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Abstract. Let K be a field, Ov a valuation ring of K associated to a

valuation v: K → Γ ∪ {∞}, and mv the unique maximal ideal of Ov.

Consider an ideal I of the free K-algebra K〈X〉 = K〈X1, ...,Xn〉 on

X1, ...,Xn. If I is generated by a subset G ⊂ Ov〈X〉 which is a monic

Gröbner basis of I in K〈X〉, where Ov〈X〉 = Ov〈X1, ...,Xn〉 is the

free Ov-algebra on X1, ...,Xn, then the valuation v induces naturally

an exhaustive and separated Γ-filtration F vA for the K-algebra A =

K〈X〉/I, and moreover I ∩ Ov〈X〉 = 〈G〉 holds in Ov〈X〉; it follows

that, if furthermore G 6⊂ mvOv〈X〉 and k〈X〉/〈G〉 is a domain, where

k = Ov/mv is the residue field of Ov , k〈X〉 = k〈X1, ...,Xn〉 is the free

k-algebra on X1, ...,Xn, and G is the image of G under the canonical

epimorphism Ov〈X〉 → k〈X〉, then F vA determines a valuation function

A → Γ ∪ {∞}, and thereby v extends naturally to a valuation function

on the (skew-)field ∆ of fractions of A provided ∆ exists.

2000 Mathematics Classification Primary 16W60; Secondary 16Z05 (68W30).

Key words Filtered algebra, graded algebra, Gröbner basis, valuation.
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1. Introduction

In the so-called noncommutative algebraic geometry, the class of schematic algebras in the

sense of ([VOW1, [VOW3]) has provided an ample stage to play on. Among others of the

topics concerning noncommutative geometric objects associated to schematic algebras,

noncommutative valuations are applied to obtain tools for an equivalent of divisor theory

in noncommutative geometry (the reader is referred to [VO] for details on this aspect). In

the study of extending commutative valuations to noncommutative valuations, filtered-

graded structural methods have been used successfully to obtain sufficient conditions

assuring the existence of an extension ([LVO2], [MVO], [Li1], [VOW2], [VO], [BVO]).

More precisely, let K be a field and Ov a valuation ring of K associated to a valuation v:

K → Γ ∪ {∞}, where Γ is a totally ordered abelian additive group. Then v determines

an exhaustive and separated Γ-filtration F vK = {F v
γK}γ∈Γ for K, where F v

γK = {λ | λ ∈

K, v(λ) ≥ −γ)}, such that F v
γ1
K ·F v

γ2
K = F v

γ1+γ2
K for all γ1, γ2 ∈ Γ, i.e., F vK is a strong

Γ-filtration in the sense of [LVO1]. Consider an affine K-algebra A = K[a1, ..., an] with

the (finite or infinite) set of defining relations G, that is, A ∼= K〈X〉/I with I = 〈G〉,

where K〈X〉 = K〈X1, ..., Xn〉 is the free K-algebra on X1, ..., Xn. From loc. cit. we have

learnt that the key points of naturally extending the given valuation v of K to A and

further to the (skew-)field ∆ of fractions of A (provided ∆ exists) are to assure that

(1) the valuation Γ-filtration F vK of K induces an exhaustive Γ-filtration F vA =

{F v
γA}γ∈Γ for A in a natural way, i.e., F v

γK = K ∩ F v
γA for every γ ∈ Γ, such

that F v
0A = Ov〈X〉 + I/I and F v

<0A = mvF
v
0A, where Ov〈X〉 = Ov〈X1, ..., Xn〉 is

the free Ov-algebra on X1, ..., Xn, and mv is the unique maximal ideal of Ov;

(2) the Γ-filtration F vA obtained in (1) above is separated, i.e., 0 6= a ∈ A implies that

there is some Γ ∈ Γ such that a ∈ F v
γA−F v

<γA, in particular 1 ∈ F v
0A−F v

<0A, where

F v
<γA = ∪γ′<γF

v
γ′A; and

(3) if G ⊂ Ov〈X〉 then Ov〈X〉 ∩ I = 〈G〉 holds in Ov〈X〉. In loc. cit. this property is

referred to as saying that the Ov-algebra Ov〈X〉+ I/I defines a good reduction for

the K-algebra A.

For a connected positively N-graded K-algebra A, it was shown in ([VO], Theorem 4.3.7;

[BVO], Theorem 2.2) that the Γ-filtration F vA constructed in loc. cit. may have the

properties (1) – (2) provided A has a PBWK-bsis in the classical sense; while the property

(3) may be derived under the so-called v-comaximal condition assumed on the ideal I =

〈G〉 of Ov〈X〉, i.e., I ∩ (F v
γK)〈X〉 = (F v

γK)I for every γ ∈ Γ ([MVO], Lemma 2.1; [VO],

Lemmaa 4.3.2).

From ([Li2], CH.III Theorem 1.5; [Li3], Theorem 3.1) we know that, for algebras of

the type A = K〈X〉/I as considered above, the property that A has a classical PBW

2



K-basis may be equivalent to the property that I is generated by a (finite or infinite)

Gröbner basis of special type. For instance, all the concrete algebras quoted in ([MVO],

[Li1], [VO], [BVO]) are indeed defined by Gröbner bases that give rise to PBW K-bases

(cf. [Li2], [Li3]). Inspired by such a fact, we aim to demonstrate the following main result

in this paper:

• If G ⊂ Ov〈X〉 forms a monic Gröbner basis for the ideal I in K〈X〉, where “monic”

means that the leading coefficient of every element in G is 1 (see Section 2 for details),

then A has the three properties (1) – (3) described above. It follows that, if furthermore

G 6⊂ mvOv〈X〉 and the k-algebra k〈X〉/〈G〉 is a domain, where k = Ov/mv is the

residue field of Ov, k〈X〉 = k〈X1, ..., Xn〉 is the free k-algebra on X1, ..., Xn, and G

is the canonical image of G in Ov〈X〉/mvOv〈X〉, then F vA determines a valuation

function A → Γ∪{∞}, and thereby v extends naturally to a valuation function on the

(skew-)field ∆ of fractions of A provided ∆ exists.

