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Abstract

A distributed detection scheme where the sensors transithita@nstant modulus signals over a
Gaussian multiple access channel is considered. The deflemefficient of the proposed scheme is
shown to depend on the characteristic function of the sgnswmise and the error exponent for the
system is derived using large deviation theory. Optimaratof the deflection coefficient and error
exponent are considered with respect to a transmissioreghasmeter for a variety of sensing noise
distributions including impulsive ones. The proposed sohés also favorably compared with existing
amplify-and-forward and detect-and-forward schemes. dffect of fading is shown to be detrimental
to the detection performance through a reduction in the ctédle coefficient depending on the fading
statistics. Simulations corroborate that the deflectioaffaent and error exponent can be effectively

used to optimize the error probability for a wide variety ehsing noise distributions.
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. INTRODUCTION

In inference-based wireless sensor networks, low-powesas with limited battery and peak

power capabilities transmit their observations to a fusienter (FC) for detection of events or
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estimation of parameters. For distributed detection, mofcthe literature has focused on the
parallel topology where each sensor uses a dedicated dhantr@nsmit to a fusion center.
Multiple access channels offer bandwidth efficiency sirfoe $ensors transmit over the same
time/frequency slot. The sensors may perform local detecthrough quantization in which
case the decision is encoded into a specific waveform to beteetne FC. Instead, sensed
information may be sent to the FC using analog modulatiorcwvtiansmits the unquantized data
by appropriately pulse shaping and amplitude or phase matidglto consume finite bandwidth.

In [1], the distributed detection over a multiple accessncteh is studied where arbitrary
number of quantization levels at the local sensors are atfipwnd transmission from the sensors
to the fusion center is subject to both noise and inter-chamterference. References [2]-
[5] discuss distributed detection over Gaussian multigleeas channels. In [2], detection of a
deterministic signal in correlated Gaussian noise andctlete of a first-order autoregressive
signal in independent Gaussian noise are studied using atifwand-forward scheme where
the performance of different fusion rules is analyzed. [n §ype-based multiple access scheme
is considered in which the local mapping rule encodes a wanwebccording to the type [6, pp.
347] of the sensor observation and its performance undédr thet per-sensor and total power
constraints is investigated. This scheme is extended tadke of fading between the sensors
and the FC in [4] and its performance is analyzed using laey&ation theory. In the presence of
non-coherent fading over a Gaussian multi-access chagpekbased random access is proposed
and analyzed in [5]. In [7], the optimal distributed detentischeme in a clustered multi-hop
sensor network is considered where a large number of diséabsensor nodes quantize their
observations to make local hard decisions about an everd.optimal decision rule at the
cluster head is shown to be a threshold test on the weightedotuhe local decisions and its
performance is analysed.

Two schemes called modified amplify-and-forward (MAF) anel tnodified detect-and-forward
(MDF) are developed in [8] which generalize and outperfoha ¢tlassic amplify-and-forward
(AF) and detect-and-forward (DF) approaches to distridbudetection. It is shown that MAF
outperforms MDF when the number of sensors is large and tip@si@ conclusion is true
when the number of sensors is smaller. For the MDF schemeidgtitical sensors, the optimal
decision rule is proved to be a threshold test in [9]. Dedidigsion with a hon-coherent fading

Gaussian multiple access channel is considered in [10] evtiex optimal fusion rule is shown
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to be a threshold test on the received signal power and okegfhg is proved to be the optimal
modulation scheme. A distributed detection system whensas transmit their observations
over a fading Gaussian multiple-access channel to a FC withipie antennas using amplify-
and-forward is studied in [11]. In all these cases, the sgnsoise distribution is assumed to be
Gaussian. Even though the Gaussian assumption is widetly asesor networks which operate
in adverse conditions require detectors which are robusiotoGaussian scenarios. Moreover,
in the literature there has been little emphasis on diggidbschemes with the desirable feature
of using constant modulus signals with fixed instantanemvgep

A distributed estimation scheme where the sensor transmsskave constant modulus signals
is considered in [12]. Distributed estimation in a bandWwdonstrained sensor network with a
noisy channel is investigated in [13] and distributed eation of a vector signal in a sensor
network with power and bandwidth constraints is studiedl4][ The estimator proposed in [12]
is shown to be strongly consistent for any sensing noiseildigion in the iid case. Inspired
by the robustness of this estimation scheme, in this workstilouted detection scheme where
the sensors transmit with constant modulus signals overus$tm multiple access channel is
proposed for a binary hypothesis testing problem. The ssrisansmit with constant modulus
transmissions whose phase is linear with the sensed dataodtput-signal-to-noise-ratio, also
called as the deflection coefficient (DC) of the system, isvedrand expressed in terms of the
characteristic function (CF) of the sensing noise. Therogttion of the DC with respect to the
transmit phase parameter is considered for differentildigions on the sensing noise including
impulsive ones. The error exponent is also derived and showepend on the CF of the sensing
noise. It is shown that both the DC and the error exponent eamskd as accurate predictors of
the phase parameter that minimizes the detection error Tag proposed detector is favorably
compared with MAF and the MDF schemes developed in [8], [8]i@ Gaussian sensing noise
and its robustness in the presence of other sensing nois#uli®ns is highlighted. The effect
of fading between the sensors and the fusion center is showe tetrimental to the detection
performance through a reduction in the DC depending on ttiedestatistics. Different than [12]
where the asymptotic variance of an estimator is analyrexdemphasis herein is on derivation,
analysis, and optimization of detection-theoretic mstgach as the DC and error exponent. Our
aim in this paper is to develop a distributed detection s&erere the instantaneous transmit

power is not influenced by possibly unbounded sensor measmtenoise.
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The paper is organized as follows. In Section Il, the systasdehis described with per-sensor
power constraint and total power constraint. In Sectiontie detection problem is described
and a linear detector is proposed. The probability of eresfqmance of the detector is analyzed
in Section IV. The DC is defined and its optimization for seVerases is studied in Section V.
The presence of fading between the sensors and the fusider dsrdiscussed in Section VI.
The error exponent of the proposed detector is analyzed etiocBeVIl. Non-Gaussian channel
noises are discussed in Section VIII. Simulation resukksprovided in Section IX which support

the theoretical results. Finally, the concluding remantes @esented in Section X.

