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THE VOLUME OF AN ISOLATED SINGULARITY

SEBASTIEN BOUCKSOM, TOMMASO DE FERNEX, AND CHARLES FAVRE

Abstract. We introduce a notion of volume of a normal isolated singularity that gener-
alizes Wahl’s characteristic number of surface singularities to arbitrary dimensions. We
prove a basic monotonicity property of this volume under finite morphisms. We draw sev-
eral consequences regarding the existence of non-invertible finite endomorphisms fixing
an isolated singularity. Using a cone construction, we deduce that the anticanonical di-
visor of any smooth projective variety carrying a non-invertible polarized endomorphism
is pseudoeffective.

Our techniques build on Shokurov’s b-divisors. We define the notion of nef Weil b-
divisors, and of nef envelopes of b-divisors. We relate the latter notion to the pull-back of
Weil divisors introduced by de Fernex and Hacon. Using the subadditivity theorem for
multiplier ideals with respect to pairs recently obtained by Takagi, we carry over to the
isolated singularity case the intersection theory of nef Weil b-divisors formerly developed
by Boucksom, Favre and Jonsson in the smooth case.
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Introduction

Wahl’s characteristic number [Wah90] is a topological invariant of a normal surface
singularity. Its simple behavior under finite morphisms enables one to characterize surface
singularities that carry finite non-invertible endomorphisms. Our main goal is to generalize
Wahl’s invariant to higher dimensional isolated normal singularities, and to present a few
applications to the description of singularities admitting non-trivial finite endomorphisms.
Our main result can be stated as follows.

Theorem A. To any normal isolated singularity (X, 0) is associated a non-negative real
number Vol(X, 0) that we call its volume, satisfying the following properties:

(i) For every finite morphism φ : (X, 0) → (Y, 0) of degree e(φ) we have

Vol(X, 0) ≥ e(φ)Vol(Y, 0),

and equality holds when φ is étale in codimension one.
(ii) If dimX = 2 then Vol(X, 0) coincides with Wahl’s characteristic number.
(iii) If X is Q-Gorenstein then Vol(X, 0) = 0 if and only if X has log-canonical (=lc)

singularities.

Our result generalizes in particular the well-known fact that Q-Gorenstein lc singulari-
ties are preserved under finite morphism (see for instance [Kol97, Proposition 3.16]).

Just as in dimension 2 one infers restrictions on isolated singularities admitting finite
endomorphisms.

Theorem B. Suppose φ : (X, 0) → (X, 0) is a finite non-invertible endomorphism of an
isolated singularity. Then Vol(X, 0) = 0.

If X is Q-Gorenstein then X has lc singularities, and it furthermore has klt singularities
if φ is not étale in codimension one.

To obtain a more precise classification of singularities carrying finite endomorphisms
one would need to get deeper into the structure of singularities with Vol(X, 0) = 0. This
can be done in dimension 2, see [Wah90, Fav10], but unfortunately, this task seems very
difficult at the moment in arbitrary dimension. To illustrate the previous result, we
construct however several classes of (non-necessarily Q-Gorenstein) isolated normal singu-
larities carrying finite endomorphisms, see §6.2-6.3 below. Our examples include quotient
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singularities, Tsuchihashi’s cusp singularities [Oda, Tsu83], toric singularities, and certain
simple singularities obtained from cone or deformation constructions.

In dimension 2, the conclusion of Theorem B plays a key role in the classification
of projective surfaces admitting non-invertible endomorphisms, which is by now essen-
tially complete, see [FN05, Naka08]. In higher dimensions, classifying projective varieties
carrying a non-invertible endomorphism has recently attracted quite a lot of attention,
see [dqZ06] and the references therein, but the general problem remains largely open.

The assumption on the singularity being isolated in Theorem B is too strong to be
directly useful in this perspective. Nevertheless we observe that Theorem B has some
consequences in the more rigid case of so-called polarized endomorphisms. Recall that an
endomorphism φ : V → V of a projective variety is said to be polarized if there exists an
ample line bundle L on V such that φ∗L = dL in Pic(V ) for some d ≥ 1 (cf. [swZ06] for a
nice survey). By looking at the affine cone over X induced by L, we obtain:

Theorem C. If V is a smooth projective variety carrying a non-invertible polarized en-
domorphism φ then −KV is pseudoeffective.

Observe that the ramification formula implies KV · L
n−1 ≤ 0. If KV is pseudoeffective

then KV ≡ 0 and (V, φ) is then an endomorphism of an abelian variety up to finite étale
cover (see [Fakh03, Theorem 4.2]). If KV is not pseudoeffective then V is uniruled by
[BDPP04], and our result then puts further constraints on the geometry of V .

Throughout the paper, we insist on working with arbitrary non Q-Gorenstein singular-
ities. This degree of generality is crucial to obtain Theorem C since the cone over V is
Q-Gorenstein iff ±KV is either Q-linearly trivial or ample, see Example 2.28 below.

∗ ∗ ∗

In order to understand our construction, and the difficulties that one has to overcome
to define the volume above, let us recall briefly Wahl’s definition for a normal surface
singularity (X, 0).

Pick any log-resolution π : Y → X of (X, 0), i.e. a birational morphism which is
an isomorphism above X \ {0}, and such that Y is smooth and the scheme-theoretic
inverse image π−1(0) is a divisor with simple normal crossing support E. Let KX be a
canonical divisor on X and let KY be the induced canonical divisor on Y . Denote by
π∗KX Mumford’s numerical pull-back of KX to Y , which is uniquely determined as a Q-
divisor by the conditions π∗(π

∗KX) = KX and π∗KX · C = 0 for any π-exceptional curve
C. The log-discrepancy divisor is then defined by the relation AY/X := KY + E − π∗KX .
Recall that X is (numerically) lc iff AY/X ≥ 0 while X is (numerically) klt iff AY/X > 0
on the whole of E.

Wahl’s invariant measures the degree of positivity of the log-discrepancy divisor. The
positivity is here relative to the contraction morphism Y → X, and it is thus natural to
consider the relative Zariski decomposition AY/X = P +N in the sense of [Sak77], where
N is the smallest effective π-exceptional Q-divisor such that P = AY/X − N is π-nef.
Finally one sets:

(1) Vol(X, 0) := −P 2 ∈ Q≥0 .

Two (related) difficulties arise in generalizing Wahl’s construction to higher dimensions:
first, one needs to introduce a notion of pull-back for Weil divisors; and second one needs
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to find a replacement for the relative Zariski decomposition. These problems have already
been addressed in [dFH09], and in [BFJ08, KuMa08] respectively. Building on these works
our first objective is to explain how these difficulties can be conveniently addressed using
Shokurov’s language of b-divisors. In §§1-3, we define and study the notion of nef Weil
b-divisor in the general setting of a normal variety X. This leads to the notion of nef
envelope and relative Zariski decomposition as follows.

Let us recall some terminology. A Weil b-divisor W over X is the data of Weil divisors
Wπ on all birational models π : Xπ → X of X that are compatible under push-forward.
A Cartier b-divisor C is a Weil b-divisor determined by some π in the sense that its
incarnations Cπ′ on all higher models π′ ≥ π are obtained by pulling-back Cπ (all the
divisors we consider for the time being have R-coefficients).

A Cartier b-divisor C is said to be nef (relatively to a given projective morphismX → S)
if Cπ is nef for one (hence any) determination π of C. Generalizing [BFJ08, KuMa08] we
say that a Weil b-divisor W is nef iff its numerical class is a limit of classes of nef Cartier
b-divisors, or equivalently iff Wπ lies in the closed movable cone Mov(Xπ/S) for all smooth
models Xπ (cf. Lemma 2.9 below).

In §2, we prove that the following definitions make sense (under suitable conditions),
and introduce the following two notions of nef envelopes.

• The nef envelope EnvX(D) of a Weil divisor D onX is the largest nef Weil b-divisor
Z that is both relatively nef over X and satisfies ZX ≤ D.
• The nef envelope EnvX(W ) of a Weil b-divisor W is the largest nef Weil b-divisor
Z that is both relatively nef over X and satisfies Z ≤W .

In dimension two, nef envelopes recover the notions of numerical pull-back and relative
Zariski decomposition. Specifically, if D is a divisor on a normal surface X then the
incarnation EnvX(D)π on a given model Xπ coincides with the numerical pull-back of D
by π, while if D is a divisor on a smooth model Xπ over X, then the nef part of D in
its relative Zariski decomposition is given by EnvX(D)π where D is the Cartier b-divisor
induced by D.

In higher dimensions D 7→ EnvX(D) is non-linear in general, and EnvX(D)π coincides
up to sign with the pull-back π∗D defined in [dFH09]. It is however this approach via
b-divisors and nef envelopes that brings to light the crucial positivity properties of the
pull-back of Weil divisors.

We are now in a position to generalize the log-discrepancy divisor and its relative Zariski
decomposition. The choice of a canonical divisor KX on X induces a canonical divisor
KY for each model Y → X, hence a canonical b-divisor KX over X. The log-discrepancy
b-divisor is then defined as

AX/X := KX + 1X/X + EnvX(−KX) ,

where the incarnation of 1X/X in any model is equal to the reduced exceptional divisor over
X. The log-discrepancy b-divisor is exceptional over X and does not depend on the choice
of KX . Its coefficients are given by the (usual) log-discrepancies of X when the latter is
Q-Gorenstein. The role of the nef part of AX/X in its relative Zariski decomposition is in
turn played by the nef envelope

P := EnvX(AX/X) .
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To generalize (1), we now face the problem of defining the intersection product of nef
b-divisors. This step is non-trivial. The intersection of Cartier b-divisors is defined as
their intersection in a common determination. However it cannot be extended to a mul-
tilinear intersection product on the space of Weil b-divisors having reasonable continuity
properties. As it turns out, it is nevertheless possible to extend it to a multilinear inter-
section pairing on nef Weil b-divisors lying over a point 0 ∈ X. This is done following the
approach of [BFJ08], in which multiplier ideals appear as a prominent tool.

Assume from now on that (X, 0) is an n-dimensional isolated normal singularity. For
all (relatively) nef b-divisors W1, ...,Wn above 0, we set:

W1 · ... ·Wn := inf{C1 · ... · Cn | Cj nef Cartier, Cj ≥Wj} ∈ [−∞, 0] .

To develop a reasonable calculus of these intersection numbers, additivity in each variable
is a desirable property. We obtain this result as a consequence of the fact that any nef
envelope of a Cartier b-divisor is the decreasing limit of a sequence of nef Cartier b-divisors
Ck.

Let us explain how to get this crucial approximation property. The first observation is
that the nef envelope of a Cartier b-divisor C is a limit of the graded sequence of ideals
am := OX(mC), m ≥ 0 (see §2.1). For any fixed c > 0, we use the general notion of
(asymptotic) multiplier ideal J(X; ac•) introduced in [dFH09] for any ambient variety X
with normal singularities. As was shown in [dFH09] this multiplier ideal can also be
computed using compatible boundaries: namely, there exist effective Q-boundaries ∆ such
that J(X; ac•) coincides with the standard (asymptotic) multiplier ideal J((X,∆); ac•) with
respect to the pair (X,∆).

This connection enables us to make use of a recent result of Takagi [Tak10], which
extends the usual subadditivity property of multiplier ideals [DEL00] to multiplier ideals
with respect to a pair (X,∆), up to an (inevitable) error term involving ∆ and the Jacobian
ideal of X. The approximation we are looking for then follows by taking the nef Cartier
b-divisor Ck associated to J(X; ak•).

Now that we have defined the intersection product of nef Weil b-divisors, we can come
back to the definition of the volume. We set

Vol(X, 0) := −EnvX(AX/X)n,

which is shown to be finite (and non-negative). Once the volume is defined, the properties
stated in Theorem A follow smoothly from transformation laws of envelopes under finite
morphisms, see Proposition 2.17.

∗ ∗ ∗

The volume relates to other kind of invariants that were previously defined and are
connected to growth rate of pluricanonical forms.

In the 2-dimensional case, we first note that the definition (1) admits an equivalent
formulation in terms of the growth rate of a certain quotient of sections. It was indeed
shown in [Wah90] that if X is a surface then

dim
(
H0(X \ {0},mKX )/H0(Y,m(KY + E))

)
=

m2

2
Vol(X, 0) + o(m2) ,
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where the left-hand side is independent of the choice of Y and is equal by definition to
the m-th log-plurigenus λm(X, 0) in the sense of Morales [Mora87], a notion which makes
sense in all dimensions.

In line with this point of view M. Fulger [Fulg] has recently considered the following
invariant of an isolated singularity (X, 0):

VolF (X, 0) := lim sup
m

n!

mn
dim

(
H0(X \ {0},mKX )/H0(Y,m(KY + E))

)
.

It measures by definition the growth rate of λm(X, 0), or equivalently that of Watanabe’s
L2-plurigenera δm(X, 0) [Wat80, Wat87], and yields a finite number since

δm(X, 0) = λm(X, 0) +O(mn−1) = O(mn)

(see [Ish90], which contains a thorough introduction to these notions, and §5.2 below).
The notion of volume considered by Fulger also behaves well under finite morphisms,

and the analog of Theorem A holds true. Moreover, in contrast to our volume, VolF (X, 0)
is more accessible to explicit computations. On the other hand, our volume Vol(X, 0)
relates more closely to lc singularities (see question (c) below).

Fulger explores in [Fulg] how the two approaches compare to one another, proving that
Vol(X, 0) ≥ VolF (X, 0) for any isolated normal singularity (X, 0). Equality holds when X
is Q-Gorenstein, but can fail otherwise (cf. Example 5.4).