The result mentioned above will be reached by deriving several results for R-algebras

over an arbitrary commutative ring R, where the filtration considered will be Γ-filtration

with Γ a totally ordered (commutative or noncommutative) monoid. That is, the results

obtained in Sections 3 – 5 may be of independent interest, for instance, they may be used

to study valuation extensions of commutative algebras defined by monic Gröbner bases

(see the remark given at the end of this paper), and they may also be used to study more

general reductions of algebras over a field K as specified in [LVO3].

By the algorithmic Gröbner basis theory for free K-algebras over a field K ([Mor],

[Gr]), in principle every finitely presented algebra A = K〈X〉/I has the defining ideal

I generated by a (finite or infinite) Gröbner basis G which can always be assumed to

be monic. Furthermore, by [Li3] (or see Proposition 2.7 in Section 2 below), if D is a

subring of K with the same multiplicative identity 1, then G ⊂ D〈X〉 = D〈X1, ..., Xn〉 is

a monic Gröbner basis for the ideal I = 〈G〉 in D〈X〉 if and only if G is a monic Gröbner

basis for the ideal I = 〈G〉 in K〈X〉 with respect to the same monomial ordering on both

K〈X〉 and D〈X〉. In this sense, the work of this paper may be viewed as a computational

approach to solving the valuation extension problem. So, the contents of this paper are

organized as follows.

1. Introduction

2. Monic Gröbner bases over rings

3. Extending FR naturally to FA by Gröbner bases over F0R

4. Realizing the separability of FA by Gröbner bases over F0R

5. Realizing good reductions for A by Gröbner bases over D ⊂ R

6. Realizing valuation extensions of A by Gröbner bases over Ov
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Unless otherwise stated, rings considered in this paper are associative rings with mul-

tiplicative identity 1, ideals are meant two-sided ideals, and modules are unitary left

modules. For a subset U of a ring S, we write 〈U〉 for the ideal generated by U . More-

over, we use N, respectively Z, to denote the set of nonnegative integers, respectively the

set of integers. Moreover, valuations of a (skew-)field ∆ are in the sense of O. Schilling

[Sc].

2. Monic Gröbner Bases over Rings

For the reader’s convenience, in this section we briefly recall from [Li3] some basics on

monic Gröbner bases in free algebras over rings. Classical Gröbner basis theory for free

algebras over a field K is referred to [Mor] and [Gr].

Let R be an arbitrary commutative ring, R〈X〉 = R〈X1, ..., Xn〉 the free R-algebra of

n generators, and BR the standard R-basis of R〈X〉 consisting of monomials (words in

alphabet X = {X1, ..., Xn}, including empty word which is identified with the multiplica-

tive identity element 1 of R〈X〉). Unless otherwise stated, monomials in BR are denoted

by lower case letters u, v, w, s, t, · · ·. By a monomial ordering on BR (or on R〈X〉) we

mean a well-ordering ≺ on BR which satisfies:

(M1) For w, u, v, s ∈ BR, u ≺ v implies wus ≺ wvs;

(M2) For w, u, v ∈ BR, w = uv implies u � w and v � w.

In particular, by an N-graded monomial ordering on BR, denoted≺gr, we mean a monomial

ordering on BR which is defined subject to a well-ordering ≺ on BR, that is, for u, v ∈ BR,

u ≺gr v if either deg(u) < deg(v) or deg(u) = deg(v) but u ≺ v, where deg( ) denotes the

degree function on elements of R〈X〉 with respect to a fixed weight N-gradation of R〈X〉

(i.e. each Xi is assigned a positive degree ni, 1 ≤ i ≤ n). For instance, the usual N-graded

(reverse) lexicographic ordering is a popularly used N-graded monomial ordering.

If ≺ is a monomial ordering on BR and f =
∑s

i=1 λiwi ∈ R〈X〉, where λi ∈ R − {0}

and wi ∈ BR, such that w1 ≺ w2 ≺ · · · ≺ ws, then the leading monomial of f is defined

as LM(f) = ws and the leading coefficient of f is defined as LC(f) = λs. For a subset

H ⊂ R〈X〉, we write LM(H) = {LM(f) | f ∈ H} for the set of leading monomials of S.

We say that a subset G ⊂ R〈X〉 is monic if LC(g) = 1 for every g ∈ G. Moreover, for

u, v ∈ BR, we say that v divides u, denoted v|u, if u = wvs for some w, s ∈ BR.

With notation and all definitions as above, it is easy to see that a division algorithm

by a monic subset G is valid in R〈X〉 with respect to any fixed monomial ordering ≺ on

BR. More precisely, let f ∈ R〈X〉. Noticing LC(g) = 1 for every g ∈ G, if LM(g)|LM(f)

for some g ∈ G, then f can be written as f = LC(f)ugv+ f1 with u, v ∈ BR, f1 ∈ R〈X〉
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satisfying LM(f1) ≺ LM(f); if LM(g) 6 | LM(f) for all g ∈ G, then f = f1+LC(f)LM(f)

with f1 = f −LC(f)LM(f) satisfying LM(f1) ≺ LM(f). Next, consider the divisibility

of LM(f1) by LM(g) with g ∈ G, and so forth. Since ≺ is a well-ordering, after a finite

number of successive division by elements in G in this way, we see that f can be written

as

f =
∑

i,j λijuijgjvij + rf , where λij ∈ R, uij, vij ∈ BR, gj ∈ G,

and rf =
∑

p λpwp with λp ∈ R, wp ∈ BR,

satisfying LM(uijgjvij) � LM(f) whenever λij 6= 0,

LM(rf) � LM(f) and LM(g) 6 | wp for every g ∈ G whenever λp 6= 0.

