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Abstract

A distributed detection scheme where the sensors transmit with constant modulus signals over a

Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is

shown to depend on the characteristic function of the sensing noise and the error exponent for the

system is derived using large deviation theory. Optimization of the deflection coefficient and error

exponent are considered with respect to a transmission phase parameter for a variety of sensing noise

distributions including impulsive ones. The proposed scheme is also favorably compared with existing

amplify-and-forward and detect-and-forward schemes. Theeffect of fading is shown to be detrimental

to the detection performance through a reduction in the deflection coefficient depending on the fading

statistics. Simulations corroborate that the deflection coefficient and error exponent can be effectively

used to optimize the error probability for a wide variety of sensing noise distributions.

Index Terms

Distributed Detection, Multiple Access Channel, ConstantModulus, Deflection Coefficient, and

Error Exponent.

I. INTRODUCTION

In inference-based wireless sensor networks, low-power sensors with limited battery and peak

power capabilities transmit their observations to a fusioncenter (FC) for detection of events or
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estimation of parameters. For distributed detection, muchof the literature has focused on the

parallel topology where each sensor uses a dedicated channel to transmit to a fusion center.

Multiple access channels offer bandwidth efficiency since the sensors transmit over the same

time/frequency slot. The sensors may perform local detection through quantization in which

case the decision is encoded into a specific waveform to be sent to the FC. Instead, sensed

information may be sent to the FC using analog modulation which transmits the unquantized data

by appropriately pulse shaping and amplitude or phase modulating to consume finite bandwidth.

In [1], the distributed detection over a multiple access channel is studied where arbitrary

number of quantization levels at the local sensors are allowed, and transmission from the sensors

to the fusion center is subject to both noise and inter-channel interference. References [2]–

[5] discuss distributed detection over Gaussian multiple access channels. In [2], detection of a

deterministic signal in correlated Gaussian noise and detection of a first-order autoregressive

signal in independent Gaussian noise are studied using an amplify-and-forward scheme where

the performance of different fusion rules is analyzed. In [3], a type-based multiple access scheme

is considered in which the local mapping rule encodes a waveform according to the type [6, pp.

347] of the sensor observation and its performance under both the per-sensor and total power

constraints is investigated. This scheme is extended to thecase of fading between the sensors

and the FC in [4] and its performance is analyzed using large deviation theory. In the presence of

non-coherent fading over a Gaussian multi-access channel,type-based random access is proposed

and analyzed in [5]. In [7], the optimal distributed detection scheme in a clustered multi-hop

sensor network is considered where a large number of distributed sensor nodes quantize their

observations to make local hard decisions about an event. The optimal decision rule at the

cluster head is shown to be a threshold test on the weighted sum of the local decisions and its

performance is analysed.

Two schemes called modified amplify-and-forward (MAF) and the modified detect-and-forward

(MDF) are developed in [8] which generalize and outperform the classic amplify-and-forward

(AF) and detect-and-forward (DF) approaches to distributed detection. It is shown that MAF

outperforms MDF when the number of sensors is large and the opposite conclusion is true

when the number of sensors is smaller. For the MDF scheme withidentical sensors, the optimal

decision rule is proved to be a threshold test in [9]. Decision fusion with a non-coherent fading

Gaussian multiple access channel is considered in [10] where the optimal fusion rule is shown
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to be a threshold test on the received signal power and on-offkeying is proved to be the optimal

modulation scheme. A distributed detection system where sensors transmit their observations

over a fading Gaussian multiple-access channel to a FC with multiple antennas using amplify-

and-forward is studied in [11]. In all these cases, the sensing noise distribution is assumed to be

Gaussian. Even though the Gaussian assumption is widely used, sensor networks which operate

in adverse conditions require detectors which are robust tonon-Gaussian scenarios. Moreover,

in the literature there has been little emphasis on distributed schemes with the desirable feature

of using constant modulus signals with fixed instantaneous power.

A distributed estimation scheme where the sensor transmissions have constant modulus signals

is considered in [12]. Distributed estimation in a bandwidth-constrained sensor network with a

noisy channel is investigated in [13] and distributed estimation of a vector signal in a sensor

network with power and bandwidth constraints is studied in [14]. The estimator proposed in [12]

is shown to be strongly consistent for any sensing noise distribution in the iid case. Inspired

by the robustness of this estimation scheme, in this work, a distributed detection scheme where

the sensors transmit with constant modulus signals over a Gaussian multiple access channel is

proposed for a binary hypothesis testing problem. The sensors transmit with constant modulus

transmissions whose phase is linear with the sensed data. The output-signal-to-noise-ratio, also

called as the deflection coefficient (DC) of the system, is derived and expressed in terms of the

characteristic function (CF) of the sensing noise. The optimization of the DC with respect to the

transmit phase parameter is considered for different distributions on the sensing noise including

impulsive ones. The error exponent is also derived and shownto depend on the CF of the sensing

noise. It is shown that both the DC and the error exponent can be used as accurate predictors of

the phase parameter that minimizes the detection error rate. The proposed detector is favorably

compared with MAF and the MDF schemes developed in [8], [9] for the Gaussian sensing noise

and its robustness in the presence of other sensing noise distributions is highlighted. The effect

of fading between the sensors and the fusion center is shown to be detrimental to the detection

performance through a reduction in the DC depending on the fading statistics. Different than [12]

where the asymptotic variance of an estimator is analyzed, the emphasis herein is on derivation,

analysis, and optimization of detection-theoretic metrics such as the DC and error exponent. Our

aim in this paper is to develop a distributed detection scheme where the instantaneous transmit

power is not influenced by possibly unbounded sensor measurement noise.
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The paper is organized as follows. In Section II, the system model is described with per-sensor

power constraint and total power constraint. In Section III, the detection problem is described

and a linear detector is proposed. The probability of error performance of the detector is analyzed

in Section IV. The DC is defined and its optimization for several cases is studied in Section V.

The presence of fading between the sensors and the fusion center is discussed in Section VI.

The error exponent of the proposed detector is analyzed in Section VII. Non-Gaussian channel

noises are discussed in Section VIII. Simulation results are provided in Section IX which support

the theoretical results. Finally, the concluding remarks are presented in Section X.

II. SYSTEM MODEL

Consider a binary hypothesis testing problem with two hypothesesH0, H1 whereP0, P1 are

their respective prior probabilities. Let the sensed signal at the ith sensor be,

xi =






θ + ni underH1

ni underH0

(1)

i = 1, . . . , L, θ > 0 1 is a known parameter whose presence or absence has to be detected,

L is the total number of sensors in the system, andni is the noise sample at theith sensor.

