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We study the variation in the Lande g-factor of electron spins induced by an anisotropic gate
potential in InAs quantum dots for potential use as non-charge based logic devices. In this paper,
we present the numerical simulations of such spins in an electrostatically confined two-dimensional
asymmetric gate potential forming a quantum dot system in a 2DEG. Using numerical techniques,
we show that the broken in-plane rotational symmetry, due to Rashba spin orbit coupling in an
asymmetric potential (induced by gate voltages) leads to a significant reverse effect on the tunability
of the electron g-factor over a symmetric model potential (i.e. the derivative of the g-factor with
respect to electric field has opposite sign in the two cases).

I. INTRODUCTION

The notion of manipulating single electron spins
through active modification of the spin orbit interaction
in a quantum dot formed in the plane of a two dimen-
sional electron gas (2DEG) has received considerable at-
tention for potential use in non charge-based logic devices
and solid state quantum computing.1–7 Such research is
of interest in that it might enhance the possibilities of
next generation spintronic logic devices based on CMOS
technology.8–15

The goal of the present work is to explore the fun-
damental physics of a single electron spin trapped in
an electrostatically defined quantum dot and to provide
realistic information for controlling the Lande g-factor
through the application of gate potentials. With an aim
toward the practical design of such devices, we utilize a
finite-element based numerical technique as was done in
similar recently published work.16 A key new result of the
present work is the discovery that broken in-plane rota-
tional symmetry due to the Rashba spin orbit coupling in
an asymmetric potential, can lead to a significant reverse
effect on the tunability of the electron g-factor over the
symmetric case. We show that for a quantum dot with
30 nm radius the g-value increases (decreases) with in-
creasing electric field if we apply symmetric (asymmetric)
potentials (α = 1, β2 = 80).

The parameters of the asymmetric potential were cho-
sen so as to mimic the realistic potential of a quantum
dot in a single electron transistor that are under consid-
eration by experimentalists at State University of New
York at Albany. In particular, the geometry of the de-
vice and the methodology of obtaining the electrostatic
potential along the symmetry axis and normal to the
symmetry axis are described in Ref. 17. By choosing
α = 1, β2 = 2.8 and the value of ωo, most conve-
niently expressed equivalently by ℓo =

√

h̄/(m⋆ω0) ≈
30 nm in the asymmetric parabolic confining potentials
1
2
m⋆ω2

0(α
2x2+β2y2) in Eq. 2 reflects the realistic poten-

tial of the realistic device.17

The key parameters in controlling the electron spin in
a single electron quantum dot, considered in this work,
are the Rashba18 and Dresselhaus19 spin orbit couplings.
These two spin orbit coupling effects arise from two differ-
ent types of symmetry operations in III-V type semicon-
ductors. The Rashba spin orbit coupling arises from the
structural inversion asymmetry of the triangular shaped
quantum well confining potential, while bulk inversion
asymmetry (due to the Zincblene structure) gives rise to
the Dresselhaus spin orbit coupling. The mathematical
expressions for these interactions are given in Eqs. 4, 5,
and 6, in the following, and are well established for semi-
conductor heterojunction-type devices.9,11,15,20,21

It is also generally understood that the Zeeman spin
splitting energy depends on the direction of an applied
magnetic field and is thus described by a g-factor ten-

sor.13,22–24 In the present work we only consider magnetic
fields normal to the 2DEG, so the g-factor tensor reduces
to a scalar. In several recent works, anisotropy effects in
coupled quantum dot systems were explored.25–28 A sub-
ject that seems to have received little attention, however,
is the question of anisotropic effects in single quantum
dots (electrostatically defined in a 2DEG by asymmet-
ric gate potentials) and it is the subject of the present
investigation. Our approach is most closely related to
that of Ref. 8 but differs in a sense that we take a nu-
merical approach based on the finite element method29

whereas the authors of Ref. 8 use the perturbation the-
ory and direct diagonalization techniques and didn’t con-
sider anisotropy effects. Similar types of results have also
been reported in Ref. 30. However, our methodology
is different in a sense that we utilize the finite element
method and study the g-factor in InAs quantum dots
for realistic anisotropic gate potentials. The authors in
Ref. 30 adopted an atomistic tight binding method and
studied the effects of donors in the g-value vs electric
and magnetic fields. We now turn to a discussion of our
model, followed by a brief description of our computation
methodology.

