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Abstract.
The last few million years on planet Earth have witnessed two remarkable

phases of hominid development, starting with a phase of biological evolution
characterised by rather rapid increase of the size of the brain. This has been
followed by a phase of even more rapid technological evolution and concomi-
tant expansion of the size of the population, that began when our own par-
ticular “sapiens” species emerged, just a few hundred thousand years ago.
The present investigation exploits the analogy between the neo-Darwinian
genetic evolution mechanism governing the first phase, and the memetic evo-
lution mechanism governing the second phase. From the outset of the latter
until very recently – about the year 2000 – the growth of the global popu-
lation N was roughly governed by an equation of the form Ṅ = N2/τ⋆ , in
which τ⋆ is a coefficient introduced (in 1960) by von Foerster, who evaluated
it empirically as about 2× 1011 years. It is shown here how the value of this
hitherto mysterious timescale governing the memetic phase is explicable in
terms of what happenned in the preceding genetic phase. The outcome is
that the order of magnitude of the Foerster timescale can be accounted for as
the product, τ⋆ ≈ τg I , of the relevant (human) generation timescale, τg ≃ 20
years, with the number of bits of information in the genome, I ≈ 1010.
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1. Introduction

The global “high tech” civilisation now dominating this planet is the
culmination of a few million years of hominid evolution that can be described
in terms of two main phases. The first began when our ancestral line branched
off from that of the chimpanzees, at what may have been the last evolutionary
hard-step [1, 2, 3]. This step is the latest of the 39 bifurcations[4] listed by
Dawkins (whose introductory presentation of the anthropic principle did not
address the terrestrial hard-step question, but got sidetracked into far fetched
cosmological speculations).

On the basis of the meagre palaeontological evidence available, the salient
feature of the first phase was systematic growth of cranial (and presumably
corresponding intellectual) capacity, which proceeded at a modest rate in the
genus australopithecus, and became remarkably rapid after our own genus
homo had branched off – at what is an alternative candidate for hard-step
status – a couple of million years ago.

The second phase started relatively recently when our own particular
species, homo “sapiens” finally emerged, just a few hundred thousand years
ago. Instead of the genetic evolution that characterised the previous phase,
this second phase – which has lasted until now – has been characterised
by technological evolution and concomitant population expansion to fill the
increasing range of newly created ecological niches. Such evolution is describ-
able as memetic, because the technological know-how on which it depends is
analysable in terms of memes, meaning replicable cultural information units,
a fruitful concept originally introduced by Dawkins, who drew attention [5]
to the analogy between memetic evolution and ordinary genetic evolution as
described by neo-Darwinian theory.

The purpose of the present article is to point out some interesting quanti-
tative consequences that can be obtained by taking this analogy seriously, on
the basis of the presumption that the relevant selection pressure – favouring
increasing mental capability during the first phase, and increasing technolog-
ical capability during the second phase – would have been sufficiently high to
determine the direction of progress, of which the actual rate would however
have been controlled just by the size N of the relevant interbreeding pop-
ulation (in the manner described by the simplified model of neo-Darwinian
evolution [1] recapitulated in the Appendix).
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2. Rudimentary esssentials of neo-Darwinian theory

Although satisfactory for the description of large bodies, classical physics
as developed before the twentieth century was inadequate for the description
of smaller systems, which need allowance for atomic substructure and the
use of quantum mechanics. In an analogous way, classical Darwinian theory
– treating evolution as a continuous process – is adequate only for very large
populations. A less naively simple description is needed for small and medium
sized populations, meaning those in which

N ∼< Nr , (1)

where Nr is the replication reliability number, meaning the number of suc-
cessive generations over which one would expect the genetic information at
a particular locus to be reliably copiable without mutation under favorable
conditions.

The discrete nature of genetic information, was first pointed out by
Mendel in Darwin’s time, but it was was not until after Morgan’s obser-
vational discovery of the mutation process that the neo-Darwinian theory
needed to allow for the finiteness of the mutation rate was was developed
[6] by pioneers such as Wright and later on Kimura. Although very small,
the rate r ≈ 1/Nr of mutations at a given genetic site must be non-zero in
order for long term evolution to be possible. The total number of mutations
per generation will have order of magnitude given by µ ≈ Ir, where I is the
number of bits of information in the genome, which is identifiable (modulo
a factor of 2 to allow for the use of a four letter coding) with the number of
sites, so we shall have Nr ≈ I/µ .

