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UNIVERSAL LIMITS OF NONLINEAR MEASURE

REDISTRIBUTION PROCESSES AND THEIR

APPLICATIONS

RAZVAN TEODORESCU

Abstract. Deriving the time evolution of a distribution of probability
(or a probability density matrix) is a problem encountered frequently in
a variety of situations: for physical time, it could be a kinetic reaction
study, while identifying time with the number of computational steps
gives a typical picture of algorithms routinely used in quantum impurity
solvers, density functional theory, etc. Using a truncation scheme for the
expansion of the exact quantity is necessary due to constraints of the
numerical implementation. However, this leads in turn to serious compli-
cations such as the Fermion Sign Problem (essentially, density or weights
will become negative). By integrating angular degrees of freedom and
reducing the dynamics to the radial component, the time evolution is
reformulated as a nonlinear integral transform of the distribution func-
tion. A canonical decomposition into orthogonal polynomials leads back
to the original sign problem, but using a characteristic-function repre-
sentation allows to extract the asymptotic behavior, and gives an exact
large-time limit, for many initial conditions, with guaranteed positivity.

1. Introduction

The notion of coarse graining in statistical physical models (or field the-
ory), introduced by Migdal and Kadanoff [1], [2] is essential to many funda-
mental concepts and results, like the continuum limit of lattice models, or
the universality of scaling behavior near a phase transition, to name two of
the most celebrated consequences.

From the perspective of mathematical statistics, the analysis of such
coarse graining processes is straightforward due to the fact that the el-
ementary operation of the process is averaging: at step n, we create a
new random variable X(n) from two variables defined at step n − 1 by

X(n) = [X
(n−1)
1 + X

(n−1)
2 ]/2. Then by repeated application of this oper-

ation, the result after sufficiently many steps is simply given by the central
limit theorem (CLT).

In this work, we consider another class of coarse-graining processes, where
at each step we take the absolute difference between variables, rather than
their average. This is justified by a number of relevant physical problems,
but also by classical issues from decision theory or economics. As in the
case of standard coarse graining, there is a limiting distribution (in fact, a
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whole class) which will be reached after arbitrarily many steps. Unlike in
the standard case, the particular limit is chosen from this class based on the
asymptotic properties of the initial distribution (more precisely, the radius
of convergence of its moment-generating function). This is an example of the
extreme selection criterion which characterizes other important stochastic
processes, such as the Fisher-Kolmogorov evolution.

The structure of this paper is the following: in the first section we present
the difference coarse-graining procedure, as well as some of its realizations,
and derive its universal long-time asymptotic behavior. In the second sec-
tion, we consider some particular types of distributions which are useful
examples for the general results. The last section is a discussion on possible
applications of this new universal limiting behavior.

2. Difference coarse-graining processes and asymptotic limits

2.1. Excess redistribution and partial annihilation models. In the
excess process, one starts with random variables −∞ < yi < ∞ for i =
1, . . . , N . These variable are initially distributed according to some pre-
scribed distribution P0(y). Then, two variables y1 and y2 are picked at
random. If both are positive or both are negative, nothing is done. If one
is positive and one is negative, then this variables are updated as follows

(2.1) (y1, y2) → (y1 + y2, 0).

Thus, this process conserves the total sum
∑

i yi. A related process was
considered in [3]

Let P (x, t) be the time-dependent probability density of the process. It
evolves according to the rate equation

(2.2)
∂P (x)

∂t
= − c(t)P (x) +

0
∫

−∞

dy P (y)P (x− y).

This equation holds for x > 0 and a similar equation holds for x < 0. The
integral has a convolution form. Here c(t) is the total density of non-zero
variables.

One motivation for this process comes from economics. A positive y
represents wealth and a negative y represents debt. The economy evolves
under conservative exchange of excess wealth. Another motivation is the
electric power-grid where power producing plants may exchange excess or
deficit capacity in response to power demands.

Let us assume that the initial distributions are symmetric P0(y) = P0(−y).
Clearly, this property persists with time. Therefore, the above process
may be equivalently formulated by considering the evolution of the vari-
able x = |y|. Then, the excess process becomes

(2.3) (x1, x2) → |x1 − x2|.
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Let c(t) be the remaining fraction of non-zero variables at time t. This
quantity satisfies

(2.4)
dc

dt
= −c2.

Solving this equation subject to the initial condition c(0) = 1, we find

(2.5) c(t) =
1

1 + t
.

