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Abstract

Dislocation nucleation is essential to our understanding of plastic deformation, ductility and

mechanical strength of crystalline materials. Molecular dynamics simulation has played an im-

portant role in uncovering the fundamental mechanisms of dislocation nucleation, but its limited

time scale remains a significant challenge for studying nucleation at experimentally relevant con-

ditions. Here we show that dislocation nucleation rates can be accurately predicted over a wide

range of conditions by determining the activation free energy from umbrella sampling. Our data

reveal very large activation entropies, which contribute a multiplicative factor of many orders of

magnitude to the nucleation rate. The activation entropy at constant strain is caused by thermal

expansion, with negligible contribution from the vibrational entropy. The activation entropy at

constant stress is significant larger than that at constant strain, as a result of thermal softening.

The large activation entropies are caused by anharmonic effects, showing the limitations of the

harmonic approximation widely used in solids. Similar behaviors are expected to occur in other

nucleation processes in solids.
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Nucleation plays an important role in a wide range of physical, chemical and biological

processes [1–6]. In the last two decades, the nucleation of dislocations in crystalline solids has

attracted significant attention, not only for the reliability of microelectronic devices [7], but

also as a responsible mechanism for incipient plasticity in nano-materials [8–10] and nano-

indentation [11–13]. However, predicting the nucleation rate as a function of temperature

and stress from fundamental physics is extremely difficult. Because the critical nucleus can

be as small as a few lattice spacings, the applicability of continuum theory [14] becomes

questionable. At the same time, the time scale of molecular dynamics (MD) simulations

is about ten orders of magnitude smaller than the experimental time scale. Hence MD

simulations of dislocation nucleation are limited to conditions at which the nucleation rate

is extremely high [15, 16].

One way to predict dislocation nucleation rate under common experimental loading

rates [17] is to combine the transition state theory (TST) [5, 18] and the nudged-elastic-band

(NEB) method [19]. TST predicts that the nucleation rate per nucleation site in a crystal

subjected to constant strain γ can be written as

ITST = ν0 exp

[

−
Fc(T, γ)

kBT

]

(1)

where Fc is the activation free energy, T is temperature, and kB is Boltzmann’s con-

stant. ν0 = kBT/h is the frequency prefactor, where h is Planck’s constant. Note that

Fc(T, γ) = Ec(γ) − TSc(γ), where Ec and Sc are the activation energy and activation en-

tropy, respectively. Here we assume the dependence of Ec and Sc on T is weak, which is

later confirmed numerically. For a crystal subjected to constant stress σ, Fc(T, γ) in Eq. (1)

should be replaced by the activation Gibbs free energy Gc(T, σ) = Hc(σ)−TSc(σ), where Hc

is the activation enthalpy. Because the NEB method only computes the activation energy,

the contribution of Sc is often ignored in rate estimates in solids. Recently, an approximation

of Sc(σ) = Hc(σ)/Tm is used [17], where Tm is the surface disordering temperature. This

approximation was questioned by subsequent MD simulations [20]. The magnitude of Sc

remains unknown due to the lack of a method to compute it accurately over a wide range

of temperature and stress conditions.

We successfully applied the umbrella sampling [21] method to compute the activation

free energy for homogeneous and heterogeneous dislocation nucleation in copper. Based on

this input, the nucleation rate is predicted using the Becker-Döring theory [22]. Comparison
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with direct MD simulations at high stress confirms the accuracy of this approach. Both

Fc(T, γ) and Gc(T, σ) show significant reduction with increasing T , corresponding to large

activation entropies. For example, Sc(γ = 0.092) = 9 kB and Sc(σ = 2GPa) = 48 kB are

observed in homogeneous nucleation. We found that Sc(γ) is caused by the anharmonic

effect of thermal expansion, with negligible contribution from the vibrational entropy. The

large difference in the two activation entropies, ∆Sc ≡ Sc(σ)− Sc(γ), is caused by thermal

softening, which is another anharmonic effect. Similar behaviors are expected to occur in

other nucleation processes in solids.

For simplicity, we begin with the case of homogeneous dislocation nucleation in the bulk.