As most mutations will be harmful and many fatal, it is necessary for
individual survival the µ should not be too large compared with unity, while
a value that was unnecessarily small would be bad for the flexibility needed
for long term evolutionary adaptability. It is therfore to be expected – and is
confirmed [6] by observation – that long term evolution would have adjusted
the mutation rate to be of the order of unity, so one obtains

µ ≈ 1 ⇒ Nr ≈ I , (2)

with the actual value of this genome information content I given in or-
der of magnitude (for the eukaryotic cells of multicellular organisms such as
ourselves) by I ≈ 1010.
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In order for favourable mutations at many different sites to be selectable
simultaneously it is important that genetic information should be efficiently
exchanged throughout the population concerned. The analogous process for
memes has been largely dependent on language, and has been greatly accel-
erated by the invention of the printing press and most recently the internet.
In the genetic case, the correponding process is of course achieved by sex,
which involves many complicated details (starting with the distinctions be-
tween male, female, and sometimes hermaphrodite, genders). As detailed
treatments allowing for such intricacies tend to be rather elaborate [6], I
have formulated a cruder simplified description [1] that is recapitulated in
the appendix, which should, I trust, be adequate for our present purpose. It
is to be emphasised that classical Darwinian theory is not adequate for this
purpose, because our concern here is with hominids, for whom the global
population N (and hence a fortiori the population of all effectively inter-
breeding subunits) has always been below the limit (1). The coincidence
that we are getting near this classical limit right now will be seen to be of
portentous significance.

The simplified description in the Appendix is based just on the two dom-
inant variables, which are the ordinary Darwinian selection coefficient s for
the variant in question, and the breeding population number N . The third
relevant parameter, Nr, is not (or hardly) a variable, but has a roughly fixed
value with order of magnitude given [6] in accordance with (2) by

√

Nr ≈ 105 . (3)

As shown by Figure 4, this value determines the classification of the 2-
dimensional (s versus N) parameter space into four zones labelled A,B,C,
D, of which the last is that of classical Darwinian evolution at a rate pro-
portional to s, while A and B are those for which s is too small to avoid
being overwhelmed, either by random fluctuation which dominate in A, or
by random mutations, which dominate in B.

The zone that is most relevant for our present purpose is the one labelled
C, which is defined by the condition that the selection coefficient be large
enough to determine a consistent direction of evolution, but unable to deter-
mine the rate of evolution, which will be limited by shortage of mutations
in the small and moderate populations characterised by (1). In this case it
follows that the relevant evolution timescale τ will be given as a multiple of
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the generation timescale τg by the prescription

τ ≈ τg Nr/N , (4)

This formula specifies the minimum timescale required for veritable genetic
evolution in a population with the given value of N in the range (1).

That minimum value (4) will be actually obtained for quite moderate
values of the Darwinian selection coefficient s for a population not too far
from the critical value N ≈

√
Nr, as given by (3), a condition that would

indeed seem to have been satisfied by the hominid population in the first
phase, prior to the proliferation of homo “sapiens”. The population in those
days would have consisted of small scattered clans or tribal groups of which
the (climate dependent) total would have fluctuated widely, with a typical
value given perhaps by N ≈ 105 and a maximum that would probably not
have exceeded about a million. If we assume that the generation timescale
would have been τg ≃ 25 years, and that the maximum population was
N ≈ 106, then it follows from (3) and (4) that the minimum timescale needed
for substantial evolutionary change would have had order of magnitude

τ ≈ 250 thousand years , (5)

while the typical requirement would have been more like a million years. As
these values seem to agree with the timescales indicated by the fossil record –
particularly of cranial expansion – it would appear that the selection pressure
must indeed have been high enough to keep this hominid evolution process
going at the maximum genetically allowable speed.