Next, we consider P (x, t), the probability density. This quantity evolves
according to the integro-differential equation

(2.6)
∂P (x)

∂t
= −2 c(t)P (x) + 2

∞
∫

0

dy P (y)P (x+ y).

The negative term accounts for loss of two interacting variables and the
gain term accounts for gain of one variable. Of course, the total density
is c(t) =

∫

dxP (x). Integrating this equation, we recover (2.4). Despite
the simple nature of this equation, it is challenging. For example, the first
moment M1(t) =

∫∞

0 xP (x)dx does not obey a closed equation.
Consider the normalized distribution

(2.7) p(x, t) = c−1P (x, t),

so that
∫

dx p(x, t) = 1. It satisfies the evolution equation

(2.8)
∂p(x)

∂t
= −c p(x) + 2c

∞
∫

0

dy p(y) p(x+ y).

Now, we introduce the new time variable

(2.9) τ = ln(1 + t).

The master equation becomes

(2.10)
∂p(x)

∂τ
= −p(x) + 2

∞
∫

0

dy p(y)p(x+ y).

This master equation represents the dual process (x1, x2) → (|x1−x2|, |x1−
x2|). This process occurs with rate 1/2. In this formulation, the number of
particles is conserved

∫

dx p(x) = 1.
In the following section we explore the general properties of the long-time

behavior of the probability density function. We prove that there exists
a whole class of exact solutions, and quantify the convergence rate of an
arbitrary distribution towards the appropriate infinite-time limit.
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3. Convergence properties of the difference coarse graining

3.1. Steady-state solutions. At the steady state, the probability density
satisfies

(3.1) p(x) = 2

∞
∫

0

dy p(y) p(x+ y).

Performing the Taylor expansion of p(x+ y) with respect to variable y and
integrating, we obtain

(3.2) p(x) = 2

∞
∑

n=0

Mn

n!
∂n
xp(x) = 2m(∂x)p(x),

where m(t) =
∑∞

n=0
Mnt

n

n! is the moment generating function of p(x), and
Mn is its non-centered moment of order n. Equation (3.2) can also be written
in the eigenvalue form

(3.3) m−1(∂x)p(x) = 2p(x),

with m−1 understood as the corresponding inverse pseudo-differential op-
erator. In this form, it is very simple to notice that (3.2) has a continuos
family of solutions, exponential distributions p(x) = λe−λx, λ > 0, for which
the inverse moment generating function is m−1

λ (t) = 1− tλ−1:

(3.4) [1− λ−1∂x]e
−λx = 2e−λx.

Identity (3.4) shows that there exists a class of solutions indexed by the
continuous parameter λ > 0

(3.5) p(x) = λ e−λx.

The fact that this coarse-graining process evolves towards a universal limit
(in functional sense) bears some resemblance to the Central Limit Theorem.
In that case, the limit (properly rescaled) is determined by the second mo-
ment of the initial distribution. We will show that in the case of difference
processes, it is not a single centered moment which determines the limit, but
rather the convergence properties of the whole momen-generating function.
In the next section, we investigate how initial conditions determine the par-
ticular steady-state of type (3.5) realized by a particular process, as well as
the convergence properties of the evolution towards the solution.

3.2. Asymptotic analysis. In order to establish the steady-state reached
by a difference coarse-graining process, as well as to characterize its conver-
gence, we reformulate the evolution (2.10) through characteristic functions,
since convergence in distribution (weak convergence) is equivalent to point-
wise convergence of characteristic functions, φ(z, τ) = E[eizx].
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Define the charateristic function of distribution P (x, τ) as

(3.6) φ(z, τ) =

∞
∫

0

eizxP (x, τ)dx,

and obtain for the evolution equation

(3.7) P (x, τ) + Ṗ (x, τ) = 2

∞
∫

0

P (y, τ)P (x+ y, τ)dy

the form

φ(z, τ) + φ̇(z, τ) = 2

∞
∫

0

∞
∫

0

∞
∫

0

P (y, τ)P (w, τ)eizxδ(w − x− y)dydwdx.

Use the standard representation for Dirac’s distribution and obtain

φ(z, τ) + φ̇(z, τ) = 2

∞
∫

0

∞
∫

0

∞
∫

0

∞
∫

−∞

P (y, τ)P (w, τ)ei[zx+k(w−y−x)]dydwdx
dk

2π
.

Perform the integration over x using the limit

(3.8)

∞
∫

0

eix(z−k)dx = lim
ǫ→0+

∞
∫

0

eix(z−k+iǫ)dx = lim
ǫ→0+

1

i(z − k + iǫ)
.