∗ ∗ ∗

This paper leaves several questions open.

(a) Is Vol(X, 0) a topological invariant of the link of the singularity?
(b) Does there exists a positive lower bound, only depending on the dimension, for the

volume of isolated Gorenstein singularities with positive volume?
(c) Is it true that Vol(X, 0) = 0 implies the existence of an effective Q-boundary ∆

such that the pair (X,∆) is log-canonical? (the converse being easily shown).

As explained in [Wah90], question (a) has a positive answer in dimension two. And
question (b) was solved by Ganter [Gan] for surfaces. In case of a positive answer to (a)
in general, it would follow (as in the two-dimensional case) that the volume Vol(X, 0) is
a characteristic number of the link of the singularity. It is to be noted that (c) fails with
VolF (X, 0) in place of Vol(X, 0), again by Example 5.4.

It seems likely that there should be examples where the volume Vol(X, 0) is irrational.
In [Urb10] Urbinati constructs examples where the log-discrepancy takes irrational values,
and in [Fulg] Fulger shows that similar examples have irrational volume VolF (X, 0) in his
sense.

∗ ∗ ∗

The plan of our paper is the following. In the first four sections, we work over a normal al-
gebraic variety. Section 1 contains basics on b-divisors. The notion of envelope is analyzed
in detail in §2. In this section we also formalize a measure of the failure of a Weil divisor to
be Cartier in terms of certain defect ideals, which are related to the notion of compatible
boundary. In §3 we turn to the definition of the log-discrepancy b-divisor and of multiplier
ideals. The key result of this section is the subadditivity theorem (Theorem 3.13) that we
deduce from Takagi’s work.
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The rest of the paper deals with normal isolated singularities. We define the volume of
such a singularity and prove Theorem A (i) and (iii) in §4. In §5 we complete the proof
of Theorem A, and compare our notion with the approaches via plurigenera and Fulger’s
work. Finally §6 focuses on endomorphisms, and contains a proof of Theorem B and C.

∗ ∗ ∗
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1. Shokurov’s b-divisors

In this section X denotes a normal variety defined over an algebraically closed field
of characteristic 0 and we set n := dimX. The goal of this section is to gather general
properties of Shokurov’s b-divisors over X, for which [Isk03] and [Cor] constitute general
references. Proposition 1.11 seems to be new.

1.1. The Riemann-Zariski space. The set of all proper birational morphisms π : Xπ →
X modulo isomorphism is (partially) ordered by π′ ≥ π iff π′ factors through π, and the
order is inductive (i.e. any two proper birational morphisms to X can be dominated by a
third one). The Riemann-Zariski space of X is defined as the projective limit

X = lim←−πXπ,

taken in the category of locally ringed topological spaces, each Xπ being viewed as a
scheme with its Zariski topology (note that X itself is not a scheme anymore).

As a topological space X may alternatively be viewed as the set of all valuation subrings
V ⊂ k(X) with non-empty center on X, endowed with the Krull-Zariski topology. Indeed
given a Krull valuation V the center cπ(V ) of V on Xπ is non-empty for each π by the
valuative criterion for properness, and the collection of all scheme-theoretic points cπ(V )
defines a point in c(V ) in X. By [ZS, p.122 Theorem 41] the mapping V 7→ c(V ) so defined
is a homeomorphism.

1.2. Divisors on the Riemann-Zariski space. Following Shokurov we define the group
of Weil b-divisors over X (where b stands for birational) as

Div(X) := lim←−π Div(Xπ)

where Div(Xπ) denotes the group of Weil divisors of Xπ. It can alternatively be thought
of as the group of Weil divisors on the Riemann-Zariski space X (hence the notation).

The group of Cartier b-divisors over X is in turn defined as

CDiv(X) := lim−→π CDiv(Xπ)

with CDiv(Xπ) denoting the group of Cartier divisors of Xπ. One can easily check that

CDiv(X) = H0(X,M∗
X/O

∗
X)

is indeed the group of Cartier divisors of the locally ringed space X.
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There is an injection CDiv(X) →֒ Div(X) determined by the cycle maps on birational
models Xπ.

An element of DivR(X) := Div(X)⊗R (resp. CDivR(X) := CDiv(X)⊗R) will be called
an R-Weil b-divisor (resp. R-Cartier b-divisor), and similarly with Q in place of R.

Let us now interpret these definitions in more concrete terms. A Weil divisor W
on X consists of a family of Weil divisors Wπ ∈ Div(Xπ) that are compatible under
push-forward, i.e. such that Wπ = µ∗Wπ′ whenever π′ factors through a morphism
µ : Xπ′ → Xπ. We say that Wπ (also denoted by WXπ) is the incarnation of W on the
model Xπ. By contrast, a Cartier divisor C on X is determined by its incarnation on
a high enough model, i.e. there exists π such that Cπ′ = µ∗Cπ for every π′ ≥ π, where
µ : Xπ′ → Xπ is the induced morphism. We shall say that C is determined on Xπ (or by π).

Weil b-divisors can also be interpreted as certain functions on the set of divisorial
valuations of X. Recall first that a divisorial valuation of X is a rank 1 valuation of
transcendence degree dimX−1 of the function field k(X), whose center onX is non-empty.
By a classical result of Zariski (see e.g. [KoMo, Lemma 2.45]) the divisorial valuations on
X are exactly those of the form ν = t ordE where t ∈ R∗

+ and E is a prime divisor on
some birational model Xπ over X.

Given an R-Weil b-divisor W over X we can then define (t ordE)(W ) as t times the
coefficient of E in Wπ. Setting gW (ν) := ν(W ) yields an identification W 7→ gW between
DivR(X) and the space of all real-valued 1-homogeneous functions g on the set of divisorial
valuations ofX satisfying the following finiteness property: the set of prime divisors E ⊂ X
(or equivalently on Xπ for any given π) such that g(ordE) 6= 0 is finite.

The topology of pointwise convergence therefore induces a topology of coefficient-wise
convergence on DivR(X), for which limj Wj = W iff limj ordE(Wj) = ordE(W ) for each
prime divisor E over X.

1.3. Examples of b-divisors. We introduce the main types of b-divisors we shall con-
sider.

Example 1.1. The choice of a non-zero rational form ω of top degree on X induces a canon-
ical b-divisor KX whose incarnation on Xπ is equal to the canonical divisor determined
by ω on Xπ.

Example 1.2. A Cartier divisor D on a given model Xπ induces a Cartier b-divisor D, its
pull-back to X. It is simply defined by pulling-back D to all models dominating Xπ. By
definition all Cartier b-divisors are actually obtained this way.

Example 1.3. Given a coherent fractional ideal sheaf a on X we denote by Z(a) the Cartier
b-divisor determined on the normalized blow-up Xπ of X along a by

a · OXπ = OXπ (Z(a)π).

In particular we have Z(f)π = −π∗ div(f) when f is a rational function on X. Note that
with this convention Z(a) is anti-effective when a is an actual ideal sheaf.

We record the following easy properties.

Lemma 1.4. Let a, b be two coherent fractional ideal sheaves on X.

• Z(a) ≤ Z(b) whenever a ⊂ b.
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• Z(a · b) = Z(a) + Z(b).
• Z(a+ b) = max{Z(a), Z(b)}, where the maximum is defined coefficient-wise.
• Z(a) = Z(b) iff the integral closures of a and b are equal.

Remark 1.5. Given an ideal sheaf a and a positive number s > 0 we set Z(as) := sZ(a).
Then (basically by definition) we have Z(as) = Z(bt) iff the ’R-ideals’ as and bt are
equivalent in the sense of Teissier and Kawakita.

Definition 1.6. Let W be an R-Weil b-divisor over X. We denote by OX(W ) the frac-
tional ideal sheaf of X whose sections on an open set U ⊂ X are the rational functions f
such that Z(f) ≤W over U .

We emphasize that the sheaf of OX -modules OX(W ) is not coherent in general, since we
are imposing infinitely many (even uncountably many) conditions on f (compare [Isk03]).
Note that π∗OXπ (Wπ) ⊂ τ∗OXτ (Wτ ) whenever π ≥ τ and

OX(W ) =
⋂

π

π∗OXπ (Wπ).

However if C is an R-Cartier b-divisor then we have OX(C) = π∗OXπ (Cπ) for each deter-
mination π of C, and OX(C) is in particular coherent in that case.

Cartier b-divisors associated with coherent fractional ideal sheaves can be characterized
as follows:

Lemma 1.7. A Cartier b-divisor C ∈ CDiv(X) is of the form Z(a) for some coherent
fractional ideal sheaf a on X iff C is relatively globally generated over X.

In particular the Cartier divisors Z(a) with a ranging over all coherent (fractional) ideal
sheaves of X generate CDiv(X) as a group.

Here we say that C is relatively globally generated over X iff so is Cπ for one (hence
any) determination π of C.

Proof. Let C be a Cartier b-divisor determined by π. To say that C is relatively globally
generated over X means by definition that the evaluation map

π∗π∗OXπ(Cπ)→ OXπ(Cπ)

is surjective. If this is the case we thus see that C = Z(a) with a := π∗OXπ (Cπ) = OX(C),
while the converse direction is equally clear. The second assertion now follows from the
fact that any Cartier divisor on a given model Xπ can be written as a difference of two
π-very ample (hence π-globally generated) Cartier divisors. �

1.4. Numerical classes of b-divisors. Let X → S be a projective morphism. We define
the space of 1-codimensional numerical classes by

N1(X/S) := lim−→πN
1(Xπ/S)

where the maps are given by pulling-back. We define in turn the space of (n − 1)-
dimensional numerical classes by

Nn−1(X/S) := lim←−πN
1(Xπ/S)

where the maps are given by pushing-forward and π now runs over all smooth (or at least Q-
factorial) birational models of X – so that the push-forward mapN1(Xπ′/S)→ N1(Xπ/S)
is well-defined for π′ ≥ π.
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Each N1(Xπ/S) is a finite dimensional R-vector space and we endow N1(X/S) and
Nn−1(X/S) with their natural inductive and projective limit topologies respectively.
The cycle maps induce a natural continuous injection with dense image N1(X/S) →
Nn−1(X/S). There are also natural surjections CDivR(X) → N1(X/S) and DivR(X) →
Nn−1(X/S), but one should be careful that the latter map is not continuous with respect
to coefficient-wise convergence in general.

Example 1.8. Consider an infinite sequence Cj of (−1)-curves on X = P2 blown-up at 9
points. We then have Cj → 0 coefficient-wise but the numerical classes [Cj ] ∈ N1(X) do
not tend to zero since C2

j = −1 for each j.

Lemma 1.9. Let π : Xπ → X be a birational model of X and let α ∈ N1(Xπ/X). Then
there exists at most one π-exceptional R-Cartier divisor D on Xπ whose numerical class
is equal to α.

Proof. Let D be a π-exceptional and π-numerically trivial R-Cartier divisor. We are to
show that D = 0. Upon pulling-back D to a higher birational model, we may assume
that π is the blow-up of X along a subscheme of codimension at least two. If we denote
by Ej the π-exceptional divisors we then have on the one hand D =

∑
j djEj and on the

other hand there exists positive integers aj such that F :=
∑

j ajEj is π-antiample. Now

set t := maxj dj/aj . If we assume by contradiction that D 6= 0 then upon replacing D by
−D we may assume that t > 0. Now D − tF is effective and there exists j such that Ej

is not contained in its support. If C ⊂ Ej is a general curve in a fiber of π we then have
(D − tF ) · C ≥ 0 since C is not contained in the support of the effective divisor D − tF ,
which contradicts the fact that D − tF is π-ample. �

Even assuming that Xπ is smooth, it is not true in general that any class α ∈ N1(Xπ/X)
can be represented by a π-exceptional R-divisor (since π might for instance be small,
i.e. without any π-exceptional divisor). It is however true when X is Q-factorial, and for
any normal X when dimX = 2 thanks to Mumford’s numerical pull-back.

Using these remarks we may now prove the following simple lemma which enables to
circumvent the discontinuity of the quotient map DivR(X)→ Nn−1(X/S).

Lemma 1.10.

(a) Let Wj be a sequence (or net) of R-Weil b-divisors which converges to an R-Weil
b-divisor W coefficient-wise. If there exists a fixed finite dimensional vector space
V of R-Weil divisors on X such that Wj,X ∈ V for all j then [Wj ] → [W ] in
Nn−1(X/S).

(b) Let conversely αj → α be a convergent sequence (or net) in Nn−1(X/S). Then
there exist representatives Wj,W ∈ DivR(X) of αj and α respectively and a finite
dimensional vector space V of R-Weil divisors on X such that
• Wj →W coefficient-wise.
• Wj,X ∈ V for all j.

If αj ∈ N1(X/S) then Wj can be chosen to be R-Cartier.

Proof. For each smooth model π the existence of V yields a finite dimensional space Vπ of
R-divisors on Xπ such that Wj,π ∈ Vπ for all j. The natural linear map Vπ → N1(Xπ/S) is
of course continuous since both spaces are finite dimensional, and it follows that [Wj,π]→
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[Wπ] in N1(Xπ/S) for each smooth model. Since smooth models are cofinal in the family
of all models we conclude as desired that [Wj]→ [W ] in Nn−1(X/S).

We now consider the converse. Let Xπ be a fixed smooth model of X. For each
j αj − αj,π (resp. α − απ) is exceptional over Xπ. By the above remarks it is thus
uniquely represented by an R-Weil b-divisor Zj (resp. Z) that is exceptional over Xπ.
Since (αj − αj,π)π′ converges to (α − απ)π′ in N1(Xπ′/Xπ) for each π′ ≥ π it follows by
uniqueness of Zj that Zj → Z coefficient-wise.