If, rf = 0 in the representation of f obtained above, then we say that f is reduced to 0

by division by G, and we write f
G
= 0 for this property. The validity of such a division

algorithm by G leads to the following definition.

2.1. Definition Let ≺ be a fixed monomial ordering on BR, and I an ideal of R〈X〉. A

monic Gröbner basis of I is a subset G ⊂ I satisfying:

(1) G is monic; and

(2) f ∈ I and f 6= 0 implies LM(g)|LM(f) for some g ∈ G.

By the division algorithm presented above, it is clear that a monic Gröbner basis of I

is first of all a generating set of the ideal I, i.e., I = 〈G〉, and moreover, a monic Gröbner

basis of I can be characterized as follows.

2.2. Proposition Let ≺ be a fixed monomial ordering on BR, and I an ideal of R〈X〉.

For a monic subset G ⊂ I, the following statements are equivalent:

(i) G is a monic Gröbner basis of I;

(ii) Each nonzero f ∈ I has a Gröbner representation:

f =
∑

i,j λijuijgjvij , where λij ∈ R, uij, vij ∈ BR, gj ∈ G,

satisfying LM(uijgjvij) � LM(f) whenever λij 6= 0,

or equivalently, f
G
= 0;

(iii) 〈LM(G)〉 = 〈LM(I)〉. �

Let ≺ be a monomial ordering on the standard R-basis BR of R〈X〉, and let G be

a monic subset of R〈X〉. We call an element f ∈ R〈X〉 a normal element (mod G) if

f =
∑

j µjvj with µj ∈ R, vj ∈ BR, and f has the property that LM(g) 6 | vj for every

g ∈ G and every µj 6= 0. The set of normal monomials in BR (mod G) is denoted by
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N(G), i.e.,

N(G) = {u ∈ BR | LM(g) 6 | u, g ∈ G}.

Thus, an element f ∈ R〈X〉 is normal (mod G) if and only if f ∈
∑

u∈N(G) Ru.

2.3. Proposition Let G be a monic Gröbner basis of the ideal I = 〈G〉 in R〈X〉 with

respect to some monomial ordering ≺ on BR. Then each nonzero f ∈ R〈X〉 has a finite

presentation

f =
∑

i,j

λijsijgiwij + rf , λij ∈ R, sij, wij ∈ BR, gi ∈ G,

where LM(sijgiwij) � LM(f) whenever λij 6= 0, and either rf = 0 or rf is a unique

normal element (mod G). Hence, f ∈ I if and only if rf = 0, solving the “membership

problem” for I.

�

The foregoing results enable us to obtain further characterization of a monic Gröbner

basis G, which, in turn, gives rise to the fundamental decomposition theorem of the R-

module R〈X〉 by the ideal I = 〈G〉, and thereby yields a free R-basis for the R-algebra

R〈X〉/I.

2.4. Theorem Let I = 〈G〉 be an ideal of R〈X〉 generated by a monic subset G. With

notation as above, the following statements are equivalent.

(i) G is a monic Gröbner basis of I.

(ii) The R-module R〈X〉 has the decomposition

R〈X〉 = I ⊕
∑

u∈N(G)

Ru = 〈LM(I)〉 ⊕
∑

u∈N(G)

Ru.

(iii) The canonical image N(G) of N(G) in R〈X〉/〈LM(I)〉 and R〈X〉/I forms a free

R-basis for R〈X〉/〈LM(I)〉 and R〈X〉/I respectively.

�

Before mentioning a version of the termination theorem in the sense of ([Mor], [Gr])

for verifying an LM-reduced monic Gröbner basis in R〈X〉 (see the definition below), we

need a little more preparation.

Given a monomial ordering ≺ on BR, we say that a subset G ⊂ R〈X〉 is LM-reduced if

LM(gi) 6 | LM(gj) for all gi, gj ∈ G with gi 6= gj.
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If a subset G ⊂ R〈X〉 is both LM-reduced and monic, then we call G an LM-reduced

monic subset. Thus we have the notion of an LM-reduced monic Gröbner basis.

Let I be an ideal of R〈X〉. If G is a monic Gröbner basis of I and g1, g2 ∈ G such that

g1 6= g2 but LM(g1)|LM(g2), then clearly g2 can be removed from G and the remained

subset G − {g2} is again a monic Gröbner basis for I. Hence, in order to have a better

criterion for monic Gröbner basis we need only to consider the subset which is both

LM-reduced and monic.

Let ≺ be a monomial ordering on BR. For two monic elements f, g ∈ R〈X〉 − {0},

including f = g, if there are monomials u, v ∈ BR such that

(1) LM(f)u = vLM(g), and

(2) LM(f) 6 | v and LM(g) 6 | u,

then the element

o(f, u; v, g) = f · u− v · g

is called an overlap element of f and g. From the definition it is clear that

LM((o(f, u; v, g)) ≺ LM(fu) = LM(vg),

and moreover, there are only finitely many overlap elements for each pair (f, g) of monic

elements in R〈X〉. So, for a finite subset of monic elements G ⊂ R〈X〉, actually as in the

classical case ([Mor], [Gr]), the termination theorem below enables us to check effectively

whether G is a Gröbner basis of I or not.