1. SYSTEM MODEL

Consider a binary hypothesis testing problem with two higpsésH,, H; where P,, P, are
their respective prior probabilities. Let the sensed digmahei'* sensor be,

0 +n; under H;

n; under Hy
i=1,...,L 60 > 0%is a known parameter whose presence or absence has to bédgtec
L is the total number of sensors in the system, ands the noise sample at th&" sensor.
The sensing noise samples are independent, have zero maulaan absolutely continuous
distribution but they need not be identically distributechave any finite moments. We consider
a setting where thé" sensor transmits its measurement using a constant modghes g/pe’<:

over a Gaussian multiple access channel so that the recgiyedl at the FC is given by

L
yL =Py e+ (2)
i=1

where p is the power at each sensar,> 0 is a design parameter to be optimized and-
CN(0,?) is the additive channel noise. We consider two types of pasastraints: Per-sensor
power constraint and total power constraint. In the formeseg each sensor has a fixed power
p SO that the total powePr = pL, and aslL — oo, Pr — oo; in the later case, the total
power Pr is fixed for the entire system and does not depend.pgo that the per-sensor power

p=Pr/L—0asL — oc.

the proposed scheme will work without any difference dox 0 due to symmetry if we substituted in the place ofd in

all the equations.
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IIl. THE DETECTION PROBLEM

The received signaj; under the total power constraint can be written as

Pr <~
w= S e ®)
=1

We assume throughout th&, = P, = 0.5 for convenience even though other choices can be
easily incorporated. With the received signal in (3), the i3 to decide which hypothesis is

true. It is well known that the optimal fusion rule under thayBsian formulation is given by:

flyo|Hy) T Py -
FulHo) i P @

where f(y.|H;), is the conditional probability density function @f, when H; is true. The
equation (3) can be rewritten as follows:

Yy, = % <Z cos(wxﬁ) +j\/§ (Z sin(wxﬁ) + 0.

i=1
Since there ard, terms in the first summation involving the cosine functiorg meed to da.

fold convolutions with the PDFs ofos(wz;) and another set of, fold convolutions with the
PDFs ofsin(wz;). Then we need to find the joint distribution of the PDFs oledithus for the
cosine and sine counterparts. This joint PDF will need to &evalved with the PDF ob. It
is not possible to obtain a closed form expression for tl{ége+ 1) fold convolutions. Hence,
f(yr|H;) is not tractable. Therefore, we consider the following dindetector which is argued

next to be optimal for large.:
Hy

Rlye 7] = RlyL] 2 0, (5)

Hop

where we definét[y] as the real part, and[y| as the imaginary part of. Note that the detector

in (5) would be optimal ify; were Gaussian. Clearly due to central limit theorgmin (3)

is asymptotically Gaussian, which indicates that (5) apipnates (4) for largeL. With the
Gaussian assumption, the variancesypfin (3) under the two hypotheses are the same and
given by Vafy;|Hy) =Var(yr|H,) = [Pr(1 — ¢?(w)) + 2], wherep, (w) is the characteristic
function ofn;. Hence, the optimal likelihood ratio simplifies to the déteen (5) which is linear

in yr, wheny;, is assumed Gaussian which holds for lafgdHowever as will be seen in Section
IV, we do not assume that; is Gaussian for any fixed when we analyze the performance
of the detector in (5) or in finding the associated error exmbin Section VII. We proceed by

expressing the probability of error.
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IV. PROBABILITY OF ERROR

The detector in (5) depends on the design paramei@nd this means that the probability of

error will in turn depend onv. Let P.(w) be the probability of error at the FC:
1 1
P.(w) = 3 Pr [error| Hy] + 3 Pr [error| Hy] = Pr [error| Hy) (6)

where Pr [error|H;] is the error probability wher;, i € {0, 1}, is true and the last equality
holds due to symmetry between the two hypotheses which ikiegad as follows. From the

detection rule (5), the probability of error und#y, is given by
Pr [error|Hy| = Pr [%[y,;] < %[yLe_jweHHo] , (7)
where the received signal in (3) und&yg is given by

L = (E;cos(wm) + §R[v]> +J <\/§; sin(wn;) + %[U]> . (8)

Substituting (8) fory;, in (7) and doing some algebraic simplifications we get,

L
wb wl L
Pr [error| Hy| = Pr E 2sin (—) cos (wni - —+ —) +4/=vt <0] 9)
— 2 2 "2) "\ Py

-~

Zp(w):=

where v = R[v](1 — cos(wh)) — S[v]sin(wh). Similarly, Pr [error|H;] is same as that of
(9) except the argument of the cosine function is replaceduby + w6/2 — 7/2). To see the
symmetry between the two hypotheses asserted in (6),:tet(wf/2 — 7 /2) for convenience, so
thatcos(wn; F(¢) = [cos(wn;) cos (+sin(Fwn;) sin ¢]. Sincen; is symmetricwn,; and—wn,; have
the same distribution which implies that the random vagabbs(wn; — () andcos(wn;+() have
the same distribution establishing that [error|H;| = Pr [error| Hy]. Therefore, the probability
of error in (6) is given by (9). We are interested in using (@)find the w that minimizes
the probability of error at FC. Sincg,(w) is not straightforward to evaluate, we optimize two
surrogate metrics to select These are the error exponent and the DC. The error exponhant i
asymptotic measure of how fast tli&(w) decreases ab — oo, and is specific to the detector
used in (5) and will be considered in Section VII. The DC, oe tither hand, is specific to the

model in (3), and does not depend on any detector.
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V. DEFLECTION COEFFICIENT AND ITSOPTIMIZATION