On the other hand since N1(Xπ/S) is finite dimensional there exists a finite dimensional
R-vector space V of R-divisors on Xπ such that V → N1(Xπ/X) is surjective. This map
is therefore open and we may thus find representatives Cj ∈ V of αj,π converging to a

representative C ∈ V of απ. Setting Wj := Zj + Cj concludes the proof. �

1.5. Functoriality. Given a morphism φ : X → Y between normal varieties it is imme-
diate to see that pushing forward and pulling back respectively induce homomorphisms
φ∗ : Div(X)→ Div(Y) and φ∗ : CDiv(Y)→ CDiv(X) in a functorial way.

In what follows we furthermore assume that φ : X → Y is dominant and generically
finite.

Proposition 1.11. Let φ : X → Y be a dominant generically finite morphism. Then
φ∗ CDiv(X) ⊂ CDiv(Y).

Proof. The assertion is obvious when φ is birational because we are just shifting models
in that case. Using the Stein factorization of φ we may thus assume that φ is finite
(and still dominant). By Lemma 1.7 it is then enough to show that for every coherent
fractional ideal sheaf a on X there exists a coherent fractional ideal sheaf b on Y such
that φ∗Z(a) = Z(b). In fact we claim that

(2) φ∗Z(a) = Z(NX/Y (a))

where NX/Y (a) denotes the image of a under the norm homomorphism (compare [EGA4,
Définition 21.5.5]).

More precisely pick an affine chart U ⊂ Y . Since the restriction φ−1(U) → U is finite,
φ−1(U) is affine and a is thus generated by its global sections g on φ−1(U). For each such
g its norm is defined by setting

NX/Y (g)(x) =
∏

φ(y)=x

g(y)

for every smooth point x ∈ U over which φ is étale and by extending it to a regular
function on U by normality. We then define NX/Y (a)(U) as the OU -module generated by
all NX/Y (g) with g as above.

Let us now prove (2). Pick a prime divisor E on a birational model Y ′ → Y and choose
a birational model X ′ → X such that φ lifts to a morphism φ′ : X ′ → Y ′. Note that
φ′ is proper and generically finite. Let (Ei)i be the (finitely many) prime divisors of X ′

dominating E, so that φ∗Ei = ciE for some positive integer ci. Then we have

ordE(φ∗Z(a)) =
∑

i

ci ordEi
Z(a) = −

∑

i

ci ordEi
(a)

by definition of φ∗. On the other hand, let V ⊂ Y ′ be an affine chart containing a point of
E. The ideal sheaf NX/Y (a) ·OY ′ is generated, over V , by the functions NX′/Y ′(g) where
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g ranges over all global sections of a · OX′ on (φ′)−1(V ). We have

ordE NX′/Y ′(g) =
∑

ci ordEi
(g)

hence

ordE NX/Y (a) = min{ordE NX′/Y ′(g), g ∈ H0((φ′)−1(V ), a · OX′)}

= min{
∑

ci ordEi
(f), f ∈ a}

which proves the claim since we have ordEi
(f) = ordEi

(a) for each i if f ∈ a is a general
element. �

Let us now consider the pull-back operator φ∗ : CDiv(Y) → CDiv(X). Still assuming
that φ is generically finite and dominant we are going to show that φ∗ extends in a natural
way to Div(Y) → Div(X). Indeed given a divisorial valuation ν on X it is well-known
that the valuation φ∗ν defined by

(φ∗ν)(f) := ν(f ◦ φ)

is a divisorial valuation on Y (since the restriction of the valuation ring of ν to C(Y ) has
transcendence degree dimY − 1 by [ZS, VI.6, Corollary 1]).

Given a prime divisor E over X we thus have φ∗ ordE = b ordF for some positive number
b and some prime divisor F over Y . The coefficient b is actually an integer and can be
described as follows: there exist birational models X ′ → X and Y ′ → Y such that E
(resp. F ) is a prime divisor on X ′ (resp. Y ′) and such that the rational lift φ′ : X ′

99K Y ′

of φ sends the generic point of E to that of F . We then have b = ordE((φ
′)∗F ) (the

pull-back is well-defined since it is only considered at the generic point of F and Y ′ is
regular in codimension 1).

Definition 1.12. Let φ : X → Y be a generically finite dominant morphism. If W is a
Weil b-divisor over Y we define its pull-back φ∗W to be the b-divisor over X characterized
by ν(φ∗W ) = (φ∗ν)(W ) for every divisorial valuation ν.

This is indeed a Weil b-divisor since each prime divisor E on X such that
(φ∗ ordE)(W ) 6= 0 is either mapped to a prime divisor F on Y such that ordF (W ) 6= 0 or
is contracted by φ, so that the set of all such prime divisors E is finite.

Proposition 1.13. Suppose φ : X → Y is a generically finite dominant morphism of
normal varieties, and let e(φ) ∈ N∗ be its degree. Then we have

φ∗φ
∗W = e(φ)W

for every W ∈ Div(Y).

The proof is left to the reader.

2. Nef envelopes

In this section X still denotes an arbitrary normal variety (over an algebraically closed
field of characteristic zero). We reinterpret the pull-back construction of [dFH09] as a nef
envelope, which shows in particular that it coincides with Mumford’s numerical pull-back
on surfaces. Section 2.5 introduces the defect ideal of a Weil divisor, measuring its failure
to be Cartier, and a precise description of the defect ideal is obtained.
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2.1. Graded sequences and nef envelopes. Recall that a• = (am)m≥0 is a graded
sequence of fractional ideal sheaves if a0 = OX , each am is a coherent fractional ideal
sheaf of X and ak · am ⊂ ak+m for every k,m. We shall say that a• has linearly bounded
denominators if there exists a (fixed) Weil divisor D on X such that OX(mD) · am ⊂ OX

for all m.
Let us first attach an R-Weil b-divisor to any graded sequence of ideal sheaves with

linearly bounded denominators:

Proposition 2.1. Suppose that a• = (am)m≥0 is a graded sequence of fractional ideals
sheaves am with linearly bounded denominators. Then we have

1
lZ(al) ≤

1
mZ(am)

for every m divisible by l and the sequence 1
mZ(am) converges coefficient-wise to an R-Weil

b-divisor Z(a•).

Proof. All this follows from the super-additivity property

Z(am) + Z(an) ≤ Z(am+n)

since the condition that a• has linearly bounded denominators guarantees that the se-
quence 1

m ordE Z(am) is bounded below for each prime divisor E over X and even identi-
cally zero for all but finitely many prime divisors E on X. �

Lemma 2.2. Let a• be a graded sequence of fractional ideal sheaves on X with linearly
bounded denominators. Then we have Z(a•) = 1

m0
Z(am0

) for some m0 iff the graded

OX -algebra
⊕

m≥0 am of integral closures is finitely generated.

Proof. Assume that Z(a•) =
1
m0

Z(am0
) for a given m0, so that Z(akm0

) = kZ(am0
) for all

k. Let π be the normalized blow-up of X along am0
. One then easily checks that

akm0
= π∗OXπ (kZ (am0

))

for all k. Since Z(am0
)π is π-globally generated this implies that the OX-algebra

⊕
k akm0

is
finitely generated, hence so is its finite integral extension

⊕
m am. The converse implication

is left to the reader. �

Definition 2.3. Let D be an R-Weil divisor on Xπ for a given π. The nef envelope
Envπ(D) of D is defined as the R-Weil b-divisor associated with the graded sequence
π∗OXπ (mD), m ≥ 0.

When π is the identity we write EnvX for Envπ.

Remark 2.4. If D is an R-Weil divisor on X then −EnvX(−D)π coincides by definition
with π∗D in the sense of [dFH09, Definition 2.9].

Proposition 2.5. Let D,D′ be two R-Weil divisors on a model Xπ. Then we have:

• Envπ(D +D′) ≥ Envπ(D) + Envπ(D
′).

• Envπ(tD) = tEnvπ(D) for each t ∈ R+

Proof. For each m ≥ 0 we have

(π∗OXπ (mD)) · (π∗OXπ(mD′)) ⊂ π∗OXπ(m(D +D′))

whence the first point.
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In order to prove the second point we may assume that D is effective (since we may
add to D the pull-back of an appropriate Cartier divisor of X to make it effective).
Now observe that Envπ(mD) = mEnvπ(D) for each positive integer m since Envπ(D) =
lim 1

mZ(π∗OXπ (mD)), hence Envπ(tD) = tEnvπ(D) for each t ∈ Q∗
+. On the other hand

D 7→ Envπ(D) is obviously non-decreasing, so if we pick t ∈ R∗
+ and approximate it from

below and from above by rational numbers sj, tj we get

sj Envπ(D) = Envπ(sjD) ≤ Envπ(tD) ≤ Envπ(tjD) = tj Envπ(D)

hence the result. �

Linearity of nef envelopes fails in general. The obstruction to linearity will be studied
in greater detail in Section 2.5 (see also Example 2.21 and [dFH09]).

Corollary 2.6. For every finite dimensional vector space V of R-Weil divisors on Xπ

and every divisorial valuation ν the map D 7→ ν(Envπ(D)) is continuous on V .

Proof. Proposition 2.5 implies that D 7→ ν(Envπ(D)) is a concave function on V and the
result follows. �

Proposition 2.7. For every R-Weil divisor D on X the incarnation (EnvX(D))X of
EnvX(D) on X coincides with D.

Proof. If D is a Weil divisor on X then we have Z(OX(D))X = D. Indeed this means
that ordE OX(D) = − ordE D for each prime divisor E of X, which holds true since X,
being normal, is regular at the generic point of E.

As a consequence we get D = (EnvX(D))X when D is a Q-Weil divisor on X, and the
general case follows by density, using Corollary 2.6. �

2.2. Variational characterization of nef envelopes. Let X → S be a projective
morphism. In the usual theory of b-divisors one says that an R-Cartier b-divisor C is
relatively nef over S (or S-nef for short) if Cπ is S-nef for one (hence any) determination π
of C. Following [BFJ08, KuMa08] we extend this definition to arbitrary R-Weil b-divisors:

Definition 2.8. Let X → S be a projective morphism. We define Nef(X/S) ⊂ Nn−1(X/S)
as the closed convex cone generated by all S-nef classes β ∈ N1(X/S), i.e. all classes of
S-nef R-Cartier b-divisors.

Since the usual notion of nefness is preserved by pull-back, it is immediate to check
that S-nef classes in the sense of the above definition are also preserved by pull-back. On
the other hand nefness is in general not preserved under push-forward when dimX > 2,
and the incarnations Wπ of an S-nef R-Weil b-divisor are therefore not S-nef in general.

Given a projective morphism Y → S recall that the S-movable cone Mov(Y/S) ⊂
N1(Y/S) is the closed convex cone Mov(Y/S) generated by the numerical classes of all
Cartier divisors D on Y whose S-base locus has codimension at least two.

We now have the following alternative description of nef b-divisors:

Lemma 2.9. Let X → S be a projective morphism. Then we have

Nef(X/S) = proj lim
π

Mov(Xπ/S)

where the limit is taken over all smooth (or Q-facforial) models Xπ. In other words an
R-Weil b-divisor W is S-nef iff Wπ is S-movable on each smooth (or Q-factorial) model
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Xπ. In particular the restriction of (the class of) Wπ to any prime divisor of Xπ is
S-pseudoeffective.

Proof. Let α ∈ Nn−1(X/S). Since the latter is endowed with the product topology the
sets

Vπ,U := {β ∈ Nn−1(X/S), βπ ∈ U}

where π ranges over all smooth models of X and U ⊂ N1(Xπ/S) ranges over all conical
open neighborhoods of απ form a neighborhood basis of α.

We infer by definition that α is S-nef iff for every π and U there exists an S-nef class
β ∈ N1(X/S) such that βπ ∈ U . On the other hand since U is conical it is immediate to
see that β may be assumed to be the class of an S-globally generated Cartier b-divisor,
and the result follows. �

The next result is a limiting case of Lemma 1.7.

Lemma 2.10. Let a• be a graded linearly bounded denominators. Then the R-Weil b-
divisor Z(a•) is X-nef.

Proof. Since a• has linearly bounded denominators it is in particular clear that there exists
a finite dimensional vector space V of R-Weil divisors on X such that Z(am) ∈ V for all
m. By Lemma 1.10 it thus follows that [ 1mZ(am)] converges to [Z(a•)] in Nn−1(X/X).
But each Z(am) is X-globally generated by Lemma 1.7, and we thus conclude that Z(a•)
is X-nef �

Proposition 2.11 (Negativity Lemma). Let W be an X-nef R-Weil b-divisor over X.
Then for each π we have W ≤ Envπ(Wπ).

The following argument provides in particular an alternative proof of the well-known
negativity lemma [KoMo, Lemma 3.39].

Proof. Let Xπ be a fixed model of X.
Step 1. Let C be an X-globally generated Cartier b-divisor, determined on some

model Xτ that may be assumed to dominate Xπ. As in the proof of Lemma 1.7 we have
C = Z(OX(C)) since C is X-globally generated, and we infer that C ≤ Envπ(Cπ) since
τ ≥ π implies

OX(C) = τ∗OXτ (Cτ ) ⊂ π∗OXπ (Cπ).

Step 2. Let C be an X-nef R-Cartier b-divisor, determined on a model Xτ that
may again be assumed to dominate Xπ. We may then find a sequence of X-very ample
Cartier divisors Aj on Xτ and a sequence tj ∈ R∗

+ such that tjAj → Cτ coefficient-wise
while staying in a fixed finite dimensional vector space of R-divisors on Xτ . By Step
1 and Proposition 2.5 we have tjAj ≤ Envπ(tj(Aj)π) for each j, hence C ≤ Envπ(Cπ)
by Corollary 2.6. This step recovers in particular the usual statement of the negativity
lemma.