2.5. Theorem (Termination theorem) Let ≺ be a fixed monomial ordering on BR. If G

is an LM-reduced monic subset of R〈X〉, then G is an LM-reduced monic Gröbner basis

for the ideal I = 〈G〉 if and only if for each pair gi, gj ∈ G, including gi = gj, every overlap

element o(gi, u; v, gj) of gi, gj has the property o(gi, u; v, gj)
G
= 0, that is, by division by

G, every o(gi, u; v, gj) is reduced to zero.

�

Remark (i) Obviously, if G ⊂ R〈X〉 is an LM-reduced subset with the property that

each g ∈ G has the leading coefficient LC(g) which is invertible in R, then Theorem 2.5

is also valid for G.

(ii) It is obvious as well that Theorem 2.5 does not necessarily induce an analogue of the

Buchberger algorithm as in the classical case.

(iii) It is not difficult to see that all results we presented so far are valid for getting

monic Gröbner bases in a commutative polynomial ring R[x1, ..., xn] over an arbitrary

commutative ring R where overlap elements are replaced by S-polynomials.
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By virtue of Theorem 2.5 (or more precisely, its proof given in [Li3]), the following two

propositions are obtained.

2.6. Proposition Let K〈X〉 = K〈X1, ..., Xn〉 be the free algebra of n generators over a

field K, and let R〈X〉 = R〈X1, ..., Xn〉 be the free algebra of n generators over an arbitrary

commutative ring R. With notation as before, fixing the same monomial ordering ≺ on

both K〈X〉 and R〈X〉, the following statements hold.

(i) If a monic subset G ⊂ K〈X〉 is a Gröbner basis for the ideal 〈G〉 in K〈X〉, then, taking

a counterpart of G in R〈X〉 (if it exists), again denoted by G, G is a monic Gröbner basis

for the ideal 〈G〉 in R〈X〉.

(ii) If a monic subset G ⊂ R〈X〉 is a Gröbner basis for the ideal 〈G〉 in R〈X〉, then, taking

a counterpart of G in K〈X〉 (if it exists), again denoted by G, G is a Gröbner basis for

the ideal 〈G〉 in K〈X〉.

�

2.7. Proposition Let R be a commutative ring and R′ a subring of R with the same

identity element 1. If we consider the free R-algebra R〈X〉 = R〈X1, ..., Xn〉 and the free

R′-algebra R′〈X〉 = R′〈X1, ..., Xn〉, then the following two statements are equivalent for

a subset G ⊂ R′〈X〉:

(i) G is an LM-reduced monic Gröbner basis for the ideal I = 〈G〉 in R′〈X〉 with respect

to some monomial ordering ≺ on the standard R′-basis BR′ of R′〈X〉;

(ii) G is an LM-reduced monic Gröbner basis for the ideal J = 〈G〉 in R〈X〉 with respect

to the monomial ordering ≺ on the standard R-basis BR of R〈X〉, where ≺ is the same

monomial ordering used in (i).

�

Let K be a field. From the literature we know that numerous well-known K-algebras,

such as Weyl algebras over K, enveloping algebras of K-Lie algebras, exterior K-algebras,

Clifford K-algebras, down-up K-algebras, quantum binomial K-algebras, most popularly

studied quantum groups over K, etc., all have defining relations that form an LM-reduced

monic Gröbner basis in free K-algebras (cf. [Li2], [Laf], [G-I]). Hence, by Proposition 2.6,

if the field K is replaced by a commutative ring R, then all of these R-algebras (if they

exist) have defining relations that form an LM-reduced monic Gröbner basis in a free

R-algebra. The reader is referred to [Li3] for more details on this topic and for more

concrete examples.
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3. Extending FR Naturally to FA by Gröbner Bases

over F0R

Let R be an arbitrary commutative ring, and Γ a totally ordered (commutative or non-

commutative) monoid with the total ordering <. To make the notation uniform in our

context, we first fix the convention:

• From now on in this paper we use + to denote the binary operation of Γ, and we use

0 to denote the neutral element of Γ (though Γ is not necessarily commutative).

• The definition of an exhaustive Γ-filtration defined for R below applies to every R-

algebra (ring) considered in this paper.

We say that R is equipped with an exhaustive Γ-filtration FR = {FγR}γ∈Γ, if each FγR

is an additive subgroup of R and FR satisfies

(F1) R = ∪γ∈ΓFγR;

(F2) Fγ1R ⊆ Fγ2R whenever γ1 < γ2;

(F3) FγR · FτR ⊆ Fγ+τR for all γ, τ ∈ Γ;

(F4) 1 ∈ F0R.

Note that F0R is a subring of R with the same identity element 1. To simplify notation,

we write R0 for F0R. Let R〈X〉 = R〈X1, ..., Xn〉 be the free R-algebra on X1, ..., Xn, and

I an ideal of R〈X〉. Considering the R-algebra A = R〈X〉/I, if G is a monic Gröbner

basis of I in R〈X〉 with respect to a monomial ordering on the standard R-basis BR of

R〈X〉, and if N(G) denotes the set of normal monomials in BR (mod G) (see Section 2),

then, by Theorem 2.4, the canonical image N(G) of N(G) in A = R〈X〉/〈I〉 = R〈X〉/〈G〉

forms a free R-basis for A. Bearing this preliminary in mind, we are able to establish the

following result.