Now integrate over y,w and get

(3.9) φ(z, τ) + φ̇(z, τ) = lim
ǫ→0+

1

2πi

∞
∫

−∞

2φ(−k, τ)

z − k + iǫ
φ(k, τ)dk,

which can be written as the Cauchy integral over the boundary of the lower
half-plane Λ, in clockwise direction:

(3.10) φ(z, τ) + φ̇(z, τ) = lim
ǫ→0+

∮

Λ

2φ(−k, τ)

z − k + iǫ
φ(k, τ)

dk

2πi
.

Equation (2.10) becomes:

(3.11) φ̇(s, τ) = −φ(s, τ) +
1

2πi

∮

Λ

φ(−z, τ)

s− z + iǫ
φ(z, τ)dz,

where Λ is the boundary of the lower half-plane with standard counter-
clockwise orientation, and ǫ → 0+. In order to derive (3.11), a standard in-
tegral representation was used to express the singular distribution δ(x)θ(x),
where δ, θ are the Dirac and Heaviside distributions, respectively.

Equation (3.11) requires a discussion which highlights the physical as-
pects of the steady-state selection. At the heart of this discussion lies the
definition of characteristic function for arbitrary complex values of the pa-
rameter z. One way to define φ(z), z ∈ C would be directly through the
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integral
∫

eizxP (x)dx. However, we immediately encounter convergence is-
sues with this formulation: assume that the moment-generating function
m(t) =

∫

extP (x)dx has a radius of convergence t ≤ λ. Then obviously the
characteristic function will also diverge for ℑ(z) < −λ. In this way, it is not
possible to define a holomorphic function φ(z) in the whole complex plane,
unless λ = ∞. A different generalization of the definition of φ(z) is therefore
required.

The obvious alternative is to start from the standard characteristic func-
tion φ(z) defined on the real axis ℑ(z) = 0, and to analytically continue
it into the whole complex plane. As we shall see, the convergence radius
given by the moment-generating function will still play an important role,
by determining the location and type of singularities of this holomorphic
function, but otherwise it will be possible to use standard complex analysis
techniques to study equation (3.11). For example, for a pure exponential
distribution of parameter λ, the characteristic function has the form

(3.12) φ∞(z) =
λ

λ− iz
.

Thus, this function has a simple pole at z = −iλ, and the convergence radius
is precisely λ. However, since φ(z) is now defined everywhere on C \ {−iλ}
as an analytic function, it is possible to perform the integration in (3.11).
The fact that any pure exponential is a steady-state solution, reduces in this
language to a simple application of Cauchy’s theorem.

In this paper, we will consider other distributions related to the exponen-
tial, like a product between a polynomial and an exponential,

(3.13) p(x, τ = 0) = λ
N
∑

n=0

pn(0)
(λx)n

n!
e−λx,

or a superposition of exponentials,

(3.14) p(x, τ) =

∞
∫

λ

dλ′ f(λ′, τ)λ′e−λ′x,

as well as generic sub-asymptotic corrections to the exponential of Gamma-
type:

(3.15) p(x) ∼ Γ(α+ 1, λ−1), α > 0.

For a distribution of type (3.13), the analytic continuation of the character-
istic function is

(3.16) φ(z, τ) =

N
∑

n=0

pn(τ)

(

λ

λ− iz

)n+1

,
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while for the type (3.14), it is

(3.17) φ(z, τ) =

∞
∫

λ

f(λ′, τ)
λ′

λ′ − iz
dλ′.

In the first case, the singularities are multiple poles at z = −iλ, while
in the second, we have a branch cut extending from −iλ to −i∞, with
jump function λ′f(λ′) Finally, for the general case (3.15), the characteristic
function combines both singularities, having a distribution of simple and
multiple poles from −iλ to ∞. It is given by

φ(z) =
Γ(1− ǫ)

Γ(1 + α)

(

−
d

dz

)n 1

π

∞
∫

λ

f(λ′, τ)
λ′

λ′ − iz
dλ′,

where f(λ′) represents the jump of the function (z − iλ)ǫ−1 accross the
branch cut, and α = n− ǫ, 0 ≤ ǫ < 1, n ∈ N, n > 0.

4. Direct analysis for some particular types of distributions

In this section, we illustrate the convergence of coarse-graining for dif-
ference processes towards a pure exponential distribution on a couple of
examples which cover all the types of singularities identified previously.