The sensing noise samples are independent, have zero medianand an absolutely continuous

distribution but they need not be identically distributed or have any finite moments. We consider

a setting where theith sensor transmits its measurement using a constant modulus signal
√
ρejωxi

over a Gaussian multiple access channel so that the receivedsignal at the FC is given by

yL =
√
ρ

L∑

i=1

ejωxi + v (2)

whereρ is the power at each sensor,ω > 0 is a design parameter to be optimized andv ∼
CN (0, σ2

v) is the additive channel noise. We consider two types of powerconstraints: Per-sensor

power constraint and total power constraint. In the former case, each sensor has a fixed power

ρ so that the total powerPT = ρL, and asL → ∞, PT → ∞; in the later case, the total

powerPT is fixed for the entire system and does not depend onL, so that the per-sensor power

ρ = PT/L → 0 asL → ∞.

1the proposed scheme will work without any difference forθ < 0 due to symmetry if we substitute−θ in the place ofθ in

all the equations.
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III. T HE DETECTION PROBLEM

The received signalyL under the total power constraint can be written as

yL =

√
PT

L

L∑

i=1

ejωxi + v. (3)

We assume throughout thatP0 = P1 = 0.5 for convenience even though other choices can be

easily incorporated. With the received signal in (3), the FChas to decide which hypothesis is

true. It is well known that the optimal fusion rule under the Bayesian formulation is given by:

f(yL|H1)

f(yL|H0)

H1

≷
H0

P0

P1

= 1 (4)

where f(yL|Hi), is the conditional probability density function ofyL when Hi is true. The

equation (3) can be rewritten as follows:

yL =

√
PT

L

(
L∑

i=1

cos(ωxi)

)
+ j

√
PT

L

(
L∑

i=1

sin(ωxi)

)
+ v.

Since there areL terms in the first summation involving the cosine function, we need to doL

fold convolutions with the PDFs ofcos(ωxi) and another set ofL fold convolutions with the

PDFs ofsin(ωxi). Then we need to find the joint distribution of the PDFs obtained thus for the

cosine and sine counterparts. This joint PDF will need to be convolved with the PDF ofv. It

is not possible to obtain a closed form expression for these(2L+ 1) fold convolutions. Hence,

f(yL|Hi) is not tractable. Therefore, we consider the following linear detector which is argued

next to be optimal for largeL:

ℜ[yLe−jωθ]− ℜ[yL]
H1

≷
H0

0 , (5)

where we defineℜ[y] as the real part, andℑ[y] as the imaginary part ofy. Note that the detector

in (5) would be optimal ifyL were Gaussian. Clearly due to central limit theoremyL in (3)

is asymptotically Gaussian, which indicates that (5) approximates (4) for largeL. With the

Gaussian assumption, the variances ofyL in (3) under the two hypotheses are the same and

given by Var(yL|H0) =Var(yL|H1) = [PT(1 − ϕ2
n(ω)) + σ2

v ], whereϕn(ω) is the characteristic

function ofni. Hence, the optimal likelihood ratio simplifies to the detector in (5) which is linear

in yL, whenyL is assumed Gaussian which holds for largeL. However as will be seen in Section

IV, we do not assume thatyL is Gaussian for any fixedL when we analyze the performance

of the detector in (5) or in finding the associated error exponent in Section VII. We proceed by

expressing the probability of error.
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IV. PROBABILITY OF ERROR

The detector in (5) depends on the design parameterω and this means that the probability of

error will in turn depend onω. Let Pe(ω) be the probability of error at the FC:

Pe(ω) =
1

2
Pr [error|H0] +

1

2
Pr [error|H1] = Pr [error|H0] (6)

wherePr [error|Hi] is the error probability whenHi, i ∈ {0, 1}, is true and the last equality

holds due to symmetry between the two hypotheses which is explained as follows. From the

detection rule (5), the probability of error underH0 is given by

Pr [error|H0] = Pr
[
ℜ[yL] < ℜ[yLe−jωθ]|H0

]
, (7)

where the received signal in (3) underH0 is given by

yL =

(√
PT

L

L∑

i=1

cos(ωni) + ℜ[v]
)

+ j

(√
PT

L

L∑

i=1

sin(ωni) + ℑ[v]
)
. (8)

Substituting (8) foryL in (7) and doing some algebraic simplifications we get,

Pr [error|H0] = Pr




L∑

i=1

2 sin

(
ωθ

2

)
cos

(
ωni −

ωθ

2
+

π

2

)
+

√
L

PT
vT

︸ ︷︷ ︸
ZL(ω):=

< 0




, (9)

where vT := ℜ[v](1 − cos(ωθ)) − ℑ[v] sin(ωθ). Similarly, Pr [error|H1] is same as that of

(9) except the argument of the cosine function is replaced by(ωni + ωθ/2 − π/2). To see the

symmetry between the two hypotheses asserted in (6), letζ := (ωθ/2−π/2) for convenience, so

thatcos(ωni∓ζ) = [cos(ωni) cos ζ+sin(±ωni) sin ζ ]. Sinceni is symmetric,ωni and−ωni have

the same distribution which implies that the random variablescos(ωni−ζ) andcos(ωni+ζ) have

the same distribution establishing thatPr [error|H1] = Pr [error|H0]. Therefore, the probability

of error in (6) is given by (9). We are interested in using (9) to find theω that minimizes

the probability of error at FC. SincePe(ω) is not straightforward to evaluate, we optimize two

surrogate metrics to selectω. These are the error exponent and the DC. The error exponent is an

asymptotic measure of how fast thePe(ω) decreases asL → ∞, and is specific to the detector

used in (5) and will be considered in Section VII. The DC, on the other hand, is specific to the

model in (3), and does not depend on any detector.
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V. DEFLECTION COEFFICIENT AND ITS OPTIMIZATION

We will now define and use the deflection coefficient which reflects the output-signal-to-noise-

ratio and widely used in optimizing detectors [15]–[18]. The DC is mathematically defined as,

D(ω) :=
1

L

|E[yL|H1]− E[yL|H0]|2
var[yL|H0]

. (10)

By calculating the expectations in (10), it can be easily verified that the DC for the signal model

in (2) is given by:

D(ω) =
2ϕ2

n(ω)[1− cos(ωθ)][
1− ϕ2

n(ω) +
σ2
v

PT

] (11)

whereϕn(ω) = E[ejωni ] is the CF ofni. The CFϕn(ω) does not depend on the sensor indexi,

since we will be initially assuming thatni are iid. We will consider the non-identically distributed

case in Section V-D. Note thatD(ω) ≥ 0 and thatϕn(ω) is real-valued sinceni is a symmetric

random variable. Moreover,ϕn(ω) = ϕn(−ω) so thatD(ω) = D(−ω) which justifies why

we will focus onω > 0 throughout. The factor(1/L) introduced in (10) does not appear in

conventional definitions of the DC but included here for simplicity since it does not affect the

optimalω.

