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DEGREE GROWTH OF MONOMIAL MAPS
AND MCMULLEN’S POLYTOPE ALGEBRA

CHARLES FAVRE AND ELIZABETH WULCAN

ABSTRACT. We compute all dynamical degrees of monomial maps. Our approach is
based on the isomorphism between the polytope algebra of P. McMullen and the universal
cohomology of complete toric varieties.

1. INTRODUCTION

Some of the most basic information associated to a rational dominant map f : P% --» P4
is provided by its degrees degy(f) := deg f~'(Ly), where L is a generic linear subspace of
P? of codimension k. From a dynamical point of view, it is important to understand the
behaviour of the sequence degy (f™) as n — oo. It is not difficult to see that deg, (f™*") <
deg;,(f™) degy(f™), and thus following Russakovskii-Shiffman [RS] we can define the k-
th dynamical degree of f as A\(f) := lim, degy( f”)l/ ™. Basic properties of dynamical
degrees can be found in [RS, IDS]. Our main objective is to describe the sequence of
degrees deg;,(f™) in the special case of monomial maps f, but for arbitrary k.

Controlling the degrees of iterates of a rational map is a quite delicate problem. Up to
now, most investigations have been focused on the case d = 2 and k = 1, see [DF, [FJ] and
the references therein. There are also various interesting families of examples for £ =1 in
arbitrary dimensions in e.g. [AABM, [AMV| BK1l, BK3l BHM, [N]. In particular, the case
of monomial maps and k = 1 is treated in [BK2| [Fal [HPL [JW. L]. On the other hand, there
are only few references in the literature concerning the case 2 < k < d — 2, see [Og, [DN].
An essential problem arises from the difficulty to explicitely compute deg;(f) even in
concrete examples. This can be overcome in the case of monomial maps, since tools from
convex geometry allow one to compute these numbers in terms of volumes of polytopes.

Monomial maps on P¢ correspond to integer valued d x d matrices, M (d,Z). Given
A € M(d,Z) we write ¢4 for the corresponding monomial map ¢a(x1,...,245) =
( jx;ﬂ,..., jx;jd) with (x1,...,24) € (C*)%. This mapping is holomorphic on the
torus ((C*)d and extends as a rational map to the standard equivariant compactification
P4 5 (C*)?. Moreover ¢4 is dominant precisely if det(A) # 0. Observe that ¢ = Gan
for all n. If a, and b, are sequences of positive real numbers, we write a,, < b, if

C~ ! < ap/b, < C for some C > 1 and all n.

Theorem A. Let A € M(d,Z) and let ¢4 : P? -5 P4 be the corresponding rational map.
Assume that det(A) # 0 (so that ¢4 is dominant). Then, for 0 < k <d,

(1.1) degy (¢) = | A"A",
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where AFA : AFR? — AFR? is the natural linear map induced by A and || - || is any norm
on AFRY,

Corollary B. Let ¢4 and A be as in Theorem A. Order the eigenvalues of A in decreasing
order, |p1| > |p2| > ... > |pa|l. Then the k-th dynamical degree of the monomial map ¢4

is equal to H]f lpjl-

Recall that the topological entropy of a rational map ¢ : X --» X on a projective
variety is defined as the asymptotic rate of growth of (n,e)-separated sets outside the
indeterminacy set of ¢, see [DS] for details. On the one hand, the topological entropy of a
monomial map is greater than its restriction to the compact real torus {|x;| = 1} C (C*)¢
which is equal to log(Htli max{1, |p;|}), see [HP, Sect. 5]. On the other hand, it is a general
result due to Gromov [G], and Dinh-Sibony [DS|] that maxy log A is an upper bound for
the topological entropy. By Corollary B, log(Hcll max{1,|p;|}) = maxylog \x. Thus we
have

Corollary C. Let X be a projective smooth toric variety, let A be as in Theorem A, and
let o4 : X --» X be the induced rational map. Then the topological entropy of ¢4 is equal
to maxlog \.

We note that Theorem A and its two corollaries have been obtained independently by
Jan-Li Lin, [L2], by different but related methods. His approach relies on the notion of
Minkowski’s weight.

By Khovanskii-Teissier’s inequalities, the sequence k +— logdeg,(f) is concave so that
we always have A2(f) > Ap—1(f) Met1(f) for any 1 < k < d — 1. Our next result gives a
more precise control of the degrees when the asymptotic degrees are strictly concave. It
can be seen as an analogue of [BEJ, Main Theorem] in the case of monomial maps but in
arbitrary dimensions.

Theorem D. Let A € M(d,7) and let ¢ 4 : P ——» P? be the associated rational monomial
map. Write A\ = \g(¢pa). Assume that det(A) # 0 and that for some 1 < k < d—1 the
dynamical degrees satisfy

(1.2) Ar > Moot Akt -
Then there exists a constant C' > 0 and an integer D > 0 such that, for this k,
Ak—1 A "
(1.3) degy (¢4) = CAY + O <nD <%> ) .
k

Theorems A and D (and thus Corollary B) hold true for P? replaced by a projective
smooth variety, cf. Remark

For k =1 Theorem A is proven in [HP|, and Theorem D is due to Lin [L, Thms 6.6-7].
In fact there are finer estimates for the growth of ¢4. For example, Bedford-Kim [BK2]
gave a description of when deg;(¢';) satisfies a linear recurrence; in particular, it happens
if |p1| > |p2|. We do not know if the assumption in Theorem D is sufficient for degy, (¢’ )
to satisfy a linear recursion. This problem is related to the construction of a toric model
X(A) dominating P? such that the induced action ¢% : H¥(X(A),R) — H*(X(A),R) of
the monomial map ¢4 commutes with iteration; or, in the terminology of Fornaess-Sibony,
a model in which the map induced by ¢4 is stable. This very delicate problem is treated
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in detail in various papers by Bedford-Kim [BK2], the first author [Fa] , Hasselblatt-
Propp [HP], Jonsson and the second author [JW], and Lin [L] in the case k = 1. We do
not address this problem here.

Let us briefly explain the idea of the proofs of Theorems A and D. Rather than work
in a fixed toric model X (A) we will consider the natural action of ¢4 on the inductive
limit of all cohomology groups gk = lim 2E(X(A),R) over all toric models. This idea
has already been fruitfully used in dynamics in [Cl [BEJ]. In this universal cohomology
space, the equality (¢%)* = (¢%)" holds automatically, and deg;(¢;) translates to an
intersection product of classes of line bundles, degy,(¢%) = (¢%)"O(1)* - O(1)4F,

There is a beautiful interpretation of g* in terms of convex geometry due to Fulton-

Sturmfels [FS], see also [B]; namely, the classes in g* are in one-to-one correspondence
with the classes in P. McMullen’s polytope algebra. The polytope algebra II is the R-algebra
generated by classes [P] of polytopes P C Q% with relations [P +v] = [P] for v € Q% and
[PUQ]+[PNQ] = [P]+[Q] whenever PUQ is convex. It is endowed with multiplication
[P] - [Q] := [P + Q], where P 4 @Q denotes the Minkowski sum. Each polytope P C Q%
determines a toric variety X (Ap) and a line bundle Lp over X (Ap). For example, O(1)
over P? corresponds to a simplex £y C Q% Taking the Chern character of Lp defines a
linear map ch : I — E*, which is, in fact, an isomorphism of algebras, [Bl [FS]. It holds

that ¢% ch[P] = ch[A(P)]. Moreover, the intersection product L%, - LdQ_k in g* is given as
the mized volume d! Vol(P[k],Q[d — k]), i.e., (a constant times) the coefficient of ¢* in the

polynomial Vol(tP + @), see [B]. To sum up, we have reduced the proofs of Theorems A
and D to controlling the growth of mixed volumes under the action of the linear map A:

(1.4) degy(¢7a) = d! Vol (A" (Xa)[k], Bald — K]) .

The computation of mixed volumes is in general quite difficult. However, since we are
interested in the asymptotic behaviour of deg; we may replace ¥4 by a ball, which allows
us to apply the Cauchy-Crofton formula.

For dynamical applications it is often crucial to construct invariant cohomology classes
with nice positivity properties such as nef classes. In Section [6.2] we explain how to con-
struct such invariant classes for monomial maps satisfying the assumptions of Theorem D.
Typically these classes do not lie in the inductive limit H* but in the projective limit

H* = lim H?* (X (A),R).
The isomorphism ch : IT — E* extends by duality to an isomorphism between the space

of linear forms on IT and H". We will call elements in the former space currents. The
invariant cohomology classes above corresponds to a very special type of currents obtained
by taking the volume of the projection of the polytope on suitable linear subspaces. Finally,
we note that the space of currents contains classical objects from convex geometry, such
as valuations in the sense of [MS]. We think that it would be interesting to further explore
the space of currents; e.g. investigate positivity properties of currents and define (under
reasonable geometric conditions) the intersection product of currents.

The paper is organized as follows. Sections 2 and [3] contain basics on toric varieties
and the polytope algebra, respectively. In Section [ we discuss dynamical degrees on toric
varieties and, in particular, we derive (L4]). The proof(s) of Theorem A (and Corollary
B) occupies Section B, whereas Theorem D is proved in Section
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2. TORIC VARIETIES

A toric variety X over C is a normal irreducible algebraic variety endowed with an
action of the multiplicative torus G¢, := (C*)¢ which admits an open and dense orbit.
This section contains the necessary material from toric geometry that will be needed for
the proof of our results. Our basic references are [Ful, [Od].