Even though dislocations often nucleate heterogeneously at surfaces or internal interfaces,

homogeneous nucleation is believed to occur in nano-indentation [11] and in a model of

brittle-ductile transition [23]. It also provides an upper bound to the ideal strength of

the crystal. Our model system is a copper single crystal described by the embedded-atom

method (EAM) potential [24]. As shown in Fig. 1(a), the simulation cell is subjected to a

pure shear stress along [112]. The dislocation to be nucleated lies on the (111) plane and

has the Burgers vector of a Shockley partial [25], bp = [112]/6. Fig. 1(b) shows the shear

stress-strain relationship of the perfect crystal at different temperatures (before dislocation

nucleation).

In this work, we predict the nucleation rate based on the Becker-Döring (BD) theory,

which expresses the nucleation rate per nucleation site as,

IBD = f+
c Γ exp

[

−
Fc(T, γ)

kBT

]

(2)

where f+
c is the molecular attachment rate, and Γ is the Zeldovich factor (see Methods). The

BD theory and TST only differs in the frequency prefactor. While TST neglects multiple

recrossing over the saddle point by a single transition trajectory [5], this is accounted for in

the BD theory through the Zeldovich factor.

First, we establish the validity of the BD theory for dislocation nucleation by comparing

it against direct MD simulations at a relatively high stress σ = 2.16 GPa (γ = 0.135) at

T = 300K, which predicts IMD = 2.5 × 108 s−1 (see Methods). The key input to the BD

theory is the activation Helmholtz free energy Fc(T, γ), which is computed by umbrella

sampling. The umbrella sampling is performed in Monte Carlo simulations using a bias

potential as a function of the order parameter n, which is chosen as the number of atoms
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inside the dislocation loop (see Methods).

Fig. 2(a) shows the free energy function F (n) obtained from umbrella sampling for the

specified (T, γ) condition. The maximum of F (n) gives the activation free energy Fc =

0.527± 0.001 eV and the critical nucleus size nc = 36. The Zeldovich factor [28], Γ = 0.055,

is obtained from Γ ≡
(

η
2πkBT

)1/2

where η = − ∂2F (n)/∂ n2|n=nc
.

Using the configurations collected from umbrella sampling with n = nc as initial condi-

tions, MD simulations give the attachment rate f+
c = 5.3× 1014 s−1 (see Methods). Because

the entire crystal is subjected to uniform stress, the number of nucleation sites is the total

number of atoms, Natom = 14976. Combining these data, the Becker-Döring theory predicts

the total nucleation rate to be NatomI
BD = 6.2 × 108 s−1. This is within a factor of 3 of

the MD prediction and the difference between the two is comparable to our error bar. This

agreement shows that the Becker-Döring theory and our numerical approach are suitable for

the calculation of dislocation nucleation rate.

We now examine the dislocation nucleation rate under a wide range of temperature and

strain (stress) conditions relevant for experiments and beyond the limited time scale of MD

simulations. Fig. 3(a) shows the activation Helmholtz free energy Fc(T, γ) as a function of

γ at different T . The zero temperature data is obtained a minimum-energy-path (MEP)

search using a modified version of the string method, similar to that used in [17, 29]. The

downward shift of Fc curves with increasing T is the signature of the activation entropy

Sc. Fig. 3(c) plots Fc as a function of T at γ = 0.092. The data closely follow a straight

line, whose slope gives Sc(γ) = 9.0 kB. This contributes a significant multiplicative factor,

exp(Sc/kB) ≈ 104, to the absolute nucleation rate, and cannot be ignored.

What causes this rapid drop of activation free energy with temperature? Thermal ex-

pansion and vibrational entropy are two candidate mechanisms. To examine the effect of

thermal expansion, we performed zero temperature MEP search at γ = 0.092, but with

other strain components fixed at the equilibrated values at T = 300 K. The resulting ac-

tivation energy, Ẽc = 2.04 eV, is indistinguishable from the activation free energy Fc at

T = 300 K computed from umbrella sampling. Because atoms do not vibrate in the MEP

search, this result shows that the dominant mechanism for the large Sc(γ) is thermal expan-

sion, while the contribution from vibrational entropy is negligible. As temperature increases,

thermal expansion pushes neighboring atoms further apart and weakens their mutual inter-

action. This makes crystallographic planes easier to shear and significantly reduces the free
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energy barrier for dislocation nucleation. In the widely used harmonic approximation of

TST, the activation entropy is often attributed to the vibrational degrees of freedom as

ν0 exp(Sc/kB) = (
∏N

i=1
νm
i )/(

∏N−1

i=1
νa
i ), where ν

m
i and νa

i are the positive normal frequencies

around the local energy minimum and activated state, respectively [5, 18]. However, here

we see that Sc(γ) arises entirely from the anharmonic effect.

