proposition [2.7, the claim will follow if we show that $D^{\prime} \cdot E=0$ for each π-exceptional prime divisor E on X_{π}. This is a consequence of the variational characterization of $\operatorname{Env}_{X}(D)$. Indeed note that $D^{\prime} \cdot E \geq 0$ since D^{\prime} is π-nef by Lemma 2.9. If we assume by contradiction that $D^{\prime} \cdot E>0$ then $D^{\prime}+\varepsilon E$ is still π-nef for $0<\varepsilon \ll 1$ and $C:=\overline{D^{\prime}+\varepsilon E}$ is then an X-nef b-divisor with $C_{X}=D$. It follows that $C \leq \operatorname{Env}_{X}(D)$ by Corollary 2.12, hence $D^{\prime}+\varepsilon E \leq D^{\prime}$, a contradiction.

Let us now decribe the case of toric varieties. We refer to [Fult, Oda] for basics on toric varieties. Let N be a free abelian group of rank n, and suppose we are given two rational polyhedral fans Δ, Δ^{\prime} in N such that $\Delta \subset \Delta^{\prime}$. For the sake of simplicity we assume Δ and Δ^{\prime} have the same support S. Denote by $X(\Delta)$ and $X\left(\Delta^{\prime}\right)$ the corresponding toric varieties. Since Δ is a subset of Δ^{\prime}, we have an induced birational map $\pi: X\left(\Delta^{\prime}\right) \rightarrow X(\Delta)$.

Let D be an \mathbb{R}-Weil toric divisor on $X(\Delta)$. It is given by a real valued function h_{D} on the set of primitive vectors $\Delta(1)$ generating the 1-dimensional faces of Δ, and D is \mathbb{R}-Cartier iff h_{D} extends to a continuous function on S that is linear on each face. In that case D is π-nef iff h_{D} is convex on the union S_{0} of all faces of Δ^{\prime} that contain a ray in $\Delta^{\prime}(1) \backslash \Delta(1)$. By Corollary 2.12 it follows that the function attached to $\operatorname{Env}_{\pi}(D)_{\pi}$ is the supremum of all 1-homogeneous functions on the convex set S such that $g \leq h_{D}$ on $\Delta(1)$ and g is convex on the subset S_{0}.
Example 2.21. Take Δ in \mathbb{R}^{3} the fan having a single 3 -dimensional cone generated by the four rays $(1,0,0),(0,1,0),(0,0,1),(1,1,-1)$. Then $X(\Delta)$ is an affine variety having an isolated singularity at the origin and is locally isomorphic to a quadratic cone there.

Let Δ^{\prime} be the regular fan having $(1,0,0),(0,1,0),(0,0,1),(1,1,-1),(1,1,0)$ as vertices. The natural map $X\left(\Delta^{\prime}\right) \rightarrow X(\Delta)$ is a proper birational map which gives a (non-minimal) desingularization of $X(\Delta)$. Denote by E_{v} the divisor associated to the corresponding ray $v \in \mathbb{R}^{3}$ either in $X(\Delta)$ or $X\left(\Delta^{\prime}\right)$.

Now take $D_{1}=E_{100}+E_{010}+E_{001}$, and $D_{2}=E_{100}+E_{001}+E_{11-1}$. Then $D_{1}+D_{2}$ is a Cartier divisor on $X(\Delta)$ whose support function is given by $2 x_{1}+x_{2}+2 x_{3}$ in the standard coordinates $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Hence ord $E_{110} \operatorname{Env}_{X}\left(D_{1}+D_{2}\right)=3$. On the other hand, for any convex function g having value 1 at $(0,0,1)$ and 0 at $(1,1,-1)$, we have $g(1,1,0) \leq 1$, hence $\operatorname{ord}_{E_{110}} \operatorname{Env}_{X}\left(D_{1}\right) \leq 1$. The same argument shows that $\operatorname{ord}_{E_{110}} \operatorname{Env}_{X}\left(D_{2}\right) \leq 1$, hence $\operatorname{ord}_{E_{110}} \operatorname{Env}_{X}\left(D_{1}\right)+\operatorname{ord}_{E_{110}} \operatorname{Env}_{X}\left(D_{2}\right)<\operatorname{ord}_{E_{110}}\left(\operatorname{Env}_{X}\left(D_{1}+D_{2}\right)\right)$.

2.5. Defect ideals.

Definition 2.22. The defect ideal of an \mathbb{R}-Weil divisor D on X is defined as

$$
\mathfrak{d}(D):=\mathcal{O}_{X}(D) \cdot \mathcal{O}_{X}(-D) .
$$

Note that $\mathfrak{d}(D) \subset \mathcal{O}_{X}(D-D)=\mathcal{O}_{X}$ is an ideal sheaf. The following proposition summarizes immediate properties of defect ideals.
Proposition 2.23. Let D, D^{\prime} be \mathbb{R}-Weil divisors on X. Then we have:
(i) $\mathfrak{d}(D+C)=\mathfrak{d}(D)$ for every Cartier divisor C.
(ii)

$$
\mathfrak{d}(D) \cdot \mathcal{O}_{X}\left(D+D^{\prime}\right) \subset \mathcal{O}_{X}(D) \cdot \mathcal{O}_{X}\left(D^{\prime}\right) \subset \mathcal{O}_{X}\left(D+D^{\prime}\right)
$$

$$
\begin{equation*}
\phi^{-1} \mathfrak{d}_{X}(D) \cdot \mathcal{O}_{Y}\left(\phi^{*} D\right) \subset \phi^{-1} \mathcal{O}_{X}(D) \cdot \mathcal{O}_{Y} \subset \mathcal{O}_{Y}\left(\phi^{*} D\right) \tag{iii}
\end{equation*}
$$

for every finite dominant morphism $\phi: Y \rightarrow X$.

It follows in particular that $\mathfrak{o}_{\bullet}(D)=(\mathfrak{d}(m D))_{m \geq 0}$ is a graded sequence of ideals. By definition we get

$$
Z\left(\mathfrak{d}_{\bullet}(D)\right)=\operatorname{Env}_{X}(D)+\operatorname{Env}_{X}(-D) .
$$

Definition 2.24. We shall say that an \mathbb{R}-Weil divisor D on X is numerically Cartier if $\operatorname{Env}_{X}(-D)=-\operatorname{Env}_{X}(D)$. In the special case where $D=K_{X}$ we shall say that X is numerically Gorenstein if K_{X} is numerically Cartier.

By Proposition [2.5 it is straightforward to see that numerically Cartier divisors form an \mathbb{R}-vector space. We also have:

Lemma 2.25. Let D be an \mathbb{R}-Weil divisor on X. Then D is numerically Cartier iff

$$
\operatorname{Env}_{X}\left(D+D^{\prime}\right)=\operatorname{Env}_{X}(D)+\operatorname{Env}_{X}\left(D^{\prime}\right)
$$

for every \mathbb{R}-Weil divisor D^{\prime} on X.
Proof. Assume that D is numerically Cartier, so that $\operatorname{Env}_{X}(-D)=-\operatorname{Env}_{X}(D)$. Then we have on the one hand $\operatorname{Env}_{X}\left(D+D^{\prime}\right) \geq \operatorname{Env}_{X}(D)+\operatorname{Env}_{X}\left(D^{\prime}\right)$ and on the other hand $\operatorname{Env}_{X}(-D)+\operatorname{Env}_{X}\left(D+D^{\prime}\right) \leq \operatorname{Env}_{X}\left(D^{\prime}\right)$, and additivity follows. The converse is equally easy and left to the reader.

Example 2.26 (Surfaces). Since Mumford's pull-back of Weil divisors on surfaces is linear, it follows from Theorem 2.20 that all \mathbb{R}-Weil divisors on a normal surface X are numerically Cartier.

Example 2.27 (Toric varieties). If D is a toric \mathbb{R}-Weil divisor on a toric variety X then it follows from the discussion from the last section that D is numerically Cartier iff D is already \mathbb{R}-Cartier.
Example 2.28 (Cone singularities). Let (V, L) be a smooth projective variety endowed with an ample line bundle L. Recall that the affine cone over (V, L) is the algebraic variety defined by

$$
X=C(V, L):=\operatorname{Spec}\left(\bigoplus_{m \geq 0} H^{0}(V, m L)\right) .
$$

It has an isolated normal singularity at its vertex $0 \in X$, and is obtained by blowingdown the zero section $E \simeq V$ in the total space Y of the dual bundle L^{*}. We denote by $\pi: Y \rightarrow X$ the contraction map, which is isomorphic to the blow-up of X at 0 . Every divisor D on V induces a Weil divisor $C(D)$ on X, and the map $D \mapsto C(D)$ induces an isomorphism $\operatorname{Pic}(V) / \mathbb{Z} L \simeq \operatorname{Cl}(X)$ onto the divisor class group of X.
Lemma 2.29. Let (V, L) be a smooth polarized variety and let D be an \mathbb{R}-Weil divisor on V.
(1) $C(D)$ is \mathbb{R}-Cartier iff D and L are \mathbb{R}-linearly proportional in $\operatorname{Pic}(X) \otimes \mathbb{R}$.
(2) $C(D)$ is numerically Cartier iff D and L are numerically proportional in $N^{1}(V)$.

Proof. (1) follows from the description of the divisor class group of $X=C(V)$ recalled above. Let us prove (2). Let $\pi: Y \rightarrow X$ be the blow-up of X at its vertex 0 . The restriction to $E \simeq V$ of the strict transform $C(D)^{\prime}$ is linearly equivalent to D. If D is numerically Cartier then the restriction to E of $\operatorname{Env}_{X}(-C(D))_{Y}=-\operatorname{Env}_{X}(C(D))_{Y}$ is both pseudoeffective and anti-pseudoeffective by Lemma 2.9, so $\operatorname{Env}_{X}(C(D))_{Y}$ is numerically
equivalent to 0 in $N^{1}(Y / X)$. But $\operatorname{Env}_{X}(C(D))_{Y}-C(D)^{\prime}$ is π-exceptional, hence proportional to E, and we conclude as desired that $\left.D \equiv C(D)^{\prime}\right|_{E}$ is proportional to $L \equiv-E \mid E$ in $N^{1}(V)$.

Conversely assume that $D \equiv a L$ are proportional in $N^{1}(V)$. Then $C(D)^{\prime}$ and E are proportional in $N^{1}(Y / X)$, hence there exists $t \in \mathbb{R}$ such that $\operatorname{Env}_{X}(C(D))_{Y} \equiv-t E$ in $N^{1}(Y / X)$. Since $-E$ is X-ample and the numerical class of $\operatorname{Env}_{X}(C(D))_{Y}$ is in the X movable cone it follows that $t \geq 0$, which implies that $\operatorname{Env}_{X}(C(D))_{Y}$ is X-nef. This in turn shows as in the proof of Theorem 2.20 that the b-divisor $\operatorname{Env}_{X}(C(D))$ is \mathbb{R} Cartier, determined on Y by $C(D)^{\prime}-a E$. If we replace D by $-D$ then we get that $\operatorname{Env}_{X}(C(D))$ is determined on Y by $C(-D)^{\prime}+a E=-\left(C(D)^{\prime}-a E\right)$, i.e. $\operatorname{Env}_{X}(-C(D))=$ $-\operatorname{Env}_{X}(C(D))$ holds as desired.

We now give a more precise description of defect ideals, which is basically an elaboration of dFH09, Theorem 5.4]. As a matter of terminology we introduce:

Definition 2.30. We say that a determination π of an \mathbb{R}-Cartier b-divisor C is a logresolution of C if X_{π} is smooth, the exceptional locus $\operatorname{Exc}(\pi)$ has codimension one and $\operatorname{Exc}(\pi)+C_{\pi}$ has SNC support.

Another \mathbb{R}-Cartier b-divisor C^{\prime} is then said to be transverse to π and C if π is also a log-resolution of $C+C^{\prime}$ and C_{π}^{\prime} has no common component with $\operatorname{Exc}(\pi)+C_{\pi}$.

