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Voltage controlled spin precession in InAs quantum wells
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In this work we demonstrate that the device presented by Koo et al. [Science 325, 1515 (2009)]
in InAs quantum wells has indeed realized the Datta-Das spin-injected field effect transistor. The
oscillation of the nonlocal voltage with the variation of the gate voltage at low temperature in the
experiment can be well explained in the framework of the microscopic kinetic spin Bloch equation
approach under the D’yakonov-Perel’ mechanism with all the scattering explicitly included. We
show that the scattering plays an important role in spin diffusion in such a system.

PACS numbers: 85.75.Hh, 72.25.Dc, 71.70.Ej, 71.10.-w

In the past decades, a great deal of effort has been
made for the realization of the spintronic devices.1–5 The
spin-injected field effect transistor (SIFET), proposed by
Datta and Das in 1990,6 is fundamental but posts some
challenges to experiments (e.g., the spin-polarized injec-
tion and detection). Very recently Koo et al.

7 reported
that, in InAs quantum wells with nonlocal spin valve con-
figuration, the nonlocal voltage was observed to oscillate
with the variation of gate voltage at the low tempera-
ture when the two ferromagnetic electrodes (spin injec-
tor and detector) are magnetized along the spin diffu-
sion direction. They claimed that they have realized the
SIFET because the oscillation can be fitted by a theo-
retical equation describing the SIFET. Nevertheless, as
pointed out by Bandyopadhyay,8 the theoretical equa-
tion adopted by Koo et al. only applies to the one-
dimensional system instead of the two-dimensional one.
Therefore the agreement between this equation and the
experimental data7 makes little meaning and doubt is
cast on the conclusion presented by Koo et al.. Later,
Zainuddin et al.

9 extended the one-dimensional theory to
the two-dimensional case with an equation similar to the
one obtained from the one-dimensional theory. However,
as further revealed by Agnihotri and Bandyopadhyay,10

the experimental data actually do not match the equa-
tion for the two-dimension SIFET. Therefore, whether
the device proposed by Koo et al. realizes the SIFET
is still under debate. It is noted that all the theoreti-
cal works mentioned above were performed without any
scattering.
In fact, a thorough understanding of spin diffusion in

the two-dimensional SIFET with the scattering explicitly
included can be obtained based on the kinetic spin Bloch
equation (KSBE) approach,5 which has been successfully
applied to study the spin diffusion/transport in various
two-dimensional systems (e.g., GaAs quantum wells11–14

and Si/SiGe quantum wells15). In the framework of this
approach, spins of electrons with the wave-vector k pre-
cess in spatial domain with frequency

ωk = m∗(Ωk + gµBB)/(~2kx) (1)

during the spin diffusion.11,13 Here, the spin diffusion di-

rection is set to be the x̂-axis, m∗ is the effective electron
mass, Ωk is the D’yakonov-Perel’ (DP)16 spin-orbit cou-
pling term and B is the external magnetic field. In InAs
quantum wells, the Rashba spin-orbit coupling17 dom-
inates and thus Ωk = 2α(−ky, kx, 0) with α being the
Rashba coefficient modulated by the gate voltage. More-
over, the small external magnetic field used to magnetize
the electrodes can be neglected when compared to the
Rashba spin-orbit coupling.7 Therefore, the spatial spin
precession frequency

ωk = 2αm∗(− tan θk, 1, 0)/~
2 (2)

depends on the polar angle θk of the momentum. This k
dependence of the precession frequency leads to the inho-
mogeneous broadening.11,18 The inhomogeneous broad-
ening itself causes reversible spin relaxation during spin
diffusion.5 One notices that the one-dimension model
adopted by Koo et al.