http://arxiv.org/abs/1011.1921v1
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FIG. 1. (Color online) In plane wave functions for quantum
dots formed by (a) symmetric quadratic potential with α =
β = 1, and (b) asymmetric quadratic potential with α2 =
1, β2 = 80. In both cases, we choose ℓ0 = 30 nm, electric field
= 105 v/cm, and magnetic field = 1 T.

FIG. 2. (Color online) Electric-field induced changes in the g-
factor vs quantum dot radius for symmetric and asymmetric
model potentials with (a) α = β = 1 and (b) α2 = 1, β2 = 80.
In Fig 2(a), from bottom to top, the curves represent increas-
ing electric field strength as 1×104, 2×105, 5×105, 7×105 and
106 v/cm. In Fig 2(b), from top to bottom, the curves repre-
sent increasing electric field strength as 1 × 104, 2 × 105, 5 ×

105, 7×105 and 106 v/cm. In both cases, We choose the mag-
netic field = 1 T. We express g relative to its nonrelativistic
free electron value g0 = 2. We find a level crossing near 35
nm quantum dot radius in Fig 2(a) and 55 nm quantum dot
radius in Fig 2(b).

II. THEORETICAL MODEL

We consider the motion of the electron in the x − y
plane of the quantum dot in the presence of a magnetic
field oriented along z-direction. Our approach closely
follows that of Ref. 8 and 17. Thus the total Hamiltonian
can be written as:

H = Hxy +Hz +Hso, (1)

where Hz corresponds to the motion of the electron in a
quantum dot normal to the interface (as discussed in the
Ref. 8), Hso is the spin-orbit interaction to be discussed
shortly and the remaining term is given by:

Hxy =
~P 2

2m
+

1

2
mω2

o(α
2x2 + β2y2) +

1

2
goµBσzB, (2)

FIG. 3. (Color online) Electric-field induced changes in the g-
factor vs magnetic field for symmetric and asymmetric model
potentials with (a) α = β = 1 and (b) α2 = 1, β2 = 80. In
Fig. 3(a), from bottom to top, the curves represent increasing
electric field strength as 1×104, 2×105, 5×105, 7×105 and 106

v/cm. In Fig. 3(b), from top to bottom, the curves represent
increasing electric field strength as 1×104, 2×105, 5×105, 7×
105 and 106 v/cm. In both cases, we choose ℓ0 = 20 nm.
We express g relative to its nonrelativistic free electron value
g0 = 2. We find a level crossing near 3 T in Fig 3(a) and its
value extends to the larger magnetic field in Fig 2(b).

where the kinetic momentum operator: ~P ≡ ~p + e
c
~A is

the sum of the canonical momentum: ~p ≡ −ih̄(∂x, ∂y, 0),

and the vector potential (in the symmetric gauge) ~A ≡
B
2
(−y, x, 0).
The eigenstates of Hxy in Eq. 2 with α = β are the

well-known Fock-Darwin energy states.31,32 The situa-
tion with α 6= β also has an analytic solution.33,34 We
have verified that our numerical solution of Hxy|ψ>=
ǫ|ψ> is consistent with the analytical results of the Lande
g-factor of the anisotropic case, obtained by using the
perturbative method.
Lastly, we consider the Hamiltonian associated with

Rashba and Dresselhaus spin orbit interactions that is
embodied in the HamiltonianHso. These spin orbit inter-
actions are the essential ingredient in the phenomena of
switching electron spin with gate potentials.5,8 We write:

Hso = HR +HD1 +HD2, (3)

where the Rashba interaction18,35 is given by:

HR =
αReE

h̄

(

σxPy − σyPx

)