2.1. Fans and toric varieties. Let N ~ Z9 be a lattice, i.e a free abelian group, of rank
d, denote by M = Hom(N, Z) its dual lattice, set Ng :== N ®7 Q and Ng := N ®z R, and
analogously define Mg and Mg.

A rational polyhedral strictly convex cone o C Ng is a closed convex cone generated
by finitely many vectors lying in N, and such that o N —o = {0}. Its dual cone & :=
{m € Mg, u(m) > 0 for all u € o} is a finitely generated semi-group. Thus o defines an
affine variety U, := SpecC[¢ N M]. The torus G¢ = SpecC[M] is contained as a dense
orbit in U, and the action by G% on itself extends to U,, which makes U, a toric variety.
Conversely, any affine toric variety can be obtained in this way.

If o is simplicial, i.e., it is generated by exactly d vectors, then U, has at worst quotient
singularities. The toric variety U, is smooth if and only if ¢ is simplicial and generated
by d vectors eq,...,eq forming a basis of N as an abelian group; such a o is said to be
regular.

A fan A is a finite collection of rational polyhedral strictly convex cones in Ny such
that each face of a cone in A belongs to A and the intersection of two cones in A is a face
of both of them. A fan A determines a toric variety X (A), obtained by patching together
the affine toric varieties {U,},ea along their intersections in a natural way. If all cones
in A are simplicial then A is said to be simplicial and if all cones are regular, then A is
said to be regular; X (A) is smooth if and only if A is regular. If (J, 5 0 = Ng, then A
is said to be complete. The toric variety X(A) is compact if and only if A is complete.
Unless otherwise stated, we will assume that all fans in this paper are complete.

There is an one-to-one correspondence between cones of A of dimension k& and orbits
of the action of G¢, on X(A) of codimension k. The orbit associated with a cone o € A
is dense in the affine variety U,; we denote its closure in X(A) by X (o). In particular,
1-dimensional cones correspond to (irreducible) G¢ -invariant divisors.

A fan A’ refines another fan A if each cone in A’ is included in a cone in A.

2.2. Equivariant (holomorphic) maps. Given a group morphism A : M — M, we will
write A also for the induced linear maps Mg — Mg and Mg — Mg. Morever, we let A
denote the dual map N — N, as well as the dual linear maps Ng — Ng and Ng — Ng.
It turns out to be convenient to use this notation rather than writing A for the map on
N and A for the map on M.

A map of fans A : (N,Ay) — (N,A;) is a linear map A : Ng — Ng that preserves N
and satisfies that the fan A(As) := {A(0) : 0 € Ay} refines Ay. If 0p € Ay and 03 € Ay
satisfy that fl(ag) C 01, then the dual map A : M — M maps &1 to d2 and induces a
map A : C[g; N M] — C[dy N M], which, in turn, induces a map ¢4 : X(02) — X(01).
These maps can be patched together to a holomorphic map ¢4 : X(Az) — X (A1) which
is equivariant in the following sense.

Denote by pa : G¢ — G% the natural group morphism induced by the ring morphism
A: C[M] — C[M]. Then for any z € X(Ay), and any g € G%,, one has ¢(g-z) = pa(g) -
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¢a(z). Conversely any equivariant holomorphic map X (As) — X (A1) is determined by
a map of fans A : (N, Ag) — (N, Ay).

The map ¢4 is dominant if and only det(A) # 0 and the topological degree of ¢4 equals
|det(A)|.

2.3. Universal cohomology of toric varieties. Let A be a complete simplicial fan.
Then X(A) has at worst quotient singularities, its cohomology groups H7(X(A)) :=
HI(X(A),R) with values in R vanish whenever j is odd, and H*(X(A)) is generated as
an algebra by the G¢ -invariant divisors [X (¢)], where ¢ runs over the 1-dimensional cones
in A.

We let © denote the set of all complete simplicial fans in N and endow it with a partial
ordering by imposing A < A’ if (and only if) A’ refines A. For any two fans A, A’ € D,
one can find a third fan A” refining both; hence D is a directed set. Assume A < A’. Then
the identity map on N induces a map of fans iaAg A (N,A") = (N,A), and thus yields
a natural birational morphism 7 := ¢iq,, , + X (A") — X(A). This map induces linear
actions on cohomology, 7* : H*(X(A)) — H*(X(A")) and 7, : H*(X(A")) — H*(X(A))
that satisfy m,m* = id; in particular, the map m, is surjective and 7* is injective.

The pushforward 7, and pullback 7* arrows make ® into an inverse and directed set,
respectively, and so the limits

LH* andﬂ lgH* X(A))

are well-defined infinite dimensional graded real vector spaces. We will refer to "~ and
E* as the universal (inverse respectively, direct) cohomology of toric varieties.

In concrete terms, an element w € H" is a collection of incarnations wa € H*(X(A))
for each A € D, such that m.(war) = wa if A < A’ and 7 = bid,, - An element

w € g* is determined by some class wa € H*(X(A)), and two classes wa, € H*(X(A;)),

i = 1,2 determine the same class in H " if and only if there exists a common refinement

A" = A; such that 7{(wa,) = m5(wa,) if m = ¢iq,, . - Note that the map that sends
B

w € H*(X(A)) to the class it determines in E* is injective.

We endow K" with its projective limit topology so that wj — w if and only if w; A — wa
for each fan A € ©. Then E* is dense in .

Each cohomology space H*(X(A)) has a ring structure coming from the intersection
product which respects the grading so that w - n € H2H)(X(A)) if w € H*(X(A)) and
n € H¥(X(A)). Given classes w and 7 in g*, pick A € © so that they are determined

by wa and na, respectively, and let w - i be the class in g* determined by wa - na. It is
not difficult to check that this definition of w - 7 is independent of the choice of A. Hence,
in this way, E* is endowed with a natural structure of a graded R-algebra.

More generally, given w € H* and 7 € g*, pick A such that 7 is determined by na and
let w-n be the class in E* determined by wa -na. Again, this product is well-defined and
independent of the choice of A and so g* is a H"-module. Note, however, that it is not

possible to define a ring structure on K" that continuously extends the one on g*
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Since the intersection product H* (X (A)) x H2(dfj)(X(A)) — R is a perfect pairing
for each A € ® by Poincaré duality, the pairing H* x gz(d_j) — R is also perfect and
thus H" and g* are naturally dual one to the other.

2.4. Toric line bundles. The Picard group Pic X (A) of a toric variety X (A) is generated
by classes of G%-invariant Cartier divisors. These divisors can in turn be described in
terms of functions on Ng as follows. Let PL(A) be the set of all continuous real-valued
functions h on |A| C Ng that are piecewise linear with respect to A, i.e., such that for any
cone o € A there exists m = m(o) € M with h|, = m. Given any 1-dimensional cone
o of A, the associated primitive vector is the first lattice point u; met along o = R>qu;.
Let A(1) = {u;} C N be the set of primitive vectors of 1-dimensional cones in A. With
h € PL(A), we associate the Cartier divisor D(h) := Y h(u;) X (R>ou;). The map sending
h € PL(A) to O(—D(h)) € Pic(X(A)) is surjective and the kernel is the space of linear
functions M C PL(A). By taking the first Chern class, we get a linear map:

(2.1) O1: PL(A) — H2(X(A)), h ©1(h) = [ (0(=D()))] -

When X (A) is smooth, the kernel of ©; is M and the image is precisely H?(X(A),Z).
Note that ©; extends by linearity to PLg(A) := PL(A) ®z Q, corresponding to Q-line
bundles, with image H?(X(A),Q).

Let A : (N,As) — (N, A1) be amap of fans, inducing a holomorphic map ¢4 : X (Ag) —
X (A1), and pick h € PL(A1). Then the pullback ¢* D(h) is a well-defined Cartier divisor
on X(Ay), equal to D(h o A). It follows that

(2.2) ¢401(h) = O1(h o A).

There is a link between positivity properties of the classes in H%(X(A)) and convex
geometry. A function h € PL(A) is said to be strictly convex (with respect to A) if it is
convex and defined by different elements h|, € M for different d-dimensional cones o € A.
Recall that on a complete algebraic variety, a Cartier divisor D is nef if D - C' > 0 for any
curve C. The line bundle O(—D(h)) over X (A) is nef if (and only if) h € PL(A) is convex
and it is ample if (and only if) h is strictly convex.

A function h in PL(A) determines a (non-empty) polyhedron

P(h)::{mEMR,mgh}CMR.

If h is strictly convex with respect to some fan, then P(h) is a compact lattice polytope in
MR, i.e., it is the convex hull of finitely many points in the lattice M, and it has non-empty
interior. Conversely, if P C Mg is a lattice polytope, then the function

(2.3) hp(u) := sup{m(u), m € P}

is a piecewise linear convex function on Nr. If Ap denotes the normal fan of P (see [Ful,
Section 1.5] for a definition) then hp € PL(A) precisely if A refines Ap and it is strictly
convex with respect ot Ap.