7 actually excludes the inhomo-
geneous broadening by neglecting the transverse compo-
nent of the momentum (i.e., ky) and therefore is inap-
propriate. The scattering also plays an important role
in spin diffusion which makes the relaxation irreversible
and affects the spin diffusion length or even the precession
frequency.13,15 Furthermore, the temperature (T ) depen-
dence of the spin diffusion length should be mainly from
the temperature dependence of the scattering in this case
as the inhomogeneous broadening is insensitive on T (ωk

does not depend on the magnitude of k). In this paper,
we numerically solve the KSBEs under the DP mech-
anism. By including the influence of the scattering ex-
plicitly, we obtain the results in good agreement with the
experimental data and hence demonstrate that the device
presented by Koo et al. has realized the SIFET. Then,
we further investigate the role played by the scattering
in spin diffusion.
We start our investigation from InAs quantum wells

as presented in Ref. 7. The depth V0 and width a of
the square well are set to be 390 meV and 2 nm, re-
spectively. The initial spatially uniform electron den-
sity Ne is 2.7×1012 cm−2 and the effective electron mass
m∗ = 0.05m0 where m0 is the free electron mass. The
x̂-axis polarized spins (the polarization P0 is set to be
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0.02) are injected at the left boundary x = 0 and diffuse
along the x̂-axis. Due to the narrow well width, moder-
ate electron density and small polarization, only the low-
est subband is relevant in our investigation. The Rashba
spin-orbit coupling coefficient α is taken from Koo et al..7

The impurity density Ni is estimated to be 0.11Ne ac-
cording to the mobility reported by Koo et al.. The other
parameters can be found in Ref. 19. The KSBEs read

∂ρk(x, t)

∂t
= − e

~

Ψ(x, t)

∂x

∂ρk(x, t)

∂kx
− ~kx

m∗
∂ρk(x, t)

∂x

− i

~
[Ωk · σ

2
, ρk(x, t)] +

∂ρk(x, t)

∂t

∣

∣

∣

scat
. (3)

Here, ρk(x, t) are the single-particle density matrices of
electrons with the in-plane wave-vector k at position x
and time t. Ψ(x, t) is the electric potential satisfying
the Poisson equation ∇2

xΨ(x, t) = e[n(x, t)−N0]/(aκ0ε0)
with n(x, t) =

∑

k
Tr[ρk(x, t)] standing for the electron

density at position x and time t, N0 the background pos-
itive charge density, and κ0 the relative static dielectric
constant. − i

~
[Ωk ·σ/2, ρk(x, t)] is the coherent term de-

scribing the spin precession. ∂ρk(x,t)
∂t

∣

∣

scat is the scat-
tering term with the electron-impurity, electron-phonon,
and electron-electron scatterings included. The details of
the scattering term can be found in Ref. 5.
To solve the KSBEs, the initial conditions are set as

ρk(0, 0) = (F 0
k↑ + F 0

k↓)/2 + (F 0
k↑ − F 0

k↓)σx/2, (4)

ρk(x > 0, 0) = (FL
k↑ + FL

k↓)/2, (5)

and the boundary conditions are given as13

ρk(0, t)|kx>0 = (F 0
k↑ + F 0

k↓)/2 + (F 0
k↑ − F 0

k↓)σx/2,(6)

ρk(L, t)|kx<0 = (FL
k↑ + FL

k↓)/2, (7)

Ψ(0, t) = Ψ(L, t) = 0. (8)

Here, x = L stands for the right boundary with L much

longer than the spin diffusion length. F 0,L
k↑ (F 0,L

k↓ ) stand
for the Fermi distributions of electrons with spin paral-
lel (antiparallel) to the x̂-axis determined by the tem-
perature and the initial polarization at the two bound-
aries. The numerical scheme for solving the KSBEs can
be found in detail in Ref. 13. With the single-particle
density matrices obtained by solving the KSBEs, the spin
polarization at the point x at the steady state can be ob-
tained as

P (x,+∞) =
∑

k

Tr[ρk(x,+∞)σx]/n(x,+∞)

≡
∑

k

Pk(x,+∞). (9)

Since the nonlocal voltage measured in the experiment
is proportional to the spin polarization at the detection
point,20,21 we fit the experimental data measured at x0

with P (x0,+∞).