We will now define and use the deflection coefficient which rfi¢he output-signal-to-noise-
ratio and widely used in optimizing detectors [15]-[18].eTBC is mathematically defined as,

_ 1 [Efys|Hi] — Elyr [Ho]|?
L var|yy | Hol '

By calculating the expectations in (10), it can be easilyfiest that the DC for the signal model

D(w) : (10)

in (2) is given by: _ 2% (w)[1 — cos(wh)]

1- o) + &

where p, (w) = E[e/*"] is the CF ofn;. The CFy, (w) does not depend on the sensor index

(11)

D(w)

since we will be initially assuming that; are iid. We will consider the non-identically distributed
case in Section V-D. Note thd?(w) > 0 and thaty, (w) is real-valued since; is a symmetric
random variable. Moreover, (w) = ¢,(—w) so thatD(w) = D(—w) which justifies why
we will focus onw > 0 throughout. The factof1/L) introduced in (10) does not appear in
conventional definitions of the DC but included here for dimty since it does not affect the

optimal w.

A. OptimizingD(w)

We are now interested in finding by optimizing D(w):
W' = argmax D(w). (12)

Sincey, (w) < 1, wheno? > 0, D(w) is bounded, and achieves its smallest valueégd) = 0
asw — 0. On the other hand, as — oo, we havelim,,_,., D(w) = 0. This implies that the
maximum in (12) cannot be achieved by= 0 or w = co and establishes that there must be a
finite w* € (0, c0) which attains the maximum in (12).

In what follows, we will further characterize* by assuming thap,,(w) > 0 and ¢, (w) < 0
for all w > 0. Many distributions including the Laplace, Gaussian anddbg have CFs that
satisfy this assumption. Indeed all symmetric alpha-staidtributions [19, pp. 20] of which the
latter two is a special case, satisfy this assumption. We Imawve the following theorem which

restrictsw* in (12) to a finite interval.

Theorem 1. If p,(w) is decreasing and differentiable over> 0, thenw* € (0, 7/6).
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Proof: First, note thaty,(w) > 0 which is implied by the assumption that,(w) is
decreasing and that,(w) — 0 asw — oo. Let D(w) = C(w)[l — cos(wh)] with C(w) :=
202 (w)/[1 — ¢%(w) + o2/ Pr| for brevity. Sincey, (w) is decreasing oo > 0 and p,,(w) > 0,

C(w) is also decreasing. Becaue— cos(w#)] is periodic inw with period2x/6,

6 6
Noticing that D(27/6) = 0 which rules outw* = 27/6, we havew* € (0,2x/60). To further
reduce the range ab* by half, consider the fact thab(0) = D(27/6) = 0, which combined
with D(w) > 0 for w € (0,27/60) implies thatw* € (0,27/0) satisfiesD'(w*) = 0. Writing

D'(w*) = 0 we obtain:

D (w + 2—”) 1 = cos(wd)]C (w + 21) <[l - cos@d)]C(w) = D(w).  (13)

!

[0sin(w*0)]  C(w")
[cos(w*d) —1]  C(w*)’ (14)

SinceC'(w) > 0 is decreasing, the right hand side (rhs) of (14) is negati iafollows that

w* € (0,7/0) as required. u
By the definition ofw*, it is clearly a function o). We showed in Theorem 1 that< w* <

7/0if ¢, (w) < 0 for w > 0. Note that whenu = 0, there is no phase modulation done, and what
is transmitted is a constant signal which actually contaasnformation aboutr;. Therefore
the boundary values = 0 is not a valid choice. Wheow = 7 /6, the detector in (5) actually
simplifies to:R[y,] Ié“ 0. While w = 7/0 is a valid choice, it is optimal only whefiis large as
will be proved in Thﬁeorem 2. We now investigate the behaviowowhen? is large without
assuming anything about,(w) except the absolute continuity of its distribution, andwghbat

w* =~ 7 /6 for large d in the sense that*0 — 7, asf — cc.

Theorem 2. If 62 > 0, andn; are iid and have absolutely continuous distributions,

Glim w ' =T. (15)
Proof: We have
T . 4P
D (—) < D(w*) < sup[l — cos(wb)] sup C(w) = —, (16)
0 w>0 w>0 0y

where the first inequality is becaus& maximizesD(w), and the second inequality follows from
D(w) = C(w)[1—cos(wh)]. Recalling thatim,,_,, ¢, (w) = 1 we take the limit a® — oo in (11)
and obtainlimy_,., D(7/6) = 4Pr/c?, which using (16) shows thatmg .., D(w*) = 4Pr/c2.
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Sincey,, (0) > ¢, (w) and becaus®(w) is an increasing function af? (w), from (11) it is clear
that the only waylimy_,, D(w*) = 4Pr/o? holds is ifw* — 0 andw*0 — 7, asf — co. M
Theorem 2 establishes that wheéns large we have an approximate closed-form solution for

w* ~ /60 for any absolutely continuous sensing noise distribution.

B. Finding the Optimunw for Specific Noise Distributions

Theorem 1 showed that" € (0, 7/6) for a general class of distributions. Under more general
conditions, Theorem 2 establishes thét~ =/6 when@ is large. To findw* exactly, we need
to specify the sensing noise distribution through its @F{(w). In what follows we describe
how to findw* for several specific but widely used sensing noise distiobst We will assume
throughout that the assumptions of Theoremy], () < 0 for w > 0) are satisfied so that
w* € (0,7/0), which holds for Gaussian, Cauchy and Laplacian distritm#j among others. We
will assumes? > 0 throughout this subsection.

