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1 Introduction

The modular representation theory of a finite group G attempts to describe
the modules over the group algebra kG, where k is a field of characteristic p
dividing the order of G. Under these circumstances kG is not semisimple and
the vast majority of kG-modules are not completely reducible. Towards an
understanding of these modules the important concept of relative projectivity
has been considered in some depth.

Modular representation theory seems very well-suited for consideration in
the wider context of profinite groups. If G is a profinite group and k is a finite
field, then there is a very natural profinite analogue of the group algebra for
G, and hence of the corresponding profinite modules. There is also a well-
defined Sylow theory of profinite groups that in particular allows us to consider
analogues for p-subgroups. The close connection between a profinite object and
its finite quotients allows us to generalize several foundational results of modular
representation theory to a much wider universe of groups.

We give here an indication of our approach and the main results. In Section
3 we define the concept of relative projectivity for a k[[G]]-module and prove
a characterization of finitely generated relatively H-projective modules, where
H is a closed subgroup of G (Theorem 3.7). Of particular note in this charac-
terization is the fact that a k[[G]]-module is relatively H-projective if and only
if it is relatively HN -projective for every open normal subgroup N of G. In
Section 4 we introduce the vertex of an indecomposable finitely generated mod-
ule, proving existence (Corollary 4.3) and uniqueness up to conjugation in G
(Theorem 4.6). Crucial in the proof of 4.6, and elsewhere, is the helpful fact
that a finitely generated indecomposable k[[G]]-module has local endomorphism
ring (Proposition 4.4). In Section 5 we introduce the concept of source, but
note that this object seems less natural in the profinite category than it does
in the finite case. We prove under additional hypotheses that finitely gener-
ated sources are unique up to conjugation (Theorem 5.5). In the last section
we prove an analogue of Green’s indecomposability theorem for modules over
the completed group algebra of a virtually pro-p group (Theorem 6.7). To do
this, we first show that an important characterization of absolutely indecom-
posable modules, known to hold for finite groups, also holds for virtually pro-p
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groups (Theorem 6.6). Finally, we answer the question of what happens when
the module in question is not necessarily absolutely indecomposable, showing
that the induced summands are isomorphic (Theorem 6.10). In many proofs we
utilize a class of quotient modules known as coinvariants. These give a natural
inverse system for a module with some very useful properties, many of which
are elucidated in Section 2.

It is hoped that in the future, results in the area will have number theoretic
applications (to Iwasawa algebras or to Galois theory, for instance) as well as
being of interest from a purely algebraic perspective.

There are excellent books available covering the prerequisite material of this
paper. For a detailed introduction to profinite objects see [13], or for an ex-
plicitly functorial approach well suited to our needs see [9]. For the modular
representation theory of finite groups see [1], [2] or the encyclopedic [4]. Our
discussion will for the most part follow the path laid out in the seminal paper
[6] of J.A. Green, published almost exactly 50 years ago.

2 Preliminaries

Throughout our discussion let k be a finite field of characteristic p and let G
be a profinite group. We define well-known profinite analogues of the natural
objects of modular representation theory. Denote by k[[G]] the completed group
algebra of G - that is, the completion of the abstract group algebra kG with
respect to the open normal subgroups of G. Since k is finite and G is profinite,
the completed group algebra k[[G]] is profinite. A profinite k[[G]]-module is a
profinite additive abelian group U together with a continuous map k[[G]]×U →
U satisfying the usual module axioms. It follows from [9, 5.1.1] that U is the
inverse limit of an inverse system of finite quotient modules of U . If not explicitly
stated, our modules are profinite left modules.

Let H be a closed subgroup of G. IfW is a right k[[H ]]-module and V is a left
k[[H ]]-module, then we denote by W ⊗̂k[[H]]V the completed tensor product ofW
and V over k[[H ]] [9, 5.5]. This is the natural profinite analogue of the abstract
tensor product and satisfies most of the properties one would expect. If eitherW
or V is finitely generated as a k[[H ]]-module then the completed tensor product
and abstract tensor product coincide [9, 5.5.3(d)]. Now let V be a profinite
k[[H ]]-module and define the induced k[[G]]-module V ↑G as k[[G]]⊗̂k[[H]]V with
action from G on the left factor. If U is a k[[G]]-module then the restricted
k[[H ]]-module U ↓H is the module U with coefficients restricted to k[[H ]].

A profinite k[[G]]-module U is said to be finitely generated if there is a finite
subset {u1, . . . , un} of U with every element of U a k[[G]]-linear combination
of the elements u1, . . . , un. Thus U is the module abstractly generated by the
given finite subset, but by [13, 7.2.2] this module is in fact profinite.

Whenever U,W are profinite k[[G]]-modules, denote by Homk[[G]](U,W ) the
k-module of continuous k[[G]]-module homomorphisms from U toW . We sketch
proofs for some properties of this object that do not seem to be explicitly men-
tioned in the literature.
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Lemma 2.1. Let U and W = lim←− IWi be profinite k[[G]]-modules. then there is
a topological isomorphism

Homk[[G]](U,W ) ∼= lim←− i∈IHomk[[G]](U,Wi),

where each set of maps is given the compact-open topology.

Proof. Abstractly this is essentially the definition of inverse limit. Using basic
properties of the compact-open topology it is easily verified that the obvious
isomorphism is a homeomorphism.

Corollary 2.2. If U is a finitely generated profinite k[[G]]-module and W is a
profinite k[[G]]-module, then Homk[[G]](U,W ) is profinite.