Every \mathbb{R}-Cartier b-divisor admits a log-resolution by Hironaka's theorem.
Proposition 2.31. Let D be a Weil divisor on X and assume that X is quasi-projective. Then we have

$$
\mathfrak{d}(D)=\sum_{E} \mathcal{O}_{X}(-E)
$$

where the sum is taken over the set of all prime divisors E of X such that $D-E$ is Cartier (and this set is in particular non-empty).

Given a Cartier b-divisor C and a joint log-resolution π of C and $\mathcal{O}_{X}(D)$ the sum can be further restricted to those E such that $Z\left(\mathcal{O}_{X}(E)\right)$ is transverse to π and C.

Proof. Observe first that

$$
\mathcal{O}_{X}(-E) \subset \mathcal{O}_{X}(-E) \cdot \mathcal{O}_{X}(E)=\mathfrak{d}(E)=\mathfrak{d}(D)
$$

for all effective Weil divisors E such that $D-E$ is Cartier.
Since X is quasi-projective there exists a line bundle L on X such that $L \otimes \mathcal{O}_{X}(D)$ is generated by a finite dimensional vector space of global sections V, which we view as rational sections of L. For each $s \in V$ set $E_{s}:=D+\operatorname{div}(s)$, which is an effective Weil divisor congruent to D modulo Cartier divisors.

We claim that there exists a (non-empty) Zariski open subset U of V such that

$$
\begin{equation*}
\mathfrak{d}(D)=\sum_{s \in U} \mathcal{O}_{X}\left(-E_{s}\right) \tag{3}
\end{equation*}
$$

and

- E_{s} is a prime divisor on X,
- $Z\left(\mathcal{O}_{X}\left(E_{s}\right)\right)$ is transverse to π and C,
for each $s \in U$, which will conclude the proof of Proposition 2.31,
Since π dominates the blow-up of $\mathcal{O}_{X}(D)$ it is easily seen that the effective divisors

$$
M_{s}:=Z\left(\mathcal{O}_{X}\left(E_{s}\right)\right)_{\pi}=Z\left(\mathcal{O}_{X}(D)\right)_{\pi}+\pi^{*} \operatorname{div}(s)
$$

move in a base-point free linear system on X_{π} as s moves in V. We may thus find a non-empty Zariski open subset U of V such that for each $s \in U$ we have

- M_{s} has no common component with $\operatorname{Exc}(\pi)+C_{\pi}$,
- M_{s} is smooth and irreducible,
- $M_{s}+\operatorname{Exc}(\pi)+C_{\pi}$ has SNC support,
where the last two points follow from Bertini's theorem. Since $\pi_{*} M_{s}=Z\left(\mathcal{O}_{X}(D)\right)_{X}+$ $\operatorname{div}(s)=E_{s}$ by Proposition [2.7, we see in particular that E_{s} is a prime divisor for each $s \in U$ and $Z\left(\mathcal{O}_{X}\left(E_{s}\right)\right)$ is transverse to π and C. There remains to show (3). Observe that

$$
s \cdot \mathcal{O}_{X}(-D) \subset L \otimes \mathcal{O}_{X}(-\operatorname{div}(s)) \cdot \mathcal{O}_{X}(-D)=L \otimes \mathcal{O}_{X}\left(-E_{s}\right)
$$

for each $s \in V$. Since V generates $L \otimes \mathcal{O}_{X}(D)$ and U is open in V we obtain

$$
\begin{gathered}
L \otimes \mathfrak{d}(D)=L \otimes \mathcal{O}_{X}(D) \cdot \mathcal{O}_{X}(-D) \\
=\sum_{s \in U} s \cdot \mathcal{O}_{X}(-D) \subset L \otimes \sum_{s \in U} \mathcal{O}_{X}\left(-E_{s}\right)
\end{gathered}
$$

and the result follows since L is invertible.

3. Multiplier ideals and approximation

In this section X still denotes a normal variety. Our main goal here is to show how to obtain from Takagi's subadditivity theorem for multiplier ideals of pairs a similar statement for the general multiplier ideals defined in dFH09. This result will in turn enable us to approximate nef envelopes of Cartier divisors from above by nef Cartier divisors, in the spirit of BFJ08.
3.1. Log-discrepancies. We shall say that an \mathbb{R}-Weil divisor Δ on X is an \mathbb{R}-boundary (resp. a \mathbb{Q}-boundary, resp. an m-boundary) if $K_{X}+\Delta$ is \mathbb{R}-Cartier (resp. $K_{X}+\Delta$ is \mathbb{Q}-Cartier, resp. $m\left(K_{X}+\Delta\right)$ is Cartier).

Let ω be a rational top-degree form on X and consider the associated canonical b-divisor $K_{\mathfrak{X}}$. Given an \mathbb{R}-boundary Δ on X we define the relative canonical b-divisor of (X, Δ) by

$$
K_{\mathfrak{X} /(X, \Delta)}=K_{\mathfrak{X}}-\overline{K_{X}+\Delta},
$$

which is independent of the choice of ω. If E is a prime divisor above X then $\operatorname{ord}_{E} K_{\mathfrak{X} /(X, \Delta)}$ is nothing but the discrepancy of the pair (X, Δ) along E. Following [dFH09] we introduce on the other hand:

Definition 3.1. The m-limiting relative canonical b-divisor is defined by

$$
K_{m, \mathfrak{X} / X}:=K_{\mathfrak{X}}+\frac{1}{m} Z\left(\mathcal{O}_{X}\left(-m K_{X}\right)\right)
$$

and the relative canonical b-divisor is

$$
K_{\mathfrak{X} / X}=K_{\mathfrak{X}}+\operatorname{Env}_{X}\left(-K_{X}\right) .
$$

They are both independent of the choice of ω and are exceptional over X by Proposition 2.7. Note that $K_{m, \mathfrak{X} / X} \rightarrow K_{\mathfrak{X} / X}$ coefficient-wise as $m \rightarrow \infty$.

Recall that the log-discrepancy of a pair (X, Δ) along a prime divisor E above X is defined by adding 1 to the discrepancy. Let us reformulate this by introducing the 'pseudo b-divisor' $1_{\mathfrak{X}}$, i.e. the homogeneous function on the set of divisorial valuations of X such that

$$
\left(t \operatorname{ord}_{E}\right)\left(1_{\mathfrak{X}}\right)=t
$$

for each divisorial valuation $t \operatorname{ord}_{E}$, so that $\operatorname{ord}_{E}\left(K_{\mathfrak{X} /(X, \Delta)}+1_{\mathfrak{X}}\right)$ is now equal to the logdiscrepancy of (X, Δ) along E. We also consider the reduced exceptional b-divisor $1_{\mathfrak{X} / X}$, which takes value 1 on the prime divisors that are exceptional over X, and value zero on the prime divisors contained in X.

The following well-known properties show that $K_{\mathfrak{X}}+1_{\mathfrak{X}}$ is better behaved than $K_{\mathfrak{X}}$.
Lemma 3.2. Assume that X is smooth and let E be a reduced $S N C$ divisor on X. Then we have $K_{\mathfrak{X}}+1_{\mathfrak{X}} \geq \overline{K_{X}+E}$.

This result is Kol97, Lemma 3.11], whose proof we reproduce for the convenience of the reader.

Proof. Let F be a smooth irreducible divisor in some model $\pi: X_{\pi} \rightarrow X$. We may choose local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near the generic point of $\pi(F)$ such that the local equation of E writes $x_{1} \ldots x_{p}=0$ for some $p=0, \ldots, n$, and we let z be a local equation of F at its generic point. We then have $\pi^{*} x_{i}=z^{b_{i}} u_{i}$ where u_{i} is a unit at the generic point of F and $b_{i} \in \mathbb{N}$ vanishes for $i>p$. It follows that $\pi^{*} d x_{i}=b_{i} z^{b_{i}-1} u_{i} d z+z^{b_{i}} d u_{i}$, hence

$$
\begin{gathered}
\operatorname{ord}_{F}\left(K_{\mathfrak{X}}-\pi^{*} K_{X}\right)=\operatorname{ord}_{F}\left(K_{X_{\pi} / X}\right) \\
=\operatorname{ord}_{F}\left(\pi^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right)\right) \geq-1+\sum_{i} b_{i}=-1+\operatorname{ord}_{F} \bar{E}
\end{gathered}
$$

Lemma 3.3. Let $\phi: X \rightarrow Y$ be a generically finite dominant morphism between normal varieties. Let ω_{Y} be a rational top-degree form on Y, ω_{X} be its pull-back to X and $K_{\mathfrak{Y}}$, $K_{\mathfrak{X}}$ be the associated canonical b-divisors. Then we have

$$
K_{\mathfrak{X}}+1_{\mathfrak{X}}=\phi^{*}\left(K_{\mathfrak{Y}}+1_{\mathfrak{Y}}\right)
$$

Proof. Let F be a prime divisor on a smooth birational model $Y^{\prime} \rightarrow Y$ and pick a smooth birational model $X^{\prime} \rightarrow X$ such that ϕ lifts to a morphism $\phi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ and such that there exists a prime divisor E on X^{\prime} with $\phi^{\prime}(E)=F$. We then have $\phi_{*} \operatorname{ord}_{E}=b$ ord $_{F}$ with $b:=\operatorname{ord}_{E}\left(\phi^{*} F\right)$. The same computation as above shows that the ramification order of ϕ^{\prime} at the generic point of E is equal to $b-1$, so that we have

$$
\operatorname{ord}_{E}\left(K_{X^{\prime}}-\left(\phi^{\prime}\right)^{*} K_{Y^{\prime}}\right)=b-1
$$

It follows that

$$
\operatorname{ord}_{E}\left(K_{X^{\prime}}\right)=b \operatorname{ord}_{F}\left(K_{Y^{\prime}}\right)+b-1
$$

i.e.

$$
\operatorname{ord}_{E}\left(K_{\mathfrak{X}}+1_{\mathfrak{X}}\right)=\left(b \operatorname{ord}_{F}\right)\left(K_{\mathfrak{Y}}+1_{\mathfrak{Y}}\right)
$$

as was to be shown.

Definition 3.4. The m-limiting log-discrepancy b-divisor $A_{m, \mathfrak{X} / X}$ and the log-discrepancy b-divisor $A_{\mathfrak{X} / X}$ are the Weil b-divisors defined by

$$
A_{m, \mathfrak{X} / X}:=K_{m, \mathfrak{X} / X}+1_{\mathfrak{X} / X}
$$

and

$$
A_{\mathfrak{X} / X}:=K_{\mathfrak{X} / X}+1_{\mathfrak{X} / X} .
$$

Note that $\lim _{m \rightarrow \infty} A_{m, \mathfrak{X} / X}=A_{\mathfrak{X} / X}$ coefficient-wise.
If $\phi: X \rightarrow Y$ is a finite dominant morphism recall that the ramification divisor R_{ϕ} is the effective Weil divisor on X such that

$$
K_{X}=\phi^{*} K_{Y}+R_{\phi},
$$

where K_{Y} and K_{X} are defined by ω_{Y} and $\phi^{*} \omega_{Y}$ respectively, the divisor R_{ϕ} being again independent of the choice of ω_{Y}.

Corollary 3.5. Let $\phi: X \rightarrow Y$ be a finite dominant morphism between normal varieties. Then we have

$$
0 \leq \operatorname{Env}_{X}\left(R_{\phi}\right) \leq \phi^{*} A_{\mathfrak{Y} / Y}-A_{\mathfrak{X} / X} \leq-\operatorname{Env}_{X}\left(-R_{\phi}\right)
$$

and the second (resp. third) inequality is an equality when X (resp. Y) is numerically Gorenstein.