3. The memetic analogy

The genetic evolution timescale given by the formula (4) is inversely pro-
portional to the population N because the rate of occurence mutations (at
any particular site) will be proportional to the total population concerned.
In the analogous case of memes, one would expect that the rate of occur-
rence of ideas (of any particular innovative kind) would also be proportional
to the size of the population concerned, and hence that the coorresponding
memetic timescale τ would similarly be inversely proportional to the relenant
population size N . This means that it will be given by an expression of the
form

τ ≈ τ⋆/N (6)
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in which the coefficient τ⋆ is a timescale that will presumably depend on the
qualitative nature of the people concerned, particularly the cleverness of the
fraction that is brightest

Early in the first phase of the hominid evolution process, three or four
million years ago, the archaeological evidence indicates that, as one would
have expected, the rate of technical progress was low, with a timescale long
compared with the value given by (5). This evidently means that the coeffi-
cient τ⋆ in (6) would have been long compared with the product,

τg Nr ≈ 250 thousand million years , (7)

in (4). However as their brains got larger and the hominids became cleverer,
the capabilities of their technological innovators would have increased, and so
the value of the coefficient τ⋆ would have decreased until it reached a critical
value given by

τ⋆ ≈ τg Nr , (8)

beyond which the rate of technical progress would have become more rapid
than biological evolution.

It would appear that this is indeed just what happened – in other words
genetic evolution was overtaken by memetic evolution – at the transition
to the second phase of hominid evolution, when modern homo “sapiens”
emerged, just a few hundred thousand years ago.

4. The onset of population expansion

The question of whether natural selection acts primarily at the level of
individuals or rather at the level of groups has been debated since Dar-
win’s time. It has been suggested that the issue might be transcended by
reformulating the problem from the point of view of genes [5] rather than
complete organisms, but that rather begs the question, as it is still necessary
to worry about whether it is a matter of individual genes or groups of genes.
Whichever formulation is preferred, it is now generally recognised [7] that the
relative dominance of individual or group levels will depend on cirumstances.

In palaeolithic times, before the development of agriculture, competition
seems to have operated particularly strongly at the level of small clans or
tribal groups. For such a group, one of the main advantages of relative
progress, whether genetic, in the form of bigger brains, or memetic, in the
form of better technology, would simply have been that it reduced the risk of
succumbing to genocide, a common ultimate fate of clans whose development
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lagged behind. The failure of most such groups to leave a significant number
of descendents is evidenced [8] by the discovery that the “effective” ancestral
population size obtained from analysis of the modern human genome is only
of the order of a few tens of thousands – the equivalent of a single middle
sized tribe – whereas the global population would at most times have been
much larger than that.

As well as being essential for survival in the inter-group competition for
occupancy of the preexisting ecological niches of the hominids, another ad-
vantage of progress – particularly the memetic kind exemplified by the use of
fire – would have been to expand the range of accessible niches and thereby
increase the global population N . This population expansion mechanism
seems to have already started to operate, albeit modestly, in the first ho-
minid phase (before the emergence of homo “sapiens”) when homo “erectus”
came out of Africa [9, 10] to colonise many parts of Asia. Since the sec-
ond (memetic) phase got under way, successive frequently overlapping waves
of technologically empowered population expansion have been of paramount
importance, a salient early example being that of the “exodus”, when homo
“sapiens” sallied from the warmth of Africa to confront the Neanderthals in
cooler Europe, as well as the more ancient “erectus” population in Asia, at
about the time [8] when the habitable climate range was greatly expanded
by the development of cloths.

5. The memetic growth law

The rate of change Ṅ of the population size N is characterisable at any
instant by a corresponding growth timescale defined by setting

Ṅ/N = τ . (9)

During the memetic phase, when the growth is primarily attributable to
technical progress of one kind or another, this time scale can be expected to
be roughly given by the corresponding memetic timescale τ that is given in
terms of the loosely defined memetic coefficient τ⋆ by the formula (6).