If H is a closed subgroup of G (H ≤C G) the functor (−)↑GH is left adjoint
to (−)↓GH . The unit η : 1 → (−)↑G↓H is given by ηV (v) = 1⊗̂v and the counit
ε : (−)↓H↑G→ 1 by εU (g⊗̂u) = gu. In particular we have the following:

Lemma 2.3. Let H ≤C G and V a k[[H ]]-module. Having identified V with
1⊗̂k[[H]]V ⊆ V ↑G, every continuous k[[H ]]-module homomorphism V → U ↓H
extends uniquely to a continuous k[[G]]-module homomorphism V ↑G→ U .

The following result will also be of use. For the definition of a filter base see
[13, 1.2].

Lemma 2.4. Let U be a k[[G]]-module and let {Wi | i ∈ I} be a filter base of
open subgroups of G. Then U ↓W↑G∼= lim←− i U ↓Wi

↑G, where W =
⋂
Wi.

Proof. This follows from [9, 5.2.2, 5.5.2, 5.8.1].

If U is a finitely generated k[[G]]-module then we can give a reasonably
explicit inverse system for U using coinvariant quotient modules. If N is a
closed normal subgroup of G, then the coinvariant module UN is defined as
k⊗̂k[[N ]]U , where the left factor k is the trivial k[[G]]-module. The action of

G on UN is given by g(λ⊗̂u) = λ⊗̂gu. In tensor product notation we usually
denote UN by k⊗̂NU . The module UN can usefully be described as follows:

Lemma 2.5. UN together with the canonical projection map ϕN : U → UN

is (up to isomorphism) the unique k[[G]]-module on which N acts trivially and
satisfying the following universal property:

Every continuous k[[G]]-module homomorphism ρ from U to a profinite k[[G]]-
module X on which N acts trivially factors uniquely through ϕN . That is, there
is a unique continuous homomorphism ρ′ : UN → X such that ρ′ϕN = ρ.

Note that N is in the kernel of the action of k[[G]] on UN , so that UN can be
considered as a k[[G/N ]]-module. It follows that if N is open and U is finitely
generated then UN is finite. From properties of the completed tensor prod-
uct (which in this case is the same as the abstract tensor product) it is also
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easy to check that the operation (−)N is a right exact functor from the cate-
gory of (finitely generated) k[[G]]-modules to the category of (finitely generated)
k[[G/N ]]-modules.

We collect here several properties of coinvariant modules. First a list of
important technical details:

Lemma 2.6. Let G be a profinite group, N,M closed normal subgroups of G
with N ≤M and H a closed subgroup of G. Let U,W be k[[G]]-modules and let
V be a k[[H ]]-module. Then

1. (UN )M is naturally isomorphic to UM .

2. (U ⊕W )N ∼= UN ⊕WN .

3. VH∩N is naturally a k[[HN/N ]]-module.

4. (V ↑G)N ∼= VH∩N ↑G/N .

5. UN ↓HN/N
∼= (U ↓HN )N .

Proof. The maps required for 1. are obtained by repeated use of the universal
property 2.5. The remaining isomorphisms are easily verified.

We are primarily interested in coinvariant modules for the following reason:

Proposition 2.7. If U is a profinite k[[G]]-module, then {UN |N�OG} together
with the set of canonical quotient maps forms a surjective inverse system with
inverse limit U .

Proof. It is clear that the maps ϕMN : UN → UM given by 1⊗̂Nu 7→ 1⊗̂Mu
whenever N ≤ M are well defined and give an inverse system of the k[[G]]-
modules UN . It is also clear that we have a compatible set of maps ϕN : U → UN

given by u 7→ 1⊗̂Nu. We need only show that U is in fact the inverse limit. The
maps ϕN are the components of a surjective map of inverse systems, giving a
continuous surjection u 7→ (1⊗̂Nu) onto the limit by [9, 1.1.5], so we need only
check that this map is injective.

To do this we use the universal property 2.5. By definition U is profinite,
so is the inverse limit of some inverse system of finite quotient modules. Fix
u 6= 0 in U and some finite quotient module U/W in which the image of u is
non-zero. Then since U/W is finite some N�OG must act trivially on U/W , so
that the quotient map U ։ U/W factors through UN via ϕN . But if the image
of u under the composition is non-zero then certainly the image of u under ϕN

is non-zero, and so the image of u in lim←−UN is non-zero. Thus, our map is
injective and U ∼= lim←−NUN , as required.

Lemma 2.8. Let G be a profinite group and U a non-zero profinite k[[G]]-
module. Let N be a closed pro-p subgroup of G. Then UN 6= 0.
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Proof. First suppose that G is a pro-p group. Since U is profinite it has a
proper open submodule of finite index and hence a maximal submodule U ′, so
the module U/U ′ is simple. But U/U ′ is finite, so can be regarded as a module
for the finite p-group G/N0 for some N0 �O G. The only simple module over a
finite p-group is k, so that U/U ′ ∼= k and we have a surjection β : U ։ k. But
every N �C G acts trivially on k, so that β factors through every UN , and thus
UN 6= 0 for each N �C G.

Now let G be a general profinite group. Since U ↓N is a non-zero module
for the pro-p subgroup N , by the previous paragraph 0 6= (U ↓N)N ∼= UN ↓N .
Hence UN 6= 0.

The above result is particularly useful when G is a virtually pro-p group so
that G has a basis of open normal pro-p subgroups. In this case the following
result will be of the utmost importance:

Proposition 2.9. Let G be a virtually pro-p group and let U be an indecom-
posable finitely generated k[[G]]-module. Then there exists some N0 �O G such
that UN is indecomposable for every N ≤ N0.