1) Gaussian Sensing Noisén this case, we have, (w) = e~~*?+/2 so thaty? (w) = e~~"x,
whereo? is the variance ofi;. To simplify (11) we substituted = wf. Sincew € (0,7/0) we
have s € (0,7). Note that the value of that maximizes (11) over is related to the3 that
maximizesD(5/6) through the relationv = 3/6. Differentiating D(/5/6) with respect tog,

equating to 0 and simplifying we obtain,

Ge(f) =a— 6_%62 — 23—gz‘ﬁtam (g) =0 (17)

with « := [1 + (¢2/Pr)]. Equation (17) can not be solved in closed-form. Howevep#sihave
a unique solution irB € (0, ) as shown in Appendix 1. The solution to (17}, can be found
numerically and the optimuny for the Gaussian case ig;, = 3¢, /6.

2) Cauchy Sensing Noisén this casep,(w) = ¢ so thaty?(w) = e wherey is the
scale parameter of the Cauchy distribution. It is well kndhait no moments of this distribution
exists. Substituting,,(w) in D(w) and lettings = wl we have,

5 (@) _ [ cos(9)] a8)
0 [ae7? —1]
with a := [1 + (¢2/Pr)] and 8 € (0, 7). It can be verified that the equation (18) has a unique
maximum overs € (0,7) as shown in Appendix 2. Thg; that maximizes (18) can be found

numerically anduf, = 8&/6.
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Whena?/ Py is sufficiently large (i.e., the low channel SNR regime) camgal to[1 — ¢ (w)]
in D(w), the problem in (11) can be transformed into maximizipffw)[1 — cos(wf)] over
w € (0,7/0). In this low channel SNR regime, we have a closed form saiutt the Cauchy
case:

2. 40

we = gtan 5

If we let § — oo in (19), we getwy, = 7/6 which agrees with Theorem 2.

(19)

3) Laplace Sensing Noisen this case, we have,(w) = 1/(1 + 0*w?) and b? = o2/2.
Substituting this inD(w) and lettings = wf, and differentiatingD(3/6) with respect tog,
equating to 0 and simplifying we get,

GL(B) = [1 + 2—252} 2 — %@25 [1 + 2—252} tan (g) — <é) =0 (20)
with o := [1 + (02/Pr)]. It can be easily verified that equation (20) has a uniquetisoiun
g € (0,m) as shown in Appendix 3. Thg; that solves (20) can be found numerically and
wi, = Br/0.

4) Uniform Sensing NoiseFor the uniform sensing noise, we hayg(w) = sin(wa)/wa,
whereo? = a?/3. Substitutingyp,, (w) in (11) and letting3 = wa for convenience we have

30
P = prasgsray =0 oo ()] &
whereC(B) := 1/[aB%csc?(B) — 1]. Writing D'(3) = 0 we get

(a8 csc?(8) — 1] — ap [% tan (Qiﬁ)] es?(B)[1 - Beot(B)] = 0 (22)

with o := [1 + (02/Pr)]. Theorem 1 does not apply for the uniform sensing noise. Kewi
0/a > 2,then using’ () > C(S+kr), k = 1,2,..., and using the periodicity df —cos(56/a)],

we can show thap;; € (0, 7a/6]. Following similar arguments to the Laplacian noise case, i
can be shown that there is only one stationary poirfbinra/6] which corresponds to the global
maximum. Thes;; that solves (22) can be found numerically and therefofe= 5{5/a. On the
other hand ifd/a < 2, multiple local maxima are possible i € (0, 7a/6] and (22) can have
multiple solutions. In this case, thaf; which yields the largest value fdp(3) in (21) should

be chosen.
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C. Per-sensor Power Constraint or high Channel SNR

We now consider the DC under the per-sensor power consttainhis setting, ad. — oo,
Pr — oo which makeg(o?/Pr) — 0. Therefore the DC for the per-sensor constraint wheis
large becomes:

 2¢2(w)[L — cos(wh)]
Dpspc(w) - [1 — (Pi(w)]

Equation (23) can also be interpreted as the DC wifes 0 for any finite L. In what follows,

(23)

we characterize* in this per-sensor constraint regime, which effectivelyoamts to the removal
of (¢2/Pr) from (11). In this case there is not necessarily athat attains the maximum in
(12). Our first result reveals that (23) can be made large mosihgw sufficiently close to

zero whem; are Gaussian, and yields an interesting relationship letvlee DC and the Fisher

information.

Theorem 3. Whenn, are Gaussian,

92
sup Dpspe(w) = — = lim Dygpe(w) (24)

w>0 o2 w=0
Proof: We begin with the inequalityl — cos(wf)] < w?6?/2. Consider [20, eqn (1)], which
using the fact thatp, (w) is real-valued, revealg?(w) < (1 + ¢,(2w))/2. Using these two
inequalities we can write the following:
1 [0 pn(w)]
Dpspe(w) — 2w?@7 (w)6?
Now from [20, egn (2)] with the fact thap,(w) is real-valued, we have:

1- pu2)] _ 1
22 (@) (20)

where J is the Fisher information of; with respect to a location parameter [21, eqn (8)] (i.e.,

(25)

the Fisher information i; about#). Combining (25) and (26) we have:
<J=— (27)

where the equality follows from the fact that for Gaussiand@m variables the Fisher infor-
mation is given by the inverse of the variance. Now, we alsotkat using I'Hospital’s rule on
(23), limy, 0 Dpspe(w) = 6%/c2, which shows that the inequality in (27) can be made arliligrar
tight establishingsup,,. o Dpspe(w) = 6%/02. |
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The proof of Theorem 3 also reveals an interesting inequbgtween the DC and the Fisher
information, which of course is related to the Cramér-Raaoru for unbiased estimators. So
for the per-sensor power constraint case with Gaussiare noishould be chosen as small as
possible for the best performance and it does not dependeowatlie of6.

For the Laplacian case, the solution is similar to the Gaussase. It can be easily verified that,
with (62/Pr) =0, D!

pspe(@) < 0 overw € (0,7/0). This means thab,,.(w) is monotonically

decreasing withv which implies thatv should be chosen arbitrarily small.

On the other hand, when; are Cauchy distributed, then,(w) = e~7*. Substituting in (23)
and using I'Hospital’s rule we observe that,, ., D,sp.(w) = 0 for Cauchy sensing noise. This
implies that, for the Cauchy sensing noise with per-sensarep constraint, smaller values of

w should be avoided for reliable detection to be possible.