4.1. Polynomial times an exponential. The integral in (2.10) has an
interesting invariance property. Starting from an exponential times a poly-
nomial (3.13)

(4.1) p(x, τ = 0) = λ

N
∑

n=0

pn(0)
(λx)n

n!
e−λx,

with
∑N

n=0 pn(0) = 1 to ensure proper normalization, the probability distri-
bution retains the same form

(4.2) p(x, τ) = λ

N
∑

n=0

pn(τ)
(λx)n

n!
e−λx.

The coefficients pn(τ) satisfy a nonlinear evolution equation. We show this
for the lowest values of N .

1) N = 1 When the polynomial is linear, the system evolves according
to

(4.3)
dp1
dτ

= −
1

2
p21.

Therefore, the constant p1 asymptotically decay according to

(4.4) p1 ≃ 2τ−1.

Thus, the system flows toward the fixed point (3.5).
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2) N = 2 When the polynomial is quadratic, the two independent co-
efficients obey

dp1
dτ

= −
1

2
p21 +

1

2
p2 −

3

4
p1p2 −

1

8
p22

dp2
dτ

= −
1

2
p1p2 −

3

4
p22.

The last two terms in the first equation and the last term in the
second equation are irrelevant asymptotically and consequently

(4.5) p1 ≃ 4τ−1 p2 ≃ 8τ−2.

3) N ≥ 3 Generally, the coefficient satisfy

(4.6)
dpn
dτ

= −
1

2
p1pn +

1

2
pn+1 + · · ·

for 1 ≤ n ≤ N with the boundary condition PN+1 = 0. Here, we
kept only the two asymptotically relevant terms. The coefficients
decay as follows, pn ∼ τ−n, and it is even possible to obtain the
prefactor

(4.7) pn(τ) ≃
N !

(N − n)!
2n τ−n.

Therefore, the asymptotic behavior is independent of the initial condi-
tions. Thus, starting from an arbitrary exponential times a polynomial of
the form (3.13), the system approaches the purely exponential fixed point

(4.8) p(x) → λe−λ x

as t → ∞.
The average of the variable x, E(x) =

∫∞

0 dxxp(x), converges to a con-
stant value according to

(4.9) E(x)− λ−1 ≃ 2Nλ−1τ−1 ≃ 2Nλ−1(ln t)−1.

Thus, there is a very slow approach to the steady-state.

4.2. Laguerre polynomials expansion. Consider an expansion of the
form

(4.10) Pk(x) =

∞
∑

n=0

(−1)nA(k)
n Ln(2x)e

−x,

subject to the normalization condition (2.7). This expansion is a natural
reformulation of the previous case, justified by the fact that it corresponds
to another class of solution for (3.1), including non-positive function [4]. It

follows that the coefficients A
(k)
n satisfy the constraint

(4.11)

∞
∑

n=0

A(k)
n = 1,
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and that the nonlinear evolution (2.10) becomes

(4.12) A(k+1)
n =

∞
∑

l=0

A
(k)
l (A

(k)
n+l +A

(k)
n+l+1).

Clearly, if the initial distribution has positive coefficients {A
(k)
n }, they will

remain so during the evolution. An asymptotic solution can be found from
(4.11) and (4.12), asuming that

(4.13) A0 → 1, An≥1 → 0, A1 ≥ Ak≥2.

Under these assumptions, the long-time evolution equations become:

(4.14)

dA1

dt
= A2 −A2

1 +O(A1A2),

dAk

dt
= Ak+1 −AkA1 +O(AkA2), k ≥ 2,

which has the solution

(4.15) A1(τ) =
α

τ
+O(τ−2),

(4.16) Ak(τ) =
Γ(α+ 1)

Γ(α− k + 1)
τ−k +O(τ−k−1).

Clearly, if we require that Ak ≥ 0 throughout the evolution, it follows that
starting some index k = N , we must have Ak≥N = 0, and that

(4.17) A1 =
N

τ
, Ak =

N !

(N − k)!
τ−k, 1 < k < N.

The positivity condition Ak ≥ 0 has a clear physical significance: if it is
not satisfied, we see that starting some value of k, all coefficients become
negative. Therefore, at fixed τ , the tail of the distribution Pk(x) is not
in the exponential class, in fact it can be very far from exponential. The
exponential-type asymptote is guaranteed only by the positivity condition,
which effectively truncates the expansion (4.10). In turn, this condition
alone is enough to determine the asymptotic behavior of the coefficients Ak

and therefore of the average E[x] = 1 + 2N
τ

(compare with (4.9)).