Proof. We work within the cofinal (see [9, 1.1.9]) inverse system {UN , ϕMN} of
coinvariant modules for which N is a pro-p group. Since ϕMN is functorial and
summands cannot have zero image by 2.8, we see that as we move up our system
the number of direct summands of the UN cannot increase. It follows that for
some N0 �O G and any N ≤ N0 the number n of indecomposable summands of
UN is equal to the number of indecomposable summands of UN0

. We take the
cofinal inverse system of those N contained in N0

For each N , let sN be a set {XN,1, . . . , XN,n} of n indecomposable submod-
ules of UN intersecting pairwise in 0 and having the property that UN is equal
to the (direct) sum XN,1⊕ . . .⊕XN,n. Denote by SN the set of all possible sN
- a non-empty finite set. We form a new inverse system of the finite sets SN via
the maps ψMN : SN → SM given by

ψMN (sN ) = ψMN ({XN,1, . . . , XN,n}) = {ϕMN (XN,1), . . . , ϕMN (XN,n)}.

Since each SN is finite and non-empty the inverse limit of this system is
non-empty by [9, 1.1.4]. We fix once and for all some element (sN ) of lim←−SN ,
and for each N we choose our direct sum decomposition of UN to be the one
given to us by sN .

Recall that we are only considering those N �O G contained in N0, so that
each UN maps onto UN0

. Fix some indecomposable summand XN0
of UN0

(an
element of sN0

) and for eachN in our system defineXN to be the unique element
of sN with ϕN0N (XN ) = XN0

. It is now easy to check that {XN , ϕMN |XN
} is

an inverse system of submodules of the UN . Denote the inverse limit of this
system by X - a submodule of U .

We want to show that X is a summand of U . For each N , we have a
canonical inclusion map XN →֒ UN , and these maps give a map of inverse
systems {XN} → {UN} in which each component splits. This corresponds to

5



an injection ι : X →֒ U . For each N , let PN denote the finite, non-empty set
of projection maps UN ։ XN splitting the corresponding component of ι. The
functoriality of (−)N gives us an inverse system of the PN , and an element of
the limit is a map of inverse systems corresponding to a splitting π : U → X
of ι. Thus X is a direct summand of U . But X 6= 0 since XN 6= 0 and the
maps ϕN |X are surjective, so that since U is indecomposable we must have
X = U . But now XN = ϕN (X) = ϕN (U) = UN for each N , and thus each UN

is indecomposable, as required.

3 Relative Projectivity

Our main definition is completely analogous to the equivalent definition for finite
groups.

Definition 3.1. Let G be a profinite group and let H ≤C G. Then a profinite
k[[G]]-module U is relatively H-projective if whenever we are given a diagram

U

ϕ

��

V
β

// // W

of profinite k[[G]]-modules and continuous k[[G]]-module homomorphisms, then
there exists a continuous k[[G]]-module homomorphism ρ : U → V with βρ = ϕ
provided there is a k[[H ]]-module homomorphism with this property.

As in the finite case, a projective module is precisely a 1-projective module
in the definition above. Our goal for this section is to obtain a characterization
of relatively H-projective finitely generated k[[G]]-modules analogous to D.G.
Higman’s characterization in the finite case, for which see [2, 3.6.4]. We will
also demonstrate two new characterizations that are trivial in the finite case but
of great use in our more general setting.

Lemma 3.2. Let G be a profinite group and H a closed subgroup of G. If U is
a profinite k[[G]]-module then the following are equivalent:

1. U is relatively H-projective.

2. If ever a continuous k[[G]]-epimorphism V ։ U splits as a k[[H ]]-module
homomorphism, then it splits as a k[[G]]-module homomorphism.

3. U is a direct summand of U ↓H↑
G.

4. U is a direct summand of a module induced from some profinite k[[H ]]-
module.

Proof. This is proved just as for finite groups so the details are omitted. At
several points we require 2.3.
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We give now two very useful characterizations of finitely generated profinite
k[[G]]-modules. As is standard, we write U

∣∣W to mean that the profinite mod-
ule U is isomorphic to a direct summand of the profinite module W - of course
we insist that the splitting maps are continuous.

Proposition 3.3. Let U be a finitely generated profinite k[[G]]-module, and
H ≤C G. Then U is relatively H-projective if and only if U is relatively HN -
projective for every N �O G.

Proof. The ‘only if’ statement is clear. We need only show that if U is relatively
HN -projective for each N , then U is relatively H-projective.

By 2.4 we have U ↓H↑
G∼= lim←−N�OG{U ↓HN↑

G, ψMN}. We will form the
required splitting homomorphisms as limits of maps of inverse systems.

For each N �O G the identity map U ↓HN→ U ↓HN extends uniquely to
a surjection πN : U ↓HN↑G։ U by 2.3. By checking commutativity of the
relevant diagrams on U ↓HN it follows that {πN |N �O G} is a surjective map
of inverse systems. This map yields a continuous surjective homomorphism
π : U ↓H↑G→ U .

We note that the map U → U ↓HN↑G given by u 7→ 1⊗̂u is a k[[HN ]]-
homomorphism, and that it splits πN . Hence, since U is HN -projective, we
have that πN splits as a k[[G]]-homomorphism. Let IN denote the non-empty
set of k[[G]]-splittings of the map πN .

Since U is finitely generated, we have that Homk[[G]](U,U ↓HN↑G) is compact
by 2.2. Since the map from Homk[[G]](U,U ↓HN↑G) to Endk[[G]](U) given by
α 7→ πNα is continuous, the inverse image of idU , which is IN , is closed and
hence compact.