A. OptimizingD(ω)

We are now interested in findingω by optimizingD(ω):

ω∗ := argmax
ω>0

D(ω). (12)

Sinceϕn(ω) ≤ 1, whenσ2
v > 0, D(ω) is bounded, and achieves its smallest value ofD(ω) = 0

asω → 0. On the other hand, asω → ∞, we havelimω→∞D(ω) = 0. This implies that the

maximum in (12) cannot be achieved byω = 0 or ω = ∞ and establishes that there must be a

finite ω∗ ∈ (0,∞) which attains the maximum in (12).

In what follows, we will further characterizeω∗ by assuming thatϕn(ω) > 0 andϕ
′

n(ω) < 0

for all ω > 0. Many distributions including the Laplace, Gaussian and Cauchy have CFs that

satisfy this assumption. Indeed all symmetric alpha-stable distributions [19, pp. 20] of which the

latter two is a special case, satisfy this assumption. We nowhave the following theorem which

restrictsω∗ in (12) to a finite interval.

Theorem 1. If ϕn(ω) is decreasing and differentiable overω > 0, thenω∗ ∈ (0, π/θ).

November 16, 2010 DRAFT
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Proof: First, note thatϕn(ω) ≥ 0 which is implied by the assumption thatϕn(ω) is

decreasing and thatϕn(ω) → 0 as ω → ∞. Let D(ω) = C(ω)[1 − cos(ωθ)] with C(ω) :=

2ϕ2
n(ω)/[1− ϕ2

n(ω) + σ2
v/PT] for brevity. Sinceϕn(ω) is decreasing onω > 0 andϕn(ω) ≥ 0,

C(ω) is also decreasing. Because[1− cos(ωθ)] is periodic inω with period2π/θ,

D

(
ω +

2π

θ

)
= [1− cos(ωθ)]C

(
ω +

2π

θ

)
< [1− cos(ωθ)]C(ω) = D(ω). (13)

Noticing thatD(2π/θ) = 0 which rules outω∗ = 2π/θ, we haveω∗ ∈ (0, 2π/θ). To further

reduce the range ofω∗ by half, consider the fact thatD(0) = D(2π/θ) = 0, which combined

with D(ω) > 0 for ω ∈ (0, 2π/θ) implies thatω∗ ∈ (0, 2π/θ) satisfiesD
′

(ω∗) = 0. Writing

D
′

(ω∗) = 0 we obtain:
[θ sin(ω∗θ)]

[cos(ω∗θ)− 1]
=

C
′

(ω∗)

C(ω∗)
. (14)

SinceC(ω) > 0 is decreasing, the right hand side (rhs) of (14) is negative and it follows that

ω∗ ∈ (0, π/θ) as required.

By the definition ofω∗, it is clearly a function ofθ. We showed in Theorem 1 that0 < ω∗ <

π/θ if ϕ
′

n(ω) < 0 for ω > 0. Note that whenω = 0, there is no phase modulation done, and what

is transmitted is a constant signal which actually containsno information aboutxi. Therefore

the boundary valueω = 0 is not a valid choice. Whenω = π/θ, the detector in (5) actually

simplifies to:ℜ[yL]
H0

≷
H1

0. While ω = π/θ is a valid choice, it is optimal only whenθ is large as

will be proved in Theorem 2. We now investigate the behavior of ω∗ when θ is large without

assuming anything aboutϕn(ω) except the absolute continuity of its distribution, and show that

ω∗ ≈ π/θ for largeθ in the sense thatω∗θ → π, asθ → ∞.

Theorem 2. If σ2
v > 0, andni are iid and have absolutely continuous distributions,

lim
θ→∞

ω∗θ = π. (15)

Proof: We have

D
(π
θ

)
≤ D(ω∗) ≤ sup

ω>0
[1− cos(ωθ)] sup

ω>0
C(ω) =

4PT

σ2
v

, (16)

where the first inequality is becauseω∗ maximizesD(ω), and the second inequality follows from

D(ω) = C(ω)[1−cos(ωθ)]. Recalling thatlimω→0 ϕn(ω) = 1 we take the limit asθ → ∞ in (11)

and obtainlimθ→∞D(π/θ) = 4PT/σ
2
v , which using (16) shows thatlimθ→∞D(ω∗) = 4PT/σ

2
v .

November 16, 2010 DRAFT
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Sinceϕn(0) > ϕn(ω) and becauseD(ω) is an increasing function ofϕ2
n(ω), from (11) it is clear

that the only waylimθ→∞D(ω∗) = 4PT/σ
2
v holds is ifω∗ → 0 andω∗θ → π, asθ → ∞.

Theorem 2 establishes that whenθ is large we have an approximate closed-form solution for

ω∗ ≈ π/θ for any absolutely continuous sensing noise distribution.

B. Finding the Optimumω for Specific Noise Distributions

Theorem 1 showed thatω∗ ∈ (0, π/θ) for a general class of distributions. Under more general

conditions, Theorem 2 establishes thatω∗ ≈ π/θ when θ is large. To findω∗ exactly, we need

to specify the sensing noise distribution through its CF,ϕn(ω). In what follows we describe

how to findω∗ for several specific but widely used sensing noise distributions. We will assume

throughout that the assumptions of Theorem 1 (ϕ
′

n(ω) < 0 for ω > 0) are satisfied so that

ω∗ ∈ (0, π/θ), which holds for Gaussian, Cauchy and Laplacian distributions, among others. We

will assumeσ2
v > 0 throughout this subsection.