Proof. Since ϕ is finite, we have

$$
\begin{gathered}
\phi^{*} A_{\mathfrak{Y} / Y}-A_{\mathfrak{X} / X}=\phi^{*}\left(K_{\mathfrak{Y} / Y}+1_{\mathfrak{Y}}\right)-\left(K_{\mathfrak{X} / X}+1_{\mathfrak{X}}\right) \\
=\phi^{*} \operatorname{Env}_{Y}\left(-K_{Y}\right)-\operatorname{Env}_{X}\left(-K_{X}\right)=\operatorname{Env}_{X}\left(-\phi^{*} K_{Y}\right)-\operatorname{Env}_{X}\left(-K_{X}\right)
\end{gathered}
$$

by Lemma 3.3 and Proposition 2.17. Now we have on the one hand

$$
\operatorname{Env}_{X}\left(-\phi^{*} K_{Y}\right)=\operatorname{Env}_{X}\left(-K_{X}+R_{\phi}\right) \geq \operatorname{Env}_{X}\left(-K_{X}\right)+\operatorname{Env}_{X}\left(R_{\phi}\right)
$$

and this is an equality when X is numerically Gorenstein by Lemma [2.25]. On the other hand

$$
\operatorname{Env}_{X}\left(-K_{X}\right)=\operatorname{Env}_{X}\left(-\phi^{*} K_{Y}-R_{\phi}\right) \geq \operatorname{Env}_{X}\left(-\phi^{*} K_{Y}\right)+\operatorname{Env}_{X}\left(-R_{\phi}\right)
$$

which is an equality if Y is numerically Gorenstein by Proposition 2.17 and Lemma 2.25. The result follows, noting that $\operatorname{Env}\left(R_{\phi}\right) \geq 0$ since $R_{\phi} \geq 0$.
3.2. Multiplier ideals. The following definition is a straightforward extension of the usual notion of multiplier ideal with respect to a pair.

Definition 3.6. Let Δ be an effective \mathbb{R}-boundary on X and let C be an \mathbb{R}-Cartier b divisor. We define the multiplier ideal sheaf of C with respect to (X, Δ) as the fractional ideal sheaf

$$
\mathcal{J}((X, \Delta) ; C):=\mathcal{O}_{X}\left(\left\lceil K_{\mathfrak{X} /(X, \Delta)}+C\right\rceil\right) .
$$

We have in particular

$$
\mathcal{J}((X, \Delta) ; C) \subset \mathcal{O}_{X}\left(\left\lceil C_{X}-\Delta_{X}\right\rceil\right)
$$

which shows that the (fractional) multiplier ideal is an actual ideal as soon as $C_{X} \leq 0$. By Lemma 3.2 we have

$$
\left.\mathcal{J}((X, \Delta) ; C)=\pi_{*} \mathcal{O}_{X_{\pi}}\left(\left\lceil K_{X_{\pi}}-\pi^{*}\left(K_{X}+\Delta\right)+C_{\pi}\right)\right\rceil\right)
$$

for each joint log-resolution π of (X, Δ) and C. This shows in particular that $\mathcal{J}((X, \Delta) ; C)$ is coherent, and in case $C=Z\left(\mathfrak{a}^{c}\right)$ for a coherent ideal sheaf \mathfrak{a} and $c>0$ we recover

$$
\mathcal{J}\left((X, \Delta) ; Z\left(\mathfrak{a}^{c}\right)\right)=\mathcal{J}\left((X, \Delta) ; \mathfrak{a}^{c}\right)
$$

where the right-hand side is defined in [Laz, Definition 9.3.56]. We similarly introduce the following straightforward generalization of the notion of multiplier ideal defined in dFH09:
Definition 3.7. Let C be an \mathbb{R}-Cartier b-divisor over X.

- For each positive integer m the m-limiting multiplier ideal sheaf of C is the fractional ideal sheaf

$$
\mathcal{J}_{m}(C):=\mathcal{O}_{X}\left(\left\lceil K_{m, \mathfrak{X} / X}+C\right\rceil\right) .
$$

- The multiplier ideal sheaf $\mathcal{J}(C)$ is the unique maximal element in the family of fractional ideal sheaves $\mathcal{J}_{m}(C), m \geq 1$.
Here again Lemma 3.2 implies that

$$
\mathcal{J}_{m}(C)=\pi_{*} \mathcal{O}_{X_{\pi}}\left(\left\lceil K_{X_{\pi}}+\frac{1}{m} Z\left(\mathcal{O}_{X}\left(-m K_{X}\right)\right)_{\pi}+C_{\pi}\right\rceil\right)
$$

for each joint log-resolution π of $\mathcal{O}_{X}\left(-m K_{X}\right)$ and C, which shows in particular that $\mathcal{J}_{m}(C)$ is coherent. We also have

$$
\mathcal{J}_{m}(C) \subset \mathcal{O}_{X}\left(\left\lceil C_{X}\right\rceil\right),
$$

which implies the existence of a unique maximal element in the set of fractional ideals $\left\{\mathcal{J}_{m}(C), m \geq 1\right\}$, by using as usual

$$
\frac{1}{l m} Z\left(\mathcal{O}_{X}\left(-l m K_{X}\right)\right) \geq \max \left(\frac{1}{m} Z\left(\mathcal{O}_{X}\left(-m K_{X}\right)\right), \frac{1}{l} Z\left(\mathcal{O}_{X}\left(-l K_{X}\right)\right)\right)
$$

As in dFH09 we now relate the above two notions of multiplier ideals, obtaining in particular a more precise version of dFH09, Theorem 5.4].
Theorem 3.8. Assume that X is quasi-projective, let C be an \mathbb{R}-Cartier b-divisor and let $m \geq 2$. Then we have

$$
\mathfrak{d}\left(m K_{X}\right)=\sum_{\Delta} \mathcal{O}_{X}(-m \Delta)
$$

where Δ ranges over the set of all effective m-boundaries such that

$$
\mathcal{J}_{m}(C)=\mathcal{J}((X, \Delta) ; C),
$$

(so that this set is in particular non-empty).
Proof. Let π be a joint log-resolution of \mathfrak{a} and $\mathcal{O}_{X}\left(-m K_{X}\right)$. By Proposition 2.31 applied to $-m K_{X}$ we have

$$
\mathfrak{d}\left(m K_{X}\right)=\sum_{E} \mathcal{O}_{X}(-E)
$$

where E ranges over all prime divisors such that $m K_{X}+E$ is Cartier and $Z\left(\mathcal{O}_{X}(E)\right)$ is transverse to π and C. There remains to set $\Delta:=\frac{1}{m} E$ and to observe that $\lfloor\Delta\rfloor=0$, so that $\mathcal{J}_{m}(C)=\mathcal{J}((X, \Delta) ; C)$ by Lemma 3.9 below.
Lemma 3.9. Let C be an \mathbb{R}-Cartier b-divisor, let π be a joint log-resolution of C and $\mathcal{O}_{X}\left(-m K_{X}\right)$ and let Δ be an effective m-boundary.

- We have

$$
\mathcal{J}((X, \Delta) ; C) \subset \mathcal{J}_{m}(C)
$$

- If $\lfloor\Delta\rfloor=0$ and $Z\left(\mathcal{O}_{X}(m \Delta)\right)$ is transverse to π and C then

$$
\mathcal{J}((X, \Delta) ; C)=\mathcal{J}_{m}(C)
$$

Proof. Since $m\left(K_{X}+\Delta\right)$ is Cartier we have

$$
\left.\mathcal{O}_{X}\left(-m K_{X}\right)\right)=\mathcal{O}_{X}(m \Delta) \cdot \mathcal{O}_{X}\left(-m\left(K_{X}+\Delta\right)\right)
$$

hence

$$
\begin{equation*}
\frac{1}{m} Z\left(\mathcal{O}_{X}\left(-m K_{X}\right)\right)=\frac{1}{m} Z\left(\mathcal{O}_{X}(m \Delta)\right)-\overline{K_{X}+\Delta} \tag{4}
\end{equation*}
$$

and the first point follows because $Z\left(\mathcal{O}_{X}(m \Delta)\right) \geq 0$.
Assume now that $\lfloor\Delta\rfloor=0$ and that $Z\left(O_{X}(m \Delta)\right)$ is transverse to π and C. By (4) we have

$$
\left\lceil K_{X_{\pi}}-\pi^{*}\left(K_{X}+\Delta\right)+C_{\pi}\right\rceil=\left\lceil K_{X_{\pi}}+\frac{1}{m} Z\left(\mathcal{O}_{X}\left(-m K_{X}\right)\right)_{\pi}+C_{\pi}\right\rceil-\left\lfloor\frac{1}{m} Z\left(\mathcal{O}_{X}(m \Delta)\right)_{\pi}\right\rfloor .
$$

Indeed, by the transversality assumption $\frac{1}{m} Z\left(\mathcal{O}_{X}(m \Delta)_{\pi}\right.$ has no common component with C_{π} and no common component with $K_{X_{\pi}}+\frac{1}{m} Z\left(\mathcal{O}_{X}\left(-m K_{X}\right)\right)_{\pi}$, the latter being π exceptional by Proposition [2.7. But by transversality we also have $\frac{1}{m} Z\left(\mathcal{O}_{X}(m \Delta)\right)_{\pi}=\widehat{\Delta}_{\pi}$, the strict transform of Δ on X_{π}, and the result follows since $\left\lfloor\widehat{\Delta}_{\pi}\right\rfloor=0$.

As a consequence we get the following extension of [dFH09, Corollary 5.5] to b-divisors.
Corollary 3.10. Let X be a normal quasi-projective variety and let C be an \mathbb{R}-Cartier b-divisor.

- The m-limiting multiplier ideal $\mathcal{J}_{m}(C)$ is the largest element of the set of multiplier ideals $\mathcal{J}((X, \Delta) ; C)$ where Δ ranges over all effective m-boundaries on X.
- The multiplier ideal $\mathcal{J}(C)$ is the largest element of the set of multiplier ideals $\mathcal{J}((X, \Delta) ; C)$ where Δ ranges over all effective \mathbb{Q}-boundaries on X.
3.3. Subadditivity and approximation. Recall that the Jacobian ideal sheaf $\operatorname{Jac}_{X} \subset$ \mathcal{O}_{X} of X is defined as the n-th Fitting ideal $\operatorname{Fitt}^{n}\left(\Omega_{X}^{1}\right)$ with $n=\operatorname{dim} X$. Locally, if $X \subset \mathbb{C}^{N}$ is defined by equations $h_{1}=\cdots=h_{m}=0$, where $h_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$, then Jac ${ }_{X}$ is generated by the $(r \times r)$-minors of the matrix $\left(\partial h_{i} / \partial x_{j}\right)$, where $r=N-n$.

Takagi obtained in [Tak10] the following general subadditivity result for multiplier ideals with respect to a pair:

Theorem 3.11. Tak10 Let X be a normal variety and let Δ be an effective \mathbb{Q}-Weil divisor such that $m\left(K_{X}+\Delta\right)$ is Cartier. If $\mathfrak{a}, \mathfrak{b}$ are two coherent ideal sheaves on X and $c, d>0$ then we have
$\frac{1}{m} Z\left(\mathcal{O}_{X}(-m \Delta)\right)+Z\left(\operatorname{Jac}_{X}\right)+Z\left(\mathcal{J}\left((X, \Delta) ; \mathfrak{a}^{c} \cdot \mathfrak{b}^{d}\right)\right) \leq Z\left(\mathcal{J}\left((X, \Delta) ; \mathfrak{a}^{c}\right)\right)+Z\left(\mathcal{J}\left((X, \Delta) ; \mathfrak{b}^{d}\right)\right)$.
When X is smooth and $\Delta=0$ the 'error term' $\frac{1}{m} Z\left(\mathcal{O}_{X}(-m \Delta)\right)+Z\left(\operatorname{Jac}_{X}\right)$ vanishes and the statement reduces (up to integral closure) to the original subadditivity theorem of DEL00. We now show how to deduce from Takagi's result a subadditivity theorem for multiplier ideals in the sense of dFH09.