The maps IN → IM given by ιN 7→ ψMN ιN whenever N ≤ M make the
IN into an inverse system of non-empty compact sets, and this system has a
non-empty inverse limit by [9, 1.1.4]. By definition an element of this limit is
a compatible map of inverse systems {ιN} : U → {U ↓HN↑G}. This map of
systems yields a unique k[[G]]-homomorphism ι : U → U ↓H↑G.

Now by the functoriality of lim←− we have

πι = lim←−πN lim←− ιN = lim←−πN ιN = lim←− idU = idU

so that U
∣∣U ↓H↑G, as required.

We can refine this further into a condition relying only on the finite quotients
UN . The following lemma will help us here and elsewhere:

Lemma 3.4. Let U,W be finitely generated profinite k[[G]]-modules and let N
be a cofinal inverse system of open normal subgroups of G.

• If UN

∣∣WN for each N ∈ N , then U
∣∣W .

• If UN
∼=WN for each N ∈ N , then U ∼=W .

7



Proof. For each N ∈ N , let PN denote the non-empty finite set of surjections
πN : WN ։ UN that split. Whenever N ≤ M define γMN : PN → PM by
πN 7→ (πN )M . This gives an inverse system of finite non-empty sets. Thus we
have a non-empty inverse limit, and we fix an element (πN ) of this limit.

For each N we have a non-empty finite set IN of injections ιN : UN → WN

splitting πN . As above we have a map IN → IM since

πM (ιN )M = (πN )M (ιN )M = (πN ιN )M = idUM

and again we have an inverse system. An element (ιN ) of the limit of this system
is a splitting of (πN ), and it follows that U

∣∣W .
The second claim follows from the first by noting (for instance) that if each

map πN is injective, then so is the limit map π.

Proposition 3.5. Let U be a finitely generated profinite k[[G]]-module, and
H ≤C G. Then U is relatively H-projective if and only if UN is relatively
HN -projective for every N �O G.

Proof. Fix N �O G. If U is H-projective then U is HN -projective. Now the
functoriality of (−)N ensures that

U
∣∣U ↓HN↑

G =⇒ UN

∣∣ (U ↓HN↑
G)N =⇒ UN

∣∣UN ↓HN↑
G

so that UN is HN -projective.
To show the converse, fix some M �OG. We take the cofinal inverse system

of UN for N�OG andN ≤M , noting that each UN is relativelyHM -projective.
We will show that lim←−UN = U is relatively HM -projective.

By assumption we have UN

∣∣UN ↓HM/N↑
G/N for each N in our inverse sys-

tem. But UN ↓HM/N↑
G/N∼= (U ↓HM↑G)N by 2.6, so that for each N we have

UN

∣∣ (U ↓HM↑
G)N

and the claim now follows from 3.4. Thus U is HM -projective for each M , and
the result follows from 3.3.

Definition 3.6. If H ≤O G and U,W are k[[G]]-modules, then the trace map

TrH,G : Homk[[H]](U ↓H ,W ↓H)→ Homk[[G]](U,W )

is defined by

α 7→
∑

s∈G/H

sαs−1.

For open H the properties of the trace map given in [2, 3.6.3] carry through
just as for finite groups. We now complete our characterization of finitely gen-
erated relatively H-projective k[[G]]-modules:

Theorem 3.7. Let G be a profinite group, let H ≤C G, and let U be a finitely
generated profinite k[[G]]-module. Then the following are equivalent:
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1. U is relatively H-projective.

2. If ever a continuous k[[G]]-epimorphism V ։ U splits as a k[[H ]]-module
homomorphism, then it splits as a k[[G]]-module homomorphism.

3. U is a direct summand of U ↓H↑G.

4. U is relatively HN -projective for every N �O G.

5. UN is relatively HN -projective for every N �O G.

6. U is a direct summand of a module induced from some profinite k[[H ]]-
module.

7. For every N �OG there exists a continuous k[[HN ]]-endomorphism αN of
U such that idU = TrHN,G(αN ).

Proof. The equivalence of statements 1,2,3,4,5 and 6 follows from results above.
That 6 implies 7 is shown as with the finite proof [2, 3.6.4] after using the
transitivity property X ↑G∼= X ↑HN↑G, where X is the k[[H ]]-module coming
from 6. The proof that 7 implies 4 also mimics the finite case [2, 3.6.4].

4 Vertices

Our definition for vertex is again in direct analogy with the corresponding def-
inition when the group G is finite:

Definition 4.1. Let U be a finitely generated indecomposable profinite k[[G]]-
module. A vertex Q of U is a closed subgroup of G with respect to which U
is relatively projective, but such that U is not projective relative to any proper
closed subgroup of Q.

Unlike in the finite case, we must check that a vertex of U exists. We do
this using the following lemma, which is useful in other situations:

Lemma 4.2. Let G be a profinite group and letW = {Wi | i ∈ I} be a filter base
of closed subgroups of G. Let U be a finitely generated profinite k[[G]]-module
that is projective relative to each of the Wi. Then U is projective relative to
W =

⋂
i∈I Wi.

Proof. By 3.3 it suffices to show that U is relativelyWN -projective for arbitrary
N �O G, so fix some such N . From [13, 0.3.1(h)] we have

WN = (
⋂
Wi)N =

⋂
WiN.

The set {WiN | i ∈ I} is finite and thus for some Wi1, . . . ,Win ∈ W we have

WN =Wi1N ∩ . . . ∩WinN = (Wi1 ∩ . . . ∩Win)N.

But now by hypothesis there is some Wj ∈ W with Wj ⊆ Wi1 ∩ . . . ∩Win so
that WN =WjN for some j ∈ I. The result follows.