1) Gaussian Sensing Noise:In this case, we haveϕn(ω) = e−ω2σ2
n/2 so thatϕ2

n(ω) = e−ω2σ2
n ,

whereσ2
n is the variance ofni. To simplify (11) we substituteβ = ωθ. Sinceω ∈ (0, π/θ) we

haveβ ∈ (0, π). Note that the value ofω that maximizes (11) overω is related to theβ that

maximizesD(β/θ) through the relationω = β/θ. DifferentiatingD(β/θ) with respect toβ,

equating to 0 and simplifying we obtain,

GG(β) := α− e−
σ2
n

θ2
β2 − 2ασ2

n

θ2
β tan

(
β

2

)
= 0 (17)

with α := [1+ (σ2
v/PT)]. Equation (17) can not be solved in closed-form. However it does have

a unique solution inβ ∈ (0, π) as shown in Appendix 1. The solution to (17),β∗

G, can be found

numerically and the optimumω for the Gaussian case isω∗

G = β∗

G/θ.

2) Cauchy Sensing Noise:In this case,ϕn(ω) = e−γω so thatϕ2
n(ω) = e−2γω whereγ is the

scale parameter of the Cauchy distribution. It is well knownthat no moments of this distribution

exists. Substitutingϕn(ω) in D(ω) and lettingβ = ωθ we have,

D

(
β

θ

)
=

[1− cos(β)]

[αe
2γ
θ
β − 1]

(18)

with α := [1 + (σ2
v/PT)] andβ ∈ (0, π). It can be verified that the equation (18) has a unique

maximum overβ ∈ (0, π) as shown in Appendix 2. Theβ∗

C that maximizes (18) can be found

numerically andω∗

C = β∗

C/θ.

November 16, 2010 DRAFT
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Whenσ2
v/PT is sufficiently large (i.e., the low channel SNR regime) compared to[1−ϕ2

n(ω)]

in D(ω), the problem in (11) can be transformed into maximizingϕ2
n(ω)[1 − cos(ωθ)] over

ω ∈ (0, π/θ). In this low channel SNR regime, we have a closed form solution for the Cauchy

case:

ω∗

C =
2

θ
tan−1 θ

2γ
. (19)

If we let θ → ∞ in (19), we getω∗

C = π/θ which agrees with Theorem 2.

3) Laplace Sensing Noise:In this case, we haveϕn(ω) = 1/(1 + b2ω2) and b2 := σ2
n/2.

Substituting this inD(ω) and lettingβ = ωθ, and differentiatingD(β/θ) with respect toβ,

equating to 0 and simplifying we get,

GL(β) :=

[
1 +

b2

θ2
β2

]2
− 4b2

θ2
β

[
1 +

b2

θ2
β2

]
tan

(
β

2

)
−
(
1

α

)
= 0 (20)

with α := [1 + (σ2
v/PT)]. It can be easily verified that equation (20) has a unique solution in

β ∈ (0, π) as shown in Appendix 3. Theβ∗

L that solves (20) can be found numerically and

ω∗

L = β∗

L/θ.

4) Uniform Sensing Noise:For the uniform sensing noise, we haveϕn(ω) = sin(ωa)/ωa,

whereσ2
n = a2/3. Substitutingϕn(ω) in (11) and lettingβ = ωa for convenience we have

D(β) =

[
1− cos

(
βθ
a

)]

[αβ2 csc2(β)− 1]
= C(β)

[
1− cos

(
βθ

a

)]
(21)

whereC(β) := 1/[αβ2 csc2(β)− 1]. Writing D
′

(β) = 0 we get

[
αβ2 csc2(β)− 1

]
− αβ

[
2a

θ
tan

(
θ

2a
β

)]
csc2(β)[1− β cot(β)] = 0 (22)

with α := [1 + (σ2
v/PT)]. Theorem 1 does not apply for the uniform sensing noise. However if

θ/a ≥ 2, then usingC(β) ≥ C(β+kπ), k = 1, 2, . . . , and using the periodicity of[1−cos(βθ/a)],

we can show thatβ∗

U ∈ (0, πa/θ]. Following similar arguments to the Laplacian noise case, it

can be shown that there is only one stationary point in(0, πa/θ] which corresponds to the global

maximum. Theβ∗

U that solves (22) can be found numerically and therefore,ω∗

U = β∗

U/a. On the

other hand ifθ/a < 2, multiple local maxima are possible inβ ∈ (0, πa/θ] and (22) can have

multiple solutions. In this case, thatβ∗

U which yields the largest value forD(β) in (21) should

be chosen.
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C. Per-sensor Power Constraint or high Channel SNR

We now consider the DC under the per-sensor power constraint. In this setting, asL → ∞,

PT → ∞ which makes(σ2
v/PT) → 0. Therefore the DC for the per-sensor constraint whenL is

large becomes:

Dpspc(ω) =
2ϕ2

n(ω)[1− cos(ωθ)]

[1− ϕ2
n(ω)]

. (23)

Equation (23) can also be interpreted as the DC whenσ2
v = 0 for any finiteL. In what follows,

we characterizeω∗ in this per-sensor constraint regime, which effectively amounts to the removal

of (σ2
v/PT) from (11). In this case there is not necessarily aω∗ that attains the maximum in

(12). Our first result reveals that (23) can be made large by choosingω sufficiently close to

zero whenni are Gaussian, and yields an interesting relationship between the DC and the Fisher

information.

Theorem 3. Whenni are Gaussian,

sup
ω>0

Dpspc(ω) =
θ2

σ2
n

= lim
ω→0

Dpspc(ω) (24)

Proof: We begin with the inequality[1− cos(ωθ)] ≤ ω2θ2/2. Consider [20, eqn (1)], which

using the fact thatϕn(ω) is real-valued, revealsϕ2
n(ω) ≤ (1 + ϕn(2ω))/2. Using these two

inequalities we can write the following:

1

Dpspc(ω)
≥ [1− ϕn(2ω)]

2ω2ϕ2
n(ω)θ

2
. (25)

Now from [20, eqn (2)] with the fact thatϕn(ω) is real-valued, we have:

[1− ϕn(2ω)]

2ω2ϕ2
n(ω)

≥ 1

J
(26)

whereJ is the Fisher information ofni with respect to a location parameter [21, eqn (8)] (i.e.,

the Fisher information inxi aboutθ). Combining (25) and (26) we have:

Dpspc(ω)

θ2
≤ J =

1

σ2
n

(27)

where the equality follows from the fact that for Gaussian random variables the Fisher infor-

mation is given by the inverse of the variance. Now, we also see that using l’Hôspital’s rule on

(23), limω→0Dpspc(ω) = θ2/σ2
n, which shows that the inequality in (27) can be made arbitrarily

tight establishingsupω>0 Dpspc(ω) = θ2/σ2
n.