D. Analysis of the DC for Non-homogeneous Sensors

Consider now the case wheng are independent with non-identical distributions. Thislldo
occur if n; have the same type of distribution (e.g. Gaussian) withedbffit variances. Letting
©n,(w) = E[e?"], the DC in (10) becomes

2[1 — cos(wb)] <L‘1 Z Dn; (w))

L
o

1— L1 Zwi(w} + ==

i=1 Pr

which is now a function ofZ unlike in (11), and reduces to (11) {,.(w) = ¢,(w), as in the

Dp(w) = (28)

iid case. We now study the conditions on the varianggs= var(n;) for lim; ., Dz (w) =0
for all w > 0. When this asymptotic DC is zero for all > 0, the interpretation is that there is
no suitable choice fow > 0. The following result establishes that if the sensing nomgances
are going to infinity, the asymptotic DC is zero for all> 0, indicating a regime where reliable

detection is not possible.

Theorem 4. Let ¢, (w) = p,(o;w) for some CFy,(w) wheren has an absolutely continuous

distribution. Suppose also théiin; .., o; = co. Thenlimy,_,., Dy (w) =0 for all w > 0.

Proof: Clearly the denominator of (28) is bounded betwdef/Pr) and (1 + o2/Pr).
Therefore, it suffices to show that ' S°F | ¢, (w) = L' S8 ¢, (0w) — 0 asL — oo. Since
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n has an absolutely continuous distributidi, ., ¢,(z) = 0, and becausém;_,., o; = oo,
it follows thatlim; ., ¢, (o;w) = 0 for w > 0. From [22, pp. 411] we know that if a sequence
satisfieslim; ., a; = 0 then its partial sums also satisfiyn;_,., L~* Zle a; = 0, which gives
us the proof when applied to the sequenggo;w). [ |
If, instead ofo? — oo asi — oo, the variances? are bounded, we can show the existence

of anw > 0 for which lim; ., Dy (w) > 0 which is done next.

Theorem 5. Let var(n;) exist for alli and oy, := sup;(var(n;))*/? be finite. Then any <

W < V2/0max satisfieslim;_,o, Dy (w) > 0.

Proof: To showlimy,_,+, Dy (w) > 0 for w > 0, it suffices to show thak ~' >>F | ¢, (w) > 0
for w > 0. From [23, pp. 89] we have,, (w) > 1 — o?w?/2 for any CF with finite variance.
Therefore, L™' S0 o, (w) > 1 — (L' 0F 02)w?/2 > 1 — 62, w?/2 > 0 where the last
inequality holds provided that < v/2/0,x. |

This shows that if the noise variances are bounded, thestsef@ small enoughy) that yields
a strictly positive asymptotic DC, establishing that thexea choice ofw that enables reliable

detection.

VI. FADING CHANNELS

Suppose that the channel connecting #iesensor and the FC has a fading coefficient=
|h;]e’?" normalized to satisfy Fh;|?] = 1. If the sensors do not know or utilize their local
channel information, and the fading has zero-meajh,{E= 0), then the performance over
fading channels is poor because the DC in (10) becomes zerdodiaw of large numbers and
reliable detection is not possible. On the other hand, ifithesensor corrects for the channel
phase before transmission, using local channel phasamatan, the received signal under the

TPC becomes
Pr <&
__jwO jwn;
yr = & [ = §_1:|hi|eﬂ +v, (29)

where we focus on the iid sensing noise case to highlight tleeteof fading even though the
non-homogeneous case can also be easily pursued. The pirasetion does not change the

constant power nature of the transmission. By calculatiegeixpectations in (10), for the signal
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model in (29), the DC in the presence of fading is given by:
11)202 _
D(w) = HEWP ()L = cos(wt)] 0)
11— Elm)2ew) + 2

We see that in case of fading, the ternj(w) is scaled by the facto(E[|h;|])? in the DC

expression. Since [B;]?] = 1, using Jensen’s inequality, the factd[|A;|])*> < 1 unless|h;| is
deterministic in which case it is one. Comparing (11) and (86 have, with(E[|k;|])? < 1, the
numerator of (30) is decreased and the denominator of (3@cisased, leading to a reduction
in DC and thus fading has a detrimental effect on the detegi@formance, as expected.

Note that if the optimization of the DC is desired in the faglrase, the factoiE||%;|])? in the
denomenator of (30) affects the optimumvalue. Theorem 1 can be proved for the fading case
as well withC(w) = 2(E[|l]])?¢2 (w)/[1 — (E[|hi]])?*¢? (w) + o2/ Pr] which is still decreasing
with w if ¢, (w) is. Therefore the conclusion of Theorem 1, namely,c (0,7/6), does not
change. The procedure to find the under the TPC for Gaussian, Cauchy and Laplacian is the
same as described in Sections V-B1, V-B2 and V-B3 respdytiVee equations (17), (39), (40)
and (42) remain valid with the exponentials in these equatiscaled by the factaiE||h,|])%.
The equations (20), (44) and (45) for the Laplacian case raismin valid except the terrh/«a
in (20) scaled by(E[|A|]).

We note that if sensors have imperfect knowledge of the phagevill be replaced by(hz-|ej5i
where 52 is the phase error. Clearly this error can also be subsumé¢®9inas replacingun;
with wn; + Eb} which changes the sensing noise by a term independent his establishes
the interesting fact that phase error over fading chanreisbe treated as a change in sensing

noise distribution.

