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Abstract

Canonical matrices of

(a) bilinear and sesquilinear forms,

(b) pairs of forms, in which every form is symmetric or skew-
symmetric, and

(c) pairs of Hermitian forms

are given over finite fields of characteristic 6= 2 and over p-adic fields
(i.e., finite extensions of the field Qp of p-adic numbers) with p 6= 2.

These canonical matrices are special cases of the canonical matrices
of (a)–(c) over a field of characteristic not 2 that were obtained by the
author [Math. USSR–Izv. 31 (1988) 481–501] up to classification
of quadratic or Hermitian forms over its finite extensions; we use the
known classification of quadratic and Hermitian forms over finite fields
and p-adic fields.

AMS classification: 15A21.
Keywords: Bilinear forms, Sesquilinear forms, Congruence, Canon-

ical matrices, Finite fields, Local fields, Fields of p-adic numbers.

1 Introduction

We give canonical matrices of

(a) bilinear and sesquilinear forms,
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(b) pairs of forms in which every form is symmetric or skew-symmetric,
and

(c) pairs of Hermitian forms

over

(i) finite fields of characteristic different from 2, and

(ii) p-adic fields (i.e., finite extensions of the field Qp of p-adic numbers);
for simplicity, we take p 6= 2.

Our canonical matrices are special cases of the canonical matrices of (a)–
(c) over a field F of characteristic not 2 that were obtained in [15] up to
classification of quadratic or Hermitian forms over finite extensions of F. We
use the known classification of quadratic and Hermitian forms over finite
extensions of (i) and (ii).

Analogous canonical matrices of (a)–(c) could be obtained over any local
field (which is either a p-adic field or the field of formal power series of one
variable over a finite field) since the classification of quadratic and Hermitian
forms over local fields is known.

In Section 2 we recall canonical forms of (a)–(c) obtained in [15]. In
Sections 3 and 4 we give canonical forms of (a)–(c) over (i) and (ii).

2 Canonical matrices over any field of char-

acteristic not 2

In this section F denotes a field of characteristic different from 2 with a fixed
involution F → F; that is, a bijection a 7→ ā satisfying

a+ b = ā+ b̄, ab = āb̄, ¯̄a = a for all a, b ∈ F.

We recall canonical forms of (a)–(c) obtained in [15] by the method that was
developed by Roiter and the author in [11, 14, 15]; it reduces the problem of
classifying systems of forms and linear mappings over F to the problems of
classifying

• systems of linear mappings over F, and

2



• quadratic and Hermitian forms over skew fields that are finite exten-
sions of F.

This method was applied to the problem of classifying bilinear and sesquilin-
ear forms in [6, 7, 8] and to the problem of classifying isometric operators
on vector spaces with scalar product given by a nonsingular quadratic or
Hermitian form in [16].

For any matrix A = [aij ] over F, we write A∗ := ĀT = [āji]. Square
matrices A and B are said to be similar if S−1AS = B, congruent if STAS =
B, and *congruent if S∗AS = B for a nonsingular S. Pairs of matrices
(A1, A2) and (B1, B2) are congruent if STA1S = B1 and STA2S = B2; they
are *congruent if S∗A1S = B1 and S∗A2S = B2 for a nonsingular S. The
transformations of congruence (A 7→ STAS) and *congruence (A 7→ S∗AS)
are associated with the bilinear form xTAy and the sesquilinear form x∗Ay,
respectively.

The involution on F can be the identity. Thus, we consider congruence
as a special case of *congruence.

Every square matrix A over F is similar to a direct sum, uniquely deter-
mined up to permutation of summands, of Frobenius blocks

Φ =











0 0 −cm

1
. . .

...
. . . 0 −c2

0 1 −c1











, (1)

whose characteristic polynomial

χΦ(x) = pΦ(x)
l = xm + c1x

m−1 + · · ·+ cm

is an integer power of a polynomial pΦ(x) that is irreducible over F; this
direct sum is called the Frobenius canonical form or the rational canonical
form of A, see [2, Section 6]. If χΦ(x) = (x − λ)m, then Φ is similar to the
Jordan block

Jm(λ) :=











λ 0
1 λ

. . .
. . .

0 1 λ











(m-by-m). (2)
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For each polynomial

f(x) = a0x
n + a1x

n−1 + · · ·+ an ∈ F[x],

we define the polynomials

f̄(x) := ā0x
n + ā1x

n−1 + · · ·+ ān, (3)

f∨(x) := ā−1
n (ānx

n + · · ·+ ā1x+ ā0) if an 6= 0. (4)

In particular,
f∨(x) = a−1

n (anx
n + · · ·+ a1x+ a0) (5)

if the involution on F is the identity.
The following lemma was proved in [15, Lemma 6] (or see [8, 16]).

Lemma 2.1. Let F be a field with involution a 7→ ā, let p(x) = p∨(x) be an
irreducible polynomial over F, and consider the field

F(κ) = F[x]/p(x)F[x], κ := x+ p(x)F[x], (6)

with involution
f(κ)◦ := f̄(κ−1). (7)

Then each element of F(κ) on which the involution acts identically is uniquely
representable in the form q(κ), in which

q(x) = arx
r + · · ·+ a1x+ a0 + ā1x

−1 + · · ·+ ārx
−r, a0 = ā0, (8)

r is the integer part of (deg p(x))/2, a0, . . . , ar ∈ F, and if deg p(x) is even
then

ar =











0 if the involution on F is the identity,

ār if the involution on F is not the identity and p(0) 6= 1,

−ār if the involution on F is not the identity and p(0) = 1.

For each square matrix Φ and

ε =

{

1 or − 1, if the involution on F is the identity,

1, if the involution on F is nonidentity,
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denote by ∗√Φ and Φε fixed nonsingular matrices (if they exist) such that

∗√
Φ = (

∗√
Φ)∗Φ, (9)

Φε = Φ∗

ε, ΦεΦ = ε(ΦεΦ)
∗. (10)

We use the notation ∗√Φ both in the case of nonidentity involution and in
the case of the identity involution on F, but if we know that the involution
is the identity then we prefer to write T

√
Φ instead of ∗√Φ.

It suffices to construct ∗√Φ and Φε for canonical matrices Φ under simi-
larity since if Ψ = S−1ΦS then we can take

∗√
Ψ = S∗ ∗√ΦS, Ψε = S∗ΦεS.

Existence conditions and explicit forms of ∗√Φ and Φε for all Frobenius blocks
Φ will be given in Lemmas 2.6 and 2.7.

Define the skew sum of two matrices

[A�B] :=

[

0 B
A 0

]

.

Theorem 2.2 ([15, Theorem 3]; see also [8, Theorem 2.2]). (a) Let F be
a field of characteristic different from 2 with involution (which can be
the identity). Every square matrix A over F is *congruent to a direct
sum of matrices of the following types:

(i) Jn(0);

(ii) [Φ� In], where Φ is an n × n nonsingular Frobenius block such
that ∗√Φ does not exist (see Lemma 2.6); and

(iii) ∗√Φq(Φ), where Φ is a nonsingular Frobenius block such that ∗√Φ
exists and q(x) 6= 0 has the form (8) from Lemma 2.1 in which
p(x) = pΦ(x) is the irreducible divisor of the characteristic poly-
nomial of Φ.