November 16, 2010 DRAFT
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The proof of Theorem 3 also reveals an interesting inequality between the DC and the Fisher

information, which of course is related to the Cramér-Rao bound for unbiased estimators. So

for the per-sensor power constraint case with Gaussian noise, ω should be chosen as small as

possible for the best performance and it does not depend on the value ofθ.

For the Laplacian case, the solution is similar to the Gaussian case. It can be easily verified that,

with (σ2
v/PT) = 0, D

′

pspc(ω) < 0 overω ∈ (0, π/θ). This means thatDpspc(ω) is monotonically

decreasing withω which implies thatω should be chosen arbitrarily small.

On the other hand, whenni are Cauchy distributed, thenϕn(ω) = e−γω. Substituting in (23)

and using l’Hôspital’s rule we observe thatlimω→0Dpspc(ω) = 0 for Cauchy sensing noise. This

implies that, for the Cauchy sensing noise with per-sensor power constraint, smaller values of

ω should be avoided for reliable detection to be possible.

D. Analysis of the DC for Non-homogeneous Sensors

Consider now the case whereni are independent with non-identical distributions. This could

occur if ni have the same type of distribution (e.g. Gaussian) with different variances. Letting

ϕni
(ω) = E[ejωni], the DC in (10) becomes

DL(ω) =

2[1− cos(ωθ)]

(
L−1

L∑

i=1

ϕni
(ω)

)2

[
1− L−1

L∑

i=1

ϕ2
ni
(ω) +

σ2
v

PT

] (28)

which is now a function ofL unlike in (11), and reduces to (11) ifϕni
(ω) = ϕn(ω), as in the

iid case. We now study the conditions on the variancesσ2
i := var(ni) for limL→∞DL(ω) = 0

for all ω > 0. When this asymptotic DC is zero for allω > 0, the interpretation is that there is

no suitable choice forω > 0. The following result establishes that if the sensing noisevariances

are going to infinity, the asymptotic DC is zero for allω > 0, indicating a regime where reliable

detection is not possible.

Theorem 4. Let ϕni
(ω) = ϕn(σiω) for some CFϕn(ω) wheren has an absolutely continuous

distribution. Suppose also thatlimi→∞ σi = ∞. ThenlimL→∞DL(ω) = 0 for all ω > 0.

Proof: Clearly the denominator of (28) is bounded between(σ2
v/PT) and (1 + σ2

v/PT).

Therefore, it suffices to show thatL−1
∑L

i=1 ϕni
(ω) = L−1

∑L
i=1 ϕn(σiω) → 0 asL → ∞. Since
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n has an absolutely continuous distribution,limx→∞ ϕn(x) = 0, and becauselimi→∞ σi = ∞,

it follows that limi→∞ ϕn(σiω) = 0 for ω > 0. From [22, pp. 411] we know that if a sequence

satisfieslimi→∞ ai = 0 then its partial sums also satisfylimL→∞ L−1
∑L

i=1 ai = 0, which gives

us the proof when applied to the sequenceϕn(σiω).

If, instead ofσ2
i → ∞ as i → ∞, the variancesσ2

i are bounded, we can show the existence

of an ω > 0 for which limL→∞DL(ω) > 0 which is done next.

Theorem 5. Let var(ni) exist for all i and σmax := supi(var(ni))
1/2 be finite. Then any0 <

ω <
√
2/σmax satisfieslimL→∞DL(ω) > 0.

Proof: To showlimL→∞DL(ω) > 0 for ω > 0, it suffices to show thatL−1
∑L

i=1 ϕni
(ω) > 0

for ω > 0. From [23, pp. 89] we haveϕni
(ω) ≥ 1 − σ2

i ω
2/2 for any CF with finite variance.

Therefore,L−1
∑L

i=1 ϕni
(ω) ≥ 1 − (L−1

∑L
i=1 σ

2
i )ω

2/2 ≥ 1 − σ2
maxω

2/2 > 0 where the last

inequality holds provided thatω <
√
2/σmax.

This shows that if the noise variances are bounded, there exists (a small enough)ω that yields

a strictly positive asymptotic DC, establishing that thereis a choice ofω that enables reliable

detection.

VI. FADING CHANNELS

Suppose that the channel connecting theith sensor and the FC has a fading coefficienthi :=

|hi|ejφi normalized to satisfy E[|hi|2] = 1. If the sensors do not know or utilize their local

channel information, and the fading has zero-mean (E[hi] = 0), then the performance over

fading channels is poor because the DC in (10) becomes zero due to law of large numbers and

reliable detection is not possible. On the other hand, if theith sensor corrects for the channel

phase before transmission, using local channel phase information, the received signal under the

TPC becomes

yL = ejωθ
√

PT

L

L∑

i=1

|hi|ejωni + v , (29)

where we focus on the iid sensing noise case to highlight the effect of fading even though the

non-homogeneous case can also be easily pursued. The phase correction does not change the

constant power nature of the transmission. By calculating the expectations in (10), for the signal
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model in (29), the DC in the presence of fading is given by:

D(ω) =
2(E[|hi|])2ϕ2

n(ω)[1− cos(ωθ)][
1− (E[|hi|])2ϕ2

n(ω) +
σ2
v

PT

] . (30)

We see that in case of fading, the termϕ2
n(ω) is scaled by the factor(E[|hi|])2 in the DC

expression. Since E[|hi|2] = 1, using Jensen’s inequality, the factor(E[|hi|])2 < 1 unless|hi| is

deterministic in which case it is one. Comparing (11) and (30) we have, with(E[|hi|])2 < 1, the

numerator of (30) is decreased and the denominator of (30) isincreased, leading to a reduction

in DC and thus fading has a detrimental effect on the detection performance, as expected.

Note that if the optimization of the DC is desired in the fading case, the factor(E[|hi|])2 in the

denomenator of (30) affects the optimumω value. Theorem 1 can be proved for the fading case

as well withC(ω) := 2(E[|hi|])2ϕ2
n(ω)/[1− (E[|hi|])2ϕ2

n(ω) + σ2
v/PT] which is still decreasing

with ω if ϕn(ω) is. Therefore the conclusion of Theorem 1, namely,ω∗ ∈ (0, π/θ), does not

change. The procedure to find theω∗ under the TPC for Gaussian, Cauchy and Laplacian is the

same as described in Sections V-B1, V-B2 and V-B3 respectively. The equations (17), (39), (40)

and (42) remain valid with the exponentials in these equations scaled by the factor(E[|hi|])2.
The equations (20), (44) and (45) for the Laplacian case alsoremain valid except the term1/α

in (20) scaled by(E[|hi|])2.
We note that if sensors have imperfect knowledge of the phase, |hi| will be replaced by|hi|ejφ̃i

where φ̃i is the phase error. Clearly this error can also be subsumed in(29) as replacingωni

with ωni + φ̃i which changes the sensing noise by a term independent ofω. This establishes

the interesting fact that phase error over fading channels can be treated as a change in sensing

noise distribution.