, (4)

and the linear and cubic Dresselhaus interactions19,36 are
written as:

HD1 =
0.7794γck

2

h̄

(

−σxPx + σyPy

)

, (5)

which is linear in components of the momentum operator
~P and

HD2 =
γc

h̄3

(

−σxPxP
2
y − σyPyP

2
x

)

+ h.c., (6)
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which is cubic in components of the momentum opera-
tor. Here, h.c. denotes the Hermitian conjugate.8 Note,
the electric field strength E that enters Eq. 4 is asso-
ciated with the heterojunction |E| = ∂V (z)/∂z along
z-direction and is treated as an adjustable parameter.
From a physical point of view, we can make changes in
E through the application of appropriate gate potentials.
All numerical parameters for InAs are taken from the
Ref. 8
The eigenvalue equationH |ψ>= ǫ|ψ>, withH given

by Eqs. 1 through 6, was solved numerically to obtain
the lowest few eigenvalues and eigenstates vs the various
parameters of the system. These parameters include the
magnetic field strength B, the electric field E, and the
strength of the quantum dot confinement potential as

specified by the quantum dot radius ℓo =
√

h̄
m⋆ω0

.

The notion of electric field induced spin switching is
quantified by defining an effective electron g factor by,

ǫ =
1

2
gµBσzB, (7)

to describe the energy difference between the lowest en-
ergy up and down spin states. Thus, we consider the
lowest two states (including spin) ǫ2 and ǫ1 and calculate
the effective g factor as:

g =
ǫ2 − ǫ1
µBB

. (8)

Results for the variation of this effective g factor as a
function of the parameters E, B and ℓo are presented in
the following section.

III. RESULTS AND DISCUSSIONS

The main observation is: the in-plane symmetry break-
ing in an anisotropic potential (i.e. α 6= β) gives rise to
qualitatively different behavior for the tunability of the
electron g-factor with the application of electric and mag-
netic fields as compared to a symmetric potential (i.e.
α = β = 1).
We focus our attention on motion in the plane of the

2DEG and contrast the effects associated with the quan-
tum dots in symmetric and asymmetric confining poten-
tials as illustrated in Figs. 1(a) and 1(b), respectively.
These figures were obtained by using the quadratic model
potentials with α = β = 1 for the symmetric case as in
Fig. 1(a) and α2 = 1 and β2 = 80 for asymmetric case as
in Fig. 1(b), in the Hamiltonian Hxy, describing motion
in the plane of 2DEG (i.e., x-y plane). The quantum dot

radius defined by ℓo =
√

h̄
m⋆ω0

was choosen to have the

value ℓ0 = 30 nm. The in-plane symmetry breaking due
to anisotropic gate potentials can be contrasted by com-
paring the wave function of the electron in symmetric
and asymmetric model potentials in the plane of 2DEG
as shown in Figs. 1(a) and 1(b).

FIG. 4. (Color online) (a) Changes in the g-factor vs electric
filed for quantum dots in the model potential characterized
by α = 1, β = 1 (black), α = 1, β2 = 40 (red)α = 1, β2 = 80
(green). (b) Electric field induced changes in the g factor
vs the degree of anisotropy of the quantum dot confinement
potential for various electric field strengths. In each plot,
from bottom to to, the curves represent increasing electric
field strength as 1×104, 2×105, 5×105, 7×105 and 106 v/cm.
We choose B=1 T and ℓ0 = 30 nm in each plot. We express
g relative to its nonrelativistic free-electron value g0 = 2.