3.1. Theorem Let the commutative ring R be equipped with an exhaustive Γ-filtration

FR = {FγR}γ∈Γ. With notation as fixed above, suppose that the ideal I is generated by a

subset G ⊂ R0〈X〉 which is a monic Gröbner basis of I inR〈X〉 with respect to a monomial

ordering ≺ on the standard R-basis BR of R〈X〉, where R0〈X〉 = R0〈X1, ..., Xn〉 is the

free R0-algebra on X1, ..., Xn, and without loss of generality we assume that LM(g) 6= 1

for every g ∈ G. Then the R-algebra A = R〈X〉/I = R〈X〉/〈G〉 can be endowed with the

exhaustive Γ-filtration FA = {FγA}γ∈Γ by putting

FγA =

{

a =
∑

i

λiw̄i

∣

∣

∣

∣

∣

λi ∈ FγR, w̄i ∈ N(G)

}

, γ ∈ Γ,

such that FγR = R ∩ FγA, γ ∈ Γ, that is, FR extends naturally to FA.
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Proof We show that FA satisfies the conditions (F1) – (F4) required by an exhaustive

Γ-filtration. Obviously each FγA is an additive subgroup of A. Also it is clear that

Fγ1A ⊆ Fγ2A whenever γ1 < γ2. If 0 6= a ∈ A, then a can be written uniquely as

a =
∑m

j=1 µjw̄j with µj ∈ R, w̄j ∈ N(G). Since R = ∪γ∈ΓFγR, we may assume that

µj ∈ FγjR, 1 ≤ j ≤ m, and that γ1 ≥ γ2 ≥ · · · ≥ γm in the totally ordered monoid

Γ. It follows that µj ∈ Fγ1R, 1 ≤ j ≤ m, and thereby a ∈ Fγ1A. This shows that

A = ∪γ∈ΓF
v
γA. If a =

∑

i λiw̄i ∈ FγA, b =
∑

j µjw̄j ∈ FρA, then ab =
∑

i,j λiµjw̄iw̄j with

λiµj ∈ F v
γ+ρR. Since the monic Gröbner basis G of I is contained in R0〈X〉 = (F0R)〈X〉,

if we run the the division algorithm of each wiwj by G in R〈X〉, it is indeed implemented

in R0〈X〉. It turns out that

wiwj =
∑

p,q

ξpqupqgqvpq+
∑

m

ηmsm, where ξpq, ηm ∈ R0 = F0R, upq, vpq ∈ BR, sm ∈ N(G).

Considering the residue classes in R〈X〉/I, we have w̄iw̄j =
∑

m ηms̄m with ηm ∈ F0R

and s̄m ∈ N(G), which implies ab ∈ F v
γ+ρA. Thereby FγA · FρA ⊆ Fγ+ρA for all γ, ρ ∈ Γ.

Moreover, since 1 ∈ N(G) by our assumption on G, it is easy to see that 1 ∈ F0A. This

shows that FA defines an exhaustive Γ-filtration for A.

Finally, noticing the fact that 1 ∈ N(G), it is straightforward that FγR ⊆ R ∩ FγA ⊆

FγR, i.e., FγR = R ∩ FγA for every γ ∈ Γ, as desired. �

4. Realizing the Separability of FA by Gröbner Bases

over F0R

Let R be an arbitrary commutative ring, and Γ a totally ordered (commutative or non-

commutative) monoid with the total ordering <. Suppose that R is equipped with an

exhaustive Γ-filtration FR = {FγR}γ∈Γ in the sense of Section 3. We say that the Γ-

filtration FR is separated, if 0 6= λ ∈ R implies that there is a γ ∈ Γ such that

λ ∈ FγR− F<γR, where F<γR = ∪γ′<γFγ′R.

Let R〈X〉 = R〈X1, ..., Xn〉 be the free R-algebra on X1, ..., Xn, I an ideal of R〈X〉, and

A = R〈X〉/I. With every definition and all notations as in Section 3, especially with

R0 = F0R, in this section we aim to show the next Theorem.

4.1. Theorem Suppose that the ideal I is generated by a subset G ⊂ R0〈X〉 which is a

monic Gröbner basis of I in R〈X〉 with respect to a monomial ordering ≺ on the standard

R-basis BR of R〈X〉, where R0〈X〉 = R0〈X1, ..., Xn〉 is the free R0-algebra on X1, ..., Xn,
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and without loss of generality we assume that LM(g) 6= 1 for every g ∈ G. Then the R-

algebra A = R〈X〉/I = R〈X〉/〈G〉 can be endowed with the Γ-filtration FA as constructed

in Theorem 3.1, and if the Γ-filtration FR of R is separated, then FA is separated, i.e.,

if 0 6= a ∈ A, then there is a γ ∈ Γ such that a ∈ FγA−F<γA, where F<γA = ∪γ′<γFγ′A.

In particular, if 1 ∈ F0R − F<0R then 1 ∈ F0A− F<0A.

Proof By the assumption on I and G, Theorem 3.1 assures the existence of the Γ-

filtration FA of A. Let N(G) be the set of normal monomials in BR (mod G). Then,

by Theorem 2.4, the canonical image N(G) of N(G) in A = R〈X〉/I = R〈X〉/〈G〉 forms

a free R-basis for A, and moreover, 1 ∈ N(G). If 0 6= a ∈ A, then a can be written

uniquely as a =
∑m

j=1 µjw̄j with µj ∈ R, w̄j ∈ N(G). Since FR is separated by the

assumption, there are γ1, γ2, ..., γm ∈ Γ such that µj ∈ FγjR − F<γjR, 1 ≤ j ≤ m.

Assuming γ1 ≥ γ2 ≥ · · · ≥ γm in the totally ordered monoid Γ, we have µj ∈ Fγ1R,

1 ≤ j ≤ m, and hence a ∈ Fγ1A. If there were some τ ∈ Γ with τ < γ1, such that

a ∈ FτA, then a =
∑n

i=1 λiw̄i with λi ∈ FτR and w̄i ∈ N(G). Comparing the coefficients

on both sides of the equality

m
∑

j=1

µjw̄j = a =
n

∑

i=1

λiw̄i,

we would get µj ∈ FτR, 1 ≤ j ≤ m, in particular µ1 ∈ FτR with τ < γ1, which is a

contradiction. Therefore a ∈ Fγ1A− F<γ1A. This shows that FA is separated.