Step 3. Let W be an arbitrary X-nef R-Weil b-divisor. By Lemma 1.10 there exists
a net Wj of X-nef R-Cartier divisors such that Wj → W coefficient-wise and Wj,X stays
in a fixed finite dimensional space of R-Weil divisors on X. The result now follows by
another application of Corollary 2.6. �

As a consequence we get the following variational characterization of nef envelopes.
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Corollary 2.12. If D is an R-Weil divisor on Xπ then Envπ(D) is the largest X-nef
R-Weil b-divisor W such that Wπ ≤ D. In particular we have:

• Envπ(D) = D if D is R-Cartier and X-nef.
• The b-divisor Envπ(D) is R-Cartier, determined by a given τ ≥ π, iff the incarna-
tion of Envπ(D) on Xτ is R-Cartier and X-nef.

Proof. The R-Weil b-divisor Envπ(D) is X-nef by Lemma 2.10. We also clearly have
1
mZ(π∗OXπ(mD))π ≤ D, hence Env(D)π ≤ D in the limit. Conversely if Z is an X-nef
R-Weil b-divisor such that Zπ ≤ D then Z ≤ Envπ(Zπ) ≤ Envπ(D) by the negativity
lemma. �

As an illustration we now prove:

Proposition 2.13. Assume that X has klt singularities in the sense of [dFH09], i.e. there
exists an effective Q-Weil divisor ∆ such that KX + ∆ is Q-Cartier and (X,∆) is klt.
Then EnvX(D) is an R-Cartier b-divisor for every R-Weil divisor D on X. When D has
Q-coefficients we even have EnvX(D) = 1

mZ(OX(mD)) for some m.

The result easily follows from [Kol08, Exercise 109], but we provide some details for the
convenience of the reader.

Note that the analogous result for Envπ(D), D being a Weil divisor on a higher model
Xπ, fails even when X is smooth (cf. [Cut00, Kür03] for an explicit example).

Proof. Since (X,∆) is klt it follows from [BCHM10] that there exists a Q-factorialization
π : Xπ → X, i.e. a small birational morphism π such that Xπ is Q-factorial. Denote by
∆̂π and D̂π the strict transforms on Xπ of ∆ and D respectively. Since π is small we have
π∗(KX +∆) = KXπ + ∆̂π, which shows that (Xπ, ∆̂π) is klt, hence so is (Xπ, ∆̂π + εD̂π)

for 0 < ε ≪ 1. By applying [BCHM10] to εD̂π, which is π-numerically equivalent to

KXπ + ∆̂ + εD̂ as well as π-big (since π is birational) we infer the existence of a new Q-

factorialization τ : Xτ → X such that the strict transform D̂τ of D on Xτ is furthermore
X-nef. Since τ is small it is easily seen that τ∗OXτ (mD̂τ ) = OX(mD) for all m, hence

Envτ (D̂τ ) = EnvX(D), and it follows by Corollary 2.12 that EnvX(D) is the R-Cartier

b-divisor determined by D̂τ .
When D has rational coefficients the base-point free theorem shows that D̂τ is X-

globally generated, so that
⊕

m≥0

OX(mD) =
⊕

m≥0

τ∗OXτ (mD̂τ )

is finitely generated over OX . We thus have EnvX(D) = 1
mZ(OX(mD)) for some m. �

2.3. Nef envelopes of Weil b-divisors. The next result is a variant in the relative case
of [BFJ08, Proposition 2.13] and [KuMa08, Theorem D]:

Proposition 2.14. Let W be an R-Weil b-divisor. If the set of X-nef R-Weil b-divisors
Z such that Z ≤W is non-empty then it admits a largest element.

We shall say that the nef envelope of W is well-defined if the assumption of the lemma
holds. We then denote the largest element in question by EnvX(W ) and call it the nef
envelope of W .
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Proof. Every Z as in the lemma satisfies Z ≤ Envπ(Wπ) for all π by Corollary 2.12, which
also implies that π 7→ Envπ(Wπ) is non-increasing, i.e.

Envπ′(Wπ′) ≤ Envπ(Wπ)

whenever π′ ≥ π. If there exists at least one Z as above then it follows that EnvX(W ) :=
limπ Envπ(Wπ) is well-defined as a b-divisor and satisfies EnvX(W ) ≥ Z for every such
Z. There remains to show that EnvX(W ) is X-nef and satisfies EnvX(W ) ≤ W . But
the existence of Z guarantees the existence a finite dimensional vector space V of R-Weil
divisors on X such that Envπ(Wπ)X ∈ V for all π. Since Envπ(Wπ) converges to EnvX(W )
coefficient-wise, we conclude as before by Lemma 1.10 that EnvX(W ) is X-nef, whereas
EnvX(W ) ≤W follows from Envπ(Wπ)τ ≤Wτ for τ ≤ π by letting π →∞. �

Remark 2.15. Note that the proof gives:

EnvX(W ) = inf
π

Envπ(Wπ) .

If W is an R-Cartier b-divisor then we have

EnvX(W ) = Envπ(Wπ)

for each determination π.

Proposition 2.16. Let (Wi)i∈I be a net of b-divisors decreasing to W such that EnvX(W )
is well-defined. Then EnvX(Wi) decreases to EnvX(W ).

Proof. Since Wi ≥ W for all i, the net EnvX(Wi) decreases to a b-divisor Z ≥ EnvX(W ).
Pick any π. Since Wi,π → Wπ, we have EnvX(Wi) ≤ Envπ(Wi,π) → Envπ(Wπ). Letting
i→∞, we get Z ≤ Envπ(Wπ). We conclude using the preceding remark. �

Proposition 2.17. Suppose φ : X → Y is a finite dominant morphism of normal varieties.
Let W be any R-Weil b-divisor over Y whose nef envelope EnvY(W ) is well-defined. Then
EnvX(φ

∗W ) is also well-defined and we have

EnvX(φ
∗W ) = φ∗ EnvY(W ).

We similarly have

EnvX(φ∗D) = φ∗ EnvY (D)

for every R-Weil divisor D on Y .

Proof. Since EnvY(W ) is Y -nef, its pull-back φ∗ EnvY(W ) is Y -nef as well, hence also
X-nef. Since we have φ∗ EnvY(W ) ≤ φ∗W this shows that EnvX(φ

∗W ) is well-defined
and satisfies φ∗ EnvY(W ) ≤ EnvX(φ

∗W ) by Proposition 2.14.
Conversely, Lemma 2.18 below shows that φ∗ EnvX(φ

∗W ) is Y -nef. Since
φ∗ EnvX(φ

∗W ) ≤ φ∗φ
∗W = e(φ)W by Proposition 1.13 it follows that

φ∗ EnvX(φ
∗W ) ≤ e(φ) EnvY(W ) = φ∗φ

∗ EnvY(W )

by Proposition 1.13 again, and we conclude by applying Lemma 2.19 below to Z :=
EnvX(φ

∗W )− φ∗ EnvY(W ). �

Lemma 2.18. Let φ : X → Y be a finite dominant morphism between normal varieties
and let W be an X-nef R-Weil b-divisor over X.Then φ∗W is Y -nef.
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Proof. By Lemma 1.10 there exists a net Wj of X-nef R-Cartier b-divisors such that
Wj → W coefficient-wise and Wj,X stays in a fixed finite dimensional vector of R-Weil
divisors on X. It follows that the divisors (φ∗Wj)Y also stay in a fixed finite dimensional
vector space of R-Weil divisors on Y , and it is immediate to check from the definition that
φ∗Wj → φ∗W coefficient-wise. It thus follows that [φ∗Wj] → [φ∗W ] in Nn−1(Y/Y ) and
we are thus reduced to the case where W is R-Cartier.

Now let π be a determination of W . By Corollary 2.12 we have in particular
W = Envπ(Wπ), so that the fractional ideals am := π∗O(mWπ) satisfy W = lim 1

mZ(am)
coefficient-wise, and it is clear that the Z(am)X stay in a fixed finite dimensional vector
space by monotonicity. We are now reduced to the case where W = Z(a) for some frac-
tional ideal, in which case we have φ∗Z(a) = Z(NX/Y (a)) by (the proof of) Proposition
1.11. We conclude that φ∗Z(a) is Y -globally generated, hence in particular Y -nef, by
Lemma 1.7. �

Lemma 2.19. Let φ : X → Y be a generically finite dominant morphism. Suppose Z ≥ 0
is an R-Weil b-divisor over X. Then φ∗Z = 0 only if Z = 0.

Proof. Suppose that there is a prime divisor E lying in some model X ′ over X such
that ordE Z > 0. Since φ is generically finite, we can choose a model Y ′ over Y such
that E′ = φ′(E) is a prime divisor in Y ′ (where φ′ is the rational lift of φ). Then
ordE′(φ∗Z) ≥ ordE Z > 0, hence φ∗Z cannot be zero. �

2.4. The case of surfaces and toric varieties.

Theorem 2.20. Let X be a normal surface and let π : Xπ → X be a smooth (or at least
Q-factorial) model.

(i) If D is an R-divisor on Xπ then the b-divisor Envπ(D) is R-Cartier, determined
on Xπ, and

D = Envπ(D)π + (D − Envπ(D)π)

coincides with the relative Zariski decomposition of D.
(ii) If D is an R-Weil divisor on X then EnvX(D) = π∗D where π∗D is the numerical

pull-back of D in the sense of Mumford.

Recall that the numerical pull-back of D is defined as the orthogonal projection of
the strict transform of D parallel to the space of π-exceptional divisors, i.e. the unique
R-divisor D′ on Xπ such that π∗D

′ = D and D′ · E = 0 for all π-exceptional divisors E.

Proof. Let us prove (i). The first assertion follows from Corollary 2.12, since each movable
class is nef when dimX = 2.

The divisor P := Envπ(D)π is an X-nef R-divisor on Xπ such that D ≥ P and P ≥ Q
for every X-nef divisor Q on Xπ such that D ≥ Q, by Corollary 2.12 again. This is one
of the characterizations of the (relative) Zariski decomposition, which concludes the proof
of (i).

Let us now prove (ii). Let π∗D be the numerical pull-back of D to Xπ. Since π∗D is
π-nef it follows that C := π∗D is X-nef and satisfies CX = D, hence C ≤ EnvX(D) by
Corollary 2.12. Conversely set D′ := EnvX(D)π. We claim that D′ = π∗D. Taking this
for granted for the moment we then get EnvX(D) ≤ C by the negativity lemma and the
result follows.
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Since we have π∗D
′ = D by Proposition 2.7, the claim will follow if we show that

D′ · E = 0 for each π-exceptional prime divisor E on Xπ. This is a consequence of the
variational characterization of EnvX(D). Indeed note that D′ ·E ≥ 0 since D′ is π-nef by
Lemma 2.9. If we assume by contradiction that D′ · E > 0 then D′ + εE is still π-nef for
0 < ε ≪ 1 and C := D′ + εE is then an X-nef b-divisor with CX = D. It follows that
C ≤ EnvX(D) by Corollary 2.12, hence D′ + εE ≤ D′, a contradiction. �

Let us now decribe the case of toric varieties. We refer to [Fult, Oda] for basics on toric
varieties. Let N be a free abelian group of rank n, and suppose we are given two rational
polyhedral fans ∆,∆′ in N such that ∆ ⊂ ∆′. For the sake of simplicity we assume ∆
and ∆′ have the same support S. Denote by X(∆) and X(∆′) the corresponding toric
varieties. Since ∆ is a subset of ∆′, we have an induced birational map π : X(∆′)→ X(∆).

Let D be an R-Weil toric divisor on X(∆). It is given by a real valued function hD
on the set of primitive vectors ∆(1) generating the 1-dimensional faces of ∆, and D is
R-Cartier iff hD extends to a continuous function on S that is linear on each face. In that
case D is π-nef iff hD is convex on the union S0 of all faces of ∆′ that contain a ray in
∆′(1) \∆(1). By Corollary 2.12 it follows that the function attached to Envπ(D)π is the
supremum of all 1-homogeneous functions on the convex set S such that g ≤ hD on ∆(1)
and g is convex on the subset S0.

Example 2.21. Take ∆ in R3 the fan having a single 3-dimensional cone generated by the
four rays (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1). Then X(∆) is an affine variety having an
isolated singularity at the origin and is locally isomorphic to a quadratic cone there.

Let ∆′ be the regular fan having (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1), (1, 1, 0) as vertices.
The natural map X(∆′)→ X(∆) is a proper birational map which gives a (non-minimal)
desingularization of X(∆). Denote by Ev the divisor associated to the corresponding ray
v ∈ R3 either in X(∆) or X(∆′).

Now take D1 = E100 +E010 +E001, and D2 = E100 +E001 +E11−1. Then D1 +D2 is a
Cartier divisor on X(∆) whose support function is given by 2x1+x2+2x3 in the standard
coordinates (x1, x2, x3) ∈ R3. Hence ordE110

EnvX(D1 +D2) = 3. On the other hand, for
any convex function g having value 1 at (0, 0, 1) and 0 at (1, 1,−1), we have g(1, 1, 0) ≤ 1,
hence ordE110

EnvX(D1) ≤ 1. The same argument shows that ordE110
EnvX(D2) ≤ 1,

hence ordE110
EnvX(D1) + ordE110

EnvX(D2) < ordE110
(EnvX(D1 +D2)).

2.5. Defect ideals.

Definition 2.22. The defect ideal of an R-Weil divisor D on X is defined as

d(D) := OX(D) · OX(−D).