Ezample 2.1. Take a basis ey, ..., eq of N with dual basis e], ..., e}, and set eg := — Zil €.
Let A be the unique fan whose d-dimensional cones are the d+ 1 cones o; = > ot R>pe;.
Then X(A) is isomorphic to the projective space P?. Let h be the unique function in
PL(A) that satisfies h(ep) = 1 and h(e;) = 0 if ¢ > 1; note that h is strictly convex with
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respect to A. Then O(—~D(h)) = Opa(1) and moreover the polytope Pp(y) is the standard
simplex

d d
Y4 = {’LL:ZSZ'E?, s; <0, ZSiZ—l}CMR .
1 1

2.5. Piecewise polynomial functions. Higher cohomology classes of toric varieties in
® can be encoded in terms of (piecewise) polynomial functions on Ng.

Given a fan A, let PP(k, A) be the set of piecewise polynomial functions (with respect
to A) of degree k, i.e, continuous functions h : Ng — R such that for each cone o € A, the
restriction hly =Y m; ® -+ @ my,, m; ; € M, is a homogeneous polynomial of degree k.
Note that PP(1,A) = PL(A). Moreover, note that h@ h' € PP(k+ k', A) if h € PP(k, A)
and b’ € PP(K,A), so that PP(A) := @, PP(k, A) is a graded ring.

From now on, assume A € ®, and let ¢ be a j-dimensional cone in A. Since o
is simplicial it is generated by exactly j primitive vectors in A(1) = {uy,...,un}, say
Ui,...,uj, and so r € 0 = Zgzl R>ou; admits a unique representation z = Zgzl TiU;
with ; > 0. It follows that h|, has a unique expansion h|,(z) = > arz;, - - - x;,, where
the sum ranges over all T = {iy,...,ix} C {1,...,5}.

We can now define a linear map Oy, : PP(k,A) — H?(X(A)) by Ox(h) := Y ar Xy,
where the sum ranges over all I = {1,...,k} C {1,...,N}, X; is (the class of) the
intersection product X (R>ou;,) - ... - X(R>ou;, ), and ay is the coefficent of z;, ---x;, in
h|s defined above if 0 = > R>ou;, is a cone in A and a; = 0 otherwise.

By patching the maps ©Oj together, we obtain a graded map © : PP(A) —
H*(X(A)),h+ > Or(h), where hy, is the k-th graded piece of h. Note that © is also a
ring morphism since ©(h k') = O(h) O(h') for any h,h' € PP(A). If X(A) is smooth the
image of © is H*(X(A),Z). As for ©1 we can extend O to PPg(A) := PP(A) ®z Q, with
image H*(X(A), Q).

2.6. Equivariant rational morphisms. Let A : Mr — Mg be a linear map that pre-
serves M. Take A, A’ € D such that A’ refines A and A~!(¢) is a union of cones in A’ for
each 0 € A. Then A : (N,A’) — (N, A) is a map of fans, inducing a holomorphic equivari-
ant map fa: X(A") = X(A). Let 7 : X(A’) — X(A) be the equivariant birational map
induced by idasa : (N, A’) — (N, A), and let ¢4 := faon~!. Then ¢4 : X(A) -+ X(A)
is a rational map that is equivariant under the action of an. Conversely, any equivariant
rational self-map on X (A) arises in this way. The map ¢4 is holomorphic precisely if
A < A(A) and it is dominant precisely if det(A) # 0.

Let eq,...,eq be a basis of M and let e],...,e; be the corresponding basis of N.
Then A = ) a;je; ® e;f, for some a;; € Z. If z1,...,24 are the induced coordinates
on G%,, then ¢4 restricted to G%, is the (holomorphic) monomial map ¢4 (21, ...,z4) =

(H$?jl, . ,H:E;Ljd).

Recall that a dominant holomorphic map ¢ : X’ — X induces linear actions on coho-
mology ¢* : H*(X) — H*(X') and ¢, : H*(X') = H*(X). Assume that ¢4 is dominant.
Then we define the pushforward (¢a)e : H*(X(A)) — H*(X(A)) as the composition
(pa)e := (fa)« o™, and the pullback ¢% : H*(X(A)) = H*(X(A) as ¢% =m0 fi. It is
readily verified that (¢4)e and ¢% do not depend on the choice of A’. We insist on writing
(Pa)e, ¢% instead of (p4)«, ¢% since one does not have good functiorality properties, e.g.

(dBodA)e # (0B)e © (Pa)e in general.
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The linear map A also induces natural linear actions ¢7% : E* — E* and (¢a)s : H" —
3", defined as follows. Suppose 7 is a class in H* determined by na € H*(X(A)). Pick

D > A’ = A such that the map fq : X(A’) — X(A) induced by A is holomorphic,
and define ¢%n to be the class in g* determined by fina € H*(X(A’)). Next, suppose

w € K. The incarnation of (¢4)«w in H*(X(A)) for a given A € D is defined as
(pa)swa = (fa)swas, where A’ is choosen as above. It is not hard to check that ¢%
and (¢4)« are independent of the choice of refinement A’; and moreover that (¢a). is
continuous on H', ¢4 = ¢ © O, (PBoa)s = (0B)« 0 (Pa)s, (Pa)« 0 ($4)* = |det(A)],
and (pa)w -n=w - (qﬁz)n for any two classes w € K%, n e gﬂd_j).

Given h € PL(A), the first Chern class ©1(h) € H?(X(A)) determines a class in g*,
also denoted by O;(h), that satisfies

*

(2.4) ¢4(©1(h)) = ©1(ho A)in H,
which follows in light of (2.2]).

3. THE POLYTOPE ALGEBRA

3.1. Definition. Given any finite collection of convex sets Ki,...,K; C Mg, we let
K+ ---+ K, denote the Minkowski sum K; +---+ Ky :={z1+---+ 2, | x; € K;}. For
any r € R>q, we also write 7K := {rz | x € K;}. A polytope in Mg is the convex hull of
finitely many points in Mg.

We now introduce the polytope algebra 11 = TI(Mg) which is a variant of the original
construction of P. McMullen [M]. It is the R-algebra with a generator [P] for each polytope
P in Mg, with [@] =: 0. The generators satisfy the relations [PUQ]+ [P N Q] = [P] + [Q]
whenever PUQ) is a convex polytope, and [P+t] = [P] for any ¢t € Mg. The multiplication
in IT is given by [P] - [Q] := [P + Q], with multiplicative unit 1 := [{0}]. The polytope
algebra admits a grading Il = @gzo Il such that IIj - IT; C Ix4;. The k-th graded piece
II;, is the R-vector space spanned by all elements of the form (log[P])¥, where log[P] :=

Zle %([P] —1)" and P runs over all polytopes in Mg. The top-degree part II; is
one-dimensional, and multiplication gives non-degenerate pairings II; xII;_; — II;. Given
a € 11, we will write oy, for its homogeneous part of degree k.

The lattice M determines a (canonical) volume element on Mg, which we denote by Vol.
It is normalized by the convention Vol(P) = 1 for any parallelogram P = {> s;ef, 0 <
si < 1} such that e}, ..., e} is a basis of the lattice M. In particular, the volume of the

standard simplex Vol(X;) is 1/d!. There is a canonical linear map Vol : II — R defined
by Vol([P]) = Vol(P). This map is zero on all pieces II; for k < d — 1, and it induces an

isomorphism Vol : IT; = R.

Let A : Mg — Mg be a linear map. Then A induces a linear map II — II, defined
by [P] — [A(P)]; we shall denote it by A, : II — II. Note that A, is actually a ring
homomorphism since A([P] - [Q]) = [A(P + Q)] = A.[P] - A«[Q] for polytopes P and Q
in Mg, and A, preserves the grading on II since A, (log[P]) = log[A(P)]. Also, it is clear
that (Ao B), = A, o B, for any two linear maps A and B.

An important example is given by the homothety A = r x id, » € Q>¢; we denote
the corresponding map on II by D(r). Note that if P is a polytope and r € Z, then
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D(r)[P] = [P]". It is proved in [M] that
(3.1) o € II;, if and only if D(r)a = rFa , for any r € Q>0 -
If det(A) # 0, there is a well-defined pullback map A* : II — II by A* :=
D (| det(A)|1/k) o (A~1), on I; in particular,
A*[P] = | det(A)|[A™H(P)]

for any polytope P. Moreover (Ao B)* = B* o A* for any two linear maps A and B with
non-zero determinant. Beware that A* is not a ring homomorphism on II. On the other
hand, A*(A.(a)) = |det(A)| « for any « € II.

3.2. Mixed volumes. Let K1,..., K; C Mg be convex compact sets and pick rq,...,rs €
R>p. A theorem by Minkowski and Steiner asserts that Vol(ri K + --- + rsK) is a
homogeneous polynomial of degree d in the variables r1,...,rs. In particular, there is a
unique expansion:

(3.2)

Vol (mKy+ -+ +rK) = > d Vol (Ki[ki],. .., Ky[ks]) vl rks,

kl, ’ ks
ki+-+ks=d

the coefficients Vol(K1[k1], ..., Ks[ks]) € R are called mized volumes. Here the notation
K [k;] refers to the repetition of K; k; times. It is a fact that Vol(K[ki],..., Ks[ks]) is
non-negative, multilinear symmetric in the variables K, and increasing in each variable,
meaning that
(3.3)

Vol (Kl [k‘l], Kg[k‘g], N ,Ks[k’s]) S Vol (K{[k’l],Kg[k‘Q], N ,Ks[k’s]) whenever K1 Q K{
Note that Vol(K;[d], K2[0], ..., Ks[0]) = Vol(K7). There is in general no simple geometric
description of mixed volumes, unless the K; has some symmetries, cf. Section [5.1] and

(E9) below.