The implication is that to describe the memetic phase one should combine
(6) and (9), thus defining this coefficient more precisely by setting

Ṅ/N = N/τ⋆ . (10)

If we now suppose, as a plausible and testable hypothesis, that this coefficient
τ⋆ is insensitive to conceivably relevant details of social organisation, but
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Figure 1: Plot of global population N , in units of 109, against date, using
thick pale shaded curve for U.N. statistics from 1750 A.D. to 2000 A.D. The
thin dark curve shows crude Malthusian matching of the exponential formula
(11) to what was observed in 1950 A.D. by taking τ ≃ 80 yr, which overesti-
mates future but underestimates present and past. The firm pale curve shows
“orthodox” Verhults type matching using the logistic formula (13) fitted to
the latest observations, with inflection about 2000 A.D., by taking τ ≃ 40
yr. This again underestimates earlier values, while overestimating what is
plausible in the long run, as its measure A (proportional to the area under
the curve) will diverge linearly.

depends only on the innate intelligence distribution of the population in
question, it follows that it will not have had time to change substantially
since our species first emerged. Indeed the reason why we consider ourselves
to be of the same “sapiens” species as our ancestors more than a hundred
thousand years ago is that our palaeontologically detectable morphological
development since then has been relatively insignificant. On the basis of the
postulate that, since that time, the coefficient τ⋆ has been approximately
constant, with the value given roughly by the critical transition magnitude
(8), the memetic growth law (10) acquires the status of a verifiable prediction.

In the remainder of this article it will be shown that the available historical
and archaeological evidence confirms that the substitution in (10) of the fixed
value given by (8) provides a demographic model – of hyperbolic type –that
does indeed work remarkably well.
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6. The ill fitting exponential, Verhults, and Huppert type models

Before proceding, it is to be recalled that the theory of demographic
growth has a history dating back to the work of Malthus, who introduced
the simplest and still most widely used kind of model for this purpose, namely
that of the exponential type obtained by taking the timescale τ in (9) to have
a fixed value, in terms of which the solution will take the form

N = N
0
exp{t/τ} , (11)

where N
0
is the population at some chosen time origin when t = 0 .

Although the recipe for perpetual exponential growth is still commonly
sought as an ideal “holy grail” by economists, its ecological impossibility
in the long run was clearly recognised by Malthus himself. The first and
simplest “sigmoid” model allowing for the limited availability of renewable
resources was introduced by his follower, Verhults, in the middle of the nine-
teenth century, but it took another century before attention began to be
given to the need to take analogous account of the limited availability of
non-renewable resources, for which a corresponding “peaked” model was in-
troduced by Huppert.

The simple ecological model due to Verhults is based on an evolution
equation of what is known as the logistic form,

Ṅ/N = (1−N/N
∞
)/τ , (12)

for some fixed saturation value N
∞
, interpretable as the maximum environ-

mentally sustainable value of N . (For example, if one allows about an acre
for a family of four, the entire land surface of the world gives N

∞
≈ 1011.)

The solution of the Verhults equation (12) will be be symmetric with respect
to a time ts in terms of which it takes the well known logistic form

N =
N

∞

2

(

1 + tanh

{

t− ts
2τ

})

, (13)

which shows how the upper bound N
∞

will be asymptotically approached
from below. The smoothly controlled Verhults model was originally intended
for application, not to the world as a whole, but just to the newly established
kingdom of Belgium, for which it was remarkably successful. However – as
an example of the more unpleasant alternatives about which Malthus had
warned – in Ireland about the same time, exponential growth was terminated,
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not by smooth convergence to a plateau level, but catastrophically by a
famine.

As the twentieth century advanced, people began to worry about a limi-
tation of a different kind. As well as the problem of saturation of renewable
resources, there is the problem of exhaustion of non-renewable resources. In
order to treat such problems, it is useful to think not so much in terms of
the instantaneous population size N but rather in terms of its time integral
A say. Starting from any chosen time origin, this measure is defined by the
condition that its time derivative be given by

Ȧ = N . (14)

which means that A will be proportional to the corresponding area under
a curve of the kind shown in Figure 1. If the rate of consumation of some
non-renewable resource is proportional to the number of people using it, then
A will measure the extent to which that resource has been used at the time
under consideration.

As for the exponential model (11), this quantity – which I shall refer to
as the anthropic measure – will grow without bound, A → ∞ as t → ∞ ,
even for a Verhults model, for which it will be given by the formula

A = N
∞
τ ln

[

1 + exp

{

t− ts
τ

}]

, (15)

so that, as can be seen from Figure 1 its time dependence will ultimately be
linearly divergent.