Note that d(D) ⊂ OX(D − D) = OX is an ideal sheaf. The following proposition
summarizes immediate properties of defect ideals.

Proposition 2.23. Let D,D′ be R-Weil divisors on X. Then we have:

(i) d(D + C) = d(D) for every Cartier divisor C.
(ii)

d(D) · OX(D +D′) ⊂ OX(D) · OX(D′) ⊂ OX(D +D′).

(iii)
φ−1dX(D) · OY (φ

∗D) ⊂ φ−1OX(D) · OY ⊂ OY (φ
∗D)

for every finite dominant morphism φ : Y → X.
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It follows in particular that d•(D) = (d(mD))m≥0 is a graded sequence of ideals. By
definition we get

Z(d•(D)) = EnvX(D) + EnvX(−D).

Definition 2.24. We shall say that an R-Weil divisor D on X is numerically Cartier
if EnvX(−D) = −EnvX(D). In the special case where D = KX we shall say that X is
numerically Gorenstein if KX is numerically Cartier.

By Proposition 2.5 it is straightforward to see that numerically Cartier divisors form
an R-vector space. We also have:

Lemma 2.25. Let D be an R-Weil divisor on X. Then D is numerically Cartier iff

EnvX(D +D′) = EnvX(D) + EnvX(D′)

for every R-Weil divisor D′ on X.

Proof. Assume that D is numerically Cartier, so that EnvX(−D) = −EnvX(D). Then
we have on the one hand EnvX(D +D′) ≥ EnvX(D) + EnvX(D′) and on the other hand
EnvX(−D) +EnvX(D+D′) ≤ EnvX(D′), and additivity follows. The converse is equally
easy and left to the reader. �

Example 2.26 (Surfaces). Since Mumford’s pull-back of Weil divisors on surfaces is linear,
it follows from Theorem 2.20 that all R-Weil divisors on a normal surfaceX are numerically
Cartier.

Example 2.27 (Toric varieties). If D is a toric R-Weil divisor on a toric variety X then
it follows from the discussion from the last section that D is numerically Cartier iff D is
already R-Cartier.

Example 2.28 (Cone singularities). Let (V,L) be a smooth projective variety endowed with
an ample line bundle L. Recall that the affine cone over (V,L) is the algebraic variety
defined by

X = C(V,L) := Spec



⊕

m≥0

H0(V,mL)


 .

It has an isolated normal singularity at its vertex 0 ∈ X, and is obtained by blowing-
down the zero section E ≃ V in the total space Y of the dual bundle L∗. We denote by
π : Y → X the contraction map, which is isomorphic to the blow-up of X at 0. Every
divisor D on V induces a Weil divisor C(D) on X, and the map D 7→ C(D) induces an
isomorphism Pic(V )/ZL ≃ Cl(X) onto the divisor class group of X.

Lemma 2.29. Let (V,L) be a smooth polarized variety and let D be an R-Weil divisor on
V .

(1) C(D) is R-Cartier iff D and L are R-linearly proportional in Pic(X)⊗ R.
(2) C(D) is numerically Cartier iff D and L are numerically proportional in N1(V ).

Proof. (1) follows from the description of the divisor class group of X = C(V ) recalled
above. Let us prove (2). Let π : Y → X be the blow-up of X at its vertex 0. The
restriction to E ≃ V of the strict transform C(D)′ is linearly equivalent to D. If D is nu-
merically Cartier then the restriction to E of EnvX(−C(D))Y = −EnvX(C(D))Y is both
pseudoeffective and anti-pseudoeffective by Lemma 2.9, so EnvX(C(D))Y is numerically
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equivalent to 0 in N1(Y/X). But EnvX(C(D))Y −C(D)′ is π-exceptional, hence propor-
tional to E, and we conclude as desired that D ≡ C(D)′|E is proportional to L ≡ −E|E
in N1(V ).

Conversely assume that D ≡ aL are proportional in N1(V ). Then C(D)′ and E are
proportional in N1(Y/X), hence there exists t ∈ R such that EnvX(C(D))Y ≡ −tE in
N1(Y/X). Since −E is X-ample and the numerical class of EnvX(C(D))Y is in the X-
movable cone it follows that t ≥ 0, which implies that EnvX(C(D))Y is X-nef. This
in turn shows as in the proof of Theorem 2.20 that the b-divisor EnvX(C(D)) is R-
Cartier, determined on Y by C(D)′ − aE. If we replace D by −D then we get that
EnvX(C(D)) is determined on Y by C(−D)′+aE = − (C(D)′ − aE), i.e. EnvX(−C(D)) =
−EnvX(C(D)) holds as desired. �

We now give a more precise description of defect ideals, which is basically an elaboration
of [dFH09, Theorem 5.4]. As a matter of terminology we introduce:

Definition 2.30. We say that a determination π of an R-Cartier b-divisor C is a log-
resolution of C if Xπ is smooth, the exceptional locus Exc(π) has codimension one and
Exc(π) + Cπ has SNC support.

Another R-Cartier b-divisor C ′ is then said to be transverse to π and C if π is also a
log-resolution of C + C ′ and C ′

π has no common component with Exc(π) + Cπ.

Every R-Cartier b-divisor admits a log-resolution by Hironaka’s theorem.

Proposition 2.31. Let D be a Weil divisor on X and assume that X is quasi-projective.
Then we have

d(D) =
∑

E

OX(−E)

where the sum is taken over the set of all prime divisors E of X such that D−E is Cartier
(and this set is in particular non-empty).

Given a Cartier b-divisor C and a joint log-resolution π of C and OX(D) the sum can
be further restricted to those E such that Z(OX(E)) is transverse to π and C.

Proof. Observe first that

OX(−E) ⊂ OX(−E) · OX(E) = d(E) = d(D)

for all effective Weil divisors E such that D − E is Cartier.
Since X is quasi-projective there exists a line bundle L on X such that L ⊗ OX(D)

is generated by a finite dimensional vector space of global sections V , which we view as
rational sections of L. For each s ∈ V set Es := D + div(s), which is an effective Weil
divisor congruent to D modulo Cartier divisors.

We claim that there exists a (non-empty) Zariski open subset U of V such that

(3) d(D) =
∑

s∈U

OX(−Es)

and

• Es is a prime divisor on X,
• Z(OX(Es)) is transverse to π and C,
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for each s ∈ U , which will conclude the proof of Proposition 2.31.
Since π dominates the blow-up of OX(D) it is easily seen that the effective divisors

Ms := Z(OX(Es))π = Z(OX(D))π + π∗ div(s)

move in a base-point free linear system on Xπ as s moves in V . We may thus find a
non-empty Zariski open subset U of V such that for each s ∈ U we have

• Ms has no common component with Exc(π) + Cπ,
• Ms is smooth and irreducible,
• Ms + Exc(π) + Cπ has SNC support,

where the last two points follow from Bertini’s theorem. Since π∗Ms = Z(OX(D))X +
div(s) = Es by Proposition 2.7, we see in particular that Es is a prime divisor for each
s ∈ U and Z(OX(Es)) is transverse to π and C. There remains to show (3). Observe that

s · OX(−D) ⊂ L⊗ OX(− div(s)) · OX(−D) = L⊗ OX(−Es)

for each s ∈ V . Since V generates L⊗ OX(D) and U is open in V we obtain

L⊗ d(D) = L⊗ OX(D) · OX(−D)

=
∑

s∈U

s · OX(−D) ⊂ L⊗
∑

s∈U

OX(−Es)

and the result follows since L is invertible. �

3. Multiplier ideals and approximation

In this section X still denotes a normal variety. Our main goal here is to show how to
obtain from Takagi’s subadditivity theorem for multiplier ideals of pairs a similar statement
for the general multiplier ideals defined in [dFH09]. This result will in turn enable us to
approximate nef envelopes of Cartier divisors from above by nef Cartier divisors, in the
spirit of [BFJ08].

3.1. Log-discrepancies. We shall say that an R-Weil divisor ∆ on X is an R-boundary
(resp. a Q-boundary, resp. an m-boundary) if KX + ∆ is R-Cartier (resp. KX + ∆ is
Q-Cartier, resp. m(KX +∆) is Cartier).

Let ω be a rational top-degree form on X and consider the associated canonical b-divisor
KX. Given an R-boundary ∆ on X we define the relative canonical b-divisor of (X,∆) by

KX/(X,∆) = KX −KX +∆,

which is independent of the choice of ω. If E is a prime divisor above X then ordE KX/(X,∆)

is nothing but the discrepancy of the pair (X,∆) along E. Following [dFH09] we introduce
on the other hand:

Definition 3.1. The m-limiting relative canonical b-divisor is defined by

Km,X/X := KX + 1
mZ(OX(−mKX))

and the relative canonical b-divisor is

KX/X = KX + EnvX(−KX).
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They are both independent of the choice of ω and are exceptional over X by Proposition
2.7. Note that Km,X/X → KX/X coefficient-wise as m→∞.

Recall that the log-discrepancy of a pair (X,∆) along a prime divisor E above X is
defined by adding 1 to the discrepancy. Let us reformulate this by introducing the ’pseudo
b-divisor’ 1X, i.e. the homogeneous function on the set of divisorial valuations of X such
that

(t ordE)(1X) = t

for each divisorial valuation t ordE , so that ordE(KX/(X,∆) + 1X) is now equal to the log-
discrepancy of (X,∆) along E. We also consider the reduced exceptional b-divisor 1X/X ,
which takes value 1 on the prime divisors that are exceptional over X, and value zero on
the prime divisors contained in X.

The following well-known properties show that KX + 1X is better behaved than KX.

Lemma 3.2. Assume that X is smooth and let E be a reduced SNC divisor on X. Then
we have KX + 1X ≥ KX + E.

This result is [Kol97, Lemma 3.11], whose proof we reproduce for the convenience of
the reader.

Proof. Let F be a smooth irreducible divisor in some model π : Xπ → X. We may choose
local coordinates (x1, ..., xn) near the generic point of π(F ) such that the local equation
of E writes x1 . . . xp = 0 for some p = 0, ..., n, and we let z be a local equation of F at its

generic point. We then have π∗xi = zbiui where ui is a unit at the generic point of F and
bi ∈ N vanishes for i > p. It follows that π∗dxi = biz

bi−1uidz + zbidui, hence

ordF (KX − π∗KX) = ordF (KXπ/X)

= ordF (π
∗(dx1 ∧ ... ∧ dxn)) ≥ −1 +

∑

i

bi = −1 + ordF E.

�

Lemma 3.3. Let φ : X → Y be a generically finite dominant morphism between normal
varieties. Let ωY be a rational top-degree form on Y , ωX be its pull-back to X and KY,
KX be the associated canonical b-divisors. Then we have

KX + 1X = φ∗(KY + 1Y).

Proof. Let F be a prime divisor on a smooth birational model Y ′ → Y and pick a smooth
birational model X ′ → X such that φ lifts to a morphism φ′ : X ′ → Y ′ and such that
there exists a prime divisor E on X ′ with φ′(E) = F . We then have φ∗ ordE = b ordF
with b := ordE(φ

′∗F ). The same computation as above shows that the ramification order
of φ′ at the generic point of E is equal to b− 1, so that we have

ordE(KX′ − (φ′)∗KY ′) = b− 1.

It follows that

ordE(KX′) = b ordF (KY ′) + b− 1,

i.e.

ordE(KX + 1X) = (b ordF )(KY + 1Y)

as was to be shown. �
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Definition 3.4. The m-limiting log-discrepancy b-divisor Am,X/X and the log-discrepancy
b-divisor AX/X are the Weil b-divisors defined by

Am,X/X := Km,X/X + 1X/X

and

AX/X := KX/X + 1X/X .

Note that limm→∞Am,X/X = AX/X coefficient-wise.
If φ : X → Y is a finite dominant morphism recall that the ramification divisor Rφ is

the effective Weil divisor on X such that

KX = φ∗KY +Rφ,

where KY and KX are defined by ωY and φ∗ωY respectively, the divisor Rφ being again
independent of the choice of ωY .

Corollary 3.5. Let φ : X → Y be a finite dominant morphism between normal varieties.
Then we have

0 ≤ EnvX(Rφ) ≤ φ∗AY/Y −AX/X ≤ −EnvX(−Rφ)

and the second (resp. third) inequality is an equality when X (resp. Y ) is numerically
Gorenstein.

Proof. Since φ is finite, we have

φ∗AY/Y −AX/X = φ∗(KY/Y + 1Y)− (KX/X + 1X)

= φ∗ EnvY (−KY )− EnvX(−KX) = EnvX(−φ∗KY )− EnvX(−KX)

by Lemma 3.3 and Proposition 2.17. Now we have on the one hand

EnvX(−φ∗KY ) = EnvX(−KX +Rφ) ≥ EnvX(−KX) + EnvX(Rφ)

and this is an equality when X is numerically Gorenstein by Lemma 2.25. On the other
hand

EnvX(−KX) = EnvX(−φ∗KY −Rφ) ≥ EnvX(−φ∗KY ) + EnvX(−Rφ)

which is an equality if Y is numerically Gorenstein by Proposition 2.17 and Lemma 2.25.
The result follows, noting that Env(Rφ) ≥ 0 since Rφ ≥ 0. �

3.2. Multiplier ideals. The following definition is a straightforward extension of the
usual notion of multiplier ideal with respect to a pair.

Definition 3.6. Let ∆ be an effective R-boundary on X and let C be an R-Cartier b-
divisor. We define the multiplier ideal sheaf of C with respect to (X,∆) as the fractional
ideal sheaf

J((X,∆);C) := OX

(
⌈KX/(X,∆) + C⌉

)
.