9



Corollary 4.3. If U is an indecomposable finitely generated profinite k[[G]]-
module, then a vertex of U exists.

Proof. Demonstrating the existence of a vertex amounts to showing that the set
I of closed subgroups of G with respect to which U is relatively projective has
a minimal element.

The set I is a partially ordered set when ordered by inclusion. We need only
show that any chain J in I has a lower bound in I, and then Zorn’s lemma
gives us that I has a minimal element Q. But from 4.2 it follows that U is
projective relative to R =

⋂
{H |H ∈ J }. Thus R is a lower bound for J and

the result follows.

Our main result for this section is that two vertices of a finitely generated
indecomposable k[[G]]-module U are conjugate by an element of G. To prove
this we require that U have local endomorphism ring. This is known when
G is virtually pro-p [10, 2.1] but by observing that profinite modules are pure
injective, we easily obtain the result for general G:

Proposition 4.4. Let G be a profinite group and let U be an indecomposable
finitely generated k[[G]]-module. Then U has local endomorphism ring.

Proof. Let E = Endk[[G]](U) be the ring of continuous k[[G]]-endomorphisms
of U , and note that by [13, 7.2.2] this ring coincides with the ring of abstract
k[[G]]-endomorphisms of U . IfW were an abstract summand of U thenW would
be finitely generated and hence profinite. It follows that U is indecomposable
as an abstract k[[G]]-module. A profinite module is compact in the sense of [12]
and so it follows from [12, Theorem 2] that U is pure-injective.

Now [5, 2.27] tells us that the abstract endomorphism ring of an abstract
indecomposable pure-injective module is a local ring. In particular, E is a local
ring.

The relevance of this proposition is the following well-known general result.
We include a short proof for the reader’s convenience.

Lemma 4.5. Let R be a ring with 1 and let U, V,W be R-modules, where U
has local endomorphism ring. If U

∣∣ (V ⊕W ), then U
∣∣V or U

∣∣W .

Proof. Whenever X is isomorphic to a summand of V ⊕W , let πX , ιX denote
splitting maps in the obvious way. We have

idU = πU (ιV πV + ιWπW )ιU = πU ιV πV ιU + πU ιWπW ιU

and since U has local endomorphism ring (so in particular the non-units form
an additive group), one of the summands on the right hand side (the first,
say) is invertible. Thus idU = πU ιV πV ιUγ for some γ ∈ End(U), and now
parenthesizing as idU = (πU ιV )(πV ιUγ) demonstrates that U

∣∣V .

Theorem 4.6. Let G be a profinite group, U an indecomposable finitely gener-
ated k[[G]]-module, and let Q,R be vertices of U . Then there exists x ∈ G such
that Q = xRx−1.
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Proof. The module U is relatively R-projective so is relatively RN -projective
for every open normal subgroup N of G. Fix some such N . Since U

∣∣U ↓RN↑G

and U
∣∣U ↓Q↑G we have that U is a direct summand of

U ↓RN↑
G↓Q↑

G∼=
⊕

s∈Q\G/RN

s(U ↓RN )↓Q∩sRNs−1↑G

where the above sum (coming from the Mackey decomposition formula [11, 2.2])
make sense since RN is open so the set of double coset representatives is finite.
But now since U has local endomorphism ring, 4.5 shows that

U
∣∣ s(U ↓RN )↓Q∩sRNs−1↑G

for some s ∈ G. Thus U is relatively Q∩sRNs−1-projective. But Q is minimal,
so we must have Q ⊆ sRNs−1.

Denote by CN the set of all s ∈ G such that Q ⊆ sRNs−1. Since CN

is a union of sets of the form QgRN for appropriate g ∈ G, it follows that
each CN is closed in G. We thus have a collection of closed, non-empty sets
{CN |N �O G} and we wish to show that their intersection is non-empty. Let
N1, . . . , Nn be open normal subgroups of G. Then N1∩ . . .∩Nn�OG and so by
the previous argument CN1∩...∩Nn

6= ∅. This means that there exists s ∈ G such
that Q ⊆ sR(N1∩. . .∩Nn)s

−1 so that certainly for each i ∈ {1, 2, . . . , n} we have
Q ⊆ sRNis

−1. So CN1∩...∩Nn
⊆ CN1

∩ . . .∩CNn
and thus CN1

∩ . . .∩CNn
6= ∅.

By compactness we now have
⋂

N CN is non-empty.
It follows that there is some x ∈ G such that

Q ⊆ xRNx−1 ∀N �O G

Q ⊆
⋂
{xRx−1N |N �O G}

Q ⊆ xRx−1 by [13, 0.3.3].

Repeating the same argument with Q and R interchanged, we find y ∈ G such
that R ⊆ yQy−1.

But now Q ⊆ xRx−1 ⊆ (xy)Q(xy)−1. Since profinite groups are well be-
haved under conjugation it follows that Q = (xy)Q(xy)−1, and so Q = xRx−1

as required.

For the background Sylow theory we require for the following results see [13,
Chapter 2].

Proposition 4.7. If H is a closed subgroup of a profinite group G containing
a p-Sylow subgroup of G, then any finitely generated profinite k[[G]]-module U
is relatively H-projective.

Proof. Since U is finitely generated, by 3.3 we need only show that U is relatively
HN -projective for any given N �OG. Suppose we have a diagram as in 3.1 and
a continuous k[[HN ]]-module homomorphism ρ′ : U → V making the diagram
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commute. Since the supernatural number |G : H | is coprime to p, the finite
number |G : HN | is non-zero in the field k. Hence the continuous map

ρ = 1/|G : HN |
∑

s∈G/HN

sρ′s−1

is well defined, and as in the finite case we check that ρ is a k[[G]]-module
homomorphism such that βρ = ϕ.