(b) The summands are determined to the following extent:

Type (i) uniquely.

Type (ii) up to replacement of Φ by the Frobenius block Ψ that is
similar to Φ−∗ (i.e., whose characteristic polynomial is χ∨

Φ(x), see
(4)).
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Type (iii) up to replacement of the whole group of summands

∗√
Φq1(Φ)⊕ · · · ⊕ ∗√

Φqs(Φ)

with the same Φ by

∗√
Φq′1(Φ)⊕ · · · ⊕ ∗√

Φq′s(Φ)

in which each q′i(x) is a nonzero function of the form (8) and the
Hermitian forms

q1(κ)x
◦

1y1 + · · ·+ qs(κ)x
◦

sys,

q′1(κ)x
◦

1y1 + · · ·+ q′s(κ)x
◦

sys

are equivalent over the field (6) with involution (7).

(c) Frobenius blocks in (a) and (b) can be replaced by arbitrary matrices that
are similar to them (for example, by Jordan blocks if F is algebraically
closed).

Define the (n− 1)× n matrices

Fn :=







1 0 0
. . .

. . .

0 1 0






, Gn :=







0 1 0
. . .

. . .

0 0 1






(11)

for each n = 1, 2, . . . , and define the direct sum of two matrix pairs:

(A1, B1)⊕ (A2, B2) := (A1 ⊕A2, B1 ⊕B2).

Theorem 2.3 ([15, Theorem 4]). (a) Let F be a field of characteristic dif-
ferent from 2 with involution (which can be the identity). Let A and B
be ε-Hermitian and δ-Hermitian matrices over F of the same size:

A∗ = εA, B∗ = δB,

in which

(ε, δ) =

{

(1, 1), if the involution on F is nonidentity,
(1, 1) or (1,−1) or (−1,−1), otherwise.

Then (A,B) is *congruent to a direct sum of matrix pairs of the fol-
lowing types:
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(i) ([Fn � εF ∗

n ], [Gn � δG∗

n]), in which Fn and Gn are defined in (11);

(ii) ([In � εIn], [Φ� δΦ∗]), in which Φ is an n × n Frobenius block
such that Φδ (see (10)) does not exist if ε = 1;

(iii) A
f(x)
Φ := (Φδ,ΦδΦ)f(Φ) only if ε = 1, in which 0 6= f(x) =

f̄(δx) ∈ F[x] (see (3)), and deg(f(x)) < deg(pΦ(x));

(iv) ([Jn(0)� εJn(0)
∗], [In � (−In)]) only if δ = −1, in which n is odd

if ε = 1;

(v)

Ba
n :=





















a





















0 1 0
δ ·

1 ·
δ ·

· ·
· ·
0 0





















, a





















0 1
δ

1
δ

·
·

· 0









































, (12)

in which the matrices are n-by-n, ε = 1, 0 6= a = ā ∈ F, and n is
even if δ = −1.

(b) The summands are determined to the following extent:

Type (i) uniquely.

Type (ii) up to replacement of Φ by the Frobenius block Ψ with
χΨ(x) = (εδ)detχΦχ̄Φ(εδx).

Type (iii) up to replacement of the whole group of summands

A
f1(x)
Φ ⊕ · · · ⊕ A

fs(x)
Φ

with the same Φ by

A
g1(x)
Φ ⊕ · · · ⊕ A

gs(x)
Φ

such that the Hermitian forms

f1(ω)x
◦

1y1 + · · ·+ fs(ω)x
◦

sys,

g1(ω)x
◦

1y1 + · · ·+ gs(ω)x
◦

sys

are equivalent over the field F(ω) = F[x]/pΦ(x)F[x] with involution
f(ω)◦ = f̄(δω).
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Type (iv) uniquely.

Type (v) up to replacement of the whole group of summands

Ba1
n ⊕ · · · ⊕ Bas

n (13)

with the same n by
Bb1

n ⊕ · · · ⊕ Bbs
n (14)

such that the Hermitian forms

a1x̄1y1 + · · ·+ asx̄sys,

b1x̄1y1 + · · ·+ bsx̄sys

are equivalent over F.

(c) Frobenius blocks in (a) and (b) can be replaced by arbitrary matrices that
are similar to them (for example, by Jordan blocks if F is algebraically
closed).

Taking ε = δ = −1 in Theorem 2.3, we obtain the following well-known
canonical form of pairs skew-symmetric matrices; see, for example, [12, 17].

Corollary 2.4. Over any field of characteristic not 2, each pair of skew-
symmetric matrices of the same size is congruent to a direct sum, uniquely
determined up to permutation of summands, of pairs of the form:

(i) ([Fn� − F T
n ], [Gn� −GT

n ]), in which Fn and Gn are defined in (11);

(ii) ([In� − In], [Φ� − ΦT ]), in which Φ is an n× n Frobenius block;

(iii) ([Jn(0)� − Jn(0)
T ], [In � − In]).

Remark 2.5. If δ = −1 then the matrix pair Ba
n defined in (12) consists of

n× n matrices and n is even. In this case, the pair

Ca
n :=

















a









0 1 0

· · · · · ·
1 0
0 0









, a

















0 1

· · ·
1

−1

· · ·
−1 0

































(15)
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of symmetric and skew-symmetric matrices of size n×n can be used in (12)–
(14) instead of Ba

n. This follows from the proof of Theorem 4 in [15] since the
pairs Ba

n and Ca
n are equivalent; that is, RBa

nS = Ca
n for some nonsingular R

and S.

Let

f(x) = γ0x
m + γ1x

m−1 + · · ·+ γm ∈ F[x], m > 1, γ0 6= 0 6= γm.

A vector (a1, a2, . . . , an) over F is called f -recurrent if either n 6 m, or

γ0al + γ1al+1 + · · ·+ γmal+m = 0 for all l = 1, 2, . . . , n−m.

Thus, this vector is completely determined by any fragment of length m.
Existence conditions and explicit forms of ∗√Φ and Φε for Frobenius

blocks Φ are given in the following two lemmas.

Lemma 2.6 ([15, Theorem 7]; a detailed proof in [8, Lemma 2.3]). Let F be
a field of characteristic not 2 with involution (possibly, the identity). Let Φ
be an n× n nonsingular Frobenius block whose characteristic polynomial is
a power of an irreducible polynomial pΦ(x).

(a) ∗√Φ exists if and only if

pΦ(x) = p∨Φ(x) (see (4)), and (16)

if the involution on F is the identity, also pΦ(x) 6= x+ (−1)n+1. (17)

(b) If (16) and (17) are satisfied and

χΦ(x) = xn + c1x
n−1 + · · ·+ cn (18)

is the characteristic polynomial of Φ, then for ∗√Φ one can take the
Toeplitz matrix

∗√
Φ := [ai−j ] =















a0 a−1
. . . a1−n

a1 a0
. . .

. . .
. . .