We have in particular

J((X,∆);C) ⊂ OX(⌈CX −∆X⌉),

which shows that the (fractional) multiplier ideal is an actual ideal as soon as CX ≤ 0.
By Lemma 3.2 we have

J((X,∆);C) = π∗OXπ (⌈KXπ − π∗(KX +∆) + Cπ)⌉)
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for each joint log-resolution π of (X,∆) and C. This shows in particular that J((X,∆);C)
is coherent, and in case C = Z(ac) for a coherent ideal sheaf a and c > 0 we recover

J((X,∆);Z(ac)) = J((X,∆); ac)

where the right-hand side is defined in [Laz, Definition 9.3.56]. We similarly introduce
the following straightforward generalization of the notion of multiplier ideal defined in
[dFH09]:

Definition 3.7. Let C be an R-Cartier b-divisor over X.

• For each positive integer m the m-limiting multiplier ideal sheaf of C is the frac-
tional ideal sheaf

Jm(C) := OX

(
⌈Km,X/X +C⌉

)
.

• The multiplier ideal sheaf J(C) is the unique maximal element in the family of
fractional ideal sheaves Jm(C), m ≥ 1.

Here again Lemma 3.2 implies that

Jm(C) = π∗OXπ

(
⌈KXπ + 1

m Z(OX(−mKX))π + Cπ⌉
)

for each joint log-resolution π of OX(−mKX) and C, which shows in particular that Jm(C)
is coherent. We also have

Jm(C) ⊂ OX(⌈CX⌉),

which implies the existence of a unique maximal element in the set of fractional ideals
{Jm(C), m ≥ 1}, by using as usual

1

lm
Z(OX(−lmKX)) ≥ max

(
1

m
Z(OX(−mKX)),

1

l
Z(OX(−lKX))

)
.

As in [dFH09] we now relate the above two notions of multiplier ideals, obtaining in
particular a more precise version of [dFH09, Theorem 5.4].

Theorem 3.8. Assume that X is quasi-projective, let C be an R-Cartier b-divisor and let
m ≥ 2. Then we have

d(mKX) =
∑

∆

OX(−m∆)

where ∆ ranges over the set of all effective m-boundaries such that

Jm(C) = J((X,∆);C),

(so that this set is in particular non-empty).

Proof. Let π be a joint log-resolution of a and OX(−mKX). By Proposition 2.31 applied
to −mKX we have

d(mKX) =
∑

E

OX(−E)

where E ranges over all prime divisors such that mKX + E is Cartier and Z(OX(E)) is
transverse to π and C. There remains to set ∆ := 1

mE and to observe that ⌊∆⌋ = 0, so
that Jm(C) = J((X,∆);C) by Lemma 3.9 below. �

Lemma 3.9. Let C be an R-Cartier b-divisor, let π be a joint log-resolution of C and
OX(−mKX) and let ∆ be an effective m-boundary.
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• We have

J((X,∆);C) ⊂ Jm(C).

• If ⌊∆⌋ = 0 and Z(OX(m∆)) is transverse to π and C then

J((X,∆);C) = Jm(C).

Proof. Since m(KX +∆) is Cartier we have

OX(−mKX)) = OX(m∆) · OX(−m(KX +∆))

hence

(4) 1
mZ(OX(−mKX)) = 1

mZ(OX(m∆))−KX +∆

and the first point follows because Z(OX(m∆)) ≥ 0.
Assume now that ⌊∆⌋ = 0 and that Z(OX(m∆)) is transverse to π and C. By (4) we

have

⌈KXπ − π∗(KX +∆) + Cπ⌉ = ⌈KXπ + 1
m Z(OX(−mKX))π + Cπ⌉ − ⌊

1
mZ(OX(m∆))π⌋.

Indeed, by the transversality assumption 1
mZ(OX(m∆)π has no common component with

Cπ and no common component with KXπ + 1
mZ(OX(−mKX))π, the latter being π-

exceptional by Proposition 2.7. But by transversality we also have 1
mZ(OX(m∆))π = ∆̂π,

the strict transform of ∆ on Xπ, and the result follows since ⌊∆̂π⌋ = 0. �

As a consequence we get the following extension of [dFH09, Corollary 5.5] to b-divisors.

Corollary 3.10. Let X be a normal quasi-projective variety and let C be an R-Cartier
b-divisor.

• The m-limiting multiplier ideal Jm(C) is the largest element of the set of multiplier
ideals J((X,∆);C) where ∆ ranges over all effective m-boundaries on X.
• The multiplier ideal J(C) is the largest element of the set of multiplier ideals
J((X,∆);C) where ∆ ranges over all effective Q-boundaries on X.

3.3. Subadditivity and approximation. Recall that the Jacobian ideal sheaf JacX ⊂
OX of X is defined as the n-th Fitting ideal Fittn(Ω1

X) with n = dimX. Locally, if
X ⊂ CN is defined by equations h1 = · · · = hm = 0, where hi ∈ C[x1, . . . , xN ], then JacX
is generated by the (r × r)-minors of the matrix (∂hi/∂xj), where r = N − n.

Takagi obtained in [Tak10] the following general subadditivity result for multiplier ideals
with respect to a pair:

Theorem 3.11. [Tak10] Let X be a normal variety and let ∆ be an effective Q-Weil
divisor such that m(KX +∆) is Cartier. If a, b are two coherent ideal sheaves on X and
c, d > 0 then we have

1
mZ(OX(−m∆)) + Z(JacX) + Z(J((X,∆); ac · bd)) ≤ Z(J((X,∆); ac)) +Z(J((X,∆); bd)).

When X is smooth and ∆ = 0 the ’error term’ 1
mZ(OX(−m∆)) + Z(JacX) vanishes

and the statement reduces (up to integral closure) to the original subadditivity theorem
of [DEL00]. We now show how to deduce from Takagi’s result a subadditivity theorem for
multiplier ideals in the sense of [dFH09].
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Theorem 3.12 (Subadditivity). Let X be a normal variety. If a, b are two coherent ideal
sheaves on X and c, d > 0 then we have

Z(d•(KX)) + Z(JacX) + Z(J(acbd)) ≤ Z(J(ac)) + Z(J(bd)).

The results in [Tak06, Sch09], combined, suggest the possibility that the term
Z(d•(KX)) might be superfluous.

Proof. The result is local so we may assume that X is affine (and in particular quasi-
projective). We have by definition

J(ac · bd) = Jm(ac · bd)

for all sufficiently large and divisible m. Since Z(a•(KX)) is the limit of 1
mZ(d(mKX)) it

is thus enough to show that

1
mZ(d(mKX)) + Z(JacX) + Z(Jm(ac · bd)) ≤ Z(Jm(ac)) + Z(Jm(bd)).

Now Theorem 3.8 yields d(mKX) =
∑

∆OX(−m∆), with ∆ ranging over all m-boundaries
such that

J((X,∆); ac · bd) = Jm(ac · bd)

Since J((X,∆); ac) ⊂ Jm(ac) and the similar statement for bd hold at any rate by Lemma
3.9, the desired result follows from Takagi’s theorem. �

Given a graded sequence of ideal sheaves a• = (am)m≥0 we define the asymptotic mul-

tiplier ideal J(ac•) as the unique maximal element of {J(a
c/m
m ), m ≥ 1} – which exists by

noetherianity since c
lmZ(alm) ≥ max( clZ(al),

c
mZ(am)).

Theorem 3.13. Let X be a normal variety and let a• be a graded sequence of ideal sheaves
on X. Then we have

Z(d•(KX)) + Z(JacX) ≤ Z(J(a•))− Z(a•) ≤ AX/X .

In particular 1
kZ(J(ak•))→ Z(a•) coefficient-wise as k →∞, uniformly with respect to a•.

This result is an extension to the singular case of [BFJ08, Proposition 3.18], which was
in turn a direct elaboration of the main result of [ELS03].

Proof. For each k ≥ 1 we have

Z(J(a
1/k
k )) ≤ 1

kZ(ak) +AX/X

by definition of multiplier ideals and the right-hand inequality follows.
On the other hand set W := Z(d•(KX)) + Z(JacX). Theorem 3.12 yields

(k − 1)W + kZ(J(ak)) ≤ kZ(J(ak)
1/k),

and the left-hand inequality follows by using the trivial inequality

Z(ak) + Z(J(OX)) ≤ Z(J(ak)),

dividing by k and letting k →∞. �
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4. Normal isolated singularities

From now on X has an isolated normal singularity at a given point 0 ∈ X, and m ⊂ OX

denotes the maximal ideal of 0. We first show how to extend to this setting the intersection
theory of nef b-divisors introduced in the smooth case in [BFJ08]. The main ingredient to
do so is the approximation theorem from the previous section. We next define the volume
of (X, 0) as the self-intersection of the nef envelope of the log-canonical b-divisor.

4.1. b-divisors over 0. Observe that every Weil b-divisor W over X decomposes in a
unique way as a sum

W = W 0 +WXr0,

where all irreducible components of W 0 have center 0, and none of WXr0 have center 0.
If W = W 0, then we say that W lies over 0 and we denote by

Div(X, 0) ⊂ Div(X)

the subspace of all Weil b-divisors over 0 ∈ X. An element of DivR(X, 0) is the same thing
as a real-valued homogeneous function on the set of divisorial valuations on X centered
at 0.

Example 4.1. For every coherent ideal sheaf a on X we have

Z(a)0 = lim
k→∞

Z(a+mk).

On the other hand we say that a Cartier b-divisor C ∈ CDiv(X) is determined over 0 if
it admits a determination π which is an isomorphism away from 0, and we say that C is a
Cartier b-divisor over 0 if C furthermore lies over 0. We denote by CDiv(X, 0) the space
of Cartier b-divisors over 0. There is an inclusion

CDiv(X, 0) ⊂ CDiv(X) ∩Div(X, 0)

but this is in general not an equality. The following example was kindly suggested to us
by Fulger.

Example 4.2. Consider (X, 0) = (Cn, 0). It is a toric variety defined by the regular fan
∆0 in Rn having the canonical basis as vertices. Any proper birational toric modification
π : X(∆)→ Cn is determined by a refinement ∆ of ∆0. We assume X(∆) to be smooth.
Denote by V (σ) the torus invariant subvariety of X(∆) associated to a face σ of ∆.

For any vertex v of ∆, let D(v) be the Cartier b-divisor determined in X(∆) by the
divisor V (R+v). Observe that for any face σ of ∆, we have π(V (σ)) = 0 iff σ is included
in the open cone (R∗)n+. Whence D(v) lies over 0 iff v ∈ (R∗)n+. And D(v) is determined
over 0 iff any face of ∆ containing v is included in (R∗)n+.

Example 4.3. Let a ⊂ OX be an ideal. Then Z(a) is determined over 0 as soon as a is locally
principal outside 0 since the normalized blow-up of X along a is then an isomorphism away
from 0. If a is furthermore m-primary then Z(a) is a Cartier b-divisor over 0.

Definition 4.4. We shall say than an R-Weil b-divisor W over 0 is bounded below if
there exists c > 0 such that W ≥ cZ(m).

Recall that Z(m) ≤ 0, so that the condition means that the function ν 7→ ν(W )/ν(m)
is bounded below on the set of divisorial valuations centered at 0.
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Proposition 4.5. (AX/X)0 is bounded below.

Proof. First note that AX/X ≥ A1,X/X by general properties of nef envelopes, and hence it

suffices to check that (A1,X/X)0 is bounded below. Let π be a resolution of the singularity
of X, chosen to be an isomorphism away from 0. For each divisorial valuation ν centered
at 0 we have

ν(A1,X/X) = ν
(
(KX + 1X)−KXπ

)
+ ν

(
KXπ + Z(OX(−KX))

)
.

The first term in the right-hand side is non-negative since it is equal to the log-
discrepancy of the smooth variety Xπ along ν. On the other hand the Cartier b-divisor(
KXπ + Z(OX(−KX))

)
is determined over 0 since OX(−KX) is locally principal outside

0 by assumption (cf. Example 4.3) and it also lies over 0 by Proposition 2.7. We thus see
that (

KXπ + Z(OX(−KX))
)
∈ CDiv(X, 0)

and we conclude by Lemma 4.6 below. �

Lemma 4.6. Every C ∈ CDiv(X, 0) is bounded below.

Proof. Let π be a determination of C which is an isomorphism away from 0. The result
follows directly from the fact that Z(m)π contains every π-exceptional prime divisor E in
its support (since ordE is centered at 0). �

4.2. Nef b-divisors over 0. We shall that an R-Weil b-divisor over 0 is nef if its class
in N1(X/X) is X-nef. If W is an R-Weil b-divisor over 0 that is bounded below then
EnvX(W ) is well-defined, nef, and it lies over 0.

By a result of Izumi [Izu81] for every two divisorial valuations ν, ν ′ on X centered at 0
there is a constant c = c(ν, ν ′) > 0 such that

c−1ν(f) ≤ ν ′(f) ≤ cν(f)

for every f ∈ OX . This result extends to nef b-divisors by approximation:

Theorem 4.7. Given two divisorial valuations ν, ν ′ centered at 0 there exists c > 0 such
that

cν(W ) ≤ ν ′(W ) ≤ c−1ν(W )

for every X-nef R-Weil b-divisor W such that W ≤ 0 (which amounts to WX ≤ 0 by the
negativity lemma).

Proof. Since Envπ(Wπ) decreases coefficient-wise to W as π →∞ by Proposition 2.14, it
is enough to treat the case where W = EnvX(C) for some R-Cartier b-divisor C ≤ 0. But
we then have

W = lim
m→∞

1
mZ(OX(mC))

with OX(mC) ⊂ OX so we are reduced to the case of an ideal, for which the result directly
follows from Izumi’s theorem. �

Corollary 4.8. For each X-nef R-Weil b-divisor W such that W ≤ 0 and W 0 6= 0 there
exists ε > 0 such that

W ≤ εZ(m).