VIl. ASYMPTOTIC PERFORMANCE AND OPTIMIZATION OF w BASED ON ERROR EXPONENT
The error exponent in a distributed detection system is asareaof how fast the probability
of error goes to zero a6 — oo. Mathematically error exponent is defined as:

. log P.(w)
L

(31)

Large deviation theory [24], [25] provides a systematicgeaure to calculate the error exponent

which is briefly reviewed next. Lét; be a sequence of random variables without any assumptions
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on their dependency structure and left(t) = lim;_,..(1/L)log E{e!¥z} exist and is finite for
all t € R. Define
1
g(z) =— lim —logPr[Yy < 2] , (32)
L—oo L

wherez is the threshold and, is the test statistic of a detectora@ner-Ellis Theorem [24, pp.

14] states that(z) in (32) can be calculated using,

e(z) = igg[tz — M(@)], (33)
where
M(t) = lim %log E{e™2}. (34)

We will now use the Grtner-Ellis Theorem withy;, replaced byZ; (w) in (9) andz = 0. Letting
M, (t) :=limy_,o(1/L) log E{et?t@)}, ande,(z) = sup,cp[tz — M., (t)] we have the following
theorem which relates the error exponent to the;Fv) of the sensing noise distribution.

Theorem 6. For the detector in (5), the error exponent(@1) is €,(0) = — inf,;c g M,,(t) where

w0 -vs o oo () ) #2551 (o () ) s (13- 7))

) [t%ﬁ(l 2—PCTos(w9))}

(35)

where [;(t) is the modified Bessel function of the first kind.

Proof: Please see Appendix 4. [ |
It is well known that the function\i,,(¢) is convex int [24]. Therefore the supremum in (33)
can be found efficiently for = 0. The t* that maximizes (33) satisfie® (+*) = 0 which can
be found by convex methods with geometric convergence [26].
In addition to the error exponent, it is also possible to agppnate P.(w) using the function
e,(z). In fact Bahadur and Rao [25, pp. 10] have proved that thibgdvidity can be approximated

using the error exponent and is given by:

P(w) = ———¢~Lea©)(1+o(1) (36)
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as L — oo andé? := [, (0)]%/[¢.(0)]. The quantities (0) ande, (0) are the first and second
derivatives ofz,(z) at z = 0 respectively, and can be calculated from the following ¢&qua
[26, pp. 121]:

e, (0) =1t", (37)

1" 1
£,(0) = W)

The error exponent given in Theorem 6 is a functionwofind let us denote it by, for

(38)

convenience. It will be illustrated in Section IX that thelues ofw that minimizesP,(w) is
closely predicted by the value obtained by maximizingu) or ¢,,. We will also examine in the

simulations in Section IX how accurately (36) can be usedpor@ximateP,(w) for finite L.

VIII. N oN-GAUsSIAN CHANNEL NOISE

We have so far assumed that the channel noise as Gaussiaevétpwe verified that the
detector in (5) works well even if the channel noise is mixeal&sian, uniform or Laplacian.
The channel noise distribution will only affect the erromperent through the second term in
(35). Using this, the effect of different channel noise riligtitions we considered are briefly
sketched below.

We considered the case of mixed Gaussian having two differanances drawn from a
Bernoulli distribution. Letp, be the probability that the samples drawn from the mixtureeha
variances? andp; = 1—p, be the probability corresponding#j, and lets2 > o2 . In this case,
we found that the error exponent is affected only by the lavgeiance in the mixture. While us-
ing Gértner-Ellis Theorem to calculat&,(t), the second term in (35) for the mixed Gaussian be-
comes lim L~ log [poexp (t202 (1 — cos(wh))/2Pr) + py exp (*02 (1 — cos(wd))/2Pr)] and
this limit evaluates tdt*c2 (1 — cos(w))/2Pr] which proves that only the larger varianeg
in the mixture affects the error exponent.

For the uniform channel case, interestingly we found thatsdcond term in (35) evaluates to
0 and thus proving that the error exponent is not impactedbyniform channel noise. We do
not include the straightforward derivation due to lack chap We will discuss the performance

of the mixed Gaussian and Laplacian cases in Section IX-F.
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IX. SIMULATIONS

We define the sensing and channel SNRg.as- 6*/02, p. := Pr/o? and assumé, = P =

0.5 throughout. Note also that= Pr/L is the power at each sensor as defined in Section Il.

A. Effect ofw on Performance

We begin by comparing the optimizedvalues usingD(w), ¢, and P.(w) for the TPC. The
values ofw* > 0 obtained by maximizing the error exponent and the DCD(w) were found
to be very close over the entire rangeféf. Figure 1 shows the plots d(w), ¢, and P.(w) vs
w for Gaussian and Cauchy sensing noise distributions wineré’fw) plot is obtained using
Monte-Carlo simulations. The different* values in Figure 1 correspond to the besvalues
obtained by optimizingD(w), &, and P.(w) respectively. It is interesting to see that thé
that minimizesF,(w) is very close to that which maximizeS(w) and¢,,. For Laplacian and
Uniform sensing noises (not shown), the same trends werenads

Figure 2 shows the performance under per-sensor powerraonsvith largeL. It is observed
that smallerw yields better error probability. This agrees with our firgirin Section V-C where
it was shown thatD,..(w) can be made larger by choosing > 0 arbitrarily small. Since
both Figures 1 and 2 verify that the choice wfbased on minimizingP,(w) can be closely
approximated by that which maximizd3(w), in all subsequent simulations, we have used the

w* values obtained by maximizin®(w).

B. Comparison against MAF and MDF Schemes

In Figure 3, the proposed scheme is compared under the TPGheitMAF and MDF schemes
which have been shown in [8] to outperform conventional d@iyyaind-forward (AF) and detect-
and-forward (DF) schemes. We observe that the proposednschatperforms MAF whep, >
4 dB, and MDF for the entire range of. The same trend was observed whems increased
to 90 with an improvement in the detection error probabilitie ML performance shown was
obtained by the Monte-Carlo implementation of the ML deteeind is computationally complex,
but serves as a performance benchmark. Figure 4 shows.therformance versus under the
TPC. Clearly the proposed scheme outperforms the AF, DF, Midd-MDF schemes consistently
sincep, = 15 dB.
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The proposed scheme requires the fine tuning of the tranemigfase parameter either
through optimizing the deflection coefficient or the erropement. However, it should be noted
that similar type of fine tuning is also required in the commgischemes such as the MAF or
the MDF. We note that the proposed scheme is inferior to MARowat sensing SNRsy <
4 dB). On the whole, the benefits of constant modulus siggaimd improved performance at

higher sensing SNRs make the proposed approach a viabtaative.