. . .
. . . a−1

an−1
. . . a1 a0















, (19)
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whose vector of entries (a1−n, a2−n, . . . , an−1) is the χΦ-recurrent exten-
sion of the vector

v = (a1−m, . . . , am) = (a, 0, . . . , 0, ā) (20)

of length

2m =

{

n if n is even,

n+ 1 if n is odd,
(21)

in which

a :=



















1 if n is even, except for the case

pΦ(x) = x+ c with cn−1 = −1,

χΦ(−1) if n is odd and pΦ(x) 6= x+ 1,

e− ē otherwise, with any fixed ē 6= e ∈ F.

(22)

Lemma 2.7 ([15, Theorem 8]). Let F be a field of characteristic not 2 with
involution (possibly, the identity). Let Φ be an n×n Frobenius block (1) over
F. Existence conditions for the matrix Φε are:

pΦ(x) = εnp̄Φ(εx) (see (3)), (23)

if ε = −1 then also χΦ(x) /∈ {x2, x4, x6, . . .}. (24)

With these conditions satisfied, one can take

Φε = [εiai+j ],

in which the sequence (a2, a3, . . . , a2n) is χ-recurrent, and is defined by the
fragment

(a2, . . . , an+1) =

{

(1, 0, . . . , 0) if Φ is nonsingular,

(0, . . . , 0, 1) if Φ is singular.
(25)

3 Canonical forms over finite fields

In this section we give canonical matrices of bilinear and sesquilinear forms,
pairs of symmetric or skew-symmetric forms, and pairs of Hermitian forms
over a finite field F of characteristic not 2. We use Theorems 2.2 and 2.3,
in which these canonical matrices are given up to classification of quadratic
and Hermitian forms over finite extensions of F (that is, over finite fields of
characteristic not 2), and the following lemma.
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Lemma 3.1 ([3, Chap. 1, § 8]). (a) Each quadratic form of rank r over a
finite field F of characteristic not 2 is equivalent to

either x2
1 + x2

2 + · · ·+ x2
r , or ζx2

1 + x2
2 + · · ·+ x2

r ,

where ζ is a fixed nonsquare in F.

(b) Each Hermitian form of rank r over a finite field of characteristic not
2 with nonidentity involution is equivalent to x̄1y1 + · · ·+ x̄ryr.

Utv. (b) eshe iz Scharlau ch 10, 1.6, examples (i).

3.1 Canonical matrices for congruence and *congru-
ence

Define the n-by-n matrix

Γn =













0 · · ·
−1 · · ·

1 1
−1 −1

1 1 0













(Γ1 = [ 1 ]). (26)

Theorem 3.2. Every square matrix over a finite field F of characteristic
different from 2 is congruent to a direct sum that is uniquely determined up
to permutation of summands and consists of any number of summands of the
following types:

(i) Jn(0);

(ii) [Φ� In], in which Φ is an n× n nonsingular Frobenius block such that

pΦ(x) 6= p∨Φ(x) (see (5)) or pΦ(x) = x+ (−1)n+1, (27)

and Φ is determined up to replacement by the Frobenius block Ψ with
χΨ(x) = χ∨

Φ(x);

(iii) T
√
Φ, in which Φ is a nonsingular Frobenius block such that pΦ(x) =

p∨Φ(x) and deg pΦ(x) > 2;

(iv) for each n = 1, 2, . . . :
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• Γn,

• at most one summand ζΓn, in which ζ is a fixed nonsquare of F.

Proof. Let F be a finite field of characteristic not 2 with the identity invo-
lution. By Theorem 2.2(a), every square matrix A over F is congruent to a
direct sum of matrices of the form

(a) Jn(0), (b) [Φ� In] if
T
√
Φ does not exist, (c)

T
√
Φq(Φ).

Consider each of these summands.
Summands (a). Theorem 2.2(b) ensures that the summands of the form

Jn(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2.6(a), T
√
Φ does not exist if and only if (27)

holds. Theorem 2.2(b) ensures that the summands of the form [Φ� In] are
uniquely determined by A, up to replacement of Φ by Ψ with χΨ(x) = χ∨

Φ(x).
This gives the summands (ii).

Summands (c). Let Φ be a nonsingular n× n Frobenius block for which
T
√
Φ exists. Then by Lemma 2.6(a)

pΦ(x) = p∨Φ(x), pΦ(x) 6= x+ (−1)n+1. (28)

Consider the whole group of summands of the form T
√
Φq(Φ) with the same

Φ:
T
√
Φq1(Φ)⊕ · · · ⊕ T

√
Φqs(Φ). (29)

Let first deg pΦ(x) > 1. Then the involution f(κ)◦ := f(κ−1) on the field
F(κ) = F[x]/pΦ(x)F[x] (see (6) and (7)) is nonidentity; otherwise κ = κ◦ =
κ−1, κ2−1 = 0, (x2−1)|pΦ(x), and hence pΦ(x) = x±1 since it is irreducible.
By Lemma 3.1(b), the Hermitian form

q1(κ)x
◦

1y1 + · · ·+ qs(κ)x
◦

sys

over F (κ) is equivalent to x◦

1y1 + · · ·+ x◦

sys. By Theorem 2.2(b), the matrix
(29) is congruent to T

√
Φ ⊕ · · · ⊕ T

√
Φ and the summands of the form T

√
Φ

with deg pΦ(x) > 1 are uniquely determined by A. This gives the summands
(iii).

Let now pΦ(x) = x+c. Then by (28) and (4) x+c = c−1(cx+1), c = c−1,
c = ±1. The inequality in (28) implies

pΦ(x) = x+ (−1)n. (30)
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By [8, Eq.(70)],

Γ−T
n Γn = Υn := (−1)n+1











1 2 *
1

. . .

. . . 2
0 1











. (31)

Hence Γn = T
√
Υn and Υn is similar to Jn((−1)n+1), which is similar to Φ

due to (30). By Theorem 2.2(c) we can take Υn instead of Φ with pΦ(x) =
x + (−1)n in Theorem 2.2(a,b). The field F(κ) = F[x]/pΦ(x)F[x] is F with
the identity involution; all polynomials qi(x) in (29) are some scalars ai ∈ F.
By Lemma 3.1(a), the quadratic form

q1(κ)x
2
1 + · · ·+ qs(κ)x

2
s = a1x

2
1 + · · ·+ asx

2
s

over F is equivalent to

either x2
1 + · · ·+ x2

r , or ζx2
1 + x2

2 + · · ·+ x2
r ,

in which ζ is a fixed nonsquare of F. Theorem 2.2(b) ensures that (29) is
congruent to

either Γn ⊕ · · · ⊕ Γn, or ζΓn ⊕ Γn ⊕ · · · ⊕ Γn,

and this sum is uniquely determined by A. This gives the summands (iv).

Note that if T
√
Φ exists, then deg pΦ(x) is even or pΦ(x) = x + (−1)n.

Indeed, pΦ(x) = p∨Φ(x) by (16). Let pΦ(x) = xn + c1x
n−1 + · · ·+ cn. Then

xn + c1x
n−1 + · · ·+ cn = c−1

n (cnx
n + · · ·+ c1x+ 1),

cn = c−1
n , and θ := cn = ±1. If n = 2m+ 1, then

pΦ(x) = xn + c1x
n−1 + · · ·+ cm+1x

m+1 + θcm+1x
m + · · ·+ θc1x

n−1 + θ,

and so pΦ(−θ) = 0. Since pΦ(x) is irreducible, pΦ(x) = x + θ. By the
inequality (17), pΦ(x) = x+ (−1)n.