30 S. BOUCKSOM, T. DE FERNEX, AND C. FAVRE

Proof. Since W 0 6= 0 there exists a divisorial valuation ν0 centered at 0 such that ν0(W ) <
0, and it follows that ν(W ) < 0 for all divisorial valuations centered at 0 by Theorem 4.7.

Now let π be the normalized blow-up of m. Since Wπ contains each π-exceptional prime
in its support there exists ε > 0 such that Wπ ≤ εZ(m)π and the result follows by the
negativity lemma. �

For nef envelopes of Weil divisors with integer coefficients this result can be made
uniform as follows:

Theorem 4.9. There exists ε > 0 only depending on X such that

EnvX(−D) ≤ εZ(m)

for all effective Weil divisors (with integer coefficients) D on X containing 0.

Proof. By Hironaka’s resolution of singularities we may choose a smooth birational model
Xπ which dominates the blow-up of m and is isomorphic to X away from 0, and such
that there exists a π-ample and π-exceptional Cartier divisor A on Xπ. If we denote
by E1, ..., Er the π-exceptional prime divisors then A = −

∑
j ajEj with aj ≥ 1 by the

negativity lemma.
By the negativity lemma the desired result means that there exists ε > 0 such that for

each effective Weil divisor D through 0 on X we have

EnvX(−D)π ≤ εZ(m)π.

If we set cj(D) := − ordEj
EnvX(−D) then in view of Theorem 4.7 this amounts to proving

the existence of ε > 0 such that

max
1≤j≤r

cj(D) ≥ ε

for each D. Note that

(5)
∑

j

cj(D)Ej = −EnvX(−D)π − D̂π

by Proposition 2.7. Now we have on the one hand

−An−1 · EnvX(−D)π =
∑

ajEj ·A
n−2 · EnvX(−D)π

=
∑

j

aj(A|Ej
)n−2 · (EnvX(−D)π|Ej

) ≥ 0

since A|Ej
is ample and EnvX(−D)π|Ej

is pseudo-effective by Lemma 2.9. On the other
hand

−An−1 · D̂π =
∑

j

aj(A|Ej
)n−2 · (D̂π|Ej

) ≥ 1

since D̂π|Ej
is an effective Cartier divisor on Ej , and is non-zero for at least one j. We

thus get
∑

j cj(D)(Ej ·A
n−1) ≥ 1 from (5) and we infer that

max
j

cj(D) ≥ ε := 1/max
j

(Ej ·A
n−1).

�

We conclude this section by the following crucial consequence of Theorem 3.13.
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Theorem 4.10. Let C ∈ CDiv(X, 0) and set W := EnvX(C). Then there exists a sequence
of m-primary ideals bk and a sequence of positive rational numbers ck → 0 such that:

• ckZ(bk) ≥W for all k.
• limk→∞ ckZ(bk) = W coefficient-wise.

Proof. Consider the graded sequence of m-primary ideals am := OX(mW ) = OX(mC) and
set bk := J(ak•). By Theorem 3.13 we have in particular

Z(bk) ≥ kW + Z(d(KX)) + Z(JacX)

and 1
kZ(bk)→W coefficient-wise. Since 0 ∈ X is an isolated singularity we see that both

d(KX) and JacX are m-primary ideals and Lemma 4.6 yields c > 0 such that

Z(d(KX)) + Z(JacX) ≥ cZ(m).

On the other hand there exists ε > 0 such that W ≤ εZ(m) by Corollary 4.8 and we
conclude that there exists c > 0 such that

Z(bk) ≥ kW + cW

for all k. There remains to set ck := 1/(k + c). �

4.3. Intersection numbers of nef b-divisors. We indicate in this section how to extend
to the singular case the local intersection theory of nef b-divisors introduced in [BFJ08,
§4] in the smooth case. The main point is to replace the approximation result [BFJ08,
Proposition 3.13] by Theorem 4.10.

Let C1, ..., Cn be R-Cartier b-divisors over 0. Pick a common determination π which is
an isomorphism away from 0 and set

C1 · ... · Cn := C1,π · ... · Cn,π.

The right-hand side is well-defined since C1,π has compact support and it does not depend
on the choice of π.

Proposition 4.11. Let a1, . . . , an ⊂ OX be m-primary ideals. Then

−Z(a1) · ... · Z(an) = e(a1, ..., an)

where e(a1, ..., an) denotes the mixed multiplicity (see e.g. [Laz, p.91] for a definition).

This result if for instance a direct consequence of [Ram73].
The intersection numbers of nef R-Cartier b-divisors C1, ..., Cn, C

′
1, ..., C

′
n over 0 satisfy

the monotonicity property:

C1 · ... · Cn ≤ C ′
1 · ... · C

′
n

if Ci ≤ C ′
i for each i.

Definition 4.12. If W1, ...,Wn are arbitrary nef R-Weil b-divisors over 0 we set

W1 · ... ·Wn := inf
Ci≥Wi

(C1 · ... · Cn) ∈ [−∞,+∞[

where the infimum is taken over all nef R-Cartier b-divisors Ci over 0 such that Ci ≥Wi

for each i.
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Note that (W1 · ... ·Wn) is finite when all Wi are bounded below. This is for instance
the case if each Wi is the nef envelope of a Cartier b-divisor by Lemma 4.6.

The next theorem summarizes the main properties of the intersection product. The
non-trivial part of the assertion is additivity, which requires the approximation theorem.

Theorem 4.13. The intersection product (W1, . . . ,Wn) 7→ W1 · ... · Wn of nef R-Weil
b-divisors over 0 is symmetric, upper semi-continuous, and continuous along monotonic
families (for the topology of coefficient-wise convergence).

It is also homogeneous, additive, and non-decreasing in each variable. Furthermore,
W1 · ... ·Wn < 0 if Wi 6= 0 for each i.

Proof. We follow the same lines as [BFJ08, Proposition 4.4]. Symmetry, homogeneity and
monotonicity are clear. If Wi 6= 0 for all i then there exists ε > 0 such that Wi ≤ εZ(m)
for all i by Corollary 4.8, hence

W1 · ... ·Wn ≤ εnZ(m)n = −εne(m) < 0

where e(m) is the Samuel multiplicity of m.
Let us prove the semi-continuity. Suppose that Wi 6= 0 for all i, and pick t ∈ R such

that W1 · ... ·Wn < t. By definition there exist nef R-Cartier b-divisors Ci over 0 such that
Wi ≤ Ci and C1 · ... · Cn < t. Replacing each Ci by (1 − ε)Ci we may assume Ci 6= Wi

while still preserving the previous conditions. Now consider the set Ui of all nef b-divisors
W ′

i such that W ′
i ≤ Ci. This is a neighborhood of Wi in the topology of coefficient-wise

convergence and (W ′
1 · ... ·W

′
n) < t for all W ′

i ∈ Ui. This proves the upper semi-continuity.
As a consequence we get the following continuity property: for all families Wj,k such

that

• Wj,k ≥Wj for all j, k and
• limk Wj,k = Wj for all j

we have limk W1,k · ... ·Wn,k = W1 · ... ·Wn. Indeed W1,k · ... ·Wn,k ≥W1 · ... ·Wn holds by
monotonicity and the claim follows by upper semi-continuity.

We now turn to additivity. Assume first that W ′, W1,W2, ...,Wn are nef envelopes of
Cartier b-divisors over 0. By Theorem 4.10 there exist two sequences C ′

k and Cj,k of nef
Cartier divisors above 0 such that Cj,k ≥ Wj and Cj,k → Wj as k → ∞, and similarly
for C ′

k and W ′. Since C1,k +C ′
k ≥W1 +W ′ also converges to W1 +W ′ the above remark

yields

(C1,k + C ′
k) · C2,k · ... · Cn,k → (W1 +W ′) ·W2 · ... ·Wn

On the other hand we have

(C1,k + C ′
k) · C2,k · ... · Cn,k = (C1,k · C2,k · ... · Cn,k) + (C ′

k · C2,k · ... · Cn,k)

where

(C1,k ·C2,k · ... ·Cn,k)→ (W1 ·W2 · ... ·Wn) and (C1,k ·C2,k · ... ·Cn,k)→ (W ′ ·W2 · ... ·Wn)

so we get additivity for nef envelopes.
In the general case let W ′,W1,W2, ...,Wn be arbitrary nef b-divisors over 0. We then

have Envπ(Wj,π) ≥ Wj and Envπ(Wj,π)→ Wj as π →∞ by Proposition 2.14 so we may
argue exactly as above to get the result.

Finally, the continuity along non-decreasing sequences is a direct adaptation of the
corresponding result in [BFJ11]. �
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The expected local Khovanskii-Teissier inequality holds:

Theorem 4.14. For all nef R-Weil b-divisors W1, ...,Wn above 0 we have

(6) |W1 · ... ·Wn| ≤ |W
n
1 |

1/n . . . |W n
n |

1/n.

In particular we have

|(W1 +W2)
n|1/n ≤ |W n

1 |
1/n + |W n

2 |
1/n .

Proof. Arguing as in the proof of Theorem 4.13 we may use Theorem 4.10 to reduce to
the case where Wi = Z(ai) for some m-primary ideals ai. In that case the result follows
from Proposition 4.11 and the local Khovanskii-Teissier inequality (cf. [Laz, Theorem 1.6.7
(iii)]). �

Proposition 4.15. Suppose φ : (X, 0) → (Y, 0) is a finite map of degree e(φ). Then for
all nef R-Weil b-divisors W1, . . . ,Wn over 0 ∈ Y we have:

(7) (φ∗W1) · ... · (φ
∗Wn) = e(φ)W1 · · · · ·Wn.

Proof. Arguing as in the proof of Theorem 4.13 by successive approximation relying on
Theorem 4.10, we reduce to the case where each Wj is R-Cartier over 0. Let π : Y ′ → Y
be a common determination of the Wj which is an isomorphism away from 0. Since
φ−1(0) = 0 there exists a birational morphism µ : X ′ → X which is an isomorphism away
from 0 such that φ lifts as a morphism φ′ : X ′ → Y ′, whose degree is still equal to e(φ)
and the result follows. �

Remark 4.16. For every graded sequence a• of m-primary ideals we have

−Z(a•)
n = lim

k→∞

dimC(OX/ak)

kn/n!
.

Indeed it was shown by Lazarsfeld and Mustaţǎ [LM09, Theorem 3.8] that the right-hand
side limit exists and coincides with limk→∞ e(ak)/k

n (which corresponds to a local version
of the Fujita approximation theorem). On the other hand Z(a•) is the non-decreasing
limit of 1

k!Z(ak!) hence Z(a•)
n = limk→∞Z(ak)

n/kn by using the continuity of intersection
numbers along non-decreasing sequence and the claim follows in view of Proposition 4.11.

4.4. The volume of an isolated singularity. By Proposition 4.5 the log-discrepancy
divisor AX/X is always bounded below. Its nef envelope EnvX(AX/X) is therefore well-
defined and bounded below as well, and we may introduce:

Definition 4.17. The volume of a normal isolated singularity (X, 0) is defined as

Vol(X, 0) := −EnvX
(
AX/X

)n
.

We have the following characterization of singularities with zero volume:

Proposition 4.18. Vol(X, 0) = 0 iff AX/X ≥ 0. When X is Q-Gorenstein, Vol(X, 0) = 0
iff it has log-canonical singularities.

Proof. By Theorem 4.13 we have Vol(X, 0) = 0 iff EnvX(AX/X) = 0, which is equivalent
to AX/X ≥ 0 since every X-nef b-divisor over 0 is antieffective by the negativity lemma.

When X is Q-Gorenstein, then AX/X = Am,X/X for any integer m such that mKX

is Cartier. We conclude recalling that X is log-canonical if the incarnation of the log-
discrepancy divisor Am,X/X in one (or equivalently any) log-resolution of X is effective. �
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Example 4.19. Let 0 ∈ X be the affine cone over a polarized variety (V,L) as in Example
2.28, and denote by π : Xπ → X the blow-up at 0, with exceptional divisor E ≃ V .
If Vol(X, 0) = 0 then we claim that −KV is pseudoeffective. Indeed we then have a =
ordE(AX/X) ≥ 0 by Proposition 4.18 and

KXπ + E +EnvX(−KX)π = aE

since E is the only π-exceptional divisor. Now EnvX(−KX)π restricts to a pseudoeffective
class in N1(E) by Lemma 2.9. The pseudoeffectivity of −KE follows by adjunction, and
we also see that −KE is big if the ’generalized log-discrepancy’ a is positive.

The volume satisfies the following basic monotonicity property:

Theorem 4.20. Let φ : (X, 0) → (Y, 0) be a finite morphism between normal isolated
singularities. Then we have

Vol(X, 0) ≥ e(φ)Vol(Y, 0),

with equality if φ is étale in codimension 1.

Proof. We have AX/X ≤ φ∗AY/Y by Corollary 3.5, and equality holds if and only if Rφ = 0,
i.e. iff φ is étale in codimension 1. The result follows immediately using Theorem 2.17 and
Proposition 4.15. �

5. Comparison with other invariants of isolated singularities

5.1. Wahl’s characteristic number. As recalled in the introduction, Wahl defined
in [Wah90] the characteristic number of a normal surface singularity (X, 0) as −P 2 of
the nef part P in the Zariski decomposition of KXπ + E, where π : Xπ → X is any
log-resolution of (X, 0) and E is the reduced exceptional divisor of π. The following re-
sult proves that the volume defined above extends Wahl’s invariant to all isolated normal
singularities.

