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Self-glassiness in binary mixtures: the compacton picture
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We present a new phase-field model for binary fluids exhibiting typical signatures of self-glassiness,
such as long-time relaxation, ageing and long-term dynamical arrest. The present model allows
the cost of building an interface to become locally zero, while preserving global positivity of the
overall surface tension. An important consequence of this property, which we prove analytically, is
the emergence of compact configurations of fluid density. Owing to their finite-size support, these
“compactons” can be arbitrarily superposed, thereby providing a direct link between the ruggedness
of the free-energy landscape and morphological complexity in configurational space. The analytical
picture is supported by numerical simulations of the proposed phase-field equation.
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Coarsening phenomena in binary mixtures are typ-
ically described by Langevin equations, governing the
space-time evolution of the order parameter [1]. De-
pending on the specific details, different exponents are
then predicted for the power-law growth of the coarsen-
ing length, the typical linear size of the coarsening do-
mains. In soft-glassy materials, however, domain growth
is observed to undergo long-term slow-down and possi-
bly even dynamical arrest. A thorough understanding of
such complex behaviour has been the subject of several
decades of intense research [2]. In this Letter, we present
a new phase-field Landau-Ginzburg (LG) model exhibit-
ing most typical signatures of self-glassiness, such as long-
time relaxation, ageing and long-term dynamical arrest.
The present model is inspired by and can be analytically
derived from a lattice Boltzmann kinetic scheme for com-
plex fluids with competing short-range attraction and
long-range repulsion [3]. Usually, when the coefficients
in front of the terms governing the interface dynamics
are allowed to become negative, they promote large-scale
instabilities, which are eventually tamed at short scales
by proper compensation via higher-order terms, such as
the bending rigidity [5]. Instead of triggering local insta-
bilities by sending the leading interface term to negative
values, and then compensating through higher order in-
homogeneities, here we allow the coefficients in front of
the interface terms to depend on the local value of the
order parameter. As a result, the cost of building an in-
terface may become locally negative across the interface
itself. This difference is subtle but determines non-trivial
consequences. Indeed, rather than triggering large-scale
instabilities, the present procedure is analytically shown
to promote the emergence of stable, finite-support, den-
sity configurations, which we name “compactons”. The
dynamics of these “compactons” is then shown to be ul-
timately responsible for the self-glassiness of the binary
mixture. Here and throughout the term “compacton” is
kept within quotes, to imply that it just refers to the
property of the density field of being localized within

a finite-support region of configuration space, through-
out the evolution. Such stable and finite-support exci-
tations do not share the properties which characterize
the interactions among compactons as “solitons with fi-
nite wavelength” [4]. The emergence of “compactons” is
hereby discussed analytically, both in the continuum and
discrete versions of our phase-field models. Typical sig-
natures of self-glassiness, such as ultra-slow relaxation,
ageing and dynamical arrest, are further demonstrated
by direct numerical simulations. Let us start by consid-
ering the following LG like phase-field equation:

∂tφ = −δF [φ]
δφ

+
√
ǫη(~x, t) (1)

F [φ] =

∫

d~x

[

V (φ) +
1

2
D(φ)|∇φ|2 + κ

4
(∆φ)2

]

(2)

where φ(~x; t) is the order parameter, taking values φ =
±1 in the bulk, and φ = 0 at the two-fluid inter-
face. In the above, V (φ) is the bulk free-energy den-
sity, which we shall take in the standard double-well form
V (φ) = − 1

2
φ2 + 1

4
φ4, supporting jumps between the two

kink/anti-kink bulk phases, φ = ±1; ǫ is the variance of
the noise and η is a white noise δ-correlated in space and
time. The key ingredient of our model lies with the spe-
cific form of the stiffness function D(φ), describing the
lowest order approximation to the energy cost of build-
ing an interface between the two fluids. In the standard
Ginzburg-Landau formulation, this is a constant param-
eter D0, fixing the value of the surface tension, through
the relation γ ∼ D0