JaJa Example: F5/(x
2 + x+ 1).

Theorem 3.3. Let F be a finite field of characteristic not 2 with noniden-
tity involution. Every square matrix over F is *congruent to a direct sum,
uniquely determined up to permutation of summands, of matrices of the fol-
lowing types:
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(i) Jn(0);

(ii) [Φ� In], in which Φ is an n× n nonsingular Frobenius block such that
pΦ(x) 6= p∨Φ(x) (see (4)) and Φ is determined up to replacement by the
Frobenius block Ψ with χΨ(x) = χ∨

Φ(x);

(iii) ∗√Φ, in which Φ is a nonsingular Frobenius block such that pΦ(x) =
p∨Φ(x).

Proof. Let F be a finite field of characteristic not 2 with nonidentity involu-
tion. By Theorem 2.2(a), every square matrix A over F is *congruent to a
direct sum of matrices of the form

(a) Jn(0), (b) [Φ� In] if
∗√
Φ does not exist, (c)

∗√
Φq(Φ).

Consider each of these summands.
Summands (a). Theorem 2.2(b) ensures that the summands of the form

Jn(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2.6(a), ∗√Φ does not exist if and only if
pΦ(x) 6= p∨Φ(x). Theorem 2.2(b) ensures that the summands of the form
[Φ� In] are uniquely determined by A, up to replacement of Φ by Ψ with
χΨ(x) = χ∨

Φ(x). This gives the summands (ii).
Summands (c). Let Φ be a nonsingular n× n Frobenius block for which∗√Φ exists; this means that pΦ(x) = p∨Φ(x). Consider the whole group of

summands of the form ∗√Φq(Φ) with the same Φ:

∗√
Φq1(Φ)⊕ · · · ⊕ ∗√

Φqs(Φ). (32)

The involution f(κ)◦ := f(κ−1) on the field F(κ) = F[x]/pΦ(x)F[x] (see (6)
and (7)) is nonidentity since it extends the nonidentity involution on F. By
Lemma 3.1(b), the Hermitian form

q1(κ)x
◦

1y1 + · · ·+ qs(κ)x
◦

sys

over F (κ) is equivalent to x◦

1y1 + · · · + x◦

sys, and so by Theorem 2.2(b) the
matrix (32) is *congruent to ∗√Φ⊕· · ·⊕ ∗√Φ and this direct sum is uniquely
determined by A. This gives the summands (iii).
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3.2 Canonical pairs of symmetric or skew-symmetric
matrices

In this section, we give canonical matrices of pairs consisting of symmetric or
skew-symmetric forms. Canonical matrices of pairs of skew-symmetric forms
are given in Corollary 2.4; it remains to consider pairs, in which the first
form is symmetric and the second is symmetric or skew-symmetric.

For square matrices A,B,C,D of the same size, we write

(A,B)⊕ (C,D) = (A⊕ C,B ⊕D), (A,B)C = (AC,BC).

Theorem 3.4. Each pair of symmetric matrices of the same size over a finite
field F of characteristic not 2 is congruent to a direct sum that is uniquely
determined up to permutation of summands and consists of any number of
summands of the following types:

(i) ([Fn�F T
n ], [Gn�GT

n ]), where Fn and Gn are defined in (11);

(ii) for each nonsingular Frobenius block Φ:

• (Φ1,Φ1Φ), in which Φ1 is defined in (10),

• at most one summand (Φ1,Φ1Φ)fΦ(Φ), in which fΦ(x) ∈ F[x] is
a fixed (for each Φ) polynomial of degree < deg(pΦ(x)) such that

fΦ(ω) ∈ F(ω) := F[x]/pΦ(x)F[x]

is not a square;

(iii) for each n = 1, 2, . . . :

• the pair of n× n matrices

Bn :=

















0 1 0

· · · · · ·
1 0
0 0









,









0 1

· · ·
1

1 0

















, (33)

• at most one summand ζBn, in which ζ is a fixed nonsquare of F.
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Proof. Let F be a finite field of characteristic not 2 with the identity invo-
lution. By Lemma 2.7, the matrix Φ1 exists for each nonsingular Frobenius
block Φ over F. By Theorem 2.3(a), each pair (A,B) of symmetric matrices
of the same size is congruent to a direct sum of pairs of the form

(a) ([Fn�F T
n ], [Gn�GT

n ]), (b) A
f(x)
Φ := (Φ1,Φ1Φ)f(Φ), (c) Ba

n,

in which f(x) ∈ F[x] is a nonzero polynomial of degree < deg(pΦ(x)) and
0 6= a ∈ F.

Consider each of these summands.
Summands (a). Theorem 2.3(b) ensures that the summands of the form

(a) are uniquely determined by (A,B), which gives the summands (i) of the
theorem.

Summands (b). Consider the whole group of summands of the form A
g(x)
Φ

with the same nonsingular Frobenius block Φ:

A
g1(x)
Φ ⊕ · · · ⊕ A

gs(x)
Φ . (34)

By Lemma 3.1(a), the quadratic form

q1(ω)x
2
1 + · · ·+ qs(ω)x

2
s

over F(ω) = F[x]/pΦ(x)F[x] is equivalent to

either x2
1 + · · ·+ x2

r , or fΦ(ω)x
2
1 + x2

2 + · · ·+ x2
r ,

in which fΦ(x) ∈ F[x] is a fixed nonzero polynomial of degree < deg(pΦ(x))
such that fΦ(ω) ∈ F(ω) is not a square. Theorem 2.2(b) ensures that (34) is
congruent to

either A1
Φ ⊕ · · · ⊕ A1

Φ, or A
fΦ(x)
Φ ⊕A1

Φ ⊕ · · · ⊕A1
Φ,

and this sum is uniquely determined by (A,B). This gives the summands
(ii).

Summands (c). Consider the whole group of summands of the form Ba
n

with the same n:
Ba1

n ⊕ · · · ⊕ Bas
n . (35)

By Lemma 3.1(a), the quadratic form a1x
2
1 + · · ·+ asx

2
s over F is equivalent

to either x2
1 + · · ·+ x2

r , or ζx
2
1+ x2

2 + · · ·+ x2
r , in which ζ is a fixed nonsquare

of F. Theorem 2.2(b) ensures that (35) is congruent to

either B1
n ⊕ · · · ⊕ B1

n, or Bζ
n ⊕B1

n ⊕ · · · ⊕B1
n,
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and this sum is uniquely determined by (A,B). This gives the summands
(iii).