Since Vol(K) is invariant under translation of K,
(34) Vol ((K1 + t)[k‘l], Kg[k‘g], N ,Ks[k’s]) = Vol (Kl[k’l], Kg[k’g], e ,Ks[k’s]) 5
for any t € Mr. Moreover, Vol(K[ki1],..., Ks[ks]) € R is additive in the sense that
Vol ((Kl U K{)[k‘l], KQ[]{?Q], ... ,Ks[k‘s]) + Vol ((K1 N K{)[k‘l], KQ[]{?Q], ... ,Ks[k‘s]) =
Vol (Kl[kl]a K2[k2]7 s 7Ks[ks]) + Vol (Ki [kl]a K2[k2]7 e 7Ks[ks]) ;

as soon as Kj U K] is convex. It follows that the mixed volumes extend to the polytope
algebra II as multilinear functionals:

II° 3 (ai,...,as) = Vol (a1 [k1], ..., aslks]) € R,

so that, in particular, Vol ([P;][k1], ..., [Ps][ks]) = Vol (Pi1[k1],..., Ps[ks]). Equation (3.2
translates into
(3.5)
Vol (D(r1)aq ... D(rs)as) = Z d Vol (aq[k1], . . ., as[ks]) r’fl coophs
kb IR ks
k1+---+ks:d

which holds for r1,...,rs € Q>p. Note that (3.5 implies the following homogeneity:
(3.6) Vol (D(r1)aq[ki], ..., D(rs)as[ks]) = Vol (aq]k1], ..., aslks]) rlfl ks
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Lemma 3.1. Let aq,...,as be homogeneous elements in the polytope algebra of degrees
l1,. .., U, respectively. Then Vol (aqlki], ..., aslks]) = 0 unless £; = k; for all j, in which

case it is equal to (Z1 d es)_l Vol (g - ... - ay).
Proof. By (8.1), and the linearity of Vol : II — R,

Vol (D(r1)aq - ...  D(rs)as) = Vol <Tfla1 S Tﬁ5a5> = Vol (g ... ) it -k,

S
in particular, the only non-vanishing mixed volume is Vol (ai[li],...,as[ls]) =

(Zl’.[.i.’zs)_l Vol (a1 - ... - ). 0

Lemma B.1] implies that if a1, ..., a, € II, and «; denotes the ¢-th graded part of «;,
then

d _1
(3.7) Vol (Oél[k‘l], sy Qg [k‘s]) = (@1 i > Vol (0117]@1 Cae.t as,ks)

Lemma 3.2. Let A: Mg — Mg be a linear map such that det(A) # 0. Then
Vol (A*ay [k], azld — k]) = Vol (a1 [k], Avae[d — k])
for any two elements a1, g € 11.

Proof. By multlinearity, we may assume that «; = [P;] for some polytopes P;. Note that
for r; € on,

Vol (mA™ (Py) +1oPy) = <Z> Vol (AH(Py)[k], Pald — k]) rird=F,
k

and
|det(A)| Vol (’f’lA_l(Pl) + T‘QPQ) = Vol (A(T‘lA_l(Pl) + T’QPQ)) =

Vol (r Py + 12 A(P2)) = > <Z> Vol (Py[k], A(Py)[d — k]) rirg .
k

By identification of the coefficients of r'frg_k we get

(3.8) | det(A)| Vol (A~'Py[k], P2[d — k]) = Vol (Py[k], A(P»)[d — k]) .
The right hand side of (B.8]) is precisely Vol ([Pi][k], A«[P2][d — k]), and in light of
Lemma [3.1] the left hand side is equal to
|det(A)] Vol ([A™(Py)]klk], P2ld — k]) = Vol |D (| det(4)|"/*) [A™ (Py)]y[K], P2ld — k]| =
Vol (A*[P1]i[k], P2[d — k]) = Vol (A" [P1][k], P2[d — k]),

which concludes the proof. Here we have used (3.6]), the definition of A*, and Lemma 3.1
for the first, second, and last equalities, respectively. O
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3.3. Currents on the polytope algebra. In order to simplify computations and relate
the polytope algebra to the universal cohomology of toric varieties it is convenient to
introduce the following terminology. A current is a linear form on the polytope algebra.
We denote the space of currents on II by € and endow it with the topology of pointwise
convergence. Moreover, we write (T, 5) € R for the action of T € € on § € II.

A current T' € C is said to be of degree k if T'|iy, = 0 for j # d — k. Let Cj, denote the
subspace of € of currents of degree k. Note that T' € € admits a unique decomposition
T = > Ty, where Ty, € C. (In fact, T} is the trivial extension to II of the restriction of
the linear form 7" to IIj.)

Any invertible linear map A : Mg — Mg induces actions on C, dual to the pullback and
pushforward on II, defined by (A.T, ) := (T, A*3) and (A*T,B) := (T, A.B) for T € €
and g € II. It is not difficult to see that T € C is homogeneous of degree k if and only if
D(r)*T = r*T for any r € Q.

Let us describe some important examples of currents.

Ezample 3.3. Pick a € 11, and let T,, be the current defined by T, (5) := Vol(« - ) for
B € II. The map a — T, gives a linear injective map II — € that sends II; to currents of
degree k.

In general, for o = Y ay, € II, with oy, € II, 75, (8) = (Z) Vol(a[k], B[k — d]), which
follows immediately from Lemma[3.Il Moreover, by Lemmal[3.2] the actions of an invertible
linear map A : Mg — Mg on II and € are compatible so that T4+ = A*T,, and T4, =
A, T, for any class a € II.

Ezample 3.4. Given a vectorspace V, we define the conver body algebra K (V') as the
polytope algebra, but with a generator [K| for each compact convex set K C V and
with the relation [K U L] + [K N L] = [K]| + [L] whenever K U L is convex. A (contin-
uous translation-invariant) valuation is a linear map on K(V') that is continuous for the
Hausdorff metric on compact sets, see e.g. [Sc, Sect. 3.4]. Let Val(V') denote the space
of valuations on V. Restricting the action of valuations on Mg to II gives an injective
morphism 0 — Val(Mg) — C. The construction of the current T}, in Example [3.3] can be
extended to «, f € K(Mp), and the mapping o — T, embeds K(Mpg) into Val(Mg). Thus
IT € X(Mg) C Val(Mg) C C.

Ezample 3.5. Let H be a linear subspace of Mg of codimension k, let Vol be the volume
element on H induced by the lattice M N H, and let p : Mg — H be a projection onto H.
Since p(PN Q) = p(P) Np(Q) whenever P UQ is convex, p can be extended to a function
IT — II, defined by p[P] := [p(P)], and the linear map « — Volg(p(«)) is a valuation of
degree k that we shall denote by [H, p).

3.4. Relations to the inverse cohomology of toric varieties. Each polytope P in
Mg determines a class ch(P) in g*, defined as follows: Let hp be defined as in (2.3]) and

choose A € © so that hp € PLg(A). Now ch(P) is determined by the Chern character of
the associated QQ-line bundle

d d
(39)  (eh(P)a =) O1(hp) =0 (Z %%) — O(exp(hp)) € H*(X())
k=0 k=0

where ©1 and © are as in Sections 2.4] and 2.5] respectively.
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The Chern character induces a linear map from the vector space @ pR[P] to g*, defined
by ch(}_t;[P;]) = >_tjch(P;). We claim, in fact, ch is a well-defined ring homomorphism
from IT to g* To see this, first note that hpys = hp+t fort € Mg. It follows that D(hpy)
and D(hp) are linearly equivalent, see Section 2.4l In particular, ©1(hpss) = O1(hp),
which implies ch(P +t) = ch(P). Next, if P and @ are polytopes in Mg such that P U Q
is convex, then hpyg = max{hp,hq} and hpng = min{hp,hg}. Thus hllqu + hllng =
hk, + h’é for any & > 0, and by linearity of ©, ch([P N Q] + [P U Q]) = ch([P] + [Q]).
Thus ch : [P] — ch(P) is well-defined. Next, note that if P and @ are polytopes in Mg,
then hpyg = hp + hg. Hence ch([P] - [Q]) = ch([P + Q]) = ch(P + Q) = ch(P)ch(Q) =
ch([P]) ch(]Q]); and so the claim is proved.

Let deg : g* — R be the linear degree map that is 0 on gk for k < d and sends the class

determined by a point in X (A) to 1. The following theorem is due to Fulton-Sturmfels [F'S|
Sect. 5] and Brion [Bl, Sect. 5].

Theorem 3.6. The Chern character map ch : [P] — ch(P) is an isomorphism of graded
algebras ch : TI — g* It holds that deg(ch(«)) = Vol(a) for o € II.

By duality, we get a continuous isomorphism coh : H* — @, defined by (coh(w), 8) :=
w-ch(B) forw e H" and B €11.