∫

(∂xφ)
2dx, x being the coordinate

across the (flat) interface. Fluid mixtures with positive
γ exhibit coarsening, as a result of the surface tension
tendency to minimize the surface/volume ratio of the
fluid. Negative values of γ, on the other hand, promote
an unstable growth of the interface, an instability that
is usually tamed at short-scale by including higher-order
“bending” terms of the form ∼ κ(∆φ)2 where κ is re-
ferred to as rigidity. It is readily seen that with D0 < 0
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and κ > 0, the system undergoes instabilities, which are
typically responsible for pattern formation [5, 6]. Such in-
stabilities are then stabilized at short scales by a positive
bending rigidity. Gompper et al., among others [6], stud-
ied the case with piece-wise constant D(φ) to describe
microemulsions [7]. Our model belongs to the same class
as Gompper’s one, with

D(φ) = D0 +D2φ
2 (3)

yet with a crucial twist: instead of sendingD0 to negative
values, in order to trigger local interface instabilities, we
just set D0 = 0 and achieve a local zero-cost condition,
D(φ) = 0, just at φ = 0, by letting D2 > 0. Thermo-
dynamic stability of the interfaces is still secured, since
γ > 0, and consequently we resolved to set the bending
rigidity to κ = 0 in (2), so as to single out the effect of the
modulation factor D(φ) alone. In the following, we shall
show that the peculiar feature discussed above holds the
key for observing ultimate arrest of the fluid. As antici-
pated, this is due to the onset of complex density config-
urations, resulting from arbitrary superpositions of sta-
ble, finite-support density configurations, which we name
“compactons”. We wish to emphasize that such gas of
“compactons” lies beyond the realm of free-energy mod-
els based on quadratic density-density interactions alone,
no matter how non-local. Indeed, the present LG field
equation, was first inspired by and then analytically de-
rived from a mesoscopic lattice Boltzmann kinetic model,
supporting effective mean-field pseudo-potentials of the
form: Veff (~x) = ψ(ρ(~x))

∫

G(~r)ψ(ρ(~x+ ~r))d~r, where the
displacement ~r runs over suitable regions of a regular
lattice [3]. In the above, G(~r) is a suitable lattice Green-
function encoding short-range attraction and long-range
repulsion and ψ(ρ) is a generalized density which contains
powers of the local density ρ(~x) at all orders. It can be
analytically shown, that the coefficient D2 is driven by
the second derivative d2ψ/dρ2, hence it is identically zero
for quadratic density-density interactions [8].
Let us then present our analytical analysis by looking

at the one-dimensional, stationary solutions of the eqs.
(1-2) in the limit D0 → 0 and no noise (ǫ = 0). One
quadrature in space yields

1

2
D2φ

2(∂xφ)
2 +

1

2
φ2 − 1

4
φ4 = E (4)

where E ≤ 1/4 is an arbitrary constant fixing the energy
of the configuration. A further quadrature delivers the
analytical solution

φE(x) = ±[1− sinh (ξ) + e cosh (ξ)]χ(x;x0, le) (5)

where ξ = (x − x0)/ld, ld =
√

D2/2, e = 2
√
E.

Here x0 is an arbitrary shift and χ is the character-
istic function of the segment centered in x0 and size
le = ld arctanh

(

2e/(1 + e2)
)

(see figure 1). Several com-
ments are now in order. First, this solution is compact,
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FIG. 1: An example of a static gas of “compactons” for the
case D0 = 0 and fixed E < 1

4
. The solution is constructed

from an arbitrary superposition of stable, finite-support den-

sity configurations, each one centered around its x
(i)
0 and iden-

tically zero outside the segment [x
(i)
0 − le/2 < x < x

(i)
0 + le/2].

The size le is set by E and D2 as in eq. (5).

i.e., it is identically zero outside the segment [x0− le/2 <
x < x0 + le/2]. This property is crucially related to the
vanishing of the prefactors in front of the differential op-
erators, which allows discontinuity in the slope of φ(x).
The location of the segment x0 is arbitrary because of
translation invariance, whereas its extension le is dictated
by the “energy” E. Under the condition that ld be real,
i.e., D2 > 0, a finite amount of energy E > 0 allows
the nucleation of a compacton of size le > 0. The “com-
pacton” can eventually invade the system, le → L, L be-
ing the size of the domain, a condition which is met at an
energy value EL = 1/4, since le → ∞ as E → 1/4. More
interesting, however, is the possibility of a gas of “com-
pactons”, which can “invade” the system at lower values
E < EL, by simply superposing a collection of disjoint
compactons centered upon different values of x0. The
possibility of such a linear superposition of elementary
solutions of a highly non-linear field theory, is again a pre-
cious consequence of compactness. Since “compactons”
do not overlap, they obey a non-linear superposition prin-
ciple (