Theorem 3.5. Each pair consisting of a symmetric matrix and a skew-
symmetric matrix of the same size over a finite field F of characteristic not 2
is congruent to a direct sum that is uniquely determined up to permutation of
summands and consists of any number of summands of the following types:

(i) ([Fn�F T
n ], [Gn� −GT

n ]), in which Fn and Gn are defined in (11);

(ii) ([In� In], [Φ� − ΦT ]), in which Φ is an n × n Frobenius block such
that

pΦ(x) /∈ F[x2], Φ 6= J1(0), J3(0), J5(0), . . . (36)

(see (2)), and Φ is determined up to replacement by the Frobenius block
Ψ with χΨ(x) = (−1)detχΦχΦ(−x);

(iii) (Φ−1,Φ−1Φ), in which Φ is a Frobenius block such that pΦ(x) ∈ F[x2];

(iv) ([Jn(0)� Jn(0)
T ], [In� − In]), in which n is odd;

(v) for each n = 1, 2, 3, . . . :

• the pair of n-by-n symmetric and skew-symmetric matrices defined
as follows:

Cn :=

























0 1

· · ·
1 0



 ,





















0 1 0

· · · · · ·
1 0

−1 0

· · · 0
−1 · · ·
0 0









































(37)

if n is odd, and

Cn :=

























0 1 0

· · · · · ·
1 0
0 0









,

















0 1

· · ·
1

−1

· · ·
−1 0

































(38)

if n is even,
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• at most one summand of the form ζCn, in which ζ is a fixed non-
square of F.

Proof. Let F be a finite field of characteristic not 2 with the identity invo-
lution. By Theorem 2.3(a) and Remark 2.5, each pair (A,B) consisting of
a symmetric matrix A and a skew-symmetric matrix B of the same size is
congruent to a direct sum of pairs of the form

(a) ([Fn�F T
n ], [Gn� −GT

n ]),

(b) ([In� In], [Φ� − ΦT ]) if Φ−1 does not exist,

(c) A
f(x)
Φ := (Φ−1,Φ−1Φ)f(Φ), in which 0 6= f(x) = f(−x) ∈ F[x] and

deg(f(x)) < deg(pΦ(x)),

(d) ([Jn(0)� Jn(0)
T ], [In� − In]), in which n is odd,

(e) Ca
n (defined in (15)), in which n is even and 0 6= a ∈ F.

Consider each of these summands.
Summands (a). Theorem 2.3(b) ensures that the summands (a) are

uniquely determined by (A,B), which gives the summands (i) of the the-
orem.

Summands (b). By Lemma 2.7, Φ−1 does not exist if and only if
(36) is satisfied. Theorem 2.3(b) ensures that the summands (b) are
uniquely determined by (A,B), up to replacement of Φ by Ψ with χΨ(x) =
(−1)detχΦχΦ(−x), which gives the summands (ii).

Summands (c). By Lemma 2.7, Φ−1 exists if and only if (36) is not
satisfied; that is,

pΦ(x) ∈ F[x2] or Φ = J1(0), J3(0), J5(0), . . . (39)

Consider the whole group of summands of the form A
f(x)
Φ with the same

nonsingular Frobenius block Φ:

A
f1(x)
Φ ⊕ · · · ⊕ A

fs(x)
Φ . (40)

Let first pΦ(x) ∈ F[x2]. Then the involution f(ω)◦ = f(−ω) on F(ω) =
F[x]/pΦ(x)F[x] is nonidentity (since ω◦ = −ω 6= ω). By Lemma 3.1(b), the
Hermitian form

f1(ω)x
◦

1y1 + · · ·+ fs(ω)x
◦

sys

18



over F(ω) is equivalent to x◦

1y1 + · · · + x◦

ryr. Theorem 2.2(b) ensures that
(40) is congruent to A1

Φ ⊕ · · · ⊕ A1
Φ, which gives the summands (iii).

Let now Φ = Jn(0) with n = 2m + 1 and m = 1, 2, . . . . The equalities
(10) hold for the n× n matrices

Φ′ :=

























0 0

−1
. . . · · ·
. . . 0 0 0

−1 0 0
0 1 0

· · ·
. . .

. . .

0 1 0

























, Φ′

−1 :=





0 1

· · ·
1 0



 (41)

instead of Φ and Φ−1. Since Φ and Φ′ are similar, by Theorem 2.3(c) we can

take C
f(x)
n := (Φ′

−1,Φ
′

−1Φ
′)f(Φ′) instead of A

f(x)
Φ and

Cf1(x)
n ⊕ · · · ⊕ Cfs(x)

n (42)

instead of (40).
Since pΦ(x) = x, the field F(ω) = F[x]/pΦ(x)F[x] is F with the identity

involution and all polynomials fi(x) in (42) are some scalars ai ∈ F. By
Lemma 3.1(a), the quadratic form a1x

2
1 + · · ·+ asx

2
s over F is equivalent to

either x2
1 + · · ·+ x2

r , or ζx
2
1 + x2

2 + · · ·+ x2
r , in which ζ is a fixed nonsquare

of F. Theorem 2.2(b) ensures that (40) is congruent to

either C1
n ⊕ · · · ⊕ C1

n, or Cζ
n ⊕ C1

n ⊕ · · · ⊕ C1
n, (43)

and this sum is uniquely determined by (A,B). This gives the summands
(v) with odd n.

Summands (d). Theorem 2.3(b) ensures that the summands of the form
(d) are uniquely determined by (A,B), which gives the summands (iv).

Summands (e). Consider the whole group of summands of the form Ca
n

with the same n:
Ca1

n ⊕ · · · ⊕ Cas
n . (44)

By Lemma 3.1(a), the quadratic form a1x
2
1 + · · ·+ asx

2
s over F is equivalent

to either x2
1 + · · ·+ x2

r , or ζx
2
1+ x2

2 + · · ·+ x2
r , in which ζ is a fixed nonsquare

of F. Theorem 2.2(b) and Remark 2.5 ensure that (44) is congruent to

either C1
n ⊕ · · · ⊕ C1

n, or Cζ
n ⊕ C1

n ⊕ · · · ⊕ C1
n,
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and this sum is uniquely determined by (A,B), which gives the summands
(v) with even n.

3.3 Canonical pairs of Hermitian matrices

Theorem 3.6. Let F be a finite field of characteristic not 2 with nonidentity
involution. Let F◦ be the fixed field of F. Each pair of Hermitian matrices of
the same size over F is *congruent to a direct sum, uniquely determined up
to permutation of summands, of pairs of the following types:

(i) ([Fn�F ∗

n ], [Gn �G∗

n]), in which Fn and Gn are defined in (11);

(ii) ([In� In], [Φ�Φ∗]), in which Φ is an n × n Frobenius block over F
such that pΦ(x) /∈ F◦[x], and Φ is determined up to replacement by the
Frobenius block Ψ with χΨ(x) = χ̄Φ(x) (see (3));

(iii) (Φ1,Φ1Φ), in which Φ is a Frobenius block over F◦;

(iv) the pair of n× n matrices

Bn :=

















0 1 0

· · · · · ·
1 0
0 0









,









0 1

· · ·
1

1 0

















, n = 1, 2, . . . (45)

Proof. Let F be a finite field of characteristic not 2 with nonidentity involu-
tion. By Theorem 2.3(a), each pair (A,B) of Hermitian matrices over F of
the same size is *congruent to a direct sum of pairs of the form

(a) ([Fn�F ∗

n ], [Gn �G∗

n]),

(b) ([In� In], [Φ�Φ∗]) if Φ1 does not exist,

(c) A
f(x)
Φ := (Φδ,Φ1Φ)f(Φ), in which 0 6= f(x) = f̄(x) ∈ F[x] and

deg(f(x)) < deg(pΦ(x)),

(d) Ba
n (defined in (12)), in which 0 6= a = ā ∈ F.