Proposition 3.7. Let A: Mg — Mg be a linear map with det(A) # 0. Then

(3.10) ch(A.a) = ¢% ch(a)

for any o € 1. Similarly, for anyn e K",

(3.11) coh((pa)«n) = A*(coh(n)).

Proof. By linearity we may assume that o = [P] for some polytope P in Mg. By definition,

A,[P] = [A(P)] and ch([A(P)]) is the class in g* determined by ©(exp(h4(p))). Now
hapy = sup{m, m € A(P)} =sup{m o A, m € P} =hpoA.

In light of (24) and (B3.9), it follows that ch([A(P)]) is the pullback under ¢4 of the
class determined by ©(exp(hp)), i.e., ch([A(P)]) = ¢% ch([P]).
Now (BII)) follows from (BI0) by duality. Indeed, for n € H" and a € II, we have

(coh ((¢a)«n), ) = (pa)sn-cha = n-¢7 cha = n-ch(Asa) = (coh(n), Awa) = (A" coh(n), av).

Here we have used the definition of coh for the first and fourth equality and (3I0) for the
third equality. Moreover, the second and the last equality follow by Sections and [3.3]
respectively. O

4. DYNAMICAL DEGREES ON TORIC VARIETIES

Let A be a complete simplicial fan and let A be a strictly convex piecewise linear
function with respect to A. Furthermore, let A : M — M be a group morphism and
let ¢ := ¢4 : X(A) --» X(A) be the corresponding rational equivariant map. The k-th
degree of ¢ with respect to the ample divisor D := D(h) is defined as

degp 1, (¢) :== ¢*D* - DI7F € R
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If X(A) =P%and O(—D) = Opa(1), then degp, 4 (¢) coincides with the k-th degree of ¢
degy(¢) as defined in the introduction (Section 1).
The following result is a key ingredient in the proofs of Theorems A and D.

Proposition 4.1. Let A be a complete simplicial fan and let D be an ample an—mvariant
divisor on X(A). Moreover, let A : M — M be a group morphism with det(A) # 0, and
let o4 : X(A) --» X(A) be the corresponding equivariant rational map. Then

(4.1) degp 4 (¢4) = d! Vol (A(Pp)[k], Ppld — k]) .

Recall from Example 2] that if X(A) =P and D = Opa(1), then Pp is the standard
simplex ¥4. In this case (4] reads

deg(¢pa) = d! Vol(A(Xq)[k], Xald — k]) .

Proof. Pick a ® > A’ = A such that the dual A : N — N of A is a map of fans
A (N,A") = (N,A), let fa: X(A") - X(A) be the corresponding equivariant map, and
let 7: X(A’) — X(A) be the map induced by idas a

Recall from Section that then ¢% = m, o f}. Hence

degp ,(¢4) =m0 fA(D)" - DN = FA(D)F - 7*(DTF) = (f4D)" - (=" D)

Now D € H?(X(A)) and 7*D € H?(X(A’)) determine the same class in g*, which we
denote by [D], and f3D € H?(X(A’)) determines the class ¢%[D] € g Thus, in hght of
SectionsZ6land 3.4} deg, (¢ 4) is the degree of the intersection product of (¢% [D ke E
and [D]4F € gd k

Note that D = ©1(hp,) € H*(X(A)); thus [D]¥ = k!(ch[Pp])x € g* Moreover, by
(the proof of) Proposition 3.7, f3D = O1(hypy) € H*(X(A')), and so (¢4 [D])4F =
(d — k)/(ch[A(P)])4—r € ﬂ* Using this we get

degp (¢a) = k!(d — k)! deg((ch[A(Pp)])i - (ch[Pp])a—k) =
kN (d — k)!Vol([A(Pp)lk. - [Pplk—a) = d! Vol(A(Pp)[k], Pp[d — k)
Here we have used Theorem [3.6] for the second equality and (B.7)) for the third equality. O

Let us collect some basic properties of k-th degrees. These results are well-known and
valid for arbitrary rational maps, see [DS]. However the case of toric maps is particularly
simple. Since it illustrates the power of the identification of cohomology classes with
elements of the polytope algebra, we shall provide full proofs of these statements.

Proposition 4.2. Let Ay and As be complete simplicial fans, and let D1 and Do be ample
G2, -invariant divisors on X (A1) and X (Ay), respectively. Then there exists a constant C
such that for any group morphism A: M — M, one has

(4.2) C™! degp, x(da2) < degp, x(da,1) < C degp, 1(Pa2)

where ¢4+ X(A;) --» X(4;), i = 1,2 denote the respective induced maps.

Proof. We claim that there is a constant C' such that

C~1Vol(A(Pp,)[k], Pp,[d—Fk]) < Vol(A(Pp,)[k], Pp, [d—k]) < C Vol(A(Pp,)[k], Pp,[d—Fk]).
Then (2] follows immediately from Proposition 1]
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Since Dy and D, are ample, and since Vol is translation invariant, (34]), in order to
prove the claim we may assume that Pp, and Pp, contain the origin in Mg in their
interior. Then for some Cj large enough, C;' Pp, C Pp, C Cq Pp,. Tt follows that the
claim holds for C' = C} since Vol is multilinear and monotone, (B.3). O

Proposition 4.3. Let A be a complete simplicial fan and let D be an ample an—mvariant
divisor on X(A). Then there exists a constant C such that for any group morphisms
Ay, Ay : M — M, one has

degp (P4, © ¢a,) < C degp (Pa,) degp x(Pa,)-

Proof. Given a rational map ¢ : P? ——» P4 we denote by C(f) the set of points p € P¢
that are either indeterminate or critical for ¢, and by PC(f) := mam; ' (C(f)) where 71, 7
denote the two projections of the graph of f onto P¢. This defines two proper algebraic
subset of P9,

If Z is a variety of pure codimension k in P4, we denote by ¢~1(Z) the closure in P4 of
f~YZ N PC(f)). Note that by construction, $~1(Z) is of codimension k (or empty). We
have the general inequality deg(¢~!(Z)) < degy(¢) deg(Z), and for a generic choice of Z,
deg(¢~1(Z)) = degy(¢) deg(Z). In particular, if L is a generic linear subspace of P¢ of
codimension k, then degy(¢) = deg(¢~1(L)).

We always have ¢! (¢! (L)) = (¢4, 0 ¢a,) " (L) outside W := C(¢a,) U ¢4 C(da,).
For a generic choice of L, the closure of (¢4, 0¢4,) H(L)NW is equal to (¢4, 0pa,) L(L).
Whence

(4.3)  deg((¢a, 0 ¢a,) (L)) = deg(d, (63, (L))) < degy(¢a,) deg(dy, (L))

Since L is generic the left hand side of (43]) equal degy, (¢4, ©¢4,) and the right hand side
equals degk(quz) degk(¢A1)' Thus degk(¢A1 o ¢A2) < degk(qul) degk(¢A2)7 and applying
Proposition to D1 = Opa(1) and Dy = D, we get

degp (P4, © Pa,) < C degy(Pa, 0 da,) < C degy(da,) degy(Pa,) <

Cg degD,k(¢A1) degD,k(¢A2)7
which concludes the proof. O

Pick a group morphism A : M — M, a fan A € D, and an ample G -invariant divisor
D on X(A). Then Proposition 3] implies

C degp x(¢%™) < (C degp (¢2)) (C degp (1)) -

Since the sequence {C degp (¢'4)}n is sub-multiplicative, and CY/" — 1, we can define
the k-th dynamical degree of ¢4 with respect to D,

ADk(P4) = 117?1 degD,k(ﬁbe)l/n-

Assume A1, Ay € © and that Dq, Dy are ample an—invariant divisors on X (A;) and
X (Ag), respectivly. Let A : M — M be a group morphism, and let ¢4, : X(4A;) --»
X (A;), i = 1,2 denote the induced equivariant morphisms. Then Proposition implies
that Ap, k(¢a) = Ap, k(¢a). We shall write Ay(¢4) for the k-th dynamical degree of ¢pa
(computed in any toric model, and with respect to any ample divisor).

For the record, we mention the following properties of the dynamical degrees. Propo-
sition [4.1] applied to Pp yields that degp o(¢%) = d! Vol(Pp) for all n and degp, 4(¢") =
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d!'Vol(A"™(Pp)) = d!|det(A)|™ Vol(Pp); therefore A\o(¢4) = 1 and Ai(¢a) = |det(A)].
Moreover A1(¢4) = p(A), where p(A) is the spectral radius of A, i.e., the largest modulus
of an eigenvalue of A; a proof is given in [HP) Sect. 6].

Proposition 4.4. Let A : M — M be a group morphism and A € ®, and denote by
o4 X(A) = X(A) the induced equivariant morphism. Then, for any 0 < k,1 < d,

(4.4) Met1(9a) < Ar(@a) Mi(da).

Proof. By the Aleksandrov—Fenchel inequality, see [Sc, p. 339],

VOl(A(Pp)[k+£], Ppld—k—£]) Vol(Pp) < Vol(A(Pp)[k], Ppld—k]) Vol(A(Pp)[€], Ppld—1)
which, in light of Proposition ] implies (Z.4)). O

Note that Proposition 4] also immediately follows from Corollary B, taking it for
granted.