Proposition 5.1. If (X, 0) is a normal surface singularity then Vol(X, 0) coincides with
Wahl’s characteristic number.

Proof. Let π : Xπ → X be log-resolution of (X, 0) and let E be its reduced excep-
tional divisor. By Theorem 2.20 we see that Envπ(AXπ/X) coincides with the nef part of
KXπ +E− π∗KX . Since the latter is π-numerically equivalent to KXπ +E it follows that
Envπ(AXπ/X) is π-numerically equivalent to the nef part P of KXπ + E, so that

−P 2 = −Envπ(AXπ/X)2.

On the other hand we claim that Envπ(AXπ/X) = EnvX(AX/X), which will conclude the
proof. Indeed on the one hand we have

EnvX(AX/X) ≤ Envπ(AXπ/X)

as for any Weil b-divisor. On the other hand Lemma 3.2 implies that

KX + 1X ≥ KXπ + E

over 0, hence AX/X ≥ AXπ/X , and we infer EnvX(AX/X) ≥ Envπ(AXπ/X) as desired. �

Proof of Theorem A. The definition of the volume is given in §4.4. Theorem A (i) is
precisely Theorem 4.20. Statement (ii) is Proposition 5.1. Statement (iii) is Proposi-
tion 4.18. �
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5.2. Plurigenera and Fulger’s volume. Let 0 ∈ X be (a germ of) an isolated singu-
larity and let π : Xπ → X be a log-resolution with reduced exceptional SNC divisor E.
One may then consider the following plurigenera (see [Ish90] for a review).

• Knöller’s plurigenera [Knö73], defined by

γm(X, 0) := dimH0(Xπ\E,mKXπ )/H
0(Xπ,mKXπ).

• Watanabe’s L2-plurigenera [Wat80], defined by

δm(X, 0) := dimH0(Xπ\E,mKXπ )/H
0(Xπ,mKXπ + (m− 1)E).

• Morales’ log-plurigenera [Mora87, Definition 0.5.4], defined by

λm(X, 0) := dimH0(Xπ\E,mKXπ )/H
0(Xπ,m(KXπ + E)).

These numbers do not depend on the choice of log-resolution. They satisfy

λm(X, 0) ≤ δm(X, 0) ≤ γm(X, 0) = O(mn),

and one may use them to define various notions of Kodaira dimension of an isolated
singularity.

In a recent work, Fulger [Fulg] has explored in more detail the growth of these numbers.
His framework is the following. Given a Cartier divisor D on Xπ, consider the local
dimension

h0loc(D) := dimH0(Xπ\E,D)/H0(Xπ,D) = dimOX(π∗D)/OX(D).

Observe that γm(X, 0) = h0loc(mKXπ ) and λm(X, 0) = h0loc(m(KXπ + E)). Fulger proves
that h0loc(mD) = O(mn) and defines the local volume of D by setting

volloc(D) := lim sup
m→∞

n!

mn
h0loc(mD) .

When the Cartier divisor D lies over 0 one has:

Proposition 5.2. Suppose D is a Cartier divisor in Xπ lying over 0. Then

volloc(D) = −EnvX(D)n .

Proof. We may assume D ≤ 0. The envelope of D is the b-divisor associated to the graded
sequence of m-primary ideals OX(−mD). The result follows from Remark 4.16. �

Fulger [Fulg] then introduces an alternative notion of volume of an isolated singularity
by setting:

VolF (X, 0) := volloc(KXπ + E).

Proposition 5.3. Vol(X, 0) = VolF (X, 0) if X is Q-Gorenstein.

Proof. For any integer m such that mKX is Cartier, one has AX/X = Am,X/X . Pick any

log-resolution π : Xπ → X. Then Lemma 3.2 applied to Xπ shows that AXπ/X ≤ AX/X .
In particular, these b-divisors share the same envelope. We conclude by Proposition 5.2
above. �

In general, Fulger proves that there is always an inequality

Vol(X, 0) ≥ VolF (X, 0).

We know by [Wah90] that in dimension two these volumes always coincide. In higher
dimension these two invariants may however differ, as shown by the following example.
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Example 5.4. Let (V,L) be a smooth polarized variety, let 0 ∈ X be the affine cone over
it and let π : Xπ → X be the blow-up of 0, with exceptional divisor E.

If V is uniruled (i.e. if KV is not pseudoeffective) then we have δm(X, 0) = 0 for all
m since H0(Xπ,mKXπ + pE)/H0(Y,mKXπ + (p − 1)E) embeds in H0(E,mKE + (p −
m)E|E) ≃ H0(V,mKV − (p −m)L), which vanishes if p ≥ m since L is ample and KV

is not pseudoeffective. If we choose V uniruled such that such that −KV is however not
pseudoeffective (for example V = C × P1 where C is a curve of genus at least 2) then
Example 4.19 shows on the other hand that Vol(X, 0) > 0. We thus get an example where
δm(X, 0) = 0 for all m (hence VolF (X, 0) = 0) but Vol(X, 0) > 0.

6. Endomorphisms

We apply the previous analysis to the study of normal isolated singularities admitting
endomorphisms.

6.1. Proofs of Theorems B and C. We start by proving the following result.

Theorem 6.1. Assume that X is numerically Gorenstein and let φ : (X, 0) → (X, 0) is
a finite endomorphism of degree e(φ) ≥ 2 such that Rφ 6= 0. Then there exists ε > 0 such
that AX/X ≥ −εZ(m).

Remark 6.2. When X is Q-Gorenstein or dimX = 2, the condition AX/X ≥ −εZ(m)
for some ε > 0 is equivalent to Am,X/X > 0 for some m. By Corollary 3.10 the latter
condition means in turn that X has klt singularities in the sense of [dFH09], i.e. there
exists a Q-boundary ∆ such that (X,∆) is klt. In a forthcoming work [BdFF] we shall
prove this result unconditionnally.

Remark 6.3. Tsuchihashi’s cusp singularities (see below) show that the assumption Rφ 6= 0
is essential even when KX is Cartier.

Proof. Since X is numerically Gorenstein Rφk = KX − (φk)∗KX is numerically Cartier for
each k and Corollary 3.5 yields

(φk)∗AX/X = AX/X +EnvX(Rφk).

On the other hand observe that Rφk =
∑k−1

j=0(φ
j)∗Rφ by the chain-rule. Each (φj)∗Rφ is

numerically Cartier as well, so that

EnvX(Rφk) =

k−1∑

j=0

(φj)∗ EnvX(Rφ)

by Lemma 2.25 and Proposition 2.17. Using Proposition 4.5 and Theorem 4.9 we thus
obtain c1, c2 > 0 such that

(φk)∗(AX/X) ≥ c1Z(m)− c2

k−1∑

j=0

(φj)∗Z(m)

for all divisorial valuations ν centered at 0 and all k. Since we have (φj)∗m ⊂ m it follows
that

(φk)∗AX/X ≥ −Z(m)(kc2 − c1).
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But the action of φk on divisorial valuations centered at 0 is surjective by [ZS]. We
furthermore have ν

(
(φk)∗AX/X

)
= ν

(
(φk)∗m

)
ν
(
AX/X

)
for each divisorial valuation ν

centered at 0 and there exists ck > 0 such that ν((φk)∗m) ≤ ckν(m) for all ν by Lemma
4.6. We thus get AX/X ≥ −εkZ(m) with

εk :=
kc2 − c1

ck
> 0

as soon as k > c1/c2. �

Proof of Theorem B. If φ : X → X is a finite endomorphism with e(φ) ≥ 2, then Theo-
rem A implies Vol(X, 0) ≥ 2Vol(X, 0) hence Vol(X, 0) = 0. When X is Q-Gorenstein and
φ is not étale in codimension 1, then X is klt by the previous theorem and Remark 6.2. �

Proof of Theorem C. By assumption, there exists an endomorphism F : V → V and an
ample line bundle L such that F ∗L ≃ dL for some d ≥ 2. The composite map

H0(V,mL)
F ∗

→H0(V,mF ∗L) ≃ H0(V, dmL)

induces an endomorphism of the finitely generated algebra
⊕

m≥0 H
0(V,mL) (which does

not preserve the grading). Since the spectrum of this algebra is equal to X = C(V ), we get
an induced endomorphism C(F ) on C(V ). It is clear that C(F ) is finite, fixes the vertex
0 ∈ X, and is not an automorphism. We conclude that Vol(X, 0) = 0, which implies that
−KV is pseudoeffective by Example 4.19. �

6.2. Simple examples of endomorphisms. Any quotient singularity admits finite en-
domorphisms of degree ≥ 2, and any toric singularity as well. We saw above examples of
endomorphisms on cone singularities. One can modify this construction to get examples
on other kind of simple singularities.

Consider a smooth projective morphism f : Z → C to a smooth pointed curve 0 ∈ C
and suppose given a non-invertible endomorphism φ such that f ◦φ = f that. Note that φ
is automatically finite since the injective endomorphism φ∗ of N1(Z/C) has to be bijective.

Assume that D ⊂ Z0 is a smooth irreducible ample divisor of the fiber Z0 over 0 that
does not intersect the ramification locus of φ and such that φ(D) ⊂ D. Denote by Y → Z
be the blow-up of Z along D. Then φ lifts to a rational self-map of Y over C, and the
fact that φ is étale around D implies that the indeterminacy locus of this rational lift is
contained in µ−1(φ−1(D) \D) hence in the strict transform E of Z0 on Y .

Since the conormal bundle of E in Y is ample, E contracts to a simple singularity 0 ∈ X
by [Gra62] (we are therefore dealing with an analytic germ 0 ∈ X in that case). The above
discussion shows that φ induces a finite endomorphism of (X, 0), which is furthermore not
invertible since φ was assumed not to be an automorphism.

Basic examples of this construction include deformations of abelian varieties having a
section, with φ the multiplication by a positive integer.

6.3. Endomorphisms of cusp singularities. Our basic references are [Oda, Tsu83].
Let C ⊂ Rn be an open convex cone in which is strict (i.e. its closure contains no line) and
let Γ ⊂ SL(n,Z) be a subgroup leaving C invariant, whose action on C/R∗

+ is properly
discontinuous without fixed point, and has compact quotient. Denote by

M := Γ\C/R∗
+
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the corresponding (n− 1)-dimensional orientable manifold.
Consider the convex envelope Θ of C ∩ Zn. It is proved in [Tsu83] that the faces of

Θ are convex polytopes contained in C and with integral vertices. Since Θ is Γ-invariant
the cones over the faces of Θ therefore give rise to a Γ-invariant rational fan Σ of Rn with
|Σ| = C ∪ {0}. This fan is infinite but is finite modulo Γ since M is compact.

The (infinite type) toric variety X(Σ) comes with a Γ-action which preserves the toric
divisor D := X(Σ) \ (C∗)n as well the inverse image of C by the map Log : (C∗)n → Rn

defined by
Log(z1, ..., zn) = (log |z1|, ..., log |zn|).

The Γ-invariant set U := Log−1(C) ∪D is open in X(Σ) and the action of Γ is properly
discontinuous and without fixed point on U . One then shows that the divisor E :=
D/Γ ⊂ U/Γ =: Y , which is compact since Σ is a finite fan modulo Γ, admits a strictly
pseudoconvex neighbourhood in Y , so that it can be contracted to a normal singularity
0 ∈ X, which is furthermore isolated since Y −E is smooth. Note that Y , though possibly
not smooth along E, has at most rational singularities since U does, being an open subset
of a toric variety. The isolated normal singularity (X, 0) is called the cusp singularity
attached to (C,Γ). It is shown in [Tsu83] that (C,Γ) is determined up to conjugation in
GL(n,Z) by the (analytic) isomorphism type of the germ (X, 0).

Lemma 6.4. The canonical divisor KX is Cartier, X is lc but not klt.

Remark 6.5. Cusp singularities are however not Cohen-Macaulay in general, hence not
Gorenstein.

Proof. The n-form Ω = dz1
z1
∧ ... ∧ dzn

zn
on the torus (C∗)n extends to X(Σ) with poles of

order one along D. It is Γ-invariant since Γ is a subgroup of SL(n,Z) thus it descends to
a meromorphic form on U/Γ with order one poles along D/Γ. We conclude KX is zero
and that X is lc but not klt since π : (Y,E) → X is crepant and (X(Σ),D) is lc but not
klt as for any toric variety. �

Now let A ∈ GL(n,R) with integer coefficient which preserves C and commutes with Γ
(e.g. a homothety). Then Z induces a regular map on U that descends to the quotient Y
and preserves the divisors E and we get a finite endomorphism φ : (X, 0)→ (X, 0) whose
topological degree is equal to |detA|.

Example 6.6 (Hilbert modular cusp singularities). Let K be a totally real number field of
degree n over Q and let N be a free Z-submodule of K of rank n (for instance N = OK).
Using the n distinct embeddings of K into R we get a canonical identification K⊗QR = Rn

and we may view N as a lattice in Rn. Now set C := (R∗
+)

n ⊂ NR and consider the group

Γ+
N of totally positive units of u ∈ O∗

K such that uN = N , where u is said to be totally
positive if its image under any embedding of K in R is positive. By Dirichlet’s unit
theorem, Γ+

N is isomorphic to Zn−1, and there is a canonical injective homomorphism

Γ+
N →֒ SL(N). For any subgroup Γ ⊂ Γ+

N of finite index, the triple (N,C,Γ) then satisfies
the requirements of the definition of a cusp singularities. The singularities obtained by
this construction are called Hilbert modular cusp singularities.
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