Consider each of these summands.
Summands (a). Theorem 2.3(b) ensures that the summands of the form

(a) are uniquely determined by (A,B), which gives the summands (i) of the
theorem.
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Summands (b). By Lemma 2.7(a), Φ1 does not exist if and only if pΦ(x) 6=
p̄Φ(x); that is, pΦ(x) /∈ F◦[x]. Theorem 2.3(b) ensures that the summands
of the form (b) are uniquely determined, up to replacement of Φ by Ψ with
χΨ(x) = χ̄Φ(x). This gives the summands (ii).

Summands (c). Consider the whole group of summands of the form A
f(x)
Φ

with the same nonsingular Frobenius block Φ:

A
f1(x)
Φ ⊕ · · · ⊕ A

fs(x)
Φ . (46)

By Lemma 3.1(b), the Hermitian form

f1(ω)x
◦

1y1 + · · ·+ fs(ω)x
◦

sys

over F(ω) = F[x]/pΦ(x)F[x] with involution f(ω)◦ = f̄(ω) is equivalent to
x◦

1x1 + · · ·+ x◦

sxs. Theorem 2.3(b) ensures that (46) is *congruent to A1
Φ ⊕

· · · ⊕ A1
Φ and this sum is uniquely determined by (A,B). This gives the

summands (iii).
Summands (d). Consider the whole group of summands of the form Ba

n

with the same n:
Ba1

n ⊕ · · · ⊕ Bas
n . (47)

By Lemma 3.1(b), the Hermitian form a1x̄1y1 + · · ·+ asx̄sys over F is equiv-
alent to x̄1y1 + · · · + x̄sys. Theorem 2.2(b) ensures that (47) is *congruent
to B1

n ⊕ · · · ⊕B1
n and this sum is uniquely determined by (A,B). This gives

the summands (iv).

4 Canonical forms over p-adic fields

In this section K is a finite extension of Qp with p 6= 2.
Let us recall the classification of quadratic and Hermitian forms over K.

Each nonzero element of Qp can be represented in the form

a = αzp
z + αz+1p

z+1 + · · · , z ∈ Z, αz 6= 0, (48)

in which all αi ∈ {0, 1, . . . , p − 1}. The exponential variation on K is the
following mapping ν : K → R ∪ {+∞}:

ν(a) :=



















+∞, if a = 0,

z, if 0 6= a ∈ Qp is represented in the form (48),

ν(αm)/m, if a /∈ Qp and its minimum polynomial of over Qp is

xm + α1x
m−1 + · · ·+ αm.
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The ring
O(K) := {a ∈ K | ν(a) > 0} (49)

is called the ring of integers of K; it is a principal ideal ring, whose unique
maximal ideal is

m := {a ∈ K | ν(a) > 0} = πO(K). (50)

Each generator π of m is called a prime element. The set

O(K)× := {a ∈ K | ν(a) = 0} (51)

is the group of all invertible elements of O(K); they are called the units of
K.

The factor ring
O(K)/m (52)

is a field, which is called the residue field of K; it is a finite extension of the
residue field Fp = Qp/pQp of Qp.

Lemma 4.1. Let K be a finite extension of Qp with p 6= 2. Let its residue
field O(K)/m consist of pm elements. Let u ∈ O(K)× \K×2 be a unit that is
not a square, and π be a prime element. Then each quadratic form of rank
r > 1 over K is equivalent to exactly one form

c1x
2
1 + c2x

2
2 + · · ·+ ctx

2
t + x2

t+1 + · · ·+ x2
r, (53)

in which (c1, . . . , ct) is one of the sequences:

(1), (u), (π), (uπ), (u, π), (u, uπ), (π, rπ), (u, π, rπ), (54)

where

r :=

{

u if pm ≡ 1 mod 4,

1 if pm ≡ 3 mod 4.
(55)

Lemma 4.2. Let a field K with nonidentity involution be a finite extension
of Qp, p 6= 2. Let K◦ be the fixed field with respect to this involution. Let
u ∈ O(K◦)

× \K×2
◦

be a unit that is not a square, and π be a prime element of
K◦. Then each Hermitian form with nonzero determinant over K is classified
by dimension and determinant; moreover, it is equivalent to

either x̄1y1 + · · ·+ x̄nyn, or tx̄1y1 + x̄2y2 + · · ·+ x̄nyn,

22



in which

t :=

{

π if K = K◦(
√
u),

u if K = K◦(
√
π) or K◦(

√
uπ).

(56)

Proof. By [13, Ch. 10, Example 1.6(ii)], regular Hermitian forms over K are
classified by dimension and determinant.

4.1 Canonical matrices for congruence and *congru-

ence

Theorem 4.3. Let a field F be a finite extension of Qp with p 6= 2. Every
square matrix over F is congruent to a direct sum that is uniquely determined
up to permutation of summands and consists of any number of summands of
the following types:

(i) Jn(0);

(ii) [Φ� In], in which Φ is an n × n nonsingular Frobenius block over F
such that

pΦ(x) 6= p∨Φ(x) (see (5)) or pΦ(x) = x+ (−1)n+1 (57)

and Φ is determined up to replacement by the Frobenius block Ψ with
χΨ(x) = χ∨

Φ(x);

(iii) for each nonsingular Frobenius block Φ over F such that pΦ(x) = p∨Φ(x)
and deg pΦ(x) > 2:

• T
√
Φ,

• at most one summand of the form
{

T
√
Φπ̃(Φ) if K = K◦(

√
u),

T
√
Φũ(Φ) if K = K◦(

√
π) or K = K◦(

√
uπ),

in which K is the following field with involution:

K := F(κ) = F[x]/pΦ(x)F[x], f(κ)◦ := f(κ−1)

(see (6) and (7)), K◦ is its fixed field, π is a prime element of
K◦, u ∈ O(K◦)

× \K×2
◦

is a unit that is not a square, π̃(x), ũ(x) ∈
F[x, x−1] are the functions of the form (8) such that π̃(κ) = π and
ũ(κ) = u;
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(iv) for each n = 1, 2, . . . :

• Γn (defined in (26)),

• at most one summand from the list

uΓn, πΓn, uπΓn, uΓn ⊕ πΓn, uΓn ⊕ uπΓn,

πΓn ⊕ rπΓn, uΓn ⊕ πΓn ⊕ rπΓn,

in which

r :=

{

u if pm ≡ 1 mod 4,

1 if pm ≡ 3 mod 4,
(58)

pm is the number of elements of the residue field O(F)/m of F,
u ∈ O(F)× \ F×2 is a unit that is not a square, and π is a prime
element of F.

Proof. Let a field F be a finite extension of Qp with p 6= 2. By Theorem
2.2(a), every square matrix A over F is congruent to a direct sum of matrices
of the form

(a) Jn(0), (b) [Φ� In] if
T
√
Φ does not exist, (c)

T
√
Φq(Φ).