To take more realistic account of the finitude of non-renewable ressources
the most commonly discussed models are of the kind introduced in the con-
text of oil extraction by Huppert (a Shell engineer) who recognised that
models of the logistic kind described above are plausibly applicable to ac-
cumulated consumption of a non-renewable ressource such as oil. If mainte-
nance of an acceptably high standard of living requires a proportionate rate
of consumption of such ressources, the implication is that the logistic model
would be applicable not to the instantaneous population N as supposed by
Verhults, but to the accumulated anthropic measure A defined by (14), whose
evolution would therefor be governed by an equation of the analogous form

Ȧ/A = (1−A/A
∞
)/τ , (16)

for some constant A
∞

that is interpretable as the total anthropic measure
of the entire past and future.

10



1800 1900 2000 2100 2200

2

4

6

8

10

12

14

Figure 2: As for Figure 1 with medium thickness curve showing “orthodox”
matching by a Verhults model, but with the crude exponential model replaced
by a Huppert type logistic derivative model (18) fitted as shown by thin pale
shaded curve to the latest observations, about 2000 A.D., by taking peak time
tp about 2040 A.D., and setting the peak population to be N p ≃ 8 × 109,
again with τ ≃ 40 yr. Although finiteness of area under this curve allows
convergence of anthropic measure – to the limit A

∞
= 4τN p ≃ 1012 human

years – this peaked matching still underestimates values at earlier times.

As the analogue of (13) the solution of this equation (16) will have the
logistic form

A =
A∞

2

(

1 + tanh

{

t− tp
2τ

})

, (17)

in which tp is a constant of integration that is interpretable as the time at
which the corresponding total population

N = A∞/4τ cosh2

{

t− tp
2τ

}

, (18)

reaches its peak value, namely Np = A∞/4τ . Although this kind of model
may be useful for the description of what may happen in the short term
future, it is clear from Figure 2 that it fails as badly as the simple exponetial
model and the Verhults model for the description of global demography in
the distant and even recent past.
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7. The well fitting Foerster model

It was reasonable for economists and social scientists such as Verhults, and
other early followers of Malthus, to seek timescales of the order of a human
lifetime, or at most of the duration of human history, for the formulation
of their demographic models. When simple models involving a single such
timescale τ were found to be inadequate, they resorted [11] to elaborate multi-
timescale models with too many adjustable parameters to be of much help
for prediction. It was hard to see that the available demographic data were
after all describable very well in terms just of a single timescale, τ ⋆, because
the required value is literally astronomical. It is therefor unsurprising that
the first to have recognised it should have been not an economist, or even an
ecologist, but a physicist, Heinz von Foerster (1911-2002) from Vienna, who
noticed at last[12] that the available demographic data could be fitted rather
well by a formula of the simple hyperbolic form

N =
τ⋆

td − t
, (19)

which is exactly what is obtained from the memetic evolution law (10)
derived above, subject to the specification of a divergence time td that arises
as a constant of integration.

The validity of this formula – as a fairly good approximation with a
roughly constant value of τ⋆ all the way from palaeolithic to modern times
– did not become widely known until relatively recently, and is something I
observed independently, before finding out that it had already been pointed
out in 1975 by von Hoerner [13], and back in 1960 by von Foerster [12], who
estimated that the remaining time before the singularity was then barely 70
years. More than half that time has since been used up, but the remarkable
– and rather alarming – fact is that significant deviation from the Foerster
formula has not yet become clearly observable.