4.3. Sum of exponentials. The integral in (2.10) has another important
property. Let us start with a sum of N + 1 exponentials

(4.18) p(x, τ = 0) =
N
∑

j=0

Aj(0)λje
−λjx,

with monotonic decay constants λj < λj+1. Then, the solution remains a
sum of exponentials

(4.19) p(x, τ) =

N
∑

j=0

Aj(τ)λje
−λjx.
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The coefficients satisfy
∑N

j=0Aj = 1 to guarantee normalization. Substitut-

ing (4.19) into the master equation (2.8), the coefficients evolve according
to

(4.20)
dAk

dτ
= −Ak + 2Ak

N
∑

j=0

Aj
λj

λj + λk

.

Replacing the term −Ak with −Ak

∑N
j=0Aj , we rewrite this equation.

(4.21)
dAk

dτ
= Ak

N
∑

j=0

Aj
λj − λk

λj + λk

.

There are N + 1 steady-states of the type Ak = δk,j but only the steady-
state Ak = δk,0 is stable. Small perturbations to this steady-state decay
exponentially fast

(4.22) Ak ∼ exp

[

−
λk − λ0

λk + λ0
τ

]

.

It is simple to show recursively (first for k = N and then for k = N − 1
and so on) that the coefficients Ak decay exponentially as in (4.22). Thus,
starting from a sum of exponentials (4.18), the steady state (3.5) is selected,

(4.23) p(x) → λ0 exp(−λ0 x)

as τ → ∞.
The approach toward the steady state is dominated by the coefficient A1:

(4.24) E[x]− λ−1
0 ∼ exp

[

−
λ1 − λ0

λ1 + λ0
τ

]

∼ t
−

λ1−λ0
λ1+λ0 .

4.4. Integral of exponentials. It is straightforward to generalize the above
from a sum to an integral

(4.25) p(x, τ) =

∞
∫

λ0

dλ f(λ, τ)λe−λx.

with
∫∞

λ0
dλ f(λ) = 1. Then, the coefficient f(λ) evolves according to

(4.26)
∂f(λ)

∂τ
= f(λ)

∞
∫

λ0

dλ′ f(λ′)
λ′ − λ

λ′ + λ
.

The only stable steady state is f(λ) = δ(λ0) as in (4.23) and for all λ > λ0,
the coefficients f(λ) decays exponentially,

(4.27) f(λ) ∼ exp

[

−
λ− λ0

λ+ λ0
τ

]

.
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5. General analysis of convergence to steady-state

The conclusions of previous sections show that starting from a character-
istic function featuring a multiple pole (3.16) at z = −iλ, (2.10) leads to the
steady-state (3.12), with power-law convergence of the first moment. The
case of a branch cut extending from −iλ0 to −i∞ (3.17) leads to (3.12) with
exponentially fast convergence. These two complementary situations allow
to explain the general steady-state selection process.

The generic situation is covered by the the class of distributions (3.15),
where α = n− ǫ, 0 ≤ ǫ < 1, n ∈ N, n > 0. The characteristic function is

(5.1) φ(z) =

(

λ

λ− iz

)α+1

,

so it has the mixted representation

φ(z) =
Γ(1− ǫ)

Γ(1 + α)

(

−
d

dz

)n 1

π

∞
∫

λ

f(λ′, τ)
λ′

λ′ − iz
dλ′,

where f(λ′) represents the jump of the function (z − iλ)ǫ−1 accross the
branch cut. This can be interpreted as a combination of distributions of
type (3.16), where now the parameter of the exponential ranges from λ
to ∞. By the same argument as before, the combination of exponentials
decays exponentially fast towards the lowest value of λ, while the pole of
order n + 1 decays algebraically to the pure exponential. This separation
of time scales in the convergence process allows to conclude that the steady
state corresponding to an initial choice of type (3.15) is λe−λx, and the first
moment converges to λ−1 as

(5.2) E[x]− λ−1 =
2n

λτ
.

6. Conclusions

Coarse graining of difference processes represents a fundamental gener-
alization of standard coarse graining with averaging. This procedure is a
natural description for relevant phenomena ranging from multi-species sto-
chastic processes to socio-economics. In this paper, we have identified the
class of stead-states for this process, and shown how a particular, universal
limiting distribution is chosen, as well as the convergence rate towards the
steady-state.
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