Finally, noticing 1 ∈ N(G), if 1 ∈ F0R− F<0R, then by the construction of F0A and a

similar argument as above we get 1 ∈ F0A− F<0A. �

5. Realizing Good Reductions for A by Gröbner Bases

over D ⊂ R

Let R be an arbitrary commutative ring, R〈X〉 = R〈X1, ..., Xn〉 the free R-algebra on

X1, ..., Xn, I an ideal of R〈X〉, and A = R〈X〉/I. In this section we generalize the

notion of a good reduction (in the sense of [MVO]) to the R-algebra A, and we realize

this property by using monic Gröbner bases.

Let D be any subring of R which has the same identity element 1 as that of R, and

let D〈X〉 = D〈X1, ..., Xn〉 be the free D-algebra on X1, ..., Xn. In what follows we use

BR, respectively BD, to denote the standard R-basis of R〈X〉, respectively the standard

11



D-basis of D〈X〉. Considering the D-subalgebra

Λ = D〈X〉+ I/I

of A, we have RΛ = A and Λ ∼= D〈X〉/I ∩D〈X〉. Observe that the exact sequence

0 −→ I −→ R〈X〉
π

−→ A −→ 0

and the canonical D-algebra epimorphism πD: D〈X〉 → Λ give rise to the exact sequence

0 −→ I ∩D〈X〉 −→ D〈X〉
πD−→ Λ −→ 0

Let ω be any proper ideal of D and k = D/ω. Then the k-algebra epimorphism πω:

D〈X〉/ωD〈X〉 → Λ/ωΛ induced by πD yields the exact sequence

0 −→
I ∩D〈X〉+ ωD〈X〉

ωD〈X〉
−→ D〈X〉/ωD〈X〉

πω−→ Λ/ωΛ −→ 0

It is clear that if the ideal I of R〈X〉 is generated by a subset G ⊂ D〈X〉 but G 6⊂ ωD〈X〉,

such that I ∩ D〈X〉 = 〈G〉 as an ideal of D〈X〉, then Λ/ωΛ ∼= k〈X〉/〈G〉 as k-algebras,

where G is the canonical image of G in D〈X〉/ωD〈X〉.

5.1. Definition (Compare with the definition given in [MVO] Section 2) Let I = 〈G〉 be

the ideal of R〈X〉 generated by a subset G ⊂ D〈X〉. If, as an ideal of D〈X〉, I ∩D〈X〉 =

〈G〉, then we say that the D-algebra Λ = D〈X〉 + I/I defines a good reduction for the

R-algebra A = R〈X〉/I.

5.2. Theorem With the notation as before, if the ideal I is generated by a subset

G ⊂ D〈X〉 which is a monic Gröbner basis of I in R〈X〉 with respect to a monomial

ordering ≺ on the standard R-basis BR of R〈X〉, then the following statements hold.

(i) G is a Gröbner basis for the ideal I∩D〈X〉 in D〈X〉 with respect to the same monomial

ordering ≺ on the standard D-basis BD of D〈X〉. Hence the ideal I ∩ D〈X〉 of D〈X〉

is generated by G, i.e., D〈X〉 ∩ I = 〈G〉 holds in D〈X〉. Moreover, the set of normal

monomials in BD (mod G) is the same as the set of normal monomials in BR (mod G),

denoted N(G).

(ii) The D-algebra Λ = D〈X〉 + I/I defines a good reduction for the R-algebra A =

R〈X〉/I.

(iii) For any ideal ω ofD such that G 6⊂ ωD〈X〉, we have Λ/ωΛ ∼= k〈X〉/〈G〉 as k-algebras.

Proof Although (i) is a consequence of Proposition 2.7, we prefer giving a direct proof

here. First note that BR = BD. If f ∈ I ∩ D〈X〉, say f =
∑

i diui with di ∈ D and
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ui ∈ BD, then since G ⊂ D〈X〉 is a monic Gröbner basis for the ideal I in K〈X〉 with

respect to the monomial ordering ≺ on BR, we have f
G
= 0 in D〈X〉 with respect to the

same monomial ordering ≺ on BD, that is, the division of f by G produces a Gröbner

representation f =
∑

i,j dijwijgjvij with dij ∈ D, wij , vij ∈ BD = BR, and gj ∈ G. Hence

G is a Gröbner basis for the ideal I ∩D〈X〉 in D〈X〉 with respect to the same monomial

ordering ≺ on BD. It turns out that I ∩D〈X〉 = 〈G〉 in D〈X〉, and that the set of normal

monomials in BD (mod G) is the same as the set of normal monomials in BR (mod G) .

(ii) and (iii) are clear enough by (i) and the discussion made before Definition 5.1. �

6. Realizing Valuation Extensions of A by Gröbner

Bases over Ov

In this section, we apply the results of previous sections to proving the main result of this

paper.

We first recall some basics on valuations, especially some fundamental results concern-

ing valuation extensions via filtered-graded structures (cf. [Sc], [Coh], [LVO2], [MVO],

[VO]). Let (Γ,+; <) be a totally ordered abelian additive group with the neutral element

0 and the total ordering <, and let A be an arbitrary (commutative or noncommutative)

ring with 1. A valuation v of A is a surjective function A → Γ ∪ {∞}, where the symbol

∞ plays conventionally the role such that γ < ∞, ∞+ γ = γ +∞ = ∞ for every γ ∈ Γ,

∞+∞ = ∞, and ∞−∞ = 0, such that for a, b ∈ A, the following conditions are satisfied:

(V1) v(a) = ∞ if and only if a = 0;

(V2) v(ab) = v(a) + v(b);

(V3) v(a+ b) ≥ min(v(a), v(b)).