Theoretical explanations of the acceleration from an initially slow start
(what has been referred to by Renfrew as the “sapient paradox” [14]) and
more particularly of the quadratic form, Ṅ ∝ N2 of the relevant growth
law (10), have been proposed by Kremer [15] and Koratayev [16] in terms
of theories of technological development along lines similar to those sketched
in Section 4, but without reference to the neo-Darwinian genetic evolution
process in the pre-memetic phase of hominid evolution that determines the
actual value of the required coefficient τ⋆. The rough estimate obtained for
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Figure 3: As for Figure 2 but (instead of “orthodox” matching) using thin
dark curve to show successful matching of past population, up to the date
t
2
≃ 2000 A.D., by a Foerster model, as given by (19) for τ ⋆ ≃ 24× 1010 yr,

with divergence date td ≃ 2040. Unlike the Huppert model plotted by a thin
pale curve as before, this simple hyperbolic model is realistic as a description
of the past, but in view of its divergence at the “doomsday” date td (when
the Huppert model passes through its peak) its hundred thousand years of
approximate validity must come to an end wihin a few years from now.

this by substituting (7) in (8) agrees very well with the more precise value

τ⋆ ≃ 240 Gyr . (20)

that I obtain, as shown Figure 3, by matching the formula (19) to the official
U.N. statistics [17] up to about 2000 A.D., with the correspondingly adjusted
value of the constant of integration – namely the divergence date – given by

td ≃ 2040 A.D. (21)

It is to be remarked that, on the basis of fine tuning to the demographic
statistics of their own time in the short run, von Foerster [12] and von Hoerner
[13] originally suggested a “doomsday” time that was even nearer, td ≃ 2025
A.D., in conjunction with a fixed timescale that was correspondingly reduced,
τ⋆ ≃ 200 Gyr. However the rather longer fixed time scale (20) and the rather
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later divergence time (21) seem to give a better match in the long run, not just
for more recent years, but also for the more distant past, through mediaeval
times. For even earlier (classical, bronze age, neolithic, and palaeolithic)
times [11] the uncertainties are anyway so large that the differences between
such alternative adjustments are not statistically significant.

According to (19) and (20) the size of the global population at the time,
t1 say, of the begnning of the memetic phase, a few hundred thousand years
ago, would have been given roughly by N1 ≈ 106 an order of magnitude that
is consistent with the estimates discussed in Section 3. Much of that total
would not have been direcly ancestral to ourselves, but would have included
various “erectus” and Neanderthal populations, as well as many “sapiens”
groups that subsequently died out without leaving any descendants. In terms
of this initial value N 1 the subsequent measure, attributable almost entirely
to our own species, will be expressible as

A = τ⋆ ln{N/N1} . (22)

Up to the present time the expansion factor N/N 1 is about 104 ≃ e10, so
it follows from (20)and (22) that the measure of the whole of our “sapiens”
species until now is given roughly by A ≈ 2.4× 1012 human years.

8. Conclusions

It is remarkable that the formulae (19) and (22) are still valid as rea-
sonably good approximations even today, but it is evident that this can not
go on for much longer. It is not reasonably conceivable that the hyperbolic
Foerster model should remain valid beyond a crescendo point that will be
attained when the remaining time before the “doomsday date” td has become
short compared with the reproductive breeding timescale τg , so that popu-
lation expansion will be unable to keep up with the possibilities provided by
technical progress, even if the latter continues. According to (8) and (19)
this will occur when the population approaches the maximum allowed by (1),
with magnitude N ≈ I .

It is clear that we shall have reached this crescendo point within at most
a few years from now. What will happen after that? Most of those alive
today can expect to live long enough to find out. The results of the present
work are pertinent for addressing this question within the framework of the
anthropic principle [1, 18, 19].
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Figure 4: Evolutionary regimes: a rough logarithmic plot of the inverse of
the selection coefficient s against population number N . Contours of fixed
timescale are indicated by thin lines, which separate bands whose shading
darkens progressively as the relevant timescale decreases. It is only in zones C
and D that the Darwinian selection mechanism will be effectively operational.
In zone B a stable mixed state will be approached with timescale τ r ≈ τgI/µ,
while in zone A there will be stochastic fluctuations with timescale τ f ≈ τgN ,
which in the subzone A+ will go so far as to create random pure states
that will last for a relatively long delay time, τ = τ r/N , before switching.
The same (delay) formula gives the timescale τ needed for attainment of the
selectively preferred state in the (neo-Darwinian) zone C, while the timescale
τ s needed for attainment of the selectively preferred state in the (classical-
Darwinian) zone D will be given by τ s ≈ τg/s. In the case of pseudo-evolution
– as commonly obtained artificially – by selection of pre-existing genes, the
validity of the latter (classical Darwinian) formula would extend over the
zone C, thus smoothing the timescale discontinuity between A and C.
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Appendix: Crude estimation of (neo) Darwinian evolution rates

These notes recapitulate the rough and ready analysis[1] (applicable in
principle to other extraterrestrial life systems, not just to our own) that
I have found to be convenient as a practical working compromise between
Darwin’s sketchy pre-Mendelian picture of evolution and the more complete
but rather too elaborate “neo-Darwinian” picture [6] that has been developed
to incorporate a modern understanding of genetics.