C. Total Power Constraint: Different Noise Distributions

For the Total Power Constraint, Figure 5 shows that Caucihgisg noise results in better
performance when, is low, and worse whem, is high compared with other sensing noise
distributions. This agrees with the fact thafw*) is smaller for Cauchy sensing noise when
is high than other distributions and vice versa whens low. Whenp, is moderately high, we
observe that Gaussian, Laplacian and Uniform distribstioave identical performance gf is
very low for a wide range of. as illustrated in the Figure 5. We found numerically that the
similarity of the P.(w) curves under different sensing noise distributions was edflected in
the correspondind(w) values where they were also verified to be similar.

Figure 6 compares the performance of the proposed schenme iprésence of Rayleigh flat
fading between the sensors and the FC against without faditiigthe Gaussian sensing noise.
Clearly, fading has a detrimental effect on the detectioriop@mance as argued in Section VI.
It is also observed that, in the presence of fadiRgjs not as sensitive to the increaseginas

that of the no fading case.

D. Error Exponent

Figure 7 depicts the error exponent of the proposed schemeruhe PSPC and illustrates
its improvement with increase jn, for all the sensing noise distributions. Recall thathas no
effect on the error exponent for the PSPC case siag¢Pr) — 0 in (35). It is interesting to
see that Cauchy sensing noise has a better error exponanGthessian, Laplacian and Uniform
sensing noise distributions when < 4 dB while it is worse whem, > 4 dB. The error exponent
with Gaussian sensing noise is better than that of Laplawtase when whemp, > 7.5 dB and
the uniform distribution has a better error exponent thdreiosensing noise distributions when

ps > 4 dB. The error exponent of the proposed scheme is compatbadive error exponents of
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MAF and MDF schemes which were only derived for the Gaussase ¢please see equations
(24) and (25) in [8]). It is seen that, for the PSPC case, the-M&heme (whose error exponent
is ps/8) and the proposed scheme with optimunhave identical error exponents leading us to
conjecture thasup,,[— inf;cr M, (t)] = ps/8 whenn,; are Gaussian. The MDF error exponent is
inferior compared to MAF and the proposed scheme.

Figure 8 shows the error exponent under the TPC with= 0 dB. In this scenario, Cauchy
sensing noise has the best error exponent sinds low. This concurs with the fact illustrated
in Section IX-C that the DC of Cauchy is better at lower valoés, than other distributions
and this was justified by the simulation results as shown gufé 5. We found that when
ps IS increased, Cauchy becomes inferior to other noise kligtans. For all the distributions,
increasingp. results in an increase in the error exponent which becomesnatant beyond
p. = 15 dB. This is because, for a giveR, increasingo. combats the effect of channel noise,
thereby improving the error exponent. However, the effécemsing noise can not be overcome
by increasing. indefinitely. This can be seen from (35) as well where the sét¢erm vanishes
while the first term remains even for larger. For the Gaussian case, we derived the error
exponent of the MAF scheme under the TPCeasyr = 0%/8[02 + (02(02 + PyP16?%)/ Pr)). If
Pr — oo, this reduces tg,/8 for the PSPC case. It is seen that with= 0 dB, the MAF
scheme is better than the proposed method wher 15 dB. However, under the TPC, the
error exponent of the proposed scheme was found to beat the 8¢Aeme whep, > 4.5 dB
and an example plot is shown in Figure 8 for= 10 dB. This crossover between the MAF and
the proposed schemes is also reflected in their respegtiyerformance curves approximately
around the same, value (please see Figure 3). Howeverpdfis increased beyond 15 dB, we

see that the error exponents of both the schemes becomeluosgy ¢

E. Approximations of’,(w) throughe,(z)

Equation (36) provides an approximation/afw) based on the error exponent. The expression
in (36) is found to match with the simulations whgn> 0 dB andp, > -5 dB. Figures 9 and
10 elucidate this behavior for Gaussian sensing noiseilaisitbn. Similar trends were observed
for the other sensing noise distributions as well but are simwn due to space constraints.
When L is small, the gap between theory and simulation is signifieenshown in Figure 9.

This can be explained by th€1) term in (36). Accordingly, wherl is increased to about 40,
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we see the theory and simulation curves merging as shownguré-i9. Figure 10 shows that
when p, is moderately high, smallet is required to get the performance match between theory
and simulation.

From the various simulation plots in Figures 1, 5, 7, and 8 see that the proposed scheme
is robust in the sense that it works very well for a variety efising noise distributions including

the impulsive Laplacian distribution and the Cauchy dittion which has no finite moments.

F. Non-Gaussian Channel Noise

Figure 11 shows the error exponent plot for the case whére= 0.25,p, = 0.80,02 =
4,p1 = 0.20 (note that the effective channel noise varianceois;, = poo, + pioy, = 1). We
see that the error exponent of mixed Gaussian wfteg = 1 is worse compared to that of the
Gaussian withr? = 1 case. This is because, in the mixed Gaussian case, the gponent is
a function of the larger variance of, = 4.

Figure 12 shows the performance of the proposed detectbi&jilacian channel noise against
the Gaussian channel noise when the sensing noise is Gaud&anote that when sensing SNR
ps 1S moderately high, the impulsive Laplacian channel noss&vorse compared to Gaussian

channel noise.