While it is easier to control strain γ than stress σ in atomistic simulations, it is usually

easier to apply stress in experiments, and experimental results are often expressed as a

function of σ and T . To bridge between simulations and experiments, it is important to

establish a connection between the constant-stress and constant-strain ensembles. In the

constant-strain ensemble, the system is described by the Helmholtz free energy F (n, T, γ)

where n is the size of the dislocation loop and the activation Helmholtz free energy is defined

as Fc(T, γ) ≡ F (nc, T, γ) − F (n=0, T, γ). In the constant-stress ensemble, the system is

described by the Gibbs free energy G(n, T, σ), from the Legendre transform G = F − σ γ V ,

with σ ≡ V −1∂F/∂γ|n,T . Similarly, Gc(T, σ) ≡ G(nc, T, σ)−G(n=0, T, σ). We have proved

that Gc(T, σ) = Fc(T, γ) in the thermodynamic limit of V → ∞, when σ and γ satisfies the

stress-strain relation of the perfect crystal, σ(γ, T ). The difference between Fc and Gc when

σ = σ(T, γ) is of the order O(V −1). The details of the proof will be published separately.

Combining the activation Helmholtz free energy Fc(T, γ) shown in Fig. 3(a) and the stress-

strain relations shown in Fig. 1(b), we obtain the activation Gibbs free energyGc(T, σ), which

is shown in Fig. 3(b). We immediately notice that the curves at different temperatures are

more widely apart in Gc(T, σ) than that in Fc(T, γ), indicating a much larger activation

entropy in the constant-stress ensemble. For example, Fig. 3(d) plots Gc as a function of

T at σ = 2.0 GPa, from which we can obtain an averaged activation entropy of Sc(σ) =

48 kB in the temperature range of [0, 300K]. This contributes a multiplicative factor of

exp(Sc(σ)/kB) ≈ 1020 to the absolute nucleation rate.

The dramatic difference between Sc(γ) and Sc(σ) may seem surprising. Indeed, they are

sometimes used interchangeably [31, 32], although the conceptual difference between the two

has been pointed out in the context of chemical reactions [33, 34]. It is well known that the

entropy is independent of the ensemble of choice, i.e. S(n, T, γ) ≡ ∂F (n, T, γ)/∂T |n,γ and

S(n, T, σ) ≡ ∂G(n, T, γ)/∂T |n,σ equal to each other as long as σ = V −1∂F/∂γ|n,T , which is

true by definition. At the same time, the activation entropy is just the entropy difference

between the activated state and the metastable state, i.e. Sc(T, γ) = S(nc, T, γ) − S(n=
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0, T, γ) and Sc(T, σ) = S(nc, T, σ) − S(n=0, T, σ). If the entropies in two ensembles can

equal each other, it may seem puzzling how the activation entropies can be different.

The resolution of this apparent paradox is that under the constant applied stress, the

nucleation of a dislocation loop causes a strain increase, i.e. σ(n=0, T, γ) = σ(nc, T, γ
+),

with γ+ > γ. Based on this result, one can show that the difference in the activation en-

tropies, ∆Sc ≡ Sc(σ) − Sc(γ), equals S(n=0, T, γ+) − S(n=0, T, γ), which is the entropy

difference of the perfect crystal at two slightly different strains. We can further show that

∆Sc = −Ωc(σ)∂σ/∂T |γ, where Ωc ≡ −∂Gc/∂σ|T is the activation volume and −∂σ/∂T |γ

describes the thermal softening effect. Hence ∆Sc is always positive for nucleation processes

in solids driven by shear stress. In the case of homogeneous dislocation nucleation ∆Sc as

large as 39 kB is observed for homogeneous dislocation nucleation, which is mainly caused by

its large activation volume Ωc. The numerical results enable us to examine the approxima-

tion [17] based on the so-called thermodynamic “compensation law” [30], which states that

the activation entropy is proportional to the activation enthalpy (or energy). We find that

Sc(γ) can be roughly approximated by Ec(γ)/T
∗ with T ∗ ≈ 3000 K while Sc(σ) can be ap-

proximated by Hc(σ)/T
† only in the large stress limit, with T † ≈ 390 K (see supplementary

materials).