VII. A SYMPTOTIC PERFORMANCE AND OPTIMIZATION OF ω BASED ON ERROR EXPONENT

The error exponent in a distributed detection system is a measure of how fast the probability

of error goes to zero asL → ∞. Mathematically error exponent is defined as:

− lim
L→∞

logPe(ω)

L
. (31)

Large deviation theory [24], [25] provides a systematic procedure to calculate the error exponent

which is briefly reviewed next. LetYL be a sequence of random variables without any assumptions
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on their dependency structure and letM(t) = limL→∞(1/L) log E{etYL} exist and is finite for

all t ∈ R. Define

ε(z) = − lim
L→∞

1

L
log Pr [YL < z] , (32)

wherez is the threshold andYL is the test statistic of a detector. Gärtner-Ellis Theorem [24, pp.

14] states thatε(z) in (32) can be calculated using,

ε(z) = sup
t∈R

[tz −M(t)] , (33)

where

M(t) = lim
L→∞

1

L
log E{etYL}. (34)

We will now use the G̈artner-Ellis Theorem withYL replaced byZL(ω) in (9) andz = 0. Letting

Mω(t) := limL→∞(1/L) log E{etZL(ω)}, andεω(z) = supt∈R[tz −Mω(t)] we have the following

theorem which relates the error exponent to the CFϕn(ω) of the sensing noise distribution.

Theorem 6. For the detector in (5), the error exponent in(31) is εω(0) = − inft∈R Mω(t) where

Mω(t) = log

[
I0

(
2 sin

(
ωθ

2

)
t

)
+ 2

∞∑

k=1

Ik

(
2 sin

(
ωθ

2

)
t

)
ϕn(kω) cos

(
k

(
π

2
− ωθ

2

))]

+

[
t2σ2

v(1− cos(ωθ))

2PT

]

(35)

whereIk(t) is the modified Bessel function of the first kind.

Proof: Please see Appendix 4.

It is well known that the functionMω(t) is convex int [24]. Therefore the supremum in (33)

can be found efficiently forz = 0. The t∗ that maximizes (33) satisfiesM
′

ω(t
∗) = 0 which can

be found by convex methods with geometric convergence [26].

In addition to the error exponent, it is also possible to approximatePe(ω) using the function

εω(z). In fact Bahadur and Rao [25, pp. 10] have proved that this probability can be approximated

using the error exponent and is given by:

Pe(ω) =
1√
2πσ̂2

ω

e−Lεω(0)(1+o(1)) , (36)
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asL → ∞ and σ̂2
ω := [ε

′

ω(0)]
2/[ε

′′

ω(0)]. The quantitiesε
′

ω(0) and ε
′′

ω(0) are the first and second

derivatives ofεω(z) at z = 0 respectively, and can be calculated from the following equations

[26, pp. 121]:

ε
′

ω(0) = t∗ , (37)

ε
′′

ω(0) =
1

M ′′

ω (t
∗)
. (38)

The error exponent given in Theorem 6 is a function ofω and let us denote it byεω for

convenience. It will be illustrated in Section IX that the values of ω that minimizesPe(ω) is

closely predicted by the value obtained by maximizingD(ω) or εω. We will also examine in the

simulations in Section IX how accurately (36) can be used to approximatePe(ω) for finite L.

VIII. N ON-GAUSSIAN CHANNEL NOISE

We have so far assumed that the channel noise as Gaussian. However, we verified that the

detector in (5) works well even if the channel noise is mixed Gaussian, uniform or Laplacian.

The channel noise distribution will only affect the error exponent through the second term in

(35). Using this, the effect of different channel noise distributions we considered are briefly

sketched below.

We considered the case of mixed Gaussian having two different variances drawn from a

Bernoulli distribution. Letp0 be the probability that the samples drawn from the mixture have

varianceσ2
v0

andp1 = 1−p0 be the probability corresponding toσ2
v1

and letσ2
v1

> σ2
v0

. In this case,

we found that the error exponent is affected only by the larger variance in the mixture. While us-

ing Gärtner-Ellis Theorem to calculateMω(t), the second term in (35) for the mixed Gaussian be-

comes lim
L→∞

L−1 log
[
p0 exp

(
t2σ2

v0
(1− cos(ωθ))/2PT

)
+ p1 exp

(
t2σ2

v1
(1− cos(ωθ))/2PT

)]
and

this limit evaluates to[t2σ2
v1
(1− cos(ωθ))/2PT] which proves that only the larger varianceσ2

v1

in the mixture affects the error exponent.

For the uniform channel case, interestingly we found that the second term in (35) evaluates to

0 and thus proving that the error exponent is not impacted by the uniform channel noise. We do

not include the straightforward derivation due to lack of space. We will discuss the performance

of the mixed Gaussian and Laplacian cases in Section IX-F.
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IX. SIMULATIONS

We define the sensing and channel SNRs asρs := θ2/σ2
n, ρc := PT/σ

2
v and assumeP1 = P0 =

0.5 throughout. Note also thatρ = PT/L is the power at each sensor as defined in Section II.

A. Effect ofω on Performance

We begin by comparing the optimizedω values usingD(ω), εω andPe(ω) for the TPC. The

values ofω∗ > 0 obtained by maximizing the error exponentεω and the DCD(ω) were found

to be very close over the entire range ofPT. Figure 1 shows the plots ofD(ω), εω, andPe(ω) vs

ω for Gaussian and Cauchy sensing noise distributions where the Pe(ω) plot is obtained using

Monte-Carlo simulations. The differentω∗ values in Figure 1 correspond to the bestω values

obtained by optimizingD(ω), εω and Pe(ω) respectively. It is interesting to see that theω∗

that minimizesPe(ω) is very close to that which maximizesD(ω) and εω. For Laplacian and

Uniform sensing noises (not shown), the same trends were observed.