Consider each of these summands.
Summands (a). Theorem 2.2(b) ensures that the summands of the form

Jn(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2.6(a), T
√
Φ does not exist if and only if (57)

holds. Theorem 2.2(b) ensures that the summands of the form [Φ� In] are
uniquely determined by A, up to replacement of Φ by Ψ with χΨ(x) = χ∨

Φ(x).
This gives the summands (ii).

Summands (c). Let Φ be a nonsingular n× n Frobenius block for which
T
√
Φ exists. Then by Lemma 2.6(a)

pΦ(x) = p∨Φ(x), pΦ(x) 6= x+ (−1)n+1. (59)

Consider the whole group of summands of the form T
√
Φq(Φ) with the same

Φ:
T
√
Φq1(Φ)⊕ · · · ⊕ T

√
Φqs(Φ). (60)

Let first deg pΦ(x) > 1. Then the involution f(κ)◦ := f(κ−1) on the field
F(κ) = F[x]/pΦ(x)F[x] (see (6) and (7)) is nonidentity; otherwise κ = κ◦ =
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κ−1, κ2 − 1 = 0, x2 − 1 divides pΦ(x), and hence pΦ(x) = x ± 1 since it is
irreducible. By Lemma 4.2, the Hermitian form

q1(κ)x
◦

1y1 + · · ·+ qs(κ)x
◦

sys

over F(κ) is equivalent to either x◦

1y1+ · · ·+x◦

sys or tx
◦

1y1+x◦

2y2+ · · ·+x◦

sys,
in which t is defined in (56). Theorem 2.2(b) ensures that the matrix (60) is
congruent to

either
T
√
Φ⊕ · · · ⊕ T

√
Φ, or

T
√
Φt̃(Φ)⊕ T

√
Φ⊕ · · · ⊕ T

√
Φ,

in which t̃(x) ∈ F[x, x−1] is the function of the form (8) such that t̃(κ) = t.
This sum is uniquely determined by A, which gives the summands (iii).

Let now pΦ(x) = x+c. Then by (59) and (4), x+c = c−1(cx+1), c = c−1,
c = ±1. The inequality in (59) implies

pΦ(x) = x+ (−1)n. (61)

By (31), Γn = T
√
Υn and Υn is similar to Jn((−1)n+1), which is similar

to Φ due to (30). By Theorem 2.2(c) we can take Υn instead of Φ with
pΦ(x) = x + (−1)n in Theorem 2.2(a,b). The field F(κ) = F[x]/pΦ(x)F[x] is
F with the identity involution; all polynomials qi(x) in (60) are some scalars
ai ∈ F, by Lemma 4.1 with K = F, the quadratic form

q1(κ)x
2
1 + · · ·+ qs(κ)x

2
s = a1x

2
1 + · · ·+ asx

2
s

over F is equivalent to exactly one form (53), in which (c1, . . . , ct) is one of
the sequences (54). Theorem 2.2(b) ensures that (60) is congruent to a direct
sum of matrices of the form (iv), and this sum is uniquely determined by A.
This gives the summands (iv).

Theorem 4.4. Let a field F with nonidentity involution be a finite extension
of Qp with p 6= 2. Every square matrix A over F is *congruent to a direct
sum that is uniquely determined up to permutation of summands and consists
of any number of summands of the following types:

(i) Jn(0);

(ii) [Φ� In], in which Φ is an n×n nonsingular Frobenius block over F such
that pΦ(x) 6= p∨Φ(x) (see (4)) and Φ is determined up to replacement by
the Frobenius block Ψ with χΨ(x) = χ∨

Φ(x);
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(iii) for each nonsingular Frobenius block Φ over F such that pΦ(x) = p∨Φ(x):

• ∗√Φ,

• at most one summand of the form
{ ∗√Φπ̃(Φ) if K = K◦(

√
u),

∗√Φũ(Φ) if K = K◦(
√
π) or K = K◦(

√
uπ),

in which K is the following field with involution:

K := F(κ) = F[x]/pΦ(x)F[x], f(κ)◦ := f̄(κ−1)

(see (3), (6) and (7)), K◦ is its fixed field, π is a prime element of
K◦, u ∈ O(K◦)

× \K×2
◦

is a unit that is not a square, π̃(x), ũ(x) ∈
F[x, x−1] are the functions of the form (8) such that π̃(κ) = π and
ũ(κ) = u.

Proof. Let a field F with nonidentity involution be a finite extension of Qp

with p 6= 2. By Theorem 2.2(a), every square matrix A over F is *congruent
to a direct sum of matrices of the form

(a) Jn(0), (b) [Φ� In] if
∗√
Φ does not exist, (c)

∗√
Φq(Φ).

Consider each of these summands.
Summands (a). Theorem 2.2(b) ensures that the summands of the form

Jn(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2.6(a), ∗√Φ does not exist if and only if
pΦ(x) 6= p∨Φ(x). Theorem 2.2(b) ensures that the summands of the form
[Φ� In] are uniquely determined by A, up to replacement of Φ by Ψ with
χΨ(x) = χ∨

Φ(x). This gives the summands (ii).
Summands (c). Let Φ be a nonsingular n× n Frobenius block for which∗√Φ exists; this means that pΦ(x) = p∨Φ(x). Consider the whole group of

summands of the form ∗√Φq(Φ) with the same Φ:

∗√
Φq1(Φ)⊕ · · · ⊕ ∗√

Φqs(Φ). (62)

The involution f(κ)◦ := f(κ−1) on the field F(κ) = F[x]/pΦ(x)F[x] (see (6)
and (7)) is nonidentity since it extends the nonidentity involution on F. By
Lemma 4.2 with K := F(κ), the Hermitian form

q1(κ)x
◦

1y1 + · · ·+ qs(κ)x
◦

sys
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over F(κ) is equivalent to either x◦

1y1+· · ·+x◦

sys, or tx
◦

1y1+x◦

2y2+· · ·+x◦

sys, in
which t is defined in (56). By Theorem 2.2(b), the matrix (62) is *congruent
to

either
∗√
Φ⊕ · · · ⊕ ∗√

Φ, or
∗√
Φt̃(Φ)⊕ ∗√

Φ⊕ · · · ⊕ ∗√
Φ,

where t̃(x) ∈ F[x, x−1] is the function of the form (8) such that t̃(κ) = t. This
sum is uniquely determined by A, which gives the summands (iii).

4.2 Canonical pairs of symmetric or skew-symmetric

matrices

For each Frobenius block Φ, denote by T
√
Φ and Φε (ε = ±1) fixed nonsingular

matrices satisfying, respectively, the conditions

T
√
Φ = (

T
√
Φ)TA, (63)

Φε = ΦT
ε , ΦεA = ε(ΦεA)

T , (64)

in which A is similar to Φ. Each of these matrices may not exist for some Φ;
existence conditions and explicit forms of these matrices were established in
[15].