In its simplest form, Darwinian selection for a particular bit of genetic
information (e.g. a discriminator between dark or light eye colour) is describ-
able in terms of a (small) selection coefficient s specified as the fraction by
which the higher breeding rate of the favoured variant would cause its pro-
portion of the population to increase from one generation to the next. An
initially rare variant (e.g. dark eyed) could thereby become common after
a number N s of generations, and a corresponding timescale τ s , that will be
given in terms of the relevant generation timescale τg by

N s ≈ 1/s ⇒ τ s ≈ N s τg . (A1)

Darwin’s ideas about what might be achieved by natural selection in this way
were largely inspired by experience of the remarkable changes obtainable in
a few generations by artificial selection in species such as pigeons. However
these are examples of what I would call pseudo-evolution, and as such are
potentially misleading, as they depend mainly on the availability of a wealth
of pre-existing genetic variation. What I would call genuine evolution requires
new mutations, which will occur infrequently unless the breeding population
is very large (and were first observed not in pigeons but in fruit flies).

The rate of genuine long term evolution ill be limited by the frequency of
mutations, which occur as random copying errors of the genetic information
I (which is carried in the terrestrial case carried by DNA coding, using just
four letters, so that each inscription site involves just two bits). The (very
small) probability, r ≪ 1 say, that the code letter at a particular site will
be incorrectly copied, in a single replication process, will determine a cor-
responding (very large) replication reliability number N r ≫ 1 in terms of
which the timescale τ r over which the code letter at a particular site can be
expected to be replicable without error will be given by

N r ≈ 1/r ⇒ τ r ≈ N r τg . (A2)

If the number, N , of individuals in the relevant breeding population (as
characterised by effective diffusion of genetic information, which is achieved
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for multicellular animals by diverse sexual mechanisms) is sufficiently large,
then the rate of neo-Darwinian evolution will be controlled just by the selec-
tion coefficient s and the mutation rate r . However for smaller populations
the evolution rate will depend also on a third parameter, namely the size N
itself, which determines the rate of occurrence of purely random fluctuations.
The number of individuals carrying a particular bit of genetic information
will be subject to a random walk mechanism whereby the typical change
from one generation to the next can be expected to be of order

√
N , so that

the accumulated drift after Nf generations can be expected to be of order
√

Nf

√
N . The expected number Nf of generations, and the corresponding

timescale τ f , needed for the drift of the fraction of the population carrying
a particular bit of genetic information to become comparable with unity –
so that an initally rare variant could become rare, while an initially common
variant might become extinct – can thus be roughly estimated as

Nf ≈ N ⇒ τ f ≈ N τg . (A3)

To classify the ensuing possibilities, it is convenient – as shown in the
Figure – to use a plot of N s against N , since these parameters are variables
that depend on circumstances, whereas the third relevant parameter, N r , has
a roughly constant value determined by the number I of bits of information
in the genome, in terms of which the rate r of mutations at a particular site
will be given by

r ≈ µ/I , (A5)

where µ is the total number of mutations (per replication). Although the
mutations may have external causes (such as ambient radioactivity) their
rate is not passively tolerated but actively optimised by mechanisms due to
long term Darwinian selection. As most random mutations are disadvanta-
geous and many are fatal, short term individual survival requires replication
reliability high enough to prevent µ from becoming large compared with
unity. On the other hand a shortage of mutations would be bad for the evo-
lutionary flexibility needed for long term survival of a species in changing
circumstances, so the optimum will be given roughly by

µ ≈ 1 ⇒ N r ≈ I ≈ 1010 , (A6)

in broad agreement with what is observed [6].
Using the same nomenclature as in the previous discussion [1] the four

main zones in the accompanying logarithmic plot of N s against N , are la-
belled A, B, C, D. The simplest is the second, namely Zone B, that of weak
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selection in a large population. This zone is characterised by the condition
that both N s and N should be large compared with N r – which means that
selection is too weak to matter and random fluctuations are too small to mat-
ter. In this case, after a time of the order of the value τ r given by (A2), the
population will reach a stable mixed state (e.g. comparable fractions of both
light and dark eyed variants) The three other zones are more interesting.