Figure 2(a) is consistent with previously published
work8 and illustrates the g-factor tunability vs the
strength of the applied electric field and confining po-
tential (as parametrized by the quantum dot radius ℓo)
for fixed magnetic field (B = 1 T) for the symmetric
quantum dot in the quadratic potential of α = β = 1.
We express g relative to its non-relativistic free-electron
value go = 2. We found that there is an abrupt change
in the g-value vs quantum dot radius near 35 nm for the
symmetric potential. This is due to level crossings (two
eigenstates have the same spin) in the quantum dot sys-
tem, as considered in Eq. 8.
Figure 3(a) is also consistent with previously pub-

lished work8 and illustrates the g-factor tunability vs the
strength of the applied electric and magnetic fields for
fixed confining potential (parametrized by the quantum
dot radius ℓo = 20 nm). Again, we found a level crossing
near 3 T for the asymmetric potential.
To quantify the effects of in-plane anisotropy, we have

carried out a parameter study of the g-factor tunabil-
ity vs several variables in an anisotropic case such as
quantum dot radius (ℓ0) in Fig. 2, magnetic field (B) in
Fig. 3, electric field in Fig. 4(a), and degree of anisotropy
(β2/α2) in Fig. 4(b).
First, we consider the results for g-factor tunability

for quantum dots in the asymmetric confining potential
of Figs. 2(b) and 3(b). Figure 2 illustrates the tunabil-
ity of the Lande g-factor vs electric field and confining
potential ℓ0 in the symmetric potential in comparison
with the model potential with parameters α2 = 1 and
β2 = 80. The lowest curve in Fig. 2(a), indicated by filled
black squares, represents the symmetric model potential
of α = β = 1 and the other curves with filled symbols rep-
resent varying electric fields of (2, 5, 7, 100)× 105 v/cm.
Similarly, the top curve in Fig. 2(b), indicated by filled
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black squares, represents the asymmetric model potential
of α2 = 1, β2 = 80 and the other curves with filled sym-
bols represent varying electric fields of (2, 5, 7, 100)× 105

v/cm. In each case of the symmetric and asymmetric
quadratic model potentials, we have chosen B = 1 T. By
introducing the in-plane asymmetric potential, we found
that the tunability of the electron g-factor is extended to
larger quantum dot radius (roughly 55 nm quantum dot
radius).

Figure 3 illustrates the tunability of the Lande g-factor
vs magnetic field in the symmetric potential in compar-
ison with the asymmetric potential characterized by pa-
rameters α2 = 1 and β2 = 80. The lowest curve in
Fig. 3(a), indicated by filled black squares, represents the
symmetric model potential of α = β = 1 and the other
curves with filled symbols represent varying electric fields
of (2, 5, 7, 100)× 105 v/cm. Similarly, the lowest curve in
Fig. 3(b), indicated by filled black squares represents the
asymmetric model potential with β2/α2 = 80 and the
other curves with filled symbols represent varying elec-
tric fields of strength (2, 5, 7, 100) × 105 v/cm. In each
case (symmetric and asymmetric model potentials), we
have chosen ℓ0 = 20 nm. Again, we found that the tun-
ability of the electron g-factor increases with the larger
magnetic field.

Figure 4(a) illustrates the g-factor tunability vs elec-
tric field and degree of anisotropy in both cases: symmet-
ric and asymmetric model potentials. The top curve in
Fig. 4(a), indicated by filled black squares, represents the
symmetric model potential of α = β = 1 and the other
curves with filled symbols represent varying anisotropic
potentials from β2/α2 = 40 and β2/α2 = 80. As before,
we choose, B = 1 T and ℓ0 = 30 nm.

Lastly, Figure 4(b) illustrates the tunability of the
g-factor to the degree of anisotropy in the model po-
tential. The lowest curve in Fig. 4(a), indicated by
filled black squares, represents the symmetric model po-
tential of electric field E = 104 v/cm and the other
curves with filled symbols represent varying electric fields
2× 105, 5× 105, 7× 105 and 106 v/cm. We choose, B = 1
T and ℓ0 = 30 nm.