5. DEGREE GROWTH - PROOF OF THEOREM A

The proof of Theorem A can be reduced to controlling the growth of mixed volumes
of convex bodies under the action of a linear map. Indeed, let A : M — M be a group
morphism and let D be a divisor on a toric variety X (A), where A is a complete simplicial
fan. Then, by Proposition .1l degp j(¢a) = d! Vol(A(Pp)[k|, Pp[d — k]). In particular,
degi(da) = d!'Vol(A(2,)[k], Xqld—k]), where X, is the standard simplex, see Example 211
Now Theorem A follows immediately from the following result.

Theorem 5.1. Let A : M — M be a group morphism such that det(A) # 0. Then for
any 0 < k <d, and any convex sets K,L C Mg with non-empty interiors,

(5.1) Vol (A™M(K)[k], L[d — k]) = || A*A"|,

where AFA™ denotes the natural induced linear map on A*Mg, and || - || is any norm on
this vector space.

It remains to prove Theorem Bl We first present a simple proof in the case when
A is diagonalizable over R in Section [5.Il To deal with the general case, we rely on the
Cauchy-Crofton formula. Some basic material on the geometry of the affine Grassmannian
is given in Section [5.2 and the proof of Theorem [5.1]is then given in Section (.3l

Note that, since all norms on A¥Mp are equivalent, it suffices to prove (EI) for one
particular choice of || - ||.

5.1. Proof of Theorem [5.7] in the diagonalizable case. Assume that A is diagonal-
izable over R, and denote by p1, ..., pq its eigenvalues, ordered so that |p1]| > ... > |p4l.
Let us first compute || A*A"||. We fix a basis ey, . .., eg of Mg that diagonalizes A so that
Aej = pje; for all j. For any k-tuple I = {iy, ..., i} of distinct elements in {1,...,d}, we
write ey :=e;; A--- Ae;, and pl = H’f pi;- Then (A*A)(er) = p! e; and the collection of
er’s forms a basis of A¥Mp that diagonalizes AMA. If || - ||sup is the supremum norm with

respect to this basis, then
k

k
| APA™|sup = H ™

i=1
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We now turn to the computation of the mixed volume Vol(A"™(K)[k], L[d — k]). First,
fix a Euclidean metric ¢ on Mg such that the basis eq,...eq is orthonormal, and let
Vol, denote the induced volume element. Then there exists a constant C' such that
C~1Voly(K) < Vol(K) < C Vol,(K) for any convex body K C Mg. It follows that

Vol (A"(K)[k], Lld — k]) = Vol (A™(K)[k], L[d — k]) .

Since K and L have non-empty interiors, by arguments as in the proof of Proposition [.2]
one can show that

(5.2) Vol, (A™(K)[k], L|d — k]) < Vol (A"(K)[k], K[d — k]) .

We will compute the right hand side of (5.2)) when K is a polydisk. For r = (ry,...,rq) €
R%m let D, be the polydisk D, := {3" zje;, |z;| < r;j/2} C Mg. Note that tD, + 7Dy =
Dypirs for r,s € R‘éo and t,7 € R>g. It follows that Voly(tD, + 7D;) = H?Zl(trj +

75;). Thus by [B.2), Voly(D,[k],Ds[d — k]) = (Z)_1 Erlslc, where the sum runs over
all multi-indices {iy,...,ix} € {1,...,d}, vl = H'frij, and I¢ := {1,...,d} \ I. Let

1:=(1,...,1) € R>p. Then A"y = D(|p1\”,...,\pd\”)v and

d\ ! ,
Vo, ("0, Bald - 1) = (1) 3 1o = w1 = Tl
j=1

\I|=k
This concludes the proof of Theorem [5.1lin the diagonalizable case.

5.2. The affine Grassmannian. For k =1,...,d — 1, we denote by Gr(d, k) the Grass-
mannian of linear subspaces of Mg of dimension k, and by Graff(d, k) the Grassmanian of
affine k-dimensional subspaces. Then Gr(d, k) and Graff(d, k) are smooth manifolds, and
there is a natural projection map w : Graff(d, k) — Gr(d, k) sending an affine subspace to
the unique linear subspace that is parallel to it. The preimage ™ '(H) of H € Gr(d, k)
is canonically identified with Mgr/H, and hence we can view Graff(d, k) as the total
space of a rank d — k vector bundle over Gr(d,k). For v € Mg, and H € Gr(d, k),
we write v + H € Graff(d, k) for the affine space obtained by translating H by v, so
that w(v + H) = H. Note that the zero section of w is the natural inclusion map
Gr(d, k) — Graff(d, k) given by viewing a linear space as an affine one.

The tangent space Ty Gr(d, k) is canonically isomorphic to Hom(H, Mr/H), see [Shl,
Ex. VI.4.1.3]. Tt follows that at any point v + H in the affine Grassmannian, we have the
exact sequence

(5.3) 0 — Mg/H — T, g Graff(d, k) — Hom(H, Mg /H) — 0 .

Suppose we are given an invertible affine map A.g : Mr — Mg, with linear part A,
ie., Aug = A+ w for some w € Mr. Then A,g induces smooth maps A,g : Graff(d, k) —
Graff(d, k) and A : Gr(d,k) — Gr(d, k). For any tangent vector 7 € Ty Gr(d, k), inter-
preted as a linear map 7 : H — Mr/H, we have

dop(T) = poTo ¢! € Ty Gr(d, k).
The differential of ¢, at v+ H € Graff(d, k) is computed analogously using (5.3]).
Let us fix a Euclidean metric g on Mg, and denote by Vol, the induced volume element.

Note that cw™!(H) ~ Mg/H is canonically identified with H+. We will see that there are
natural induced Riemannian metrics on Gr(d, k) and Graff(d, k). First, note that there
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is a natural action of the orthogonal group O(Mg) ~ O(d) on Gr(d, k) sending (¢, H) to
#(H). Since the stabilizer of a k-dimensional subspace H C Mg is O(H) x O(H*) ~
O(k) x O(d — k), the Grassmanian Gr(d, k) is diffeomorphic to the homogeneous space
O(d)/O(k) x O(d — k). There is a Riemannian metric on O(d) that is both left and right
invariant by the action of O(d); it is given by the pairing (X,Y) — — Tr(XY) in its Lie
algebra. This metric induces a Riemannian metric gg; on Gr(d, k) invariant by the action
of O(d), see [GHL, Thm. 2.42].

We saw above that w : Graff(d, k) — Gr(d, k) identifies Graff(d, k) as the total space
of a vector bundle over Gr(d, k). Any fixed affine k-plane has a canonical representation
v+ H with v € H+. The section Gr(d, k) — Graff(d, k) sending H' to v + H’' determines
a subspace &, g in the tangent space of Graff(d,k) at v + H such that dw : &g —
Ty Gr(d, k) is an isomorphism, and T, g Graff(d, k) = ker dw @ £+ 7. We may therefore
endow Graff(d, k) with the unique metric ggrag making this decomposition orthogonal,
such that the restriction dw : {,+ g — Ty Gr(d, k) and the isomorphism Mr/H ~ H+ are
isometries. Note that this metric is invariant by O(d) but not by translations. However,
any translation preserves the fibers of w and their restriction to each fiber is an isometry.

Recall that any Riemannian metric A on a manifold M defines a volume element Vol
on M (and a volume form dVol, on M if it is oriented), see [GHL, Sect. 2.7]. If z =
(x1,...,2s) are local coordinates on M, then locally h = ) h;jdx; ® dx; and dVol, =

|det( ) dxy A .o A dxs|. We will denote by Volg, and Volgrag the volume elements
defined by the metrlcs gcr and ggraft, respectively. In fact, Volg, is the unique (up to a
scaling factor) volume element that is invariant under the action of O(d).

Recall that an affine map is an affine orthogonal transformation if (and only if) its
linear part is orthogonal.

Proposition 5.2. The volume element Volgrag on Graff(d, k) is invariant by the group
of all affine orthogonal transformations. Moreover it satisfies the following Fubini-type

property:

(5.4) / h dVolgrag = / </ h dVOlg| l) dVolgy,
Graff(d,k) HeGr(dk) \JHL H

for any Borel function h on Graff(d, k).

Proof. Let us first prove (5.4). Pick H € Gr(d, k) and a neighborhood H € U C Gr(d, k)
with local coordinates y = (yl,...,yk(d_k)). Then locally in U, gg, is of the form
gar = »_bij(y)dy; ® dy;. Moreover we can choose a local trivialization U x RI=F of
Graff(d, k) — Gr(d, k) with coordinates (z,y), where w(z,y) =y and = (z1,...,T4—k)
are coordinates in R(4=%) ~ HL. Since w : Graff(d, k) — Gr(d, k) is a Riemannian sub-
mersion, and the restriction of garag to the fiber w='(H) ~ H © is the constant metric
glgr = > aij(H)dr; ® dzj, locally in the trivialization, ggrag(z,y) = Za”( )dz; @
dzj + 3 bij(y)dy; ® dy;. Consequently d Volgag = \/det(aw ) v/det(bi;(y)) dz A dy.
After a partition of unity we may assume that h has support in a small nelghborhood of
v+ H € Graff(d, k) and thus

/h dVolgag(a,k) = /(/h\/det i ( dx) A/ det(aij(y)) dy,
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which proves (5.4]).