Figure 2 shows the performance under per-sensor power constraint with largeL. It is observed

that smallerω yields better error probability. This agrees with our findings in Section V-C where

it was shown thatDpspc(ω) can be made larger by choosingω > 0 arbitrarily small. Since

both Figures 1 and 2 verify that the choice ofω based on minimizingPe(ω) can be closely

approximated by that which maximizesD(ω), in all subsequent simulations, we have used the

ω∗ values obtained by maximizingD(ω).

B. Comparison against MAF and MDF Schemes

In Figure 3, the proposed scheme is compared under the TPC with the MAF and MDF schemes

which have been shown in [8] to outperform conventional amplify-and-forward (AF) and detect-

and-forward (DF) schemes. We observe that the proposed scheme outperforms MAF whenρs >

4 dB, and MDF for the entire range ofρs. The same trend was observed whenL is increased

to 90 with an improvement in the detection error probability. The ML performance shown was

obtained by the Monte-Carlo implementation of the ML detector and is computationally complex,

but serves as a performance benchmark. Figure 4 shows thePe performance versusL under the

TPC. Clearly the proposed scheme outperforms the AF, DF, MAFand MDF schemes consistently

sinceρs = 15 dB.
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The proposed scheme requires the fine tuning of the transmission phase parameterω either

through optimizing the deflection coefficient or the error exponent. However, it should be noted

that similar type of fine tuning is also required in the competing schemes such as the MAF or

the MDF. We note that the proposed scheme is inferior to MAF atlow sensing SNRs (ρs <

4 dB). On the whole, the benefits of constant modulus signaling and improved performance at

higher sensing SNRs make the proposed approach a viable alternative.

C. Total Power Constraint: Different Noise Distributions

For the Total Power Constraint, Figure 5 shows that Cauchy sensing noise results in better

performance whenρs is low, and worse whenρs is high compared with other sensing noise

distributions. This agrees with the fact thatD(ω∗) is smaller for Cauchy sensing noise whenρs

is high than other distributions and vice versa whenρs is low. Whenρs is moderately high, we

observe that Gaussian, Laplacian and Uniform distributions have identical performance ifρc is

very low for a wide range ofL as illustrated in the Figure 5. We found numerically that the

similarity of thePe(ω) curves under different sensing noise distributions was also reflected in

the correspondingD(ω) values where they were also verified to be similar.

Figure 6 compares the performance of the proposed scheme in the presence of Rayleigh flat

fading between the sensors and the FC against without fadingwith the Gaussian sensing noise.

Clearly, fading has a detrimental effect on the detection performance as argued in Section VI.

It is also observed that, in the presence of fading,Pe is not as sensitive to the increase inρs as

that of the no fading case.

D. Error Exponent

Figure 7 depicts the error exponent of the proposed scheme under the PSPC and illustrates

its improvement with increase inρs for all the sensing noise distributions. Recall thatσ2
v has no

effect on the error exponent for the PSPC case since(σ2
v/PT) → 0 in (35). It is interesting to

see that Cauchy sensing noise has a better error exponent than Gaussian, Laplacian and Uniform

sensing noise distributions whenρs ≤ 4 dB while it is worse whenρs > 4 dB. The error exponent

with Gaussian sensing noise is better than that of Laplaciannoise when whenρs > 7.5 dB and

the uniform distribution has a better error exponent than other sensing noise distributions when

ρs > 4 dB. The error exponent of the proposed scheme is compared with the error exponents of
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MAF and MDF schemes which were only derived for the Gaussian case (please see equations

(24) and (25) in [8]). It is seen that, for the PSPC case, the MAF scheme (whose error exponent

is ρs/8) and the proposed scheme with optimumω have identical error exponents leading us to

conjecture thatsupω[− inf t∈R Mω(t)] = ρs/8 whenni are Gaussian. The MDF error exponent is

inferior compared to MAF and the proposed scheme.

Figure 8 shows the error exponent under the TPC withρs = 0 dB. In this scenario, Cauchy

sensing noise has the best error exponent sinceρs is low. This concurs with the fact illustrated

in Section IX-C that the DC of Cauchy is better at lower valuesof ρs than other distributions

and this was justified by the simulation results as shown in Figure 5. We found that when

ρs is increased, Cauchy becomes inferior to other noise distributions. For all the distributions,

increasingρc results in an increase in the error exponent which becomes a constant beyond

ρc = 15 dB. This is because, for a givenρs, increasingρc combats the effect of channel noise,

thereby improving the error exponent. However, the effect of sensing noise can not be overcome

by increasingρc indefinitely. This can be seen from (35) as well where the second term vanishes

while the first term remains even for largePT. For the Gaussian case, we derived the error

exponent of the MAF scheme under the TPC asεMAF = θ2/8[σ2
n + (σ2

v(σ
2
n + P0P1θ

2)/PT)]. If

PT → ∞, this reduces toρs/8 for the PSPC case. It is seen that withρs = 0 dB, the MAF

scheme is better than the proposed method whenρc < 15 dB. However, under the TPC, the

error exponent of the proposed scheme was found to beat the MAF scheme whenρs > 4.5 dB

and an example plot is shown in Figure 8 forρs = 10 dB. This crossover between the MAF and

the proposed schemes is also reflected in their respectivePe performance curves approximately

around the sameρs value (please see Figure 3). However, ifρc is increased beyond 15 dB, we

see that the error exponents of both the schemes become very close.

E. Approximations ofPe(ω) throughεω(z)

Equation (36) provides an approximation ofPe(ω) based on the error exponent. The expression

in (36) is found to match with the simulations whenρc > 0 dB andρs > -5 dB. Figures 9 and

10 elucidate this behavior for Gaussian sensing noise distribution. Similar trends were observed

for the other sensing noise distributions as well but are notshown due to space constraints.

WhenL is small, the gap between theory and simulation is significant as shown in Figure 9.

This can be explained by theo(1) term in (36). Accordingly, whenL is increased to about 40,
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we see the theory and simulation curves merging as shown in Figure 9. Figure 10 shows that

whenρs is moderately high, smallerL is required to get the performance match between theory

and simulation.

From the various simulation plots in Figures 1, 5, 7, and 8, wesee that the proposed scheme

is robust in the sense that it works very well for a variety of sensing noise distributions including

the impulsive Laplacian distribution and the Cauchy distribution which has no finite moments.