Theorem 3.12 (Subadditivity). Let X be a normal variety. If $\mathfrak{a}, \mathfrak{b}$ are two coherent ideal sheaves on X and $c, d>0$ then we have

$$
Z\left(\mathfrak{d} \bullet\left(K_{X}\right)\right)+Z\left(\operatorname{Jac}_{X}\right)+Z\left(\mathcal{J}\left(\mathfrak{a}^{c} \mathfrak{b}^{d}\right)\right) \leq Z\left(\mathcal{J}\left(\mathfrak{a}^{c}\right)\right)+Z\left(\mathcal{J}\left(\mathfrak{b}^{d}\right)\right)
$$

The results in Tak06, Sch09, combined, suggest the possibility that the term $Z\left(\mathfrak{d}_{\bullet}\left(K_{X}\right)\right)$ might be superfluous.

Proof. The result is local so we may assume that X is affine (and in particular quasiprojective). We have by definition

$$
\mathcal{J}\left(\mathfrak{a}^{c} \cdot \mathfrak{b}^{d}\right)=\mathcal{J}_{m}\left(\mathfrak{a}^{c} \cdot \mathfrak{b}^{d}\right)
$$

for all sufficiently large and divisible m. Since $Z\left(\mathfrak{a}_{\bullet}\left(K_{X}\right)\right)$ is the limit of $\frac{1}{m} Z\left(\mathfrak{d}\left(m K_{X}\right)\right)$ it is thus enough to show that

$$
\frac{1}{m} Z\left(\mathfrak{d}\left(m K_{X}\right)\right)+Z\left(\operatorname{Jac}_{X}\right)+Z\left(\mathcal{J}_{m}\left(\mathfrak{a}^{c} \cdot \mathfrak{b}^{d}\right)\right) \leq Z\left(\mathcal{J}_{m}\left(\mathfrak{a}^{c}\right)\right)+Z\left(\mathcal{J}_{m}\left(\mathfrak{b}^{d}\right)\right)
$$

Now Theorem 3.8 yields $\mathfrak{d}\left(m K_{X}\right)=\sum_{\Delta} \mathcal{O}_{X}(-m \Delta)$, with Δ ranging over all m-boundaries such that

$$
\mathcal{J}\left((X, \Delta) ; \mathfrak{a}^{c} \cdot \mathfrak{b}^{d}\right)=\mathcal{J}_{m}\left(\mathfrak{a}^{c} \cdot \mathfrak{b}^{d}\right)
$$

Since $\mathcal{J}\left((X, \Delta) ; \mathfrak{a}^{c}\right) \subset \mathcal{J}_{m}\left(\mathfrak{a}^{c}\right)$ and the similar statement for \mathfrak{b}^{d} hold at any rate by Lemma 3.9, the desired result follows from Takagi's theorem.

Given a graded sequence of ideal sheaves $\mathfrak{a}_{\bullet}=\left(\mathfrak{a}_{m}\right)_{m \geq 0}$ we define the asymptotic multiplier ideal $\mathcal{J}\left(\mathfrak{a}_{\bullet}^{c}\right)$ as the unique maximal element of $\left\{\mathcal{J}\left(\mathfrak{a}_{m}^{c / m}\right), m \geq 1\right\}-$ which exists by noetherianity since $\frac{c}{l m} Z\left(\mathfrak{a}_{l m}\right) \geq \max \left(\frac{c}{l} Z\left(\mathfrak{a}_{l}\right), \frac{c}{m} Z\left(\mathfrak{a}_{m}\right)\right)$.

Theorem 3.13. Let X be a normal variety and let \mathfrak{a} • be a graded sequence of ideal sheaves on X. Then we have

$$
Z\left(\mathfrak{d}_{\bullet}\left(K_{X}\right)\right)+Z\left(\operatorname{Jac}_{X}\right) \leq Z\left(\mathcal{J}\left(\mathfrak{a}_{\bullet}\right)\right)-Z\left(\mathfrak{a}_{\bullet}\right) \leq A_{\mathfrak{X} / X}
$$

In particular $\frac{1}{k} Z\left(\mathcal{J}\left(\mathfrak{a}_{\bullet}^{k}\right)\right) \rightarrow Z\left(\mathfrak{a}_{\bullet}\right)$ coefficient-wise as $k \rightarrow \infty$, uniformly with respect to \mathfrak{a}_{\bullet}.
This result is an extension to the singular case of [BFJ08, Proposition 3.18], which was in turn a direct elaboration of the main result of [ELS03].

Proof. For each $k \geq 1$ we have

$$
Z\left(\mathcal{J}\left(\mathfrak{a}_{k}^{1 / k}\right)\right) \leq \frac{1}{k} Z\left(\mathfrak{a}_{k}\right)+A_{\mathfrak{X} / X}
$$

by definition of multiplier ideals and the right-hand inequality follows.
On the other hand set $W:=Z\left(\mathfrak{d}_{\bullet}\left(K_{X}\right)\right)+Z\left(\mathrm{Jac}_{X}\right)$. Theorem 3.12 yields

$$
(k-1) W+k Z\left(\mathcal{J}\left(\mathfrak{a}_{k}\right)\right) \leq k Z\left(\mathcal{J}\left(\mathfrak{a}_{k}\right)^{1 / k}\right)
$$

and the left-hand inequality follows by using the trivial inequality

$$
Z\left(\mathfrak{a}_{k}\right)+Z\left(\mathcal{J}\left(\mathcal{O}_{X}\right)\right) \leq Z\left(\mathcal{J}\left(\mathfrak{a}_{k}\right)\right)
$$

dividing by k and letting $k \rightarrow \infty$.

4. Normal isolated singularities

From now on X has an isolated normal singularity at a given point $0 \in X$, and $\mathfrak{m} \subset \mathcal{O}_{X}$ denotes the maximal ideal of 0 . We first show how to extend to this setting the intersection theory of nef b-divisors introduced in the smooth case in BFJ08. The main ingredient to do so is the approximation theorem from the previous section. We next define the volume of $(X, 0)$ as the self-intersection of the nef envelope of the log-canonical b-divisor.
4.1. b-divisors over 0 . Observe that every Weil b-divisor W over X decomposes in a unique way as a sum

$$
W=W^{0}+W^{X \backslash 0},
$$

where all irreducible components of W^{0} have center 0 , and none of $W^{X \backslash 0}$ have center 0 . If $W=W^{0}$, then we say that W lies over 0 and we denote by

$$
\operatorname{Div}(\mathfrak{X}, 0) \subset \operatorname{Div}(\mathfrak{X})
$$

the subspace of all Weil b-divisors over $0 \in X$. An element of $\operatorname{Div}_{\mathbb{R}}(\mathfrak{X}, 0)$ is the same thing as a real-valued homogeneous function on the set of divisorial valuations on X centered at 0 .

Example 4.1. For every coherent ideal sheaf \mathfrak{a} on X we have

$$
Z(\mathfrak{a})^{0}=\lim _{k \rightarrow \infty} Z\left(\mathfrak{a}+\mathfrak{m}^{k}\right)
$$

On the other hand we say that a Cartier b-divisor $C \in \operatorname{CDiv}(\mathfrak{X})$ is determined over 0 if it admits a determination π which is an isomorphism away from 0 , and we say that C is a Cartier b-divisor over 0 if C furthermore lies over 0 . We denote by $\operatorname{CDiv}(\mathfrak{X}, 0)$ the space of Cartier b-divisors over 0 . There is an inclusion

$$
\operatorname{CDiv}(\mathfrak{X}, 0) \subset \operatorname{CDiv}(\mathfrak{X}) \cap \operatorname{Div}(\mathfrak{X}, 0)
$$

but this is in general not an equality. The following example was kindly suggested to us by Fulger.

Example 4.2. Consider $(X, 0)=\left(\mathbb{C}^{n}, 0\right)$. It is a toric variety defined by the regular fan Δ_{0} in \mathbb{R}^{n} having the canonical basis as vertices. Any proper birational toric modification $\pi: X(\Delta) \rightarrow \mathbb{C}^{n}$ is determined by a refinement Δ of Δ_{0}. We assume $X(\Delta)$ to be smooth. Denote by $V(\sigma)$ the torus invariant subvariety of $X(\Delta)$ associated to a face σ of Δ.

For any vertex v of Δ, let $D(v)$ be the Cartier b-divisor determined in $X(\Delta)$ by the divisor $V\left(\mathbb{R}_{+} v\right)$. Observe that for any face σ of Δ, we have $\pi(V(\sigma))=0$ iff σ is included in the open cone $\left(\mathbb{R}^{*}\right)_{+}^{n}$. Whence $D(v)$ lies over 0 iff $v \in\left(\mathbb{R}^{*}\right)_{+}^{n}$. And $D(v)$ is determined over 0 iff any face of Δ containing v is included in $\left(\mathbb{R}^{*}\right)_{+}^{n}$.

Example 4.3. Let $\mathfrak{a} \subset \mathcal{O}_{X}$ be an ideal. Then $Z(\mathfrak{a})$ is determined over 0 as soon as \mathfrak{a} is locally principal outside 0 since the normalized blow-up of X along \mathfrak{a} is then an isomorphism away from 0 . If \mathfrak{a} is furthermore \mathfrak{m}-primary then $Z(\mathfrak{a})$ is a Cartier b-divisor over 0 .

Definition 4.4. We shall say than an \mathbb{R}-Weil b-divisor W over 0 is bounded below if there exists $c>0$ such that $W \geq c Z(\mathfrak{m})$.

Recall that $Z(\mathfrak{m}) \leq 0$, so that the condition means that the function $\nu \mapsto \nu(W) / \nu(\mathfrak{m})$ is bounded below on the set of divisorial valuations centered at 0 .

Proposition 4.5. $\left(A_{\mathfrak{X} / X}\right)^{0}$ is bounded below.
Proof. First note that $A_{\mathfrak{X} / X} \geq A_{1, \mathfrak{X} / X}$ by general properties of nef envelopes, and hence it suffices to check that $\left(A_{1, \mathfrak{X} / X}\right)^{0}$ is bounded below. Let π be a resolution of the singularity of X, chosen to be an isomorphism away from 0 . For each divisorial valuation ν centered at 0 we have

$$
\nu\left(A_{1, \mathfrak{X} / X}\right)=\nu\left(\left(K_{\mathfrak{X}}+1_{\mathfrak{X}}\right)-\overline{K_{X_{\pi}}}\right)+\nu\left(\overline{K_{X_{\pi}}}+Z\left(\mathcal{O}_{X}\left(-K_{X}\right)\right)\right) .
$$

The first term in the right-hand side is non-negative since it is equal to the logdiscrepancy of the smooth variety X_{π} along ν. On the other hand the Cartier b-divisor $\left(\overline{K_{X_{\pi}}}+Z\left(\mathcal{O}_{X}\left(-K_{X}\right)\right)\right)$ is determined over 0 since $\mathcal{O}_{X}\left(-K_{X}\right)$ is locally principal outside 0 by assumption (cf. Example 4.3) and it also lies over 0 by Proposition 2.7. We thus see that

$$
\left(\overline{K_{X_{\pi}}}+Z\left(\mathcal{O}_{X}\left(-K_{X}\right)\right)\right) \in \operatorname{CDiv}(\mathfrak{X}, 0)
$$

and we conclude by Lemma 4.6 below.
Lemma 4.6. Every $C \in \operatorname{CDiv}(\mathfrak{X}, 0)$ is bounded below.
Proof. Let π be a determination of C which is an isomorphism away from 0 . The result follows directly from the fact that $Z(\mathfrak{m})_{\pi}$ contains every π-exceptional prime divisor E in its support (since ord_{E} is centered at 0).
4.2. Nef b-divisors over 0 . We shall that an \mathbb{R}-Weil b-divisor over 0 is nef if its class in $N^{1}(\mathfrak{X} / X)$ is X-nef. If W is an \mathbb{R}-Weil b-divisor over 0 that is bounded below then $\operatorname{Env} \mathfrak{X}(W)$ is well-defined, nef, and it lies over 0.