To assess the applicability of these conclusions in heterogeneous nucleation, we studied

dislocation nucleation from the corner of a [001]-oriented copper nanorod with {100} side

surfaces under axial compression (see Methods). Fig. 4(b) plots the activation free energy

barrier as a function of axial compressive stress σ, which shows significant reduction of the

activation free energy with temperature. For example, at the compressive elastic strain of ǫ =

0.03, the compressive stress is σ = 1.55 GPa at T = 0 K. The activation entropy Sc(ǫ) at this

elastic strain equals 6.9kB, whereas the activation entropy Sc(σ) at this stress equals 19kB.

Fig. 4(c) plots the contour lines of the predicted dislocation nucleation rate (per nucleation

site) as a function of T and σ. To show the physical effect of the large activation entropies,

the dashed lines plot the rate predictions if the effect of Sc(σ) were completely neglected.

Significant deviations between the two sets of contour lines are observed, especially for

T ≥ 300 K and σ ≤ 1.5 GPa. For example, at T = 300 K and σ = 1.5 GPa (where

a thick and a thin contour line cross), the neglect of activation entropy would cause an

underestimate of the nucleation rate by 10 orders of magnitude.

In summary, we have shown that the Becker-Döring theory combined with free energy
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barriers determined by umbrella sampling can accurately predict the rate of homogeneous

dislocation nucleation. In both homogeneous and heterogeneous dislocation nucleation, a

large activation entropy at constant elastic strain is observed, and is attributed to the

weakening of atomic bonds due to thermal expansion. An even larger activation entropy

is observed at constant stress, due to thermal softening. Both effects are anharmonic in

nature, and emphasize the need to go beyond harmonic approximation in the application of

rate theories in solids. We believe our methods and the general conclusions are applicable

to a wide range of nucleation processes in solids that are driven by shear stress, including

cross slip, twinning and martensitic phase transformation.

METHODS

Molecular Dynamics

The simulation cell for homogeneous dislocation nucleation has dimension 8[112]×6[111]×

3[110]. Periodic boundary conditions (PBC) are applied to all 3 directions. To reduce

artifacts from periodic image interactions, the applied stress is always large enough so that

the diameter of critical dislocation loop is smaller than half the width of the simulation cell.

The shear strain γ is the x-y component of the engineering strain. The following procedure

is used to obtain pure shear stress-strain curve shown in Fig. 1(b). At each temperature T

and shear strain γxy, a series of 2 ps MD simulations under the NVT ensemble are performed.

After each simulation, all strain components except γxy are adjusted according to the average

Virial stress until σxy is the only non-zero stress component. The shear strain is then

increased by 0.01 and the process repeats until the crystal collapses spontaneously. The

shear stress-strain data are fitted to a polynomial function, σ(γ, T ) =
∑

2

i=0

∑

2

j=0
aijγ

iT j.

To obtain average nucleation time at σxy = 2.16 GPa (γ = 0.135) at 300 K, we performed

192 independent MD simulations using the NVT ensemble with random initial velocities.

Each simulation runs for 4 ns. If dislocation nucleation occurs during this period, the

nucleation time is recorded. This information is used to construct the function Ps(t), which

is the fraction of MD simulation cells in which dislocation nucleation has not occurred at

time t. Ps(t) can be well fitted to the form of exp(−IMDt) to extract the nucleation rate

IMD.
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To compute the attachment rate f+
c , we collect from umbrella sampling an ensemble of 500

atomic configurations for which n = nc, and run MD simulations using each configuration

as an initial condition. The initial velocities are randomized according to Boltzmann’s

distribution. The mean square change of the loop size, 〈∆n2(t)〉, as shown in Fig. 2(b), is

fitted to a straight line, 2f+
c t, in order to extract f+

c [26].

Free energy barrier calculations

The reaction coordinate n is defined for each atomic configurations in the following way.

An atom is labelled as “slipped” if its distance from any of its original nearest neighbors

has changed by more than the critical distance dc [27]. dc = 0.33 Å, 0.38 Åand 0.43 Åfor

T ≤ 400 K, T = 500 K and T = 600 K, respectively. The “slipped” atoms are grouped into

clusters; two atoms belong to the same cluster if their distance is less than cutoff distance

rc (3.4 Å). The reaction coordinate n is the number of atoms in the largest cluster divided

by two.