The g-factor tunability vs electric field for several de-
grees of anisotropic gate potentials in Fig. 4(a) has been
compared to the results in Ref. 17. The authors in Ref. 17
claimed that there is a small variation in the g-factor with
the variation of electric fields for β2/α2 = 1, 2.8, 5 and 10
in a fixed confining potential of GaAs quantum dot ra-
dius, ℓ0 = 30 nm due to both Rashba and Dresselhaus
spin orbit interactions. However, in Fig. 4(a), we can see
that there is a reverse effect in the tunability of the Lande
g-factor vs electric field for several degrees of anisotropic
gate potentials. Broken in-pane rotational asymmetry
in InAs quantum dots due to the Rashba spin orbit cou-
pling for asymmetric confining potentials gives rise to the
reverse effect over symmetric potentials.

The level crossing (two eigenstates have same spin)
starts at larger quantum dot radius in an anisotropic con-
fining potential compared to that of symmetric confining

potential. It means that the anisotropy extends the tun-
ability of the Lande g-factor to a larger quantum dot
radius due to broken in-plane rotational asymmetry in
InAs quantum dots. This causes a monotonous decrease
in the Lande g-factor vs electric field in asymmetric con-
fining potential (β2/α2 = 40(red), 80(green) over sym-
metric confining potentials (β2/α2 = 1(black) as shown
in Fig. 4(a).

IV. CONCLUSIONS

We have carried out a numerical simulation study of
gate induced tunability of the electron g-factor in a pro-
totype single electron spintronic device. We have con-
sidered symmetric and asymmetric quadratic model po-
tentials in the plane of 2DEG and employed a numerical
approach based on the finite element method.
The key result of this work is illustrated in Figs. 2, 3

and 4: anisotropic potential induced by gate voltages in
the plane of 2DEG breaks the in-plane rotational sym-
metry due to the Rashba effect.
Indeed, in Fig. 2(a) we see that all of the curves col-

lapse onto a single curve for large quantum dots (i.e.
starting around ℓo = 35 nm) negating the switching ef-
fect. With anisotropy, however, the range of switchability
is shifted to larger dots. In Fig. 2(a), the Lande g-factor
increases from 0.98 to 1.2 at ℓ0 = 30 nm with the in-
crease in the electric field for the symmetric potential
(i.e., α = β = 1). However, in Fig. 2(b), the Lande g-
factor decreases from 0.98 to 0.82 at ℓ0 = 30 nm with
the increase in the electric field for the asymmetric po-
tential (i.e., β2/α2 = 80). In Fig. 4(a), we see that the
g-factor increases with the increase in electric field (filled
black squares) for the symmetric potential. However, g-
factor decreases with the increase in electric field in an
anisotropic potential (filled red circles β2/α2 = 40 and
filled green triangles pointing down, β2/α2 = 80).
Another result of this work is the variation in the

Lande g-factor with respect to the magnetic field as well
as electric field in both symmetric and asymmetric poten-
tials for fixed quantum dot radius ℓ0) that was illustrated
in Fig. 3(a) and Fig. 3(b). Here, we quantify the Lande
g-factor increases from 0.98 to 1.5 with the increase in
electric field from 1 × 104 v/cm to 100 × 104 v/cm at
the magnetic field of 2 T for the symmetric potential
(i.e., α = β = 1) as shown in Fig. 3(a). However, the
Lande g-factor decreases from 0.98 to 0.90 with the in-
crease in electric field from 1 × 104 v/cm to 100 × 104

v/cm at the magnetic field of 2 T for asymmetric poten-
tial (i.e., α 6= β) as shown in Fig. 3(b).
Lastly, we see that the degree of anisotropy needs not

to be very large in order to obtain significant changes
in the gate induced g-factor tunability, as illustrated
in Fig. 4(b). We see that the g-factor increases with
the increase in the electric field for the anisotropic ra-
tio of up to β2/α2 = 25. Above this value, the g-factor
starts decreasing with the increase in electric field. The



5

monotonous decrease in the Lande g-factor in asymmet-
ric confining potential confirms that anisotropy extends
the tunability of the Lande g-factor to a larger quantum
dot radius due to the Rashba spin orbit coupling.

By employing a fully numerical approach, we have
shown that breaking in-plane rotational symmetry in an
asymmetric potential can lead to a significant change in
the tunability of the electron g-factor over the symmetric

model potential.
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