∑

i φi)
n =

∑

i φ
n
i for any power n, where i = 1, N

labels a series of “compactons” eventually covering the
full interval,

∑N

i=1 le;i = L. As a result, an arbitrary su-
perposition of “compactons” still obeys the generalized
LG equation. By using the above non-linear superposi-
tion principle, a standard stability analysis shows that, as
long as the overall surface tension is positive, γ > 0, the
gas of “compactons” is stable against arbitrary (square-
integrable) perturbations of the order parameter, hence
it represents a local minimum of the free-energy land-
scape. This result is crucial to qualify “compactons” as
the relevant effective degrees of freedom responsible for
self-glassiness of the complex fluid mixture. Therefore,
we arrive to a very elegant and intuitive picture of glassi-
ness, as the nucleation of a “gas of compactons”, each
of which corresponds to a local minimum of the free-
energy associated with the LG eqs. (1-2). Most remark-
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ably, these “compactons” can be added together, each
collection of “compactons” corresponding to a distinct
dynamical partition of physical space. This provides a
very poignant and direct map between the complexity
(ruggedness) of the free-energy landscape and the mor-
phological complexity of the fluid density in configuration
space. This picture is highly reminiscent of the inherent-
structures discovered/proposed based on numerical and
analytical studies of glass-forming fluids [9]. However,
the link between the landscape and configurational com-
plexity emerging from the present compacton-based LG
picture, appears to be new, and possibly even more di-
rect. The same considerations extend to higher dimen-
sions, to be described in a future, more detailed publica-
tion [8].

Since the collective properties of the “gas of com-
pactons” shall be demonstrated via numerical simula-
tions, it is crucial to prove that compactons survive dis-
creteness, as we shall show in the sequel. In particular,
we studied under what condition on D0 and D2 we can
still find compact solutions on a lattice. To this aim, we
considered stationary solutions of the discretized version
of (1) which become 0 at x = 0 and we found a sym-
metry in the solution, namely x → −x implies φ → −φ.
This symmetry is clearly broken by the solution defined
in (5) and the condition for the existence of a non-zero,
symmetry-breaking solution of the discrete LG equation,

reads D0− 2D2

0

∆x2 +2D2E > 0, ∆x being the lattice spacing
[10]. In the limit of small ∆x and large D2, the latter

yields
D2

0

D2∆x2 < E and can be rephrased in terms of com-

peting scales, as l20/l
2
d < 1, where l0 is a scale propor-

tional to
√

D0/∆x and ld has been defined previously.
In this way, the limit D0 → 0, where the system shows
self glassiness, is directly translated into l0 ≪ ld.

Having portrayed the main analytical picture of self-
glassiness as an emergent property of the “gas of com-
pactons”, we now proceed to show that such self-
glassiness is indeed observed in numerical simulations
of the generalized LG eqs. (1-2). To this purpose, we
simulated the generalized LG equation, including a noise
term, to represent finite-temperature effects. The corre-
sponding Langevin equation is simulated on a square lat-
tice of size 2562 with periodic boundary conditions. Ini-
tial conditions are chosen randomly, φ(x, y; t = 0) = r,
where r is a random number uniformly distributed in
[−0.1, 0.1]. In figure 2, we show two color plates of the
order parameter φ(x, y; t) at t = 20, 000 for the case
D0 = 0.3 and D2 = 0 (top), D2 = 2.0 (bottom), both
without noise. It is apparent how the case with D2 > 0
leads to a much retarded coarsening, as a matter of fact
to a dynamical arrest. We also wish also to emphasize
the visual similarity with density field configurations ob-
tained by lattice Boltzmann simulations of non-ideal flu-
ids with competing interactions [3].

In figure 3, we report the free-energy F (t) + 1/4 for
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FIG. 2: Color plates of the order parameter φ(x, y; t) for the
case D0 = 0.3, D2 = 0 (top) and D0 = 0.3, D2 = 2 (bottom),
ǫ = 0, at t = 20, 000. The much slower coarsening associated
with the D2 = 2 case is well visible.