If A is an Ore domain with a valuation function v as above, then v can be extended in a

unique way to the (skew-)field ∆ of fractions of A subject to the rule:

v(ab−1) = v(a)− v(b) for a, b ∈ A with b 6= 0.

Valuation theory is closely related to filtered-graded structures. If a ring A has a

valuation v: A → Γ∪{∞}, then v determines an exhaustive Γ-filtration F vA = {F v
γA}γ∈Γ

for A by putting

F v
γA = {a ∈ A | v(a) ≥ −γ}, γ ∈ Γ,

i.e., F vA satisfies (F1) – (F4) as described in the beginning of Section 3. For the conve-

nience of later use we also note three more properties of F vA as follows.
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6.1. Proposition The exhaustive Γ-filtration F vA of A defined above has the following

properties:

(i) For 0 6= a ∈ A, v(a) = −γ if and only if a ∈ F v
γA− F v

<γA, where F v
<γA = ∪γ′<γF

v
γ′A.

Hence F vA is separated. In particular, 1 ∈ F0A− F<0A.

(ii) If a ∈ F v
γA− F v

<γA and a is invertible, then a−1 ∈ F v
−γA− F<−γA.

(iii) Let G(A) = ⊕γ∈ΓG(A)γ be the associated Γ-graded ring determined by FA, where

G(A)γ = FγA/F<γA for every γ ∈ Γ. Then G(A) is a domain and thereby A is a domain.

�

Conversely, let A be a Γ-filtered ring with an exhaustive Γ-filtration FA = {FγA}γ∈Γ

in the sense of Section 3. If FA is separated, i.e., 0 6= a ∈ A implies that there is a

γ ∈ Γ such that a ∈ FγA− F<γA, where F<γA = ∪γ′<γFγ′A, in particular, we insist that

1 ∈ F0A− F<0A. then the degree function on A can be defined by setting

d : A −→ Γ ∪ {∞}

a 7→

{

γ, if a ∈ FγA− F<γA,

−∞, if a = 0

Furthermore, consider the associated Γ-graded ring G(A) = ⊕γ∈ΓG(A)γ of A determined

by FA, where G(A)γ = FγA/F<γA for every γ ∈ Γ. If G(A) is a domain (hence A is a

domain), then the function defined by setting

v : A −→ Γ ∪ {∞}

a 7→ −d(a)

is a valuation function on A.

In conclusion, the next theorem summarizes the principle of valuation extensions via

filtered-graded structures.

6.2. Theorem Let A be a Γ-filtered ring with an exhaustive and separated filtration

FA = {FγA}γ∈Γ such that 1 ∈ F0A− F<0A. Then the following statements hold.

(i) The degree function d(x) on A defines a valuation function v(x) = −d(x) on A if and

only if G(A) is a domain.

(ii) Suppose that G(A) is a domain (hence A is a domain) and the (skew-)field ∆ of

fractions of A exists, then v can be uniquely extended to a valuation function on ∆,

or equivalently, the Γ-filtration FA can be extended to an exhaustive and separated Γ-

filtration F∆ such that FγA = A∩Fγ∆ for every γ ∈ Γ, and moreover, G(∆) is a Γ-graded

(skew-)field in the sense that every nonzero homogenous element of G(∆) is invertible.

�
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Now, let K be a field v: K → Γ ∪ {∞} be a valuation of K. Then, by the foregoing

discussion, v determines an exhaustive and separated Γ-filtration F vK = {F v
γK}γ∈Γ with

F v
γK = {λ ∈ K | v(λ) ≥ −γ} for K, which has all properties as described in Proposition

6.1. Moreover, since K is a field, it follows from Proposition 6.1 that F vK is a strong Γ-

filtration in the sense of [LVO1], i.e., F v
γ1
K ·F v

γ2
K = F v

γ1+γ2
K, in particular, F v

γK ·F v
−γK =

F v
0K, for all γ1, γ2, γ ∈ Γ, and this leads to the fact that the associated graded ring G(K)

of K is a strongly Γ-graded ring in the sense of [NVO], i.e., G(K)γ1 ·G(K)γ2 = G(K)γ1+γ2 ,

in particular, G(K)γ · G(K)−γ = G(K)0, for all γ1, γ2, γ ∈ Γ. Noting that the valuation

ring of K associated to v is local ring Ov = {λ ∈ K | v(λ) ≥ 0} with the unique maximal

ideal mv = {λ ∈ K | v(λ) > 0}, by the definition of F vK we have F v
0K = Ov and

F v
<0K = mv. Thus, G(K)0 = k = Ov/mv is the residue field of Ov and G(K) is indeed

a commutative Γ-graded field in the sense that every nonzero homogeneous element of

G(K) is invertible.

Next, consider the free K-algebra K〈X〉 = K〈X1, ..., Xn〉 on X1, ..., Xn. Let I be an

ideal of K〈X〉, A = K〈X〉/I, and Λ = Ov〈X〉 + I/I, where Ov〈X〉 = Ov〈X1, ..., Xn〉 is

the free Ov-algebra on X1, ..., Xn. If G is a Gröbner basis for I in K〈X〉 with respect to a

monomial ordering ≺ on the standard K-basis BK of K〈X〉, as before we write N(G) for

the set of normal monomials in BK (mod G), and we write N(G) for the canonical image

of N(G) in A, which is known a K-basis for A (Theorem 2.4).