By a result of Izumi Izu81 for every two divisorial valuations ν, ν^{\prime} on X centered at 0 there is a constant $c=c\left(\nu, \nu^{\prime}\right)>0$ such that

$$
c^{-1} \nu(f) \leq \nu^{\prime}(f) \leq c \nu(f)
$$

for every $f \in \mathcal{O}_{X}$. This result extends to nef b-divisors by approximation:
Theorem 4.7. Given two divisorial valuations ν, ν^{\prime} centered at 0 there exists $c>0$ such that

$$
c \nu(W) \leq \nu^{\prime}(W) \leq c^{-1} \nu(W)
$$

for every X-nef \mathbb{R}-Weil b-divisor W such that $W \leq 0$ (which amounts to $W_{X} \leq 0$ by the negativity lemma).

Proof. Since $\operatorname{Env}_{\pi}\left(W_{\pi}\right)$ decreases coefficient-wise to W as $\pi \rightarrow \infty$ by Proposition 2.14, it is enough to treat the case where $W=\operatorname{Env}_{\mathfrak{X}}(C)$ for some \mathbb{R}-Cartier b-divisor $C \leq 0$. But we then have

$$
W=\lim _{m \rightarrow \infty} \frac{1}{m} Z\left(\mathcal{O}_{X}(m C)\right)
$$

with $\mathcal{O}_{X}(m C) \subset \mathcal{O}_{X}$ so we are reduced to the case of an ideal, for which the result directly follows from Izumi's theorem.

Corollary 4.8. For each X-nef \mathbb{R}-Weil b-divisor W such that $W \leq 0$ and $W^{0} \neq 0$ there exists $\varepsilon>0$ such that

$$
W \leq \varepsilon Z(\mathfrak{m})
$$

Proof. Since $W^{0} \neq 0$ there exists a divisorial valuation ν_{0} centered at 0 such that $\nu_{0}(W)<$ 0 , and it follows that $\nu(W)<0$ for all divisorial valuations centered at 0 by Theorem 4.7.

Now let π be the normalized blow-up of \mathfrak{m}. Since W_{π} contains each π-exceptional prime in its support there exists $\varepsilon>0$ such that $W_{\pi} \leq \varepsilon Z(\mathfrak{m})_{\pi}$ and the result follows by the negativity lemma.

For nef envelopes of Weil divisors with integer coefficients this result can be made uniform as follows:

Theorem 4.9. There exists $\varepsilon>0$ only depending on X such that

$$
\operatorname{Env}_{X}(-D) \leq \varepsilon Z(\mathfrak{m})
$$

for all effective Weil divisors (with integer coefficients) D on X containing 0 .
Proof. By Hironaka's resolution of singularities we may choose a smooth birational model X_{π} which dominates the blow-up of \mathfrak{m} and is isomorphic to X away from 0 , and such that there exists a π-ample and π-exceptional Cartier divisor A on X_{π}. If we denote by E_{1}, \ldots, E_{r} the π-exceptional prime divisors then $A=-\sum_{j} a_{j} E_{j}$ with $a_{j} \geq 1$ by the negativity lemma.

By the negativity lemma the desired result means that there exists $\varepsilon>0$ such that for each effective Weil divisor D through 0 on X we have

$$
\operatorname{Env}_{X}(-D)_{\pi} \leq \varepsilon Z(\mathfrak{m})_{\pi}
$$

If we set $c_{j}(D):=-\operatorname{ord}_{E_{j}} \operatorname{Env}_{X}(-D)$ then in view of Theorem4.7 this amounts to proving the existence of $\varepsilon>0$ such that

$$
\max _{1 \leq j \leq r} c_{j}(D) \geq \varepsilon
$$

for each D. Note that

$$
\begin{equation*}
\sum_{j} c_{j}(D) E_{j}=-\operatorname{Env}_{X}(-D)_{\pi}-\widehat{D}_{\pi} \tag{5}
\end{equation*}
$$

by Proposition 2.7. Now we have on the one hand

$$
\begin{gathered}
-A^{n-1} \cdot \operatorname{Env}_{X}(-D)_{\pi}=\sum a_{j} E_{j} \cdot A^{n-2} \cdot \operatorname{Env}_{X}(-D)_{\pi} \\
\quad=\sum_{j} a_{j}\left(\left.A\right|_{E_{j}}\right)^{n-2} \cdot\left(\left.\operatorname{Env}_{X}(-D)_{\pi}\right|_{E_{j}}\right) \geq 0
\end{gathered}
$$

since $\left.A\right|_{E_{j}}$ is ample and $\left.\operatorname{Env}_{X}(-D)_{\pi}\right|_{E_{j}}$ is pseudo-effective by Lemma 2.9. On the other hand

$$
-A^{n-1} \cdot \widehat{D}_{\pi}=\sum_{j} a_{j}\left(\left.A\right|_{E_{j}}\right)^{n-2} \cdot\left(\widehat{D}_{\pi} \mid E_{j}\right) \geq 1
$$

since $\left.\widehat{D}_{\pi}\right|_{E_{j}}$ is an effective Cartier divisor on E_{j}, and is non-zero for at least one j. We thus get $\sum_{j} c_{j}(D)\left(E_{j} \cdot A^{n-1}\right) \geq 1$ from (5) and we infer that

$$
\max _{j} c_{j}(D) \geq \varepsilon:=1 / \max _{j}\left(E_{j} \cdot A^{n-1}\right) .
$$

We conclude this section by the following crucial consequence of Theorem 3.13.

Theorem 4.10. Let $C \in \operatorname{CDiv}(\mathfrak{X}, 0)$ and set $W:=\operatorname{Env}_{\mathfrak{X}}(C)$. Then there exists a sequence of \mathfrak{m}-primary ideals \mathfrak{b}_{k} and a sequence of positive rational numbers $c_{k} \rightarrow 0$ such that:

- $c_{k} Z\left(\mathfrak{b}_{k}\right) \geq W$ for all k.
- $\lim _{k \rightarrow \infty} c_{k} Z\left(\mathfrak{b}_{k}\right)=W$ coefficient-wise.

Proof. Consider the graded sequence of \mathfrak{m}-primary ideals $\mathfrak{a}_{m}:=\mathcal{O}_{X}(m W)=\mathcal{O}_{X}(m C)$ and set $\mathfrak{b}_{k}:=\mathcal{J}\left(\mathfrak{a}_{\bullet}^{k}\right)$. By Theorem 3.13 we have in particular

$$
Z\left(\mathfrak{b}_{k}\right) \geq k W+Z\left(\mathfrak{d}\left(K_{X}\right)\right)+Z\left(\operatorname{Jac}_{X}\right)
$$

and $\frac{1}{k} Z\left(\mathfrak{b}_{k}\right) \rightarrow W$ coefficient-wise. Since $0 \in X$ is an isolated singularity we see that both $\mathfrak{d}\left(K_{X}\right)$ and Jac_{X} are \mathfrak{m}-primary ideals and Lemma 4.6 yields $c>0$ such that

$$
Z\left(\mathfrak{d}\left(K_{X}\right)\right)+Z\left(\mathrm{Jac}_{X}\right) \geq c Z(\mathfrak{m})
$$

On the other hand there exists $\varepsilon>0$ such that $W \leq \varepsilon Z(\mathfrak{m})$ by Corollary 4.8 and we conclude that there exists $c>0$ such that

$$
Z\left(\mathfrak{b}_{k}\right) \geq k W+c W
$$

for all k. There remains to set $c_{k}:=1 /(k+c)$.
4.3. Intersection numbers of nef b-divisors. We indicate in this section how to extend to the singular case the local intersection theory of nef b-divisors introduced in BFJ08, $\S 4]$ in the smooth case. The main point is to replace the approximation result BFJ08, Proposition 3.13] by Theorem 4.10.

Let C_{1}, \ldots, C_{n} be \mathbb{R}-Cartier b-divisors over 0 . Pick a common determination π which is an isomorphism away from 0 and set

$$
C_{1} \cdot \ldots \cdot C_{n}:=C_{1, \pi} \cdot \ldots \cdot C_{n, \pi}
$$

The right-hand side is well-defined since $C_{1, \pi}$ has compact support and it does not depend on the choice of π.

Proposition 4.11. Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subset \mathcal{O}_{X}$ be \mathfrak{m}-primary ideals. Then

$$
-Z\left(\mathfrak{a}_{1}\right) \cdot \ldots \cdot Z\left(\mathfrak{a}_{n}\right)=e\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right)
$$

where $e\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right)$ denotes the mixed multiplicity (see e.g. [Laz, p.91] for a definition).
This result if for instance a direct consequence of Ram73.
The intersection numbers of nef \mathbb{R}-Cartier b-divisors $C_{1}, \ldots, C_{n}, C_{1}^{\prime}, \ldots, C_{n}^{\prime}$ over 0 satisfy the monotonicity property:

$$
C_{1} \cdot \ldots \cdot C_{n} \leq C_{1}^{\prime} \cdot \ldots \cdot C_{n}^{\prime}
$$

if $C_{i} \leq C_{i}^{\prime}$ for each i.
Definition 4.12. If W_{1}, \ldots, W_{n} are arbitrary nef \mathbb{R}-Weil b-divisors over 0 we set

$$
W_{1} \cdot \ldots \cdot W_{n}:=\inf _{C_{i} \geq W_{i}}\left(C_{1} \cdot \ldots \cdot C_{n}\right) \in[-\infty,+\infty[
$$

where the infimum is taken over all nef \mathbb{R}-Cartier b-divisors C_{i} over 0 such that $C_{i} \geq W_{i}$ for each i.

Note that $\left(W_{1} \cdot \ldots \cdot W_{n}\right)$ is finite when all W_{i} are bounded below. This is for instance the case if each W_{i} is the nef envelope of a Cartier b-divisor by Lemma 4.6.

The next theorem summarizes the main properties of the intersection product. The non-trivial part of the assertion is additivity, which requires the approximation theorem.

Theorem 4.13. The intersection product $\left(W_{1}, \ldots, W_{n}\right) \mapsto W_{1} \cdot \ldots \cdot W_{n}$ of nef \mathbb{R}-Weil b-divisors over 0 is symmetric, upper semi-continuous, and continuous along monotonic families (for the topology of coefficient-wise convergence).

It is also homogeneous, additive, and non-decreasing in each variable. Furthermore, $W_{1} \cdot \ldots \cdot W_{n}<0$ if $W_{i} \neq 0$ for each i.

Proof. We follow the same lines as [BFJ08, Proposition 4.4]. Symmetry, homogeneity and monotonicity are clear. If $W_{i} \neq 0$ for all i then there exists $\varepsilon>0$ such that $W_{i} \leq \varepsilon Z(\mathfrak{m})$ for all i by Corollary 4.8, hence

$$
W_{1} \cdot \ldots \cdot W_{n} \leq \varepsilon^{n} Z(\mathfrak{m})^{n}=-\varepsilon^{n} e(\mathfrak{m})<0
$$

where $e(\mathfrak{m})$ is the Samuel multiplicity of \mathfrak{m}.
Let us prove the semi-continuity. Suppose that $W_{i} \neq 0$ for all i, and pick $t \in \mathbb{R}$ such that $W_{1} \cdot \ldots \cdot W_{n}<t$. By definition there exist nef \mathbb{R}-Cartier b-divisors C_{i} over 0 such that $W_{i} \leq C_{i}$ and $C_{1} \cdot \ldots \cdot C_{n}<t$. Replacing each C_{i} by $(1-\varepsilon) C_{i}$ we may assume $C_{i} \neq W_{i}$ while still preserving the previous conditions. Now consider the set U_{i} of all nef b-divisors W_{i}^{\prime} such that $W_{i}^{\prime} \leq C_{i}$. This is a neighborhood of W_{i} in the topology of coefficient-wise convergence and $\left(W_{1}^{\prime} \cdot \ldots \cdot W_{n}^{\prime}\right)<t$ for all $W_{i}^{\prime} \in U_{i}$. This proves the upper semi-continuity.