To prove the first part of the proposition we need to show that Volg,ag is invariant under
linear orthogonal transformations and translations. First, since ggrag is invariant under
O(d), so is Volgrag. Next, let A, := id 4w : Graff(d, k) — Graff(d, k) be the translation
by w € Mg. Since g, and thus g|;., is invariant under translations on H=,

/UGHJ- ho Ay(v) dVoly | = /UGHJ- h(v+ w') dVol, = /ueHL h(v) dVoly

where w' is the orthogonal projection of w onto HL. Thus, using (E4), [(h o
Ayw) dVolgrag = f h dVolgrag; this shows that Volgpag is invariant under translations. [

Let A : Gr(d, k) — Gr(d, k) and Aug : Graff(d, k) — Graff(d, k) be the maps induced
by an invertible affine map A.g : Mg — Mg with linear part A. Recall that the Jacobians
of A and A,g, respectively, are the unique smooth functions JA : Gr(d,k) — R>o and
J Az - Graff(d, k) — R>( that satisfy the change of variables formula holds, i.e.,

(5.5) / h dVolg, = / (hoA)JA dVolg,,
Gr(d,k) Gr(d,k)

(5.6) / h dVolgs = / (ho Aug) J Au dVolGran
Graff(d,k) Graff(d,k)

for any integrable functions h on Graff(d, k) and Gr(d, k), respectively.
Given a linear map A : Mg — Mg, let ®4 : Gr(d, k) — R>g be the map that maps H
to (absolute value of) the Jacobian of the induced linear map A : Mr/H — Mr/A(H),

computed with respect to the volume elements Volg|H . and VOlgIA(H) | defined by g on

Mg/H ~ H* and Mr/A(H) ~ A(H)*, respectively. In other words, ®4 is the unique
function that satisfies

(5.7) /MR/A(H) hdvoly . = /MR/H(h o A)®4(H) dVol, |

The following is a key lemma in the proof of Theorem .11

Lemma 5.3. Let A: Mg — Mg be any invertible linear map. Then for any linear space
H C Mg, and any v € Mg, we have

JAwz(v + H) = JA(H) x ®4(H).

Proof. Recall that, by the definition of ggaf, the tangent space of Graff(d, k) at v + H
splits as an orthogonal sum My/H ®Ty Gr(d, k). The differential of A,g does not preserve
this orthogonal decomposition in general but sends Mr/H to Mg/A(H); the tangent
space at Aug(v+ H) = Aag(v) + A(H) orthogonally splits as Mg /A(H) © Tagy Gr(d, k).
Choose (local) orthonormal bases v;, wj, v}, and wj of Mg/H =~ H*, Ty Gr(d, k) (at H),
Mg/A(H) ~ A(H)* and Ty Gr(d, k) (at A(H)), respectively. Then, in light of (5.8,
the Jacobian of A at v+ H is the absolute value of the determinant of the matrix dA with
respect to the bases {v;,v:} at v+ H and {w;,w}} at A(v)+ A(H). This matrix, however,
is block diagonal and so its determinant is the product of two determinants: one of the
matrix dA : Mg /H — My/A(H) with respect to the bases {v;} and {w;} and one of the
matrix of dA : Ty Gr(d, k) — Ta() Gr(d, k) in the bases {v}} and {w}}. In light of (E.7)
and (B.3]), this concludes the proof. O
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5.3. Proof of Theorem [5.1. Let B C Mg be the unit ball with respect to the metric g
on Mg. Then, by arguments as in Section (.11
(5.8) Vol (A" (K)[k], L[d — k]) =< Vol, (A" (B)[k], B[d — k]) .

To compute the left hand side of (5.8]) we will apply the Cauchy-Crofton formula, see [Sc,
formula 4.5.10], which asserts that there exists a universal constant C' > 0 such that for
any convex set K C Mp:

(5.9) Voly (K[k],B[d — k]) = C Volgrat {v + H € Graff(d,d — k), (v+ H)NK # 0} ,
where Volgag is defined as in Section

Now

1

& Volouar (A" (B)[1] Bld ~ 1) = [ AVolgrar =
C v+ HEGraff (d,d—k), v+ HNA™ (B)#£0

/ JA”('U + H) dVolgragr =
v+HEGraff (d,d—k), v-+HNBAD

/ (JA" X (I)An)(H) dVOlGrag =
v+HEeGraff (d,d—k), v+HNB#A)D

/ (/ dVoly, l) (JA™ x ®4n)(H) dVolg, =
HeGr(d,d—k) \JveHL v+ HNBAD "
Vk/ Dyn x JA™ dVolg, = Vk/ (Pygn 0 A™") dVolgy,
HeGr(d,d—k) Gr(d,d—k)

where Vj is the volume of the orthogonal projection of B onto H', i.e., the volume of
the standard k-dimensional ball in Euclidean space, and Volg, and ®4 are defined as in
Section Here we have used (5.9), (5.6), Lemma B3] (5.4]), and (5.5) for the first,
second, third, fourth, and last equality, respectively.

To sum up,

(5.10) Vol (A (K)[k], L{d — k]) = / (@ 4n 0 A™) dVolg,

Gr(d,d—k)
We will prove Theorem [B.] by estimating the left hand side of (5.I0). For that we will
need the following two lemmas.

Lemma 5.4. Let H C Mg be a linear subspace of codimension k and let A : Mg — Mg

be a linear map with det(A) # 0. Then for any v € A My defining H in the sense that

vy Av =0 if and only if v € H, we have

| [ AR AT ()
[iedl

where Nk A™1 is the induced linear map on A% and ||| is the natural norm on A% Mg
induced by g.

B 40 AT(H) = | det(A)

)

Lemma 5.5. Let (V,||-||) be a finite dimensional normed vector space, and let h : V — V
be a linear map with det(h) # 0. Moreover, for v € V, let
[[A" (vl

Th('U) = lnfin
n (o]l [[R
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Then 7, : V- — R>q is an upper semicontinuous function and {tp, = 0} is a proper linear
subspace of V.

Set h := det(A) (A“"*A~1). Observe that, since the pairing AF Mg x AT ¥ M — A Mg
is perfect, in fact, ||h"| = || A¥ A7].

For any H € Gr(d,d — k), we pick v(H) € A®*Mp defining it. Then ~(H) is unique
up to a scalar factor, and the induced map P1: Gr(d,d — k) — P(AY"*Mg) is the Pliicker
embedding of Gr(d,d — k). Lemma [5.4] can be rephrased as follows:

(5.11) P pno A(H) = %

Note that the right hand side of (B.I1]) is well defined by homogeneity. The image of
Gr(d,d—k) under Pl is not contained in any proper linear subspace of A“"* Mg. Therefore,
by Lemma [5.5] there is a non-empty open set U C Gr(d, d — k), such that 7, restricted to
U is strictly positive. In particular, p := fu (P1(H)) > 0. Consequently,

(5.12) / (®4n 0 A=) Vol > |27 o (H) dVolae > || AF A7 .
Gr(d,d—k) Gr(d,d—k)
Now (G.1)) follows from (5.10)), (5.12]), and the trivial upper bound ®4n 0 A™" < ||h"|| =
| A¥ A”||. Thus we have proved Theorem [5.11
It remains to prove the lemmas.

Proof of Lemma[5.7) Pick H € Gr(d,d — k). Choose orthonormal bases e1,...,eq and
fi,..., fq0of Mg such that (eq,...,ex) € A"V (H)* ~ M/A7Y(H) and (f1,...,fr) € H+ ~
M/H. Then A =) a;jf; ® €} for some a;; € R, and ®4 0 A~Y(H) is by definition equal
to |det(asj)1<i j<k|- On the other hand the vector v = fry1 A ... A fy defines H, and

er+1 N Neg @AOA_l(H)

A=k A=1 () — -5 epi1 N Aeg .
™) det(aij)kr1<ij<d [det(A)] ’

We conclude noting that |eg1q1 A -+ Aeg| = |y| = 1. O

Proof of Lemma[5.5 For each n the function v — % is continuous, and so 7y, is the

infimum of a sequence of continuous functions, which implies that it is upper semicontin-
uous.

Let us now describe the zero locus of 7. First, assume that there are no non-trivial
subspaces of V' that are invariant under h. Choose a basis of V' such that the matrix
(also denoted by h) of h is in Jordan normal form (over C), and let 1,...,zgmy be the
corresponding coordinates. Then

[ p 1 0 ... 0] [ o np™ nZpn ... ndpt ]
0 p 1 ... 0 0 p» np ... ndlpn
(5.13) h = R and h" =< 00 Ty
00 0 ... 1 0 0 0 oo mp"
00 0 ... p| | 0 0 0o ... A

In this case, {7, = 0} is precisely the hyperplane {xgimy = 0}.
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In the general case, we decompose V' = @ W; into minimal h-invariant subspaces W;.
Let p; be the modulus of the unique eigenvalue of hlwy, and write d; := dim(W;). Set
p = max{p;}, Io := {i, pi = p}, 0 := max{d;, i € Ip}, and I, := {i € Iy,d; = 6}. Then
T = maX{TMWl_ opw;,, @ € 1.}, where p; : V- — W; is the natural projection, and {7, = 0}
is the direct sum of the W; with ¢ ¢ I, and the hyperplanes {Th‘wi =0} Cc W, fori € I,;in
particular, {75, = 0} is linear, and since I, is non-empty, it is a proper subspace of V. [

5.4. Proof of Corollary B. Choose a basis of Mg such that the matrix of A is in Jordan
normal form, and let || - ||sup be the supremum norm with respect to the induced basis on
A¥Mg. Then || A¥ A™||sup < nP|p1|™ - - - |pk|™ for some integer 0 < D < d, cf. the proof of
Lemma[55 Hence Ay = limy, (degy,(¢"))™ = |p1] - - |pxl-

6. PROOF OF THEOREM D

As well as Theorem A, Theorem D can be proved by controlling the growth of mixed
volumes under the linear map A : Mr — Mg.