D0 = 0.6 and three different values D2 = 0, 4, 8 with
ǫ = 0. Each point is the result of the averaging on
100 configurations with randomly chosen initial condi-
tion. From this figure, it is seen that the asymptotic
decay is always a power-law F (t) + 1/4 ∼ t−a, with
an exponent, a, which becomes smaller and smaller as
D2 is increased. Eventually, a(D2) reaches the zero-
point (see the inset), formally corresponding to struc-
tural arrest, for D2 ∼ 10.7. Next, we performed fur-
ther simulations by including an external forcing, h, con-
stant in space and time, as well as a thermal noise.
We monitor the average response to the external drive,
Φ(t) = M−1 L−2

∑M

m=1

∑

x,y φm(x, y; t), where M is
the number of realizations corresponding to different ran-
dom initial conditions. With D2 = 0 the system reaches
its driven steady-state, Φ ≈ 1 + O(h) in a finite-time
tc. As D2 > 0 is switched on, this relaxation-time
increases considerably. Figure 4 shows the relaxation
time as a function of D2, tc(D2, D0), for D0 = 0.3 and
D0 = 0.6 (inset) and ǫ = 0.01. From this figure, it is
seen that, as the ratio D2/D

2
0 is increased, the relax-

ation time starts to ramp-up quite rapidly. This diver-
gence is consistent with a Vogel-Fulcher-Tammann law
tc(D2, D0) = exp( C

D2,c−D2

) [11], where D2,c and C de-
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FIG. 3: Free-energy decay for the case ǫ = 0, D0 = 0.6 and
D2 = 0, 4, 8. The inset reports the exponent a(D2) of the
corresponding power-law decay for D2 = 0, 2, 4, 6, 8.

FIG. 4: Divergence of the relaxation time tc at increasing
values of D2, for D0 = 0.3 and D0 = 0.6 (inset). The noise
amplitude is ǫ = 0.01.

pend both on D0 and D2 plays the role of a tempera-
ture. In particular, we obtain D2,c ∼ 2, and D2,c ∼ 12
for D0 = 0.3 and D0 = 0.6, respectively. This ultra-low
relaxation is in line with the picture of a structural arrest
of the mixture, due to the stability of the “compactons”.
Another typical signature of glassy behaviour is ageing,
i.e., the anomalous persistence in time of density-density
correlations. A typical ageing indicator is the density-
density correlator

〈C(tw , tw + t)〉 = 〈φ(x, y; tw)φ(x, y; tw + t)〉
〈φ(x, y; tw)φ(x, y; tw)〉

where tw is the waiting time and brackets denote spatial
and ensemble averaging. In figure 5, we show this quan-
tity for the case D0 = 0.6 and D2 = 4 and D2 = 0 (inset)
and ǫ = 0.001. From this figure, it is apparent that for
D2 = 0 the density-density correlator decays to zero, in-
dicating that the system is able to visit all regions of
phase-space. Such capability, however, is manifestly bro-
ken in the case D2 = 4, and to an increasing extent as
tw is made larger, which points precisely to the ageing
behaviour mentioned above.
Summarizing, we have presented a new phase-field

model exhibiting typical signatures of self-glassiness, such
as long-time relaxation, ageing and long-term dynamical
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FIG. 5: Time decay of the density-density correlator for
various values of the waiting time, tw = 0, 40, 100, 200 and
ǫ = 10−3. The ageing effect, namely a decreasing loss of
memory at increasing tw, is clearly visible as compared to the
complete loss of memory in the case D2 = 0 (inset).

arrest. The distinctive feature of the present model is to
allow the cost of building an interface to become locally
zero, while preserving global positivity of the overall sur-
face tension. Analytical solutions are shown to take the
form of compact density configurations (“compactons”),
associated with local minima of the corresponding free-
energy functional. Direct simulations of the model show
that self-glassiness emerges as a collective property of this
“gas of compactons”. The compacton picture proposed
in this work provides a very elegant and conceptually new
link between the ruggedness of the free-energy landscape
and the morphological complexity of the fluid density in
configuration space. Valuable discussions with G. Gomp-
per and I. Procaccia are kindly acknowledged.
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