6.3. Theorem With all notations as we fixed so far, suppose that the ideal I is generated

in K〈X〉 by a monic Gröbner basis G ⊂ Ov〈X〉 with respect to a monomial ordering ≺

on BK , and without loss of generality we assume that LM(g) 6= 1 for every g ∈ G. Then

the following statements hold.

(i) The K-algebra A = K〈X〉/I = K〈X〉/〈G〉 can be endowed with the exhaustive Γ-

filtration F vA = {F v
γA}γ∈Γ by putting

F v
γA =

{

a =
∑

i

λiw̄i

∣

∣

∣

∣

∣

λi ∈ F v
γK, w̄i ∈ N(G)

}

, γ ∈ Γ,

such that FγK = K ∩ FγA, γ ∈ Γ, that is, F vK extends naturally to F vA.

(ii) The Γ-filtration F vA obtained in (i) is separated, i.e., if 0 6= a ∈ A, then there is a

γ ∈ Γ such that a ∈ F v
γA−F v

<γA, in particular 1 ∈ F v
0A−F v

<0A, where F
v
<γA = ∪γ′<γF

v
γ′A.

(iii) The Γ-filtration F vA obtained in (i) has

F v
0A = Ov〈X〉/〈G〉 ∼= Ov〈X〉+ I/I = Λ,

F v
<0A = mvF

v
0A = mvΛ.

Hence the associated Γ-graded K-algebra G(A) = ⊕γ∈ΓG(A)γ of A determined by F vA

has G(A)0 = F v
0A/F

v
<0A = Λ/mvΛ
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(iv) The Γ-filtration F vA obtained in (i) is a strong filtration, i.e., F v
γ1
A ·F v

γ2
A = F v

γ1+γ2
A

for all γ1, γ2 ∈ Γ, and the associated Γ-graded K-algebra G(A) = ⊕γ∈ΓG(A)γ with

G(A)γ = F v
γA/F

v
<γA is strongly Γ-graded, i.e., G(A)γ1 · G(A)γ2 = G(A)γ1+γ2 for all

γ1, γ2 ∈ Γ.

(v) G is a Gröbner basis for the ideal I∩D〈X〉 ofD〈X〉 with respect to the same monomial

ordering ≺ on the standard Ov-basis BOv
of Ov〈X〉. It follows that D〈X〉∩I = 〈G〉 holds

in D〈X〉, and thereby the Ov-algebra Λ = Ov〈X〉+ I/I defines a good reduction for the

K-algebra A = K〈X〉/I in the sense of Definition 5.1.

(vi) If G 6⊂ mvOv〈X〉, then Λ/mvΛ ∼= k〈X〉/〈G〉 as k-algebras, where k = Ov/mv is the

residue field of Ov, k〈X〉 = k〈X1, ..., Xn〉 is the free k-algebra on X1, ..., Xn, and G is the

canonical image of G in Ov〈X〉/mvOv〈X〉

(vii) If G 6⊂ mvOv〈X〉 and k〈X〉/〈G〉 is a domain, then G(A) is a domain and thereby

A is a domain. It follows that F vA determines a valuation function A → Γ ∪ {∞}, and

thereby v extends naturally to a valuation function on the (skew-)field ∆ of fractions of

A provided ∆ exists.

Proof Note that the Γ-filtration F vK of K determined by the valuation v: K → Γ∪{∞}

is exhaustive and separated. Moreover, F v
0K = Ov and F v

<0K = mv.

(i) and (ii) follow from Theorem 3.1, Theorem 4.1, and Proposition 6.1.

(iv) follows from (ii), (iii), and Proposition 6.1.

(iii), (v), and (vi) follow from Theorem 5.2.

(vii) By the foregoing (iii), (vi) and (iv), G(A) is now a strongly Γ-graded algebra with

G(A)0 = Λ/mvΛ ∼= k〈X〉/〈G〉. If k〈X〉/〈G〉 is a domain, then G(A) is a domain and

thereby A is a domain. It follows from Theorem 6.2. that the last assertion holds. �

Let K[x1, ..., xn] be the commutative polynomial K-algebra in n variables over a field

K. Noticing K[x1, ..., xn] ∼= K〈X1, ..., Xn〉/〈G〉 with G = {XjXi−XiXj | 1 ≤ i < j ≤ n} a

Gröbner basis for the ideal 〈G〉, Theorem 6.3 has an immediate application toK[x1, ..., xn].

6.4. Corollary Let K be a field. Then every valuation v on K extends naturally to

a valuation function on K[x1, ..., xn] and further to a valuation function on the field of

rational functions K(x1, ..., xn).

�

More generally, as it was pointed out in ([Li3], Section 1, Remark(iv)), Proposition 2.7

of previous Section 2 is valid for getting monic Grobner bases in a commutative polynomial

ring R[x1, ..., xn] over an arbitrary commutative ring R when overlap elements are replaced

by S-polynomials. It follows that the results of Sections 3 – 5 and Theorem 6.3 are also
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valid for commutative algebras over a field K after replacing K〈X〉 by K[x1, ..., xn]. For

instance, let Ov be a valuation ring of K associated to a valuation v of K, and let

A = K[x1, ..., xn]/I be the coordinate ring of an affine variety V (I) ⊂ Kn. If the ideal I

is generated by a subset G ⊂ Ov[x1, ..., xn] which is a Gröbner basis of I in K[x1, ..., xn]

with respect to a monomial ordering on K[x1, ..., xn], then Theorem 6.3 holds for A after

replacing K〈X〉 by K[x1, ..., xn].
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(2000), 177–182.

[Li1] H. Li, A note on the extension of discrete valuations to affine domains, Comm. Alg.,

25(1997), 1805–1816.
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