To perform umbrella sampling, a bias potential kB T̂ (n−n)2 is superimposed on the EAM

potential, where T̂ = 40K and n is the center of the sampling window. T̂ is empirically cho-

sen so that the width of the sampling window on the n-axis is about 10. The Helmholtz free

energy data can be fitted very well by a polynomial function, F (γ, T ) =
∑2

i=0

∑1

j=0
bijγ

iT j.

For heterogeneous dislocation nucleation, the size of the copper nanorod [17] is 15[100]×

15[010]× 20[001] with PBC along [001].
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[22] Becker, R. & Döring, W. The kinetic treatment of nuclear formation in supersaturated vapors

Ann. Phys. (N.Y.) 24, 719-752 (1935).

[23] Khantha, M., Pope, D. P., & Vitek, V. Dislocation screening and the brittle-to-ductile tran-

sition: a Kosterlitz-Thouless type instability. Phys. Rev. Lett. 74, 684-687 (1994).

[24] Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., & Kress, J. D. Struc-

tural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom

calculations. Phys. Rev. B. 63, 224106 (2001)

[25] Hirth, J. P. & Lothe, J. Theory of Dislocations (Krieger, New York, 1992)

[26] Ryu, S. & Cai, W. Validity of classical nucleation theory for Ising models Phys. Rev. E, 81,

030601 (R) (2010)

10



[27] Ngan, A. H. W., Zuo, L., & Wo, P. C. Size dependence and stochastic nature of yield strength

of micron-sized crystals: a case study on Ni3Al. Proc. Royal Soc. A 462, 1661-1681 (2006)

[28] Zeldovich, Y. B., On the theory of new phase formation: cavitation. Acta Physiochim. URSS,

18, 1-22 (1943).

[29] Zhu, T., Li, J., Samanta, A., Kim, H. G., & Suresh, S. Interfacial plasticity governs strain

rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. USA 104, 3031

(2007).

[30] Kemeny, G. & Rosenberg, B. Compensation law in thermodynamics and thermal death. Nature

243, 400 (1970).

[31] Huntington, H. B., Shirn, G. A., & Wajda, E. S. Calculation of the entropies of lattice defects.

Phys. Rev. 99, 1085 (1955).

[32] DiMelfi, R. J., Nix, W. D., Barnett, D. M. & Pound, G. M. The equivalence f two methods

for computing the activation entropy for dislocation motion. Acta. Mater. 28, 231-337 (1980).

[33] Whalley, E. Use of volumes of activation for determining reaction mechanisms. in Advances

in Physical Organic Chemistry, Gold, V. ed., 93-162, (Academic Press, London, 1964).

[34] Tonnet, M. L., & Whalley, E. Effect of pressure on the alkaline hydrolysis of ethyl acetate

in acetone-water solutions. parameters of activation at constant volume. Can. J. Chem. 53

3414-3418 (1975).

11



FIGURE LEGENDS

Figure 1 : (a) Schematics of the simulation cell. The spheres represent atoms enclosed

by the critical nucleus of a Shockley partial dislocation loop. (b) Shear stress-strain curves

of the Cu perfect crystal (before dislocation nucleation) at different temperatures.

Figure 2 : (a) Free energy of dislocation loop during homogeneous nucleation at T =

300 K, σxy = 2.16 GPa (γxy = 0.135) from umbrella sampling. (b) Size fluctuation of

critical nuclei from MD simulations.

Figure 3 : Activation free energy for homogeneous dislocation nucleation in copper. (a)

Fc as a function of shear strain γ at different T . (b) Gc as a function of shear stress σ at

different T . Squares represent umbrella sampling data and lines represent zero temperature

MEP search results using simulation cells equilibrated at different temperatures. (c) Fc as

a function of T at γ = 0.092. Circles represent umbrella sampling data and dashed line

represent a polynomial fit. (d) Gc as a function of T at σ = 2.0 GPa from polynomial fit.

Figure 4 : (a) Heterogeneous dislocation nucleation in a copper nanorod under compres-

sion. (b) Gc as a function compressive stress σ at different T . (c) Contour lines of dislocation

nucleation rate per site I as a function of T and σ. The predictions with and without ac-

counting for activation entropy Sc(σ) are plotted in thick and thin lines, respectively. The

nucleation rate of I ∼ 106s−1 per site is accessible in typical MD time scales while nucleation

rate of I ∼ 10−4-10−9 is accessible in typical experimental time scales, depending on the

number of nucleation sites.
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