In Fig. 1, we plot the gate voltage dependence of the
spin polarization at the detection point x0 = 1.25 µm
by the solid curves and that of the experimentally mea-
sured nonlocal voltage by the dashed curves under dif-
ferent temperatures. From the figure, one finds that our
result is in good agreement with the experiment. It is
noted that the good agreement with the experimental
data is pretty attributed to the scattering.
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FIG. 1: (Color online) Gate voltage dependence of the spin
polarization obtained from the KSBEs (solid curves with the
scale on the right hand side of the frame) and that of the non-
local voltage measured in the experiment7 (dashed curves) at
the detection point x0 = 1.25 µm under different tempera-
tures. The plots are shifted for clarity as Koo et al..7

When we consider the much simplified case without the
scattering and electric field, the single-particle density
matrix for any k in the steady state can be obtained
easily from the KSBEs as13

ρk(x,+∞) =

{

e
−iω

k
·σ

2
xρk(0, 0)e

iω
k
·σ

2
x, kx > 0

ρk(L, 0), kx < 0
,(10)

where ωk is given in Eq. (2). Then at the detection point,

Pk(x0,+∞) =

{

Bk[s
2 + (1− s2) cos(

θx0√
1−s2

)], kx > 0

0, kx < 0
(11)

with s = ky/k = sin θk, θx0
= 2m∗αx0/~

2 and Bk =
(F 0

k↑ −F 0
k↓)/Ne. This solution with kx > 0 has the same

form as the result from Zainuddin et al. [Eq. (5a) in
Ref. 9]. Our result clearly indicates that the contribution
to the total spin-polarized signal mainly comes from the
kx-positive states around the Fermi circle. Instead of
summing Pk(x0,+∞) over the kx-positive Fermi circle
line as done by Zainuddin et al.,9 we take into account
all the kx-positive states and obtain

P (x0,+∞) ∝
∫ π

2

−π

2

dθk(1− 2 sin2
m∗αx0

~2 cos θk
cos2 θk). (12)

It is noted that the integration over θk in Eq. (12) stands
for the interference among different k states. However,
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one finds that this equation still can not fit the exper-
imental data as the situation faced by Agnihotri and
Bandyopadhyay10 until the scattering is included as pre-
sented previously.
We further investigate the influence of the scattering

on spin diffusion by artificially varying the impurity den-
sity. Without losing generality, we take the temperature
to be 7 K and the gate voltage to be 0. Under these con-
ditions, the x dependence of the spin polarization with
different impurity densities are plotted in Fig. 2.
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FIG. 2: (Color online) x dependence of P with different im-
purity densities. The case of Ni = 0.11Ne corresponds to the
experimental situation. The temperature is 7 K and the gate
voltage is 0.

From the figure, one finds that the spin-diffusion length
decreases sensitively with the increase in the impurity
density. It is noted that even for the case of Ni = 0.5Ne,
the system is still in the weak scattering limit as ωLτp =
3.6 > 1, where ωL = 2αkF /~ is the spin precession
frequency due to the spin-orbit coupling and τp is the
momentum relaxation time. The decrease in the spin-
diffusion length with the increase in the impurity density
can be understood alternatively by means of the quasi-
independent electron model,22–26 where the spin diffusion
length is characterized by

√
Dsτs with τs standing for the

spin relaxation time and Ds representing the spin diffu-
sion constant. Ds decreases with the increasing scatter-
ing strength5 and τs has the same tendency as Ds as long
as electrons are in the weak scattering limit.5 Therefore,
the spin-diffusion length decreases with the increase in
the impurity density.

In summary, we have investigated the spin diffusion
in n-type InAs quantum wells under the DP mechanism.
We show that the experiment performed by Koo et al.

7

has indeed realized the SIFET, in which the spin dif-
fusion can be well understood in the framework of the
KSBEs. The essential role played by the scattering is
also revealed. It is shown that the spin diffusion length
decreases with the increase in the impurity density in the
weak scattering limit.
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