As a consequence we get the following continuity property: for all families $W_{j, k}$ such that

- $W_{j, k} \geq W_{j}$ for all j, k and
- $\lim _{k} W_{j, k}=W_{j}$ for all j
we have $\lim _{k} W_{1, k} \cdot \ldots \cdot W_{n, k}=W_{1} \cdot \ldots \cdot W_{n}$. Indeed $W_{1, k} \cdot \ldots \cdot W_{n, k} \geq W_{1} \cdot \ldots \cdot W_{n}$ holds by monotonicity and the claim follows by upper semi-continuity.

We now turn to additivity. Assume first that $W^{\prime}, W_{1}, W_{2}, \ldots, W_{n}$ are nef envelopes of Cartier b-divisors over 0 . By Theorem 4.10 there exist two sequences C_{k}^{\prime} and $C_{j, k}$ of nef Cartier divisors above 0 such that $C_{j, k} \geq W_{j}$ and $C_{j, k} \rightarrow W_{j}$ as $k \rightarrow \infty$, and similarly for C_{k}^{\prime} and W^{\prime}. Since $C_{1, k}+C_{k}^{\prime} \geq W_{1}+W^{\prime}$ also converges to $W_{1}+W^{\prime}$ the above remark yields

$$
\left(C_{1, k}+C_{k}^{\prime}\right) \cdot C_{2, k} \cdot \ldots \cdot C_{n, k} \rightarrow\left(W_{1}+W^{\prime}\right) \cdot W_{2} \cdot \ldots \cdot W_{n}
$$

On the other hand we have

$$
\left(C_{1, k}+C_{k}^{\prime}\right) \cdot C_{2, k} \cdot \ldots \cdot C_{n, k}=\left(C_{1, k} \cdot C_{2, k} \cdot \ldots \cdot C_{n, k}\right)+\left(C_{k}^{\prime} \cdot C_{2, k} \cdot \ldots \cdot C_{n, k}\right)
$$

where

$$
\left(C_{1, k} \cdot C_{2, k} \cdot \ldots \cdot C_{n, k}\right) \rightarrow\left(W_{1} \cdot W_{2} \cdot \ldots \cdot W_{n}\right) \text { and }\left(C_{1, k} \cdot C_{2, k} \cdot \ldots \cdot C_{n, k}\right) \rightarrow\left(W^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{n}\right)
$$

so we get additivity for nef envelopes.
In the general case let $W^{\prime}, W_{1}, W_{2}, \ldots, W_{n}$ be arbitrary nef b-divisors over 0 . We then have $\operatorname{Env}_{\pi}\left(W_{j, \pi}\right) \geq W_{j}$ and $\operatorname{Env}_{\pi}\left(W_{j, \pi}\right) \rightarrow W_{j}$ as $\pi \rightarrow \infty$ by Proposition 2.14 so we may argue exactly as above to get the result.

Finally, the continuity along non-decreasing sequences is a direct adaptation of the corresponding result in BFJ11.

The expected local Khovanskii-Teissier inequality holds:
Theorem 4.14. For all nef \mathbb{R}-Weil b-divisors W_{1}, \ldots, W_{n} above 0 we have

$$
\begin{equation*}
\left|W_{1} \cdot \ldots \cdot W_{n}\right| \leq\left|W_{1}^{n}\right|^{1 / n} \ldots\left|W_{n}^{n}\right|^{1 / n} \tag{6}
\end{equation*}
$$

In particular we have

$$
\left|\left(W_{1}+W_{2}\right)^{n}\right|^{1 / n} \leq\left|W_{1}^{n}\right|^{1 / n}+\left|W_{2}^{n}\right|^{1 / n} .
$$

Proof. Arguing as in the proof of Theorem 4.13 we may use Theorem 4.10 to reduce to the case where $W_{i}=Z\left(\mathfrak{a}_{i}\right)$ for some \mathfrak{m}-primary ideals \mathfrak{a}_{i}. In that case the result follows from Proposition 4.11 and the local Khovanskii-Teissier inequality (cf. Laz, Theorem 1.6.7 (iii)]).

Proposition 4.15. Suppose $\phi:(X, 0) \rightarrow(Y, 0)$ is a finite map of degree $e(\phi)$. Then for all nef \mathbb{R}-Weil b-divisors W_{1}, \ldots, W_{n} over $0 \in Y$ we have:

$$
\begin{equation*}
\left(\phi^{*} W_{1}\right) \cdot \ldots \cdot\left(\phi^{*} W_{n}\right)=e(\phi) W_{1} \cdots \cdots W_{n} \tag{7}
\end{equation*}
$$

Proof. Arguing as in the proof of Theorem 4.13 by successive approximation relying on Theorem 4.10, we reduce to the case where each W_{j} is \mathbb{R}-Cartier over 0 . Let $\pi: Y^{\prime} \rightarrow Y$ be a common determination of the W_{j} which is an isomorphism away from 0 . Since $\phi^{-1}(0)=0$ there exists a birational morphism $\mu: X^{\prime} \rightarrow X$ which is an isomorphism away from 0 such that ϕ lifts as a morphism $\phi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$, whose degree is still equal to $e(\phi)$ and the result follows.

Remark 4.16. For every graded sequence \mathfrak{a}_{\bullet} of \mathfrak{m}-primary ideals we have

$$
-Z\left(\mathfrak{a}_{\bullet}\right)^{n}=\lim _{k \rightarrow \infty} \frac{\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{X} / \mathfrak{a}_{k}\right)}{k^{n} / n!} .
$$

Indeed it was shown by Lazarsfeld and Mustaţă LM09, Theorem 3.8] that the right-hand side limit exists and coincides with $\lim _{k \rightarrow \infty} e\left(\mathfrak{a}_{k}\right) / k^{n}$ (which corresponds to a local version of the Fujita approximation theorem). On the other hand $Z\left(\mathfrak{a}_{\mathbf{0}}\right)$ is the non-decreasing limit of $\frac{1}{k!} Z\left(\mathfrak{a}_{k!}\right)$ hence $Z\left(\mathfrak{a}_{\mathbf{\bullet}}\right)^{n}=\lim _{k \rightarrow \infty} Z\left(\mathfrak{a}_{k}\right)^{n} / k^{n}$ by using the continuity of intersection numbers along non-decreasing sequence and the claim follows in view of Proposition 4.11.
4.4. The volume of an isolated singularity. By Proposition 4.5 the log-discrepancy divisor $A_{\mathfrak{X} / X}$ is always bounded below. Its nef envelope $\operatorname{Env} \mathfrak{X}\left(A_{\mathfrak{X} / X}\right)$ is therefore welldefined and bounded below as well, and we may introduce:

Definition 4.17. The volume of a normal isolated singularity $(X, 0)$ is defined as

$$
\operatorname{Vol}(X, 0):=-\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right)^{n}
$$

We have the following characterization of singularities with zero volume:
Proposition 4.18. $\operatorname{Vol}(X, 0)=0$ iff $A_{\mathfrak{X} / X} \geq 0$. When X is \mathbb{Q}-Gorenstein, $\operatorname{Vol}(X, 0)=0$ iff it has log-canonical singularities.
Proof. By Theorem 4.13) we have $\operatorname{Vol}(X, 0)=0$ iff $\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right)=0$, which is equivalent to $A_{\mathfrak{X} / X} \geq 0$ since every X-nef b-divisor over 0 is antieffective by the negativity lemma.

When X is \mathbb{Q}-Gorenstein, then $A_{\mathfrak{X} / X}=A_{m, \mathfrak{X} / X}$ for any integer m such that $m K_{X}$ is Cartier. We conclude recalling that X is log-canonical if the incarnation of the logdiscrepancy divisor $A_{m, \mathfrak{X} / X}$ in one (or equivalently any) log-resolution of X is effective.

Example 4.19. Let $0 \in X$ be the affine cone over a polarized variety (V, L) as in Example 2.28, and denote by $\pi: X_{\pi} \rightarrow X$ the blow-up at 0 , with exceptional divisor $E \simeq V$. If $\operatorname{Vol}(X, 0)=0$ then we claim that $-K_{V}$ is pseudoeffective. Indeed we then have $a=$ $\operatorname{ord}_{E}\left(A_{\mathfrak{X} / X}\right) \geq 0$ by Proposition 4.18 and

$$
K_{X_{\pi}}+E+\operatorname{Env}_{X}\left(-K_{X}\right)_{\pi}=a E
$$

since E is the only π-exceptional divisor. Now $\operatorname{Env}_{X}\left(-K_{X}\right)_{\pi}$ restricts to a pseudoeffective class in $N^{1}(E)$ by Lemma 2.9. The pseudoeffectivity of $-K_{E}$ follows by adjunction, and we also see that $-K_{E}$ is big if the 'generalized \log-discrepancy' a is positive.

The volume satisfies the following basic monotonicity property:
Theorem 4.20. Let $\phi:(X, 0) \rightarrow(Y, 0)$ be a finite morphism between normal isolated singularities. Then we have

$$
\operatorname{Vol}(X, 0) \geq e(\phi) \operatorname{Vol}(Y, 0)
$$

with equality if ϕ is étale in codimension 1.
Proof. We have $A_{\mathfrak{X} / X} \leq \phi^{*} A_{\mathfrak{Y} / Y}$ by Corollary [3.5, and equality holds if and only if $R_{\phi}=0$, i.e. iff ϕ is étale in codimension 1. The result follows immediately using Theorem 2.17 and Proposition 4.15.

5. COMPARISON WITH OTHER INVARIANTS OF ISOLATED SINGULARITIES

5.1. Wahl's characteristic number. As recalled in the introduction, Wahl defined in Wah90 the characteristic number of a normal surface singularity $(X, 0)$ as $-P^{2}$ of the nef part P in the Zariski decomposition of $K_{X_{\pi}}+E$, where $\pi: X_{\pi} \rightarrow X$ is any log-resolution of $(X, 0)$ and E is the reduced exceptional divisor of π. The following result proves that the volume defined above extends Wahl's invariant to all isolated normal singularities.
Proposition 5.1. If $(X, 0)$ is a normal surface singularity then $\operatorname{Vol}(X, 0)$ coincides with Wahl's characteristic number.

Proof. Let $\pi: X_{\pi} \rightarrow X$ be log-resolution of $(X, 0)$ and let E be its reduced exceptional divisor. By Theorem [2.20 we see that $\operatorname{Env}_{\pi}\left(A_{X_{\pi} / X}\right)$ coincides with the nef part of $K_{X_{\pi}}+E-\pi^{*} K_{X}$. Since the latter is π-numerically equivalent to $K_{X_{\pi}}+E$ it follows that $\operatorname{Env}_{\pi}\left(A_{X_{\pi} / X}\right)$ is π-numerically equivalent to the nef part P of $K_{X_{\pi}}+E$, so that

$$
-P^{2}=-\operatorname{Env}_{\pi}\left(A_{X_{\pi} / X}\right)^{2} .
$$

On the other hand we claim that $\operatorname{Env}_{\pi}\left(A_{X_{\pi} / X}\right)=\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right)$, which will conclude the proof. Indeed on the one hand we have

$$
\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right) \leq \operatorname{Env}_{\pi}\left(A_{X_{\pi} / X}\right)
$$

as for any Weil b-divisor. On the other hand Lemma 3.2 implies that

$$
K_{\mathfrak{X}}+1_{\mathfrak{X}} \geq \overline{K_{X_{\pi}}+E}
$$

over 0, hence $A_{\mathfrak{X} / X} \geq \overline{A_{X_{\pi} / X}}$, and we infer $\operatorname{Env}_{\mathfrak{X}}\left(A_{\mathfrak{X} / X}\right) \geq \operatorname{Env}_{\pi}\left(A_{X_{\pi} / X}\right)$ as desired.
Proof of Theorem A. The definition of the volume is given in 4.4. Theorem A (i) is precisely Theorem 4.20. Statement (ii) is Proposition 5.1. Statement (iii) is Proposition 4.18.
5.2. Plurigenera and Fulger's volume. Let $0 \in X$ be (a germ of) an isolated singularity and let $\pi: X_{\pi} \rightarrow X$ be a log-resolution with reduced exceptional SNC divisor E. One may then consider the following plurigenera (see [Ish90] for a review).