F. Non-Gaussian Channel Noise

Figure 11 shows the error exponent plot for the case whereσ2
v0 = 0.25, p0 = 0.80, σ2

v1 =

4, p1 = 0.20 (note that the effective channel noise variance is:σ2
veff

= p0σ
2
v0
+ p1σ

2
v1

= 1). We

see that the error exponent of mixed Gaussian withσ2
veff

= 1 is worse compared to that of the

Gaussian withσ2
v = 1 case. This is because, in the mixed Gaussian case, the error exponent is

a function of the larger variance ofσ2
v1

= 4.

Figure 12 shows the performance of the proposed detector with Laplacian channel noise against

the Gaussian channel noise when the sensing noise is Gaussian. We note that when sensing SNR

ρs is moderately high, the impulsive Laplacian channel noise is worse compared to Gaussian

channel noise.

X. CONCLUSIONS

A distributed detection scheme relying on constant modulustransmissions from the sensors is

proposed over a Gaussian multiple access channel. The instantaneous transmit power does not

depend on the random sensing noise, which is a desirable feature for low-power sensors with

limited peak power capabilities. The DC of the proposed scheme is shown to depend on the

characteristic function of the sensing noise and optimizedwith respect toω for various sensing

noise distributions. In addition to the desirable constant-power feature, the proposed detector is

robust to impulsive noise, and performs well even when the moments of the sensing noise do

not exist as in the case of the Cauchy distribution. Extensions to non-homogeneous sensors with

non-identically distributed noise are also considered. Itis shown that over Gaussian multiple

access channels, the proposed detector outperforms AF, DF and MDF schemes consistently, and

the MAF scheme when the sensing SNR is greater than 4 dB. The proposed detector is shown

to work with the non-Gaussian channel noises as well. The error exponent is also derived for the
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proposed scheme and large deviation theory is used to approximatePe(ω) for largeL. It is shown

that while the DC has a simpler expression for the purpose of optimizing ω, the probability of

error approximation based on (33) is shown to be an accurate indicator of detection performance

for all distributions and moderate number of sensors. The effect of fading is also considered,

and shown to be detrimental to the detection performance.

APPENDIX 1 : GAUSSIAN SENSING NOISE

First we note thatGG(0) = (α − 1) > 0 sinceσ2
v > 0 andGG(π) = −∞. SinceGG(β) is

continuous, (17) has at least one solution. To show that thissolution is unique, consider the first

derivative:

G
′

G(β) =
σ2
n

θ2

[
2βe−

σ2
n

θ2
β2 − 2α

(
β

2
sec2

(
β

2

)
+ tan

(
β

2

))]
. (39)

Now, usingtan(β/2) ≥ β/2 and sec2(β/2) ≥ 1 + (β2/4) for β ∈ (0, π), we get the following

upper bound:

G
′

G(β) ≤
σ2
n

θ2

[
2βe−

σ2
n

θ2
β2 − αβ

(
1 +

β2

4

)
− αβ

]
. (40)

Sinceσ2
v > 0 we haveα > 1. Recall thatβ ∈ (0, π), and the rhs of (40) is always negative. It

follows thatGG(β) is monotonically decreasing overβ ∈ (0, π) and (17) has a unique solution

which corresponds to the global maximum ofD(β/θ).

APPENDIX 2 : CAUCHY SENSING NOISE

The first derivative ofD(β/θ) is given by,

D
′

(
β

θ

)
=

[
sin(β)e

2γ
θ
β

(αe
2γ
θ
β − 1)2

] [
α− e−

2γ
θ
β − 2γ

θ
α tan

(
β

2

)]
. (41)

Since the first term on the rhs of (41) is non-zero forβ ∈ (0, π), we need to solve

GC(β) := α− e−
2γ
θ
β − 2γ

θ
α tan

(
β

2

)
= 0. (42)

First we see thatGC(0) = (α − 1) > 0 andGC(π) = −∞ which implies that there is at least

one solution to (42) inβ ∈ (0, π) asGC(β) is continuous. The second derivative ofGC(β) is

given by

G
′′

C(β) = −
[(

4γ2

θ2
e−

2γ
θ
β

)
+

γα

θ
sec2

(
β

2

)
tan

(
β

2

)]
. (43)

Clearly,G
′′

C(β) < 0 for β ∈ (0, π) which establishes thatGC(β) is concave. Therefore, (42) has

a unique solution which corresponds to the global maximum ofD(β/θ).
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APPENDIX 3 : LAPLACIAN SENSING NOISE

First we note thatGL(0) = (1 − (1/α)) > 0 if σ2
v > 0 andGL(π) = −∞. This means that

(20) has at least one solution. The first derivative ofGL(β) is given by,

G
′

L(β) =
2b2

θ2

[
2β

(
1 +

b2

θ2
β2

)
−
(
β +

b2

θ2
β3

)
sec2

(
β

2

)
+ 2

(
1 + 3

b2

θ2
β2

)
tan

(
β

2

)]
. (44)

Now, usingtan(β/2) ≥ β/2 andsec2(β/2) ≥ 1+(β2/4) overβ ∈ (0, π) in (44) and simplifying,

we get the following upper bound:

G
′

L(β) ≤ − b2

2θ4
[
(θ2 + 8b2)β3 + b2β5

]
(45)

Clearly, forβ ∈ (0, π), the rhs of (45) is always negative which impliesG
′

L(β) < 0. It follows

that GL(β) is monotonically decreasing overβ ∈ (0, π) and (45) has a unique solution which

corresponds to the global maximum ofD(β/θ).

APPENDIX 4: PROOF OFTHEOREM 6

We use the G̈artner-Ellis theorem from large deviation theory [24, pp. 14] to calculate the

error exponent. To this end, we need to calculateMω(t) in (34) and substitute into (33).

Mω(t) = lim
L→∞

1

L
log E{exp[tZL]}

= lim
L→∞

1

L
log E

{
exp

[
t

(
L∑

i=1

2 sin

(
ωθ

2

)
cos

(
ωni −

ωθ

2
+

π

2

)
+

√
L

PT
vT

)]}

= logE

{
exp

[
2t sin

(
ωθ

2

)
cos

(
ωni −

ωθ

2
+

π

2

)]}
+

[
t2σ2

v(1− cos(ωθ))

2PT

]
(46)

From [27, pp. 376], we have the Fourier series expansion of the periodic functionep cos(u) as,

ep cos(u) = I0(p) + 2

∞∑

k=1

Ik(p) cos(ku) (47)

Using the equation (47) in (46) withp = 2t sin(ωθ/2) andu = (ωni − ωθ/2 + π/2) and then

applying the expectation on the resulting summation, we getMω(t) as in (35).
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