Corollary 4.8. If U is a finitely generated indecomposable k[[G]]-module, then
any vertex of U is a pro-p group.

Proof. By 4.7, U has a pro-p vertex, and now since the set of pro-p subgroups
of G is closed under conjugation the result follows from 4.6.

5 Sources

For an indecomposable finitely generated module U over a finite group, there is
attached to any vertex Q of U a finitely generated indecomposable kQ-module
S with the property that U

∣∣S ↑G. This object is easily seen to be unique up
to conjugation by elements of NG(Q). If G is a profinite or even a pro-p group,
the corresponding notion of source seems less natural, and even existence is not
clear in general. None-the-less, we prove that if G is virtually pro-p and U is
an indecomposable finitely generated k[[G]]-module with vertex Q and finitely
generated sources S and T , then S and T are conjugate in NG(Q).

The following simple lemma will prove key:

Lemma 5.1. Let G be a virtually pro-p group, let H be a closed subgroup of G
and let V be a finitely generated indecomposable k[[H ]]-module. Then there exists
a cofinal inverse system of N �O G for which each V ↑HN is indecomposable.

Proof. For any N �O G we have by 2.6 that

(V ↑HN )N ∼= VH∩N ↑
HN/N∼= VH∩N .

Since V ∼= lim←−N�OGVH∩N it follows by 2.9 that there is a cofinal inverse system

of N �O G for which VH∩N and thus (V ↑HN )N is indecomposable. Now since
we can choose our system of N to be pro-p we have by 2.8 that no non-zero
summands of V ↑HN can become zero on taking coinvariants, and so V ↑HN is
indecomposable.

Recall that if V is a profinite k[[H ]]-module for H ≤C G and x ∈ G then
we denote by x(V ) the k[[xHx−1]]-module x⊗̂k[[H]]V with action from xHx−1

given by
xhx−1(x⊗̂v) = x⊗̂hv.

The functor x(−) is exact. We include two technical facts about how conjugation
interacts with induction and coinvariants:

12



Lemma 5.2. Let Q ≤C H ≤C G, let T be a k[[Q]]-module, and let x ∈ G. Then

x(T )↑xHx−1∼= x(T ↑H).

Proof. This is easily checked.

Lemma 5.3. Let H ≤C G, N �O G, and let T be a k[[H ]]-module. Then

(x(T ))xHx−1∩N
∼= x(TH∩N ).

Proof. If K is the kernel of the canonical map T ։ TH∩N then the result follows
by conjugating the exact sequence K → T → TH∩N by x.

Definition 5.4. Let G be a profinite group and let U be a finitely generated
indecomposable profinite k[[G]]-module with vertex Q. A source of U is an in-
decomposable k[[Q]]-module S such that U

∣∣S ↑G.

If G is a virtually pro-p group then our primary unanswered question is
whether a finitely generated indecomposable k[[G]]-module with vertex Q need
be a summand of V ↑GQ for some finitely generated module V . If not then even
the existence of a source for U is uncertain. If a finitely generated source exists
then we have the following analogue to the well-known result for finite groups:

Theorem 5.5. Let G be a virtually pro-p group and let U be a finitely generated
indecomposable k[[G]]-module with vertex Q and finitely generated source. If S, T
are finitely generated k[[Q]]-modules that act as sources of U , then S ∼= x(T ) for
some x ∈ NG(Q).

Proof. We work within a cofinal system ofN�OG for which SQ∩N , TQ∩N , S ↑
QN

and T ↑QN are indecomposable - this is allowed by 2.9 and 5.1. For any N in
this system we have

U
∣∣S ↑G =⇒ U ↓QN

∣∣S ↑G↓QN
∼=

⊕

z∈QN\G/Q

z(S)↓zQz−1∩QN↑
QN .

Since U
∣∣U ↓QN↑G we must have that some indecomposable summand X of

U ↓QN has vertex conjugate to Q. If zQz−1 ∩ QN is properly contained in
zQz−1 the summands of z(S) ↓zQz−1∩QN have vertex strictly smaller than a
conjugate of Q, and so it follows that for some z ∈ G with zQz−1 ⊆ QN we
have X

∣∣ z(S)↓zQz−1∩QN↑
QN= z(S)↑QN . Note also that

zQz−1 ⊆ QN =⇒ zQz−1N ⊆ QN =⇒ zQNz−1 = QN

so that z ∈ NG(QN).
Since z(S) ↑QN∼= z(S ↑QN ) by 5.2 and S ↑QN is indecomposable, it follows

that z(S)↑QN is indecomposable and so for this z we have

z(S)↑QN
∣∣U ↓QN .
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On the other hand U
∣∣T ↑G, so

z(S)↑QN
∣∣T ↑G↓QN

∼=
⊕

y∈QN\G/Q

y(T )↓yQy−1∩QN↑
QN

and by the same argument we find that z(S)↑QN∼= y(T )↑QN for some element
y ∈ NG(QN).

Note that zQz−1/(zQz−1 ∩ N) ∼= zQNz−1/N ∼= QN/N . We will use this
observation and 5.3 to transfer these results from the setting of induced modules
to the setting of coinvariant modules where we have the necessary tools to draw
the conclusions we require:

For each N �O G in our inverse system we have

z(S)↑QN∼=y(T )↑QN

=⇒ (z(S)↑QN )N ∼=(y(T )↑QN)N

=⇒ z(S)zQz−1∩N
∼=y(T )yQy−1∩N

=⇒ z−1(z(S)zQz−1∩N ) ∼=z−1(y(T )yQy−1∩N)

=⇒ SQ∩N
∼=z−1y(T )(z−1y)Q(z−1y)−1∩N

=⇒ SQ∩N
∼=z−1y(TQ∩N).