- Knöller's plurigenera Knö73], defined by

$$
\gamma_{m}(X, 0):=\operatorname{dim} H^{0}\left(X_{\pi} \backslash E, m K_{X_{\pi}}\right) / H^{0}\left(X_{\pi}, m K_{X_{\pi}}\right) .
$$

- Watanabe's L^{2}-plurigenera Wat80, defined by

$$
\delta_{m}(X, 0):=\operatorname{dim} H^{0}\left(X_{\pi} \backslash E, m K_{X_{\pi}}\right) / H^{0}\left(X_{\pi}, m K_{X_{\pi}}+(m-1) E\right) .
$$

- Morales' log-plurigenera Mora87, Definition 0.5.4], defined by

$$
\lambda_{m}(X, 0):=\operatorname{dim} H^{0}\left(X_{\pi} \backslash E, m K_{X_{\pi}}\right) / H^{0}\left(X_{\pi}, m\left(K_{X_{\pi}}+E\right)\right) .
$$

These numbers do not depend on the choice of log-resolution. They satisfy

$$
\lambda_{m}(X, 0) \leq \delta_{m}(X, 0) \leq \gamma_{m}(X, 0)=O\left(m^{n}\right)
$$

and one may use them to define various notions of Kodaira dimension of an isolated singularity.

In a recent work, Fulger Fulg has explored in more detail the growth of these numbers. His framework is the following. Given a Cartier divisor D on X_{π}, consider the local dimension

$$
h_{\mathrm{loc}}^{0}(D):=\operatorname{dim} H^{0}\left(X_{\pi} \backslash E, D\right) / H^{0}\left(X_{\pi}, D\right)=\operatorname{dim} \mathcal{O}_{X}\left(\pi_{*} D\right) / \mathcal{O}_{X}(D) .
$$

Observe that $\gamma_{m}(X, 0)=h_{\mathrm{loc}}^{0}\left(m K_{X_{\pi}}\right)$ and $\lambda_{m}(X, 0)=h_{\mathrm{loc}}^{0}\left(m\left(K_{X_{\pi}}+E\right)\right)$. Fulger proves that $h_{\text {loc }}^{0}(m D)=O\left(m^{n}\right)$ and defines the local volume of D by setting

$$
\operatorname{vol}_{\mathrm{loc}}(D):=\limsup _{m \rightarrow \infty} \frac{n!}{m^{n}} h_{\mathrm{loc}}^{0}(m D) .
$$

When the Cartier divisor D lies over 0 one has:
Proposition 5.2. Suppose D is a Cartier divisor in X_{π} lying over 0 . Then

$$
\operatorname{vol}_{\mathrm{loc}}(D)=-\operatorname{Env}_{\mathfrak{X}}(\bar{D})^{n} .
$$

Proof. We may assume $D \leq 0$. The envelope of D is the b-divisor associated to the graded sequence of \mathfrak{m}-primary ideals $\mathcal{O}_{X}(-m D)$. The result follows from Remark 4.16,

Fulger [Fulg then introduces an alternative notion of volume of an isolated singularity by setting:

$$
\operatorname{Vol}_{F}(X, 0):=\operatorname{vol}_{\mathrm{loc}}\left(K_{X_{\pi}}+E\right) .
$$

Proposition 5.3. $\operatorname{Vol}(X, 0)=\operatorname{Vol}_{F}(X, 0)$ if X is \mathbb{Q}-Gorenstein.
Proof. For any integer m such that $m K_{X}$ is Cartier, one has $A_{\mathfrak{X} / X}=A_{m, \mathfrak{x} / X}$. Pick any \log-resolution $\pi: X_{\pi} \rightarrow X$. Then Lemma 3.2 applied to X_{π} shows that $\overline{A_{X_{\pi} / X}} \leq A_{\mathfrak{X} / X}$. In particular, these b-divisors share the same envelope. We conclude by Proposition 5.2 above.

In general, Fulger proves that there is always an inequality

$$
\operatorname{Vol}(X, 0) \geq \operatorname{Vol}_{F}(X, 0)
$$

We know by Wah90 that in dimension two these volumes always coincide. In higher dimension these two invariants may however differ, as shown by the following example.

Example 5.4. Let (V, L) be a smooth polarized variety, let $0 \in X$ be the affine cone over it and let $\pi: X_{\pi} \rightarrow X$ be the blow-up of 0 , with exceptional divisor E.

If V is uniruled (i.e. if K_{V} is not pseudoeffective) then we have $\delta_{m}(X, 0)=0$ for all m since $H^{0}\left(X_{\pi}, m K_{X_{\pi}}+p E\right) / H^{0}\left(Y, m K_{X_{\pi}}+(p-1) E\right)$ embeds in $H^{0}\left(E, m K_{E}+(p-\right.$ $m) E \mid E) \simeq H^{0}\left(V, m K_{V}-(p-m) L\right)$, which vanishes if $p \geq m$ since L is ample and K_{V} is not pseudoeffective. If we choose V uniruled such that such that $-K_{V}$ is however not pseudoeffective (for example $V=C \times \mathbb{P}^{1}$ where C is a curve of genus at least 2) then Example 4.19 shows on the other hand that $\operatorname{Vol}(X, 0)>0$. We thus get an example where $\delta_{m}(X, 0)=0$ for all $m\left(\right.$ hence $\left.\operatorname{Vol}_{F}(X, 0)=0\right)$ but $\operatorname{Vol}(X, 0)>0$.

6. Endomorphisms

We apply the previous analysis to the study of normal isolated singularities admitting endomorphisms.
6.1. Proofs of Theorems B and C. We start by proving the following result.

Theorem 6.1. Assume that X is numerically Gorenstein and let $\phi:(X, 0) \rightarrow(X, 0)$ is a finite endomorphism of degree $e(\phi) \geq 2$ such that $R_{\phi} \neq 0$. Then there exists $\varepsilon>0$ such that $A_{\mathfrak{X} / X} \geq-\varepsilon Z(\mathfrak{m})$.
Remark 6.2. When X is \mathbb{Q}-Gorenstein or $\operatorname{dim} X=2$, the condition $A_{\mathfrak{X} / X} \geq-\varepsilon Z(\mathfrak{m})$ for some $\varepsilon>0$ is equivalent to $A_{m, \mathfrak{X} / X}>0$ for some m. By Corollary 3.10 the latter condition means in turn that X has klt singularities in the sense of dFH09, i.e. there exists a \mathbb{Q}-boundary Δ such that (X, Δ) is klt. In a forthcoming work [BdFF] we shall prove this result unconditionnally.

Remark 6.3. Tsuchihashi's cusp singularities (see below) show that the assumption $R_{\phi} \neq 0$ is essential even when K_{X} is Cartier.
Proof. Since X is numerically Gorenstein $R_{\phi^{k}}=K_{X}-\left(\phi^{k}\right)^{*} K_{X}$ is numerically Cartier for each k and Corollary 3.5 yields

$$
\left(\phi^{k}\right)^{*} A_{\mathfrak{X} / X}=A_{\mathfrak{X} / X}+\operatorname{Env}_{X}\left(R_{\phi^{k}}\right) .
$$

On the other hand observe that $R_{\phi^{k}}=\sum_{j=0}^{k-1}\left(\phi^{j}\right)^{*} R_{\phi}$ by the chain-rule. Each $\left(\phi^{j}\right)^{*} R_{\phi}$ is numerically Cartier as well, so that

$$
\operatorname{Env}_{X}\left(R_{\phi^{k}}\right)=\sum_{j=0}^{k-1}\left(\phi^{j}\right)^{*} \operatorname{Env}_{X}\left(R_{\phi}\right)
$$

by Lemma 2.25 and Proposition 2.17. Using Proposition 4.5 and Theorem 4.9 we thus obtain $c_{1}, c_{2}>0$ such that

$$
\left(\phi^{k}\right)^{*}\left(A_{\mathfrak{X} / X}\right) \geq c_{1} Z(\mathfrak{m})-c_{2} \sum_{j=0}^{k-1}\left(\phi^{j}\right)^{*} Z(\mathfrak{m})
$$

for all divisorial valuations ν centered at 0 and all k. Since we have $\left(\phi^{j}\right)^{*} \mathfrak{m} \subset \mathfrak{m}$ it follows that

$$
\left(\phi^{k}\right)^{*} A_{\mathfrak{X} / X} \geq-Z(\mathfrak{m})\left(k c_{2}-c_{1}\right)
$$

But the action of ϕ^{k} on divisorial valuations centered at 0 is surjective by [ZS]. We furthermore have $\nu\left(\left(\phi^{k}\right)^{*} A_{\mathfrak{X} / X}\right)=\nu\left(\left(\phi^{k}\right)^{*} \mathfrak{m}\right) \nu\left(A_{\mathfrak{X} / X}\right)$ for each divisorial valuation ν centered at 0 and there exists $c_{k}>0$ such that $\nu\left(\left(\phi^{k}\right)^{*} \mathfrak{m}\right) \leq c_{k} \nu(\mathfrak{m})$ for all ν by Lemma 4.6. We thus get $A_{\mathfrak{X} / X} \geq-\varepsilon_{k} Z(\mathfrak{m})$ with

$$
\varepsilon_{k}:=\frac{k c_{2}-c_{1}}{c_{k}}>0
$$

as soon as $k>c_{1} / c_{2}$.
Proof of Theorem B. If $\phi: X \rightarrow X$ is a finite endomorphism with $e(\phi) \geq 2$, then Theorem A implies $\operatorname{Vol}(X, 0) \geq 2 \operatorname{Vol}(X, 0)$ hence $\operatorname{Vol}(X, 0)=0$. When X is \mathbb{Q}-Gorenstein and ϕ is not étale in codimension 1 , then X is klt by the previous theorem and Remark 6.2.

Proof of Theorem C. By assumption, there exists an endomorphism $F: V \rightarrow V$ and an ample line bundle L such that $F^{*} L \simeq d L$ for some $d \geq 2$. The composite map

$$
H^{0}(V, m L) \xrightarrow{F^{*}} H^{0}\left(V, m F^{*} L\right) \simeq H^{0}(V, d m L)
$$

induces an endomorphism of the finitely generated algebra $\bigoplus_{m \geq 0} H^{0}(V, m L)$ (which does not preserve the grading). Since the spectrum of this algebra is equal to $X=C(V)$, we get an induced endomorphism $C(F)$ on $C(V)$. It is clear that $C(F)$ is finite, fixes the vertex $0 \in X$, and is not an automorphism. We conclude that $\operatorname{Vol}(X, 0)=0$, which implies that $-K_{V}$ is pseudoeffective by Example 4.19.
6.2. Simple examples of endomorphisms. Any quotient singularity admits finite endomorphisms of degree ≥ 2, and any toric singularity as well. We saw above examples of endomorphisms on cone singularities. One can modify this construction to get examples on other kind of simple singularities.

Consider a smooth projective morphism $f: Z \rightarrow C$ to a smooth pointed curve $0 \in C$ and suppose given a non-invertible endomorphism ϕ such that $f \circ \phi=f$ that. Note that ϕ is automatically finite since the injective endomorphism ϕ^{*} of $N^{1}(Z / C)$ has to be bijective.

Assume that $D \subset Z_{0}$ is a smooth irreducible ample divisor of the fiber Z_{0} over 0 that does not intersect the ramification locus of ϕ and such that $\phi(D) \subset D$. Denote by $Y \rightarrow Z$ be the blow-up of Z along D. Then ϕ lifts to a rational self-map of Y over C, and the fact that ϕ is étale around D implies that the indeterminacy locus of this rational lift is contained in $\mu^{-1}\left(\phi^{-1}(D) \backslash D\right)$ hence in the strict transform E of Z_{0} on Y.

Since the conormal bundle of E in Y is ample, E contracts to a simple singularity $0 \in X$ by [Gra62] (we are therefore dealing with an analytic germ $0 \in X$ in that case). The above discussion shows that ϕ induces a finite endomorphism of $(X, 0)$, which is furthermore not invertible since ϕ was assumed not to be an automorphism.