The most unstable is the zone A, for which both N s and N r are large
compared with N . In this zone of weak selection in a small population both
τ s and τ r will be long compared with the timescale, τ f , in which the accu-
mulated effect of random breeding fluctuations can have a substantial effect.
The expression (A3) for this fluctuation timescale τ f corrects a transcription
error in the original presentation [1] where the corresponding equation (4.10)
was written as a copy of the formula (4.12) corresponding to (A2) above.
Whenever this fluctuation timescale τ f is short compared with τ s there will
be no time for Darwinian selection to have any noticable effect, and so long
as it is also short compared with τ r the mutation rate will be insufficient to
prevent the attainment of states of a relatively pure-bred kind in which all
except one of the competing variants is reduced to a very low level. Such
states will remain slightly mixed in the subzone A− for which N ∼>

√
N r, but

they will become absolutely pure (e.g. only the light eyed variant) and will
then last during a relatively long delay time, given by

τ = τ r/N , (A6)

in the extreme case for which τ f is short even compared with relevant muta-
tion timescale τ r/N , which will occur in the zone A+ for which N ∼<

√
N r.

The other two zones, C and D, are those for which the Darwinian selection
time scale τ s is short, not only compared with the fluctuation timescale τ f
but also compared with the mutation timescale τ r, the distinction being
that in the former, namely zone C – the case of strong selection in a small
population – the timescale τ s is short even compared with the minimum
timescale (A6) required for the occurrence of just a very few individual cases
of the mutation under consideration, so that the effective limit on the rate
at which Darwinian evolution can take place in the long run will be given by
this minimum timescale τ , as specified by (A6).

In zone D – the case of strong selection in a large population – Darwinian
selection proceeds without inhibition to eliminate all but the favoured (e.g.
dark eyed) variant within a timescale of the order of τ s as given by (A1). The
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condition for this is that compared with τ f and τ r the selection timescale
τ s should be short, but not as short as the minimum time τ given by (A6).
(The accuracy of the analysis might be somewhat improved [1] by inclusion
of a factor ln{τ r/τ s} taking account of the mutation rate, but this will be
superfluous, as it will merely be of the order of unity, unless s is extremely
high.)

As shown in the Figure, there are two critical points where three zone
boundaries meet. One occurs where N s ≈ N r for a landmark population
number given by N ≈ N r . For ordinary terrestrial eukaryotes, according to
(A6), this has a value of order 1010 that is too large to be easily attainable
by large animals except in unusual circumstance – such as the impending
crescendo of the human population explosion!. The corresponding timescale,
τ r as given by (A2), is in any case far too long for this triple point to be
of other than academic interest except for fast breeding microbes. For large
animals, with a generation timescale τg of the order of years, the critical value
of τ r works out to be comparable with the age of the universe and thus far
too long for such evolution to have any significant effect in the relevant time
window during which coherent selection tendencies can be maintained.

The other triple crossing point is more relevant for large animals. It
occurs where N ≈ N s ≈ N× , for a landmark population number given by

N× ≈
√

N r ≈ 105 . (A7)

It seems likely that the hominid population would have fluctuated about a
value of roughly this order of magnitude before the emergence of our own
species. Whenever the population has about this critical value the charac-
teristic time will be given, independently of the selection rate s, by

τ× ≈ τg N× , (A8)

which for animals with τg ≈ 10 years works out as τ× ≈ 106 years. The
only relevance of the value of the selection coefficient s for such a population
is that if it is too small the timescale (A8) will merely characterise random
fluctuations, whereas for Darwinian selection to be effective the coefficient
must satisfy the modest requirement s ∼> 10−5 so that N s ∼< N×.
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