Denote by CN the set of w ∈ NG(QN) such that SQ∩N
∼= w(TQ∩N ). Since

z−1y (which depends on N) satisfies these conditions it follows that CN is non-
empty. Each CN is also clearly closed in G. The theorem follows easily once we
show the intersection

⋂
N CN is non-empty.

Certainly CN1∩...∩Nn
6= ∅ for any finite setN1, . . . , Nn. LetN1∩. . .∩Nn =M

and fix w ∈ CM . Now M ≤ Ni for each i and so

SQ∩M
∼= w(TQ∩M )

=⇒ (SQ∩M )QM∩Ni

∼= w(TQ∩M )QM∩Ni

=⇒ SQ∩Ni

∼= w(TQ∩Ni
)

by 2.6 so that w ∈ CNi
for each i, and so w ∈ CN1

∩ . . . ∩ CNn
. Thus, by

compactness we have
⋂

N CN 6= ∅.
Fix x ∈

⋂
N CN , so that for each N in our system we have

SQ∩N
∼= x(TQ∩N ),

and since x ∈
⋂

N NG(QN) = NG(Q), we can rewrite this isomorphism as

SQ∩N
∼= x(T )Q∩N

so that by 3.4 we have S ∼= x(T ), as required.
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6 Green’s Indecomposability Theorem

Green’s indecomposability theorem says that if V is a finitely generated abso-
lutely indecomposable module for the group algebra kH , where H is a subnor-
mal subgroup of the finite group F of index a power of p, then the module V ↑F

is also absolutely indecomposable. We extend this result to modules over the
completed group algebra of a virtually pro-p group G.

Throughout this section let G be a virtually pro-p group and let U be an
indecomposable finitely generated profinite k[[G]]-module. By 2.8 and 2.9 we can
choose a cofinal inverse system ofN�OG with UN non-zero and indecomposable,
and we will work within this system throughout. All rings we consider have a
1. We do not allow 1 to equal 0.

For each N in our system let EN = Endk[[G]](UN ), RN = rad(Endk[[G]](UN ))

and ẼN = EN/RN . Each EN is a local ring and thus ẼN is a finite division ring
[4, 5.21] so is a finite field. It is clear that this field must contain k. Our aim for
the next few lemmas is to show that Endk[[G]](U)/rad(Endk[[G]](U)) ∼= lim←− ẼN .

Define maps ρMN : EN → EM whenever N ≤ M as follows: If αN ∈ EN

then define ρMN (αN ) = αM ∈ EM by αM (1⊗̂Mu) = 1⊗̂MαN (u). Each ρMN is
a ring homomorphism.

Lemma 6.1. The map ρMN sends the radical RN of EN into RM , and thus
induces a map ρ̃MN : ẼN → ẼM , which is a ring homomorphism.

Proof. This is easily checked by noting that elements of the radical RN are
precisely the nilpotent endomorphisms of UN .

Observe that {EN , ρMN} is an inverse system of finite rings and {ẼN , ρ̃MN}
is an inverse system of finite fields. Since field homomorphisms are injective we
can choose a cofinal inverse system of N for which every ẼN = k′, for some
fixed finite extension field k′ of k. From now on we will work inside this cofinal
inverse system.

Define E = Endk[[G]](U), R = rad(E), Ẽ = Ẽ(U) = E/R. Note that
using the universal property of (−)N a simple tweaking of 2.1 shows that
E ∼= lim←−NEN . Denote by ρN the map E → EN from the above limit. This is

the map given by applying the functor (−)N to the morphisms in E.

Lemma 6.2. The radical of E maps into the radical of EN under ρN , for each
N .

Proof. Recall that the radical of E consists of all non-invertible endomorphisms
of U . Fix an element α in the radical of E, so that α is not an isomorphism.
If α were surjective, then each αN would also be onto because (−)N is right
exact. But then each αN would be an isomorphism, and hence so would be α,
contrary to assumption. It follows that α is not surjective. If each ρN (α) = αN

were onto then so would be α, so we can find some N0�OG with αN0
not onto.

We note that for any N ′
�OG contained in N0, the corresponding αN ′ is not

onto. Fix some arbitrary N �O G, and consider L = N ∩N0. Then αL is not
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onto since L ≤ N0, so that αL ∈ RL. But now by Lemma 6.1 this implies that
αN ∈ RN as well, so that the image of R in EN is contained inside RN .

The endomorphism ring of U is local by 4.4, and thus Ẽ is a division ring.

Lemma 6.3. The division ring Ẽ is a finite field and is isomorphic to lim←− ẼN .

Proof. For each N we have canonical surjections γN : EN ։ EN/RN = ẼN ,
which give a map of inverse systems since for N ≤M the diagrams

EN

ρMN

��

γN
// // ẼN

ρ̃MN

��

EM
γM

// // ẼM

commute. This map of inverse systems gives a surjection of rings γ from E to
lim←− ẼN .

We note now since ρN (R) ⊆ RN for each N , that R ⊆ ker(γ). Hence, we can
factor out R to obtain a surjection from E/R = Ẽ to lim←− ẼN . But this is now a
surjection of division rings and hence an isomorphism of fields, as required.