Basic examples of this construction include deformations of abelian varieties having a section, with ϕ the multiplication by a positive integer.
6.3. Endomorphisms of cusp singularities. Our basic references are [Oda, Tsu83]. Let $C \subset \mathbb{R}^{n}$ be an open convex cone in which is strict (i.e. its closure contains no line) and let $\Gamma \subset \mathrm{SL}(n, \mathbb{Z})$ be a subgroup leaving C invariant, whose action on C / \mathbb{R}_{+}^{*} is properly discontinuous without fixed point, and has compact quotient. Denote by

$$
M:=\Gamma \backslash C / \mathbb{R}_{+}^{*}
$$

the corresponding ($n-1$)-dimensional orientable manifold.
Consider the convex envelope Θ of $C \cap \mathbb{Z}^{n}$. It is proved in Tsu83] that the faces of $\bar{\Theta}$ are convex polytopes contained in C and with integral vertices. Since Θ is Γ-invariant the cones over the faces of Θ therefore give rise to a Γ-invariant rational fan Σ of \mathbb{R}^{n} with $|\Sigma|=C \cup\{0\}$. This fan is infinite but is finite modulo Γ since M is compact.

The (infinite type) toric variety $X(\Sigma)$ comes with a Γ-action which preserves the toric divisor $D:=X(\Sigma) \backslash\left(\mathbb{C}^{*}\right)^{n}$ as well the inverse image of C by the map Log : $\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
\log \left(z_{1}, \ldots, z_{n}\right)=\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)
$$

The Γ-invariant set $U:=\log ^{-1}(C) \cup D$ is open in $X(\Sigma)$ and the action of Γ is properly discontinuous and without fixed point on U. One then shows that the divisor $E:=$ $D / \Gamma \subset U / \Gamma=: Y$, which is compact since Σ is a finite fan modulo Γ, admits a strictly pseudoconvex neighbourhood in Y, so that it can be contracted to a normal singularity $0 \in X$, which is furthermore isolated since $Y-E$ is smooth. Note that Y, though possibly not smooth along E, has at most rational singularities since U does, being an open subset of a toric variety. The isolated normal singularity $(X, 0)$ is called the cusp singularity attached to (C, Γ). It is shown in Tsu83] that (C, Γ) is determined up to conjugation in $\mathrm{GL}(n, \mathbb{Z})$ by the (analytic) isomorphism type of the germ $(X, 0)$.

Lemma 6.4. The canonical divisor K_{X} is Cartier, X is lc but not klt.
Remark 6.5. Cusp singularities are however not Cohen-Macaulay in general, hence not Gorenstein.
Proof. The n-form $\Omega=\frac{d z_{1}}{z_{1}} \wedge \ldots \wedge \frac{d z_{n}}{z_{n}}$ on the torus $\left(\mathbb{C}^{*}\right)^{n}$ extends to $X(\Sigma)$ with poles of order one along D. It is Γ-invariant since Γ is a $\operatorname{subgroup}$ of $\operatorname{SL}(n, \mathbb{Z})$ thus it descends to a meromorphic form on U / Γ with order one poles along D / Γ. We conclude K_{X} is zero and that X is lc but not klt since $\pi:(Y, E) \rightarrow X$ is crepant and $(X(\Sigma), D)$ is lc but not klt as for any toric variety.

Now let $A \in \mathrm{GL}(n, \mathbb{R})$ with integer coefficient which preserves C and commutes with Γ (e.g. a homothety). Then Z induces a regular map on U that descends to the quotient Y and preserves the divisors E and we get a finite endomorphism $\phi:(X, 0) \rightarrow(X, 0)$ whose topological degree is equal to $|\operatorname{det} A|$.
Example 6.6 (Hilbert modular cusp singularities). Let K be a totally real number field of degree n over \mathbb{Q} and let N be a free \mathbb{Z}-submodule of K of rank n (for instance $N=\mathcal{O}_{K}$). Using the n distinct embeddings of K into \mathbb{R} we get a canonical identification $K \otimes \mathbb{Q} \mathbb{R}=\mathbb{R}^{n}$ and we may view N as a lattice in \mathbb{R}^{n}. Now set $C:=\left(\mathbb{R}_{+}^{*}\right)^{n} \subset N_{\mathbb{R}}$ and consider the group Γ_{N}^{+}of totally positive units of $u \in \mathcal{O}_{K}^{*}$ such that $u N=N$, where u is said to be totally positive if its image under any embedding of K in \mathbb{R} is positive. By Dirichlet's unit theorem, Γ_{N}^{+}is isomorphic to \mathbb{Z}^{n-1}, and there is a canonical injective homomorphism $\Gamma_{N}^{+} \hookrightarrow \mathrm{SL}(N)$. For any subgroup $\Gamma \subset \Gamma_{N}^{+}$of finite index, the triple (N, C, Γ) then satisfies the requirements of the definition of a cusp singularities. The singularities obtained by this construction are called Hilbert modular cusp singularities.

References

[BCHM10] C. Birkar, P. Cascini, C. Hacon, J. McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), no. 2, 405-468,
[BdFF] S. Boucksom, T. de Fernex, C. Favre. Valuations and multiplier ideals. Manuscript in preparation.
[BDPP04] S. Boucksom, J.-P. Demailly, M. Paun and Th. Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. Preprint (2004) math.AG/0405285, To appear in J. Alg. Geom.
[BFJ08] S. Boucksom, C. Favre and M. Jonsson, Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449-494.
[BFJ11] S. Boucksom, C. Favre and M. Jonsson. Non-archimedean pluripotential theory over a smooth point. Manuscript in preparation.
[Cor] Alessio Corti (Ed.) Flips for 3-folds and 4-folds. Oxford Lecture Series in Mathematics and its Applications 35. Oxford University Press, Oxford, 2007
[Cut00] S.D. Cutkosky. Irrational asymptotic behaviour of Castelnuovo-Mumford regularity. J. Reine Angew. Math. 522 (2000), 93-103.
[dFH09] T. de Fernex and C. Hacon. Singularities on normal varieties. Compos. Math. 145 (2009), no. 2, 393-414.
[DEL00] J.-P. Demailly, L. Ein and R. Lazarsfeld, A subadditivity property of multiplier ideals. Michigan Math. J. 48 (2000), 137-156.
[EGA4] A. Grothendieck, A. Éléments de géométrie algébrique IV: Etude locale des schémas et des morphismes de schémas. Inst. Hautes Études Sci. Publ. Math. 32, 1967.
[ELS03] L. Ein, R. Lazarsfeld, and K. E. Smith. Uniform approximation of Abhyankar valuation ideals in smooth function fields. Amer. J. Math. 125 (2003), no. 2, 409-440.
[Fakh03] N. Fakhruddin. Questions on self maps of algebraic varieties. J. Ramanujan Math. Soc. 18 (2003), 109-122.
[Fav10] C. Favre. Holomorphic endomorphisms of singular rational surfaces. Publ. Mat. 54 (2010), no. 2, 389-432
[FN05] Y. Fujimoto, N. Nakayama. Compact complex surfaces admitting non-trivial surjective endomorphisms. Tohoku Math. J. (2) 57 (2005), no. 3, 395-426.
[Fulg] M. Fulger. Local volumes. Manuscript in preparation.
[Fult] W. Fulton. Introduction to toric varieties. Annals of Mathematics Studies 131. Princeton University Press, Princeton, NJ, 1993.
[Gan] F. M. Ganter. Properties of PP for Gorenstein surface singularities. Math. Z. 223 (1996), no. 3, 411419.
[Gra62] H. Grauert. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962), 331-368.
[Ish90] S. Ishii. The asymptotic behaviour of plurigenera for a normal isolated singularity, Math. Ann. 286 (1990), 803-812.
[Isk03] V.A. Iskovskikh. b-divisors and Shokurov functional algebras. (Russian) Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 8-20; translation in Proc. Steklov Inst. Math. (2003), no. 1 (240), 4-15
[Izu81] S. Izumi. Linear complementary inequalities for orders of germs of analytic functions. Invent. Math. 65 (1981/82), no. 3, 459-471.
[Knö73] F.W. Knöller. 2-dimensionale Singularitäten und Differentialformen. Math. Ann. 206, 205-213 (1973)
[Kol97] J. Kollár. Singularities of pairs, in Algebraic geometry - Santa Cruz 1995, 221-287, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.
[Kol08] J. Kollár. Exercices in the birational geometry of algebraic varieties, Preprint (2008) arXiv:0809.2579.
[KoMo] J. Kollár and S. Mori. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998.
[Kür03] A. Küronya. A divisorial valuation with irrational volume. J. Algebra 262 (2003), no. 2, 413423.
[KuMa08] A. Küronya, C. MacLean. Zariski decomposition of b-divisors. Preprint (2008) arXiv:0807.2809.
[Laz] R. Lazarsfeld. Positivity in algebraic geometry, I and II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49. Springer-Verlag, Berlin, 2004.
[LM09] R. Lazarsfeld, M. Mustaţǎ. Convex bodies associated to linear series. Ann. de l'ENS 42 (2009), no. 5, 783-835.
[Mora87] M. Morales. Resolution of quasi-homogeneous singularities and plurigenera. Compos. Math. 64, (1987) 311-327.
[Naka08] N. Nakayama. On complex normal projective surfaces admitting non-isomorphic surjective endomorphisms. Preprint.
[Oda] T. Oda. Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15. Springer-Verlag, Berlin, 1988.
[Ram73] C.-P. Ramanujam. On a geometric interpretation of multiplicity. Invent. Math. 22 (1973/74), 63-67.
[Sak77] F. Sakai. Kodaira dimensions of complements of divisors, in Complex analysis and algebraic geometry: A collection of papers dedicated to K. Kodaira. 239-257. Iwanami-Cambridge, 1977.
[Sch09] K. Schwede. Test ideals in non- \mathbb{Q}-Gorenstein rings. Preprint (2009) arXiv:0906.4313, To appear in Trans. Amer. Math. Soc.
[Tak06] S. Takagi, Formulas for multiplier ideals on singular varieties. Amer. J. Math. 128 (2006), no. 6, 1345-1362.
[Tak10] S. Takagi. Note on subaddivity theorem. Manuscript in preparation.
[Tsu83] H. Tsuchihashi. Higher-dimensional analogues of periodic continued fractions and cusp singularities. Tohoku Math. J. (2) 35 (1983), no. 4, 607-639.
[Urb10] S. Urbinati. Discrepancies of non-Q-Gorenstein varieties. Preprint (2010) arXiv:1001.2930
[Wah90] J. Wahl. A characteristic number for links of surface singularities. J. Amer. Math. Soc. 3 (1990), no. 3, 625-637.
[Wat80] K. Watanabe. On plurigenera of normal isolated singularities. I. Math. Ann. 250 (1980), no. 1, 65-94.
[Wat87] K. Watanabe. On plurigenera of normal isolated singularities. II. in Complex analytic singularities, 671-685, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987.
[ZS] O. Zariski and P. Samuel. Commutative algebra. Vol. II. Reprint of the 1960 edition. Graduate Texts in Mathematics, Vol. 29. Springer-Verlag, New York-Heidelberg, 1975.
[dqZ06] D.-Q. Zhang. Polarized endomorphisms of uniruled varieties. Compos. Math. 146 (2010), no. 1, 145168.
[swZ06] S.-W. Zhang. Distribution in algebraic dynamics. Surveys in differential geometry. Vol. X, 381-430, Surv. Differ. Geom., 10, Int. Press, Somerville, MA, 2006.

CNRS - Institut de Mathématiques de Jussieu, 4 Place Jussieu, 75252 Paris Cedex, France
E-mail address: boucksom@math.jussieu.fr
Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 48112-0090, USA

E-mail address: defernex@math.utah.edu
CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France

E-mail address: favre@math.polytechnique.fr

[^0]: Date: November 15, 2010.
 The second author is partially supported by NSF CAREER Grant DMS-0847059. The last author is supported by the ANR-project BERKO.