Given a subspace H C Mg, let Volg denote the volume element on H induced by the
volume element Vol on Mg. Moreover, let pg denote the orthogonal projection onto H.

Theorem 6.1. Let A : M — M be a group morphism such that det(A) # 0, with
eigenvalues |p1| > ... > |pal. Suppose that k = |pg+1l/lpx] < 1, and write V, =
®i<y ker(A — p; id)?, and Vy := @y ker(A — p;id)?. Then there exists an integer D > 0,
such that for any two (non-empty) convex sets K, L C Mp,

1
(61) 55 Vol (A" (K) K], Lld — k]) = Voly, (pu v, (K)) Volyy (pyp (1)) + 0P 57
k
where py, v, denotes the projection onto V,, parallel to V.
Note that, by Corollary B, the condition k < 1 is equivalent to (L2]). Recall
from Section [ that degy(¢%) = d! Vol(A™(Xq)[k],¥q[d — k]), where ¥4 is the stan-
dard simplex. Thus, noting that kA = (Agr1Ak—1)/Ak, Theorem gives (L3) with

C = d!'Vol(py, v, (Ea)) Vol(py,1 (X4)) > 0. Taking Theorem [6.1] for granted this concludes
the proof of Theorem D.

Remark 6.2. Note that Theorem [6.1] applied to K = L = Pp, under the assumption in
Theorem D, gives the following version of (3):

degp r(¢%4) = CAL + 0 <nD <%> > ,
k

where C = d!'Vol(py, /v, (Pp)) Vol(py.1(Pp)) > 0.

6.1. Proof of Theorem For the proof we will need the following two lemmas on
mixed volumes.

Lemma 6.3. Let H C Mg be subspace of dimension k. Then for any convexr sets
Li,...,Lg_g, and K in Mg such that K C H,

(6.2) VOIMR (K[lﬁ], Ll, N 7Ld—k) = VOlH(K) VOIHL (pHL(Ll), o, PHL (Ld—k)) .
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Proof of Lemma[G.3. Since the mixed volume is multilinear in the L;, by polarization, we
may assume that L1 = ... = Ly = L. Fix t € R. Then, by Fubini’s theorem,

(6.3) Vol(tK + L) — / Vol (K + L) N (v + H)) dVoly.,
veEHL

where we have identified the volume element induced by Vol on v + H with Volg. Let
L,:=LN(v+ H). Since K is included in H, we have (tK + L)N(v+ H) =tK + L,, and
so the right hand side of (6.3)) equals [ _, . Volg(tK + L,) dVoly .. Note that L, # 0) if

and only if v € py. (L), in which case Voly (tK + L,) = t¥ Vol(K) + O(t*~1). We conclude
that

Vol(tK + L) = / (tk Vol(K) + O(tk_l)) dVol . = t* Vol (K) Vol . (L) 4+ O(t*71),

HL (L)
which implies (6.2). O
Recall that the Hausdorff distance Dy (K, L) between two (non-empty) sets K, L C Mg

is the infimum of all € € R>g such that K C L + B, and L C K + B, /3, where B, C Mg
is a ball with radius r.

Lemma 6.4. Let Ly,..., Ly  be convex sets in Mr. Then there exists a constant C > 0
such that for any (non-empty) conver sets K, K' C Mg, one has

(6.4) ‘VOI (K[lﬁ], Ll, ce 7Ld—k) — Vol (K/[k], Ll, v 7Ld—k) ’ <
C’I?Emf{dH(K, K'Y Vol (K[k — §],Bld — k + 5])}.

Proof of Lemma[6.4] To simplify notation, write Vol (--- , Ly,...,Lg_x) =: Vol (---, L;),
and § := dy(K,K')/2 so that K C K'+ 6B, and K’ C K + B.

Assume first that Vol (K [k], L;) > Vol (K'[k], L;). Using the multilinearity of the mixed
volume and (B3] we get:

Vol (K[k], L;) — Vol (K'[k], L;) < Vol ((K' + éB)[k], L;) — Vol (K'[k], L;) =

k k
k
Z < ) 6" Vol (K'[k — (], B[], L;) <> <€> 6° Vol (K + 0B)[k — £], B[{], L;) =
=1 =1

3038 Vol (K[k — ) B} 1) < C max{(28)7 Vol (K[k — j], Bld — k + j])}

, j=

7=1
for some constants Cj, C' > 0; for the last inequality we have used that each L; is contained
in ;B for r; € R>g large enough. This proves (6.4]) in this case.

If Vol (K'[k],L;) > Vol(K][k],L;), then (G4]) follows as above noting that
Vol (K [k — j],B[d — k + j]) < Vol (K'[k — j],B[d — k + j]). O

We are now ready to prove Theorem [6.1l Write p := py,, v, to simplify notation.
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First, since p(K), as well as A" o p(K) = po A"(K), is included in the k-dimensional
subspace V,, C Mg, by Lemma [6.3]

(6.5) g Voly, (p(K)) Vol (Pvf(L)) -
Voly, (po A™(K)) Vol (Pvul (L)> = Vol (p o A"(K)[k], L[d — k]) .

Next, note that there exists a constant C' > 0 and an integer D > 0 such that [A"(v)| <
CnP |pry1|™|v| for all v € V;; for example, this can be seen using (5.13). In particular,
|A™(v) — po A™(v)| < CnP|pgy1|™ |v] for all v € Mg, from which we infer that

(6.6) d(A™(K),po A™(K)) < C'n” |ppia|™,

where €' = C'max,ck |v|. Now, applying Lemma [64 to K = A"(K), K' = po A"(K),
and L; = L for all i, and using (6.5]) and (6.6]), we get

(6.7) Vol (A" (K)[K], L{d — k) — A¢ Voly, (p(K) Vol (py, (L)) <
C" e | pya P Vol (A" (K) [k — 1. Bld — &+ j]))

for some constant C” > 0. Furthemore, Theorem [5.1] implies that
k—j
Vol (A™(K)[k — j],B[d — k + j]) < C;n® T lpal”
i=1
for suitable constants C; > 0 and integers D; > 0, cf. Section 4l  Since
Ip1| - |pe—jllpr+1l? < Mgk for 1 < j < k by Corollary B, the right hand side of (6.7])

is bounded from above by C"'n” (Ak)" for some constant C” > 0 and some integer
D' > 0, which proves (6.1]).

6.2. Complements: invariant classes. In fact, Theorem gives more information
than Theorem D. Keeping the notation from the beginning of Section [6] consider the
currents T~ := [Vy, py, v, and T := [Vul,pvul] of degree (d — k) and k, respectively, as
defined in Example Then for polytopes P,Q C Mg, (6.1)) reads

)\—12\/01 (AZ[P)[K], [Q)d — K)) = (T, [P)(T*,[Q]) + O(n” &™),
and, by multilinearity, using ([B.7]), we get:

Corollary 6.5. Let A, s, Vi, Vi, be as in Theorem [61l. Then there exists an integer D
such that, for any o € Iy, and B € Ig_g,

1 d
S Vol(ata- 8) = () (77 a) (T%.8) + 0P )
k
In particular, in the space of currents on II, the convergence
1

— Ala = c(a) T
Ak
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holds for any class a € Iy, with ¢(a) = (z) ('™, a); here we identify v € II with T, € C,
cf. Example B3l By Lemmas 3.1l and B.2] Vol(A«a - 8) = Vol(a - A™p) for a € IIj, and
B € Il4_k, so that, by duality
1
— A" — (BT~

)\k
for any class 8 € Iy_g, with ¢(8) = (Z) (T*,B). By Theorem B.6] the currents 7' and

T~ induce classes in the universal cohomology of toric varieties, 1t € H* and §— € HI*,
respectively.

Corollary 6.6. Let A, k, Vs, Vi, be as in Theorem [61l. Then there exists an integer
D such that, for any complete simplicial fan A, and any classes w € H?*(X(A)), n €
H>R (X (A)),

%Z(dfx)*w = <Z> (0 -w) (6K -n) + O(n” K").

Moreover, if L is an ample class in some projective toric variety, and w = LF, respectively
n =LY, then (T,w) > 0, respectively (§~,1) > 0.

In particular, )\in((ﬁ’}‘)*w, regarded as a class in Ek, converges towards (Z) (0~ -w)o™
k

and by duality ﬁ((ﬁﬁ)*n, regarded as a class in ﬂd—k converges towards (Z) 0+ -n)6-.

This result is the analog of [BEJ, Corollary 3.6] in the context of monomial maps but in
arbitrary dimensions.
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