If F is a finite group, recall that a kF -module W is said to be absolutely
indecomposable if the k′F -module k′ ⊗k W is indecomposable for all field ex-
tensions k′ of k. By [4, 30.29], W is absolutely indecomposable if and only if
Ẽ(W ) ∼= k. We thus have the following immediate corollary to 6.3:

Corollary 6.4. If G is a virtually pro-p group and U is a finitely generated
k[[G]]-module with corresponding Ẽ ∼= k, then U is the inverse limit of an inverse
system of finite absolutely indecomposable modules.

From [4, 7.14, 3.34, 30.27] we can make several important deductions. Firstly
if F is a finite group and W is a finitely generated kF -module, then W is
absolutely indecomposable if and only if k′⊗kW is indecomposable for all finite
field extensions k′ of k. Secondly, if W is not absolutely indecomposable then
the extension l of the field k required for l⊗kW to decompose does not depend
directly on F or W , but only on the field Ẽ(W ). These facts ensure that the
following definition is appropriate:

Definition 6.5. A finitely generated profinite k[[G]]-module U is absolutely
indecomposable if the k′[[G]]-module k′U = k′⊗̂kU is indecomposable for all
finite field extensions k′ of k.

Theorem 6.6. If G is a virtually pro-p group, then a finitely generated k[[G]]-
module U is absolutely indecomposable if and only if Ẽ ∼= k.

Proof. If Ẽ ∼= k then by 6.4, U is the inverse limit of a cofinal inverse system of
absolutely indecomposable modules UN . Suppose that k′ ⊗k U decomposes as
X ⊕ Y for some finite extension field k′ of k and some X,Y 6= 0. Then

k′ ⊗k UN
∼= (k′ ⊗k U)N ∼= (X ⊕ Y )N ∼= XN ⊕ YN .
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But XN and YN are non-zero since N is pro-p, by 2.8, contradicting the absolute
indecomposability of UN .

To show the forward implication, assume that Ẽ = k′ for k′ a finite field
extension of k which properly contains k. Since Ẽ ∼= lim←− ẼN we have a cofinal

inverse system of modules UN for which ẼN = k′.
By the discussion prior to 6.5 there is a fixed finite extension field l of k for

which each l⊗̂kUN decomposes. But

lim←− (l⊗̂kUN) ∼= l⊗̂klim←−UN = l⊗̂kU

since by [9, 5.5.2] complete tensoring commutes with lim←− and the actions of l and
G carry through this isomorphism. Now the contrapositive of 2.9 demonstrates
that l⊗̂U decomposes, so that U is not absolutely indecomposable.

We can now prove Green’s indecomposability theorem for virtually pro-p
groups:

Theorem 6.7. Let G be a virtually pro-p group, let H �C G with G/H a pro-p
group, and let V be a finitely generated absolutely indecomposable k[[H ]]-module.
Then V ↑G is absolutely indecomposable.

Proof. Suppose for contradiction that V ↑G decomposes, so that V ↑G= X⊕Y for
k[[G]]-modules X,Y 6= 0. By 6.6 the module V has corresponding Ẽ(V ) = k,
so by 6.4 we can find some open normal pro-p subgroup N of G with VH∩N

absolutely indecomposable. Then

VH∩N ↑
G/N∼= (V ↑G)N = (X ⊕ Y )N ∼= XN ⊕ YN

where XN , YN 6= 0 by 2.8, so that VH∩N ↑G/N decomposes. But this decomposi-
tion contradicts Green’s indecomposability theorem for finite groups [4, 19.23],
and so V ↑G must be indecomposable.

For absolute indecomposability note that there is a cofinal inverse system
of N �O G for which Ẽ(VH∩N ↑G/N ) ∼= k. But VH∩N ↑G/N∼= (V ↑G)N so that
Ẽ((V ↑G)N ) ∼= k for each N . Now V ↑G is absolutely indecomposable by 6.3 and
6.6.

As for finite groups we have immediate corollaries:

Corollary 6.8. Let G be a virtually pro-p group, let H ≤C G be subnormal in
G with |G : H | a (possibly infinite) power of p, and let V be a finitely generated
absolutely indecomposable k[[H ]]-module. Then V ↑G is absolutely indecompos-
able.

Corollary 6.9. Let G be a pro-p group, let H ≤C G, and let V be a finitely
generated absolutely indecomposable k[[H ]]-module. Then V ↑G is absolutely in-
decomposable.

Proof. Each G/N is a finite p-group so that HN/N is subnormal in G/N and
the result follows as above.
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We include a virtually pro-p version of a variant of Green’s indecomposability
theorem (for the finite case see [7], [3] or [8]). It seems a pity that this result is
not widely known for finite groups.

Theorem 6.10. Let H be a closed subgroup of a virtually pro-p group G and let
V be a finitely generated indecomposable k[[H ]]-module. If either H is subnormal
in G and of index some (possibly infinite) power of p, or G is pro-p, then the
indecomposable summands of V ↑G are isomorphic.

Proof. If the module V ↑G is indecomposable then we are done. Otherwise write
V ↑G= X ⊕ Y ⊕ Z with X,Y non-zero and indecomposable. We will show that
X ∼= Y .

Choose a cofinal inverse system of open normal pro-p subgroups N of G so
that V itself and the indecomposable summands of V ↑G remain indecomposable
on taking coinvariants. Now for any such N we have

VH∩N ↑
G/N∼= (V ↑G)N ∼= XN ⊕ YN ⊕ ZN .

But VH∩N is a finitely generated indecomposable module over the finite group
HN/N , and under either hypothesis given above we have XN

∼= YN by [7]. It
now follows immediately from 3.4 that X ∼= Y and we are done.
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