X. CONCLUSIONS

A distributed detection scheme relying on constant modtrarssmissions from the sensors is
proposed over a Gaussian multiple access channel. Thentastous transmit power does not
depend on the random sensing noise, which is a desirableréefdr low-power sensors with
limited peak power capabilities. The DC of the proposed sEhés shown to depend on the
characteristic function of the sensing noise and optimizéh respect tav for various sensing
noise distributions. In addition to the desirable constmwer feature, the proposed detector is
robust to impulsive noise, and performs well even when thenerds of the sensing noise do
not exist as in the case of the Cauchy distribution. Exterssto non-homogeneous sensors with
non-identically distributed noise are also considereds Ishown that over Gaussian multiple
access channels, the proposed detector outperforms AFN@MBF schemes consistently, and
the MAF scheme when the sensing SNR is greater than 4 dB. Tdpoged detector is shown

to work with the non-Gaussian channel noises as well. Thar exponent is also derived for the

November 16, 2010 DRAFT



21

proposed scheme and large deviation theory is used to dappated,.(w) for large L. It is shown
that while the DC has a simpler expression for the purposeptimizing w, the probability of
error approximation based on (33) is shown to be an accundteator of detection performance
for all distributions and moderate number of sensors. Thecebf fading is also considered,

and shown to be detrimental to the detection performance.

APPENDIX 1 : GAUSSIAN SENSING NOISE

First we note thatG¢(0) = (o — 1) > 0 sincec? > 0 and Gg(7w) = —oo. SinceGg(p) is

continuous, (17) has at least one solution. To show thatsthligtion is unique, consider the first

G/G(ﬂ) = g—gl [266_?;62 — 2« <§ sec? (g) + tan <§))] ) (39)

Now, usingtan(3/2) > 3/2 andsec?(8/2) > 1+ (5%/4) for 8 € (0,7), we get the following

upper bound:

derivative:

Ga(B) < (;—7; {2&2‘%52 —af (1 + %2) — aﬁ} . (40)

Sinces? > 0 we havea > 1. Recall that3 € (0, ), and the rhs of (40) is always negative. It
follows thatG¢ (/) is monotonically decreasing overe (0,7) and (17) has a unique solution

which corresponds to the global maximum Bf5/60).

APPENDIX 2 : CAUCHY SENSING NOISE

The first derivative ofD(5/0) is given by,

B\ sin(ﬁ)e%w _mg 2y B
D (5) = [m] {a— e" 0P — ?atan (5)} . (41)

Since the first term on the rhs of (41) is non-zero foe (0, ), we need to solve

Go(B) = a— e 78 — 2%& tan (g) =0. (42)

First we see thatG¢(0) = (o« — 1) > 0 and G¢(7) = —oo which implies that there is at least

one solution to (42) ins € (0, ) asG¢(pB) is continuous. The second derivative Gf(3) is

Go(B) = — {(49—7226_295) + % sec? (g) tan (g)] : (43)

Clearly, G,(B) < 0 for B € (0, 7) which establishes that«(3) is concave. Therefore, (42) has
a unique solution which corresponds to the global maximunv$/0).

given by
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APPENDIX 3 : LAPLACIAN SENSING NOISE

First we note thatG,(0) = (1 — (1/a)) > 0 if 02 > 0 and Gp(7) = —oco. This means that
(20) has at least one solution. The first derivative56f5) is given by,

, bZ b2 bZ b2
GL(B) = 29—2 [25 (1 + ﬁﬁﬂ) - (ﬁ + @BZ”) sec? (g) +2 (1 + 3552) tan (g)] . (44)

Now, usingtan((/2) > /2 andsec?(3/2) > 1+(5%/4) over € (0, 7) in (44) and simplifying,
we get the following upper bound:
/ b?
GL(B) < —5g7 [(6° +80")5° + 075 (45)
Clearly, for 3 € (0, ), the rhs of (45) is always negative which impli€s () < 0. It follows
that G,(8) is monotonically decreasing over € (0,7) and (45) has a unique solution which

corresponds to the global maximum bf3/0).

APPENDIX 4: PROOF OFTHEOREM 6

We use the Grtner-Ellis theorem from large deviation theory [24, pp] 1@ calculate the

error exponent. To this end, we need to calculafg(t) in (34) and substitute into (33).

M,(1) = Jim %log F{exp[tZs]}
L
. [ who wl | L +
t (;25m (7) cos (wni 5 + 5) + P—TU )] }

= logk {exp {2t sin (%9) coS <wni — %9 + g)} } + {t%g(l 2—P(:Tos(w9))} (46)

From [27, pp. 376], we have the Fourier series expansione@ptriodic functione? () as,

L—oo

1
= lim ElogE{exp

ePeos) = Io(p) + 2 Z I (p) cos(ku) (47)

Using the equation (47) in (46) with = 2¢sin(wf/2) andu = (wn; —wf/2 + 7/2) and then

applying the expectation on the resulting summation, weldgtt) as in (35).
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Fig. 9: Gaussian Sensing NoisE; vs p.: p,=0 dB, L=10, 20, 40, 60
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Fig. 10: Gaussian Sensing Noisk; vs p.: p,=10 dB, L=5, 7
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Fig. 11: Mixed Gaussian channel noisg:vs p.: o =0.25,py = 0.8, 07 =4,p; = 0.2, 0, = 1,
ps=0 dB.

10 T

—=©6— Sensing - Gaussian, Channel - Gaussian

—+&— Sensing - Gaussian, Channel - Laplacian

10 I I I I I I | I I
0 2 4 6 8 10 12 14 16 18 20

p_ (dB)

Fig. 12: Gaussian Sensing Noisk; vs p,: Pr=-12.22 dB,L=60

November 16, 2010 DRAFT



L] L L L L R N
T
=LKl

‘7‘———:-_____ 5—_-—*____ .......................................
B TNV~ —e-L T
——————— -y
10_1_4IIIiIIIiIIIiIIIiIIIi.I"IIIiI.I"IIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIIIiIII'_
o’ N N

— = — Proposed, L=6

- ¥— ML, L=6
10'2 ....... e NG -
©— ML, L=60 N NS : |
—&— Proposed, L=60 |y
| | | | |

0 2 4 6 8 10 12 14 16