Theorem 4.5. Let a field F be a finite extension of Qp with p 6= 2. Each pair
of symmetric matrices of the same size over F is congruent to a direct sum
that is uniquely determined up to permutation of summands and consists of
any number of summands of the following types:

(i) ([Fn�F T
n ], [Gn�GT

n ]), in which Fn and Gn are defined in (11);

(ii) for each nonsingular Frobenius block Φ over F:

• (Φ1,Φ1Φ), in which Φ1 is defined in (10),

• at most one summand of the form

(Φ1,Φ1Φ)f1(Φ)⊕ · · · ⊕ (Φ1,Φ1Φ)ft(Φ),

in which (f1(x), . . . , ft(x)) is a sequence of polynomials over F of
degree < deg(pΦ(x)) such that the sequence (f1(ω), . . . , ft(ω)) of
elements of the field

K := F(ω) = F[x]/pΦ(x)F[x]
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is one of the sequences

(1), (u), (π), (uπ), (u, π), (u, uπ), (π, rπ), (u, π, rπ), (65)

where

r :=

{

u if pm ≡ 1 mod 4,

1 if pm ≡ 3 mod 4,
(66)

pm is the number of elements of the residue field O(K)/m of K,
u ∈ O(K)× \K×2 is a unit that is not a square, and π is a prime
element of K;

(iii) for each n = 1, 2, . . . :

• the pair of n-by-n matrices

Bn :=

















0 1 0

· · · · · ·
1 0
0 0









,









0 1

· · ·
1

1 0

















, (67)

• at most one summand of the form

Bnc1 ⊕ · · · ⊕Bnct, (68)

in which (c1, . . . , ct) is one of the sequences

(1), (u), (π), (uπ), (u, π), (u, uπ), (π, rπ), (u, π, rπ), (69)

where

r :=

{

u if pm ≡ 1 mod 4,

1 if pm ≡ 3 mod 4,
(70)

pm is the number of elements of the residue field O(F)/m of F,
u ∈ O(F)× \ F×2 is a unit that is not a square, and π is a prime
element of F.

Proof. Let a field F with the identity involution be a finite extension of Qp,
p 6= 2. By Lemma 2.7, the matrix Φ1 exists for each nonsingular Frobenius
block Φ over F. By Theorem 2.3(a), each pair (A,B) of symmetric matrices
of the same size is congruent to a direct sum of pairs of the form

(a) ([Fn�F T
n ], [Gn�GT

n ]), (b) A
f(x)
Φ := (Φ1,Φ1Φ)f(Φ), (c) Ba

n,
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in which f(x) ∈ F[x] is a nonzero polynomial of degree < deg(pΦ(x)) and
0 6= a ∈ F.

Consider each of these summands.
Summands (a). Theorem 2.3(b) ensures that the summands of the form

(a) are uniquely determined by (A,B), which gives the summands (i) of the
theorem.

Summands (b). Consider the whole group of summands of the form A
g(x)
Φ

with the same nonsingular Frobenius block Φ:

A
g1(x)
Φ ⊕ · · · ⊕ A

gs(x)
Φ . (71)

By Lemma 4.1, the quadratic form

q1(ω)x
2
1 + · · ·+ qs(ω)x

2
s

over F(ω) = F[x]/pΦ(x)F[x] is equivalent to exactly one form (53), in which
(a1, . . . , at) is one of the sequences (54). Theorem 2.3(b) ensures that (71) is
congruent to a direct sum of pairs of the form (ii) and this sum is uniquely
determined by (A,B), which gives the summands (ii).

Summands (c). For each n, consider the whole group of summands of the
form Ba

n with the same n:

Ba1
n ⊕ · · · ⊕ Bas

n . (72)

By Lemma 4.1, the quadratic form a1x
2
1 + · · ·+ asx

2
s over F is equivalent to

to exactly one form (53), in which (c1, . . . , ct) is one of the sequences (54).
Theorem 2.3(b) ensures that (72) is congruent to a direct sum of pairs of the
form (iii) and this sum is uniquely determined by (A,B), which gives the
summands (iii).

Theorem 4.6. Let a field F be a finite extension of Qp with p 6= 2. Each
pair consisting of a symmetric matrix and a skew-symmetric matrix of the
same size over F is congruent to a direct sum that is uniquely determined up
to permutation of summands and consists of any number of summands of the
following types:

(i) ([Fn�F T
n ], [Gn� −GT

n ]), in which Fn and Gn are defined in (11);

(ii) ([In� In], [Φ� −ΦT ]), in which Φ is an n× n Frobenius block over F
such that

pΦ(x) /∈ F[x2], Φ 6= J1(0), J3(0), J5(0), . . . (73)
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(see (2)), and Φ is determined up to replacement by the Frobenius block
Ψ with χΨ(x) = (−1)detχΦχΦ(−x);

(iii) for each Frobenius block Φ over F such that pΦ(x) ∈ F[x2]:

• (Φ−1,Φ−1Φ),

• at most one summand of the form
{

(Φ−1,Φ−1Φ)π̃(Φ) if K = K◦(
√
u),

(Φ−1,Φ−1Φ)ũ(Φ) if K = K◦(
√
π) or K = K◦(

√
uπ),

in which K is the following field with involution:

K := F(ω) = F[x]/pΦ(x)F[x], f(ω)◦ = f(−ω),

K◦ is its fixed field, π is any prime element of K◦, and u ∈
O(K◦)

× \ K×2
◦

is any unit that is not a square; π̃(x) and ũ(x)
are polynomials over F of degree < deg(pΦ(x)) such that

π̃(x) = π̃(−x), π̃(ω) = π, ũ(x) = ũ(−x), ũ(ω) = u;

(iv) ([Jn(0)� Jn(0)
T ], [In� − In]), in which n is odd;

(v) for each n = 1, 2, 3, . . . :

• the pair of n-by-n symmetric and skew-symmetric matrices defined
as follows:

Cn :=

























0 1

· · ·
1 0



 ,





















0 1 0

· · · · · ·
1 0

−1 0

· · · 0
−1 · · ·
0 0









































(74)

if n is odd, and

Cn :=

























0 1 0

· · · · · ·
1 0
0 0









,

















0 1

· · ·
1

−1

· · ·
−1 0

































(75)
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if n is even, and

• at most one summand of the form

Cnc1 ⊕ · · · ⊕ Cnct, (76)

in which (c1, . . . , ct) is one of the sequences

(1), (u), (π), (uπ), (u, π), (u, uπ), (π, rπ), (u, π, rπ), (77)

where

r :=

{

u if pm ≡ 1 mod 4,

1 if pm ≡ 3 mod 4,
(78)

pm is the number of elements of the residue field O(F)/m of F,
u ∈ O(F)× \ F×2 is a unit that is not a square, and π is a prime
element of F.

Proof. Let a field F with the identity involution be a finite extension of Qp,
p 6= 2. By Theorem 2.3(a) and Remark 2.5, each pair (A,B) consisting of
a symmetric matrix A and a skew-symmetric matrix B of the same size is
congruent to a direct sum of pairs of the form

(a) ([Fn�F T
n ], [Gn� −GT

n ]),

(b) ([In� In], [Φ� − ΦT ]) if Φ−1 does not exist,

(c) A
f(x)
Φ := (Φ−1,Φ−1Φ)f(Φ), in which 0 6= f(x) = f(−x) ∈ F[x] and

deg(f(x)) < deg(pΦ(x)),

(d) ([Jn(0)� Jn(0)
T ], [In� − In]), in which n is odd,

(e) Ca
n (defined in (15)), in which n is even and 0 6= a ∈ F.

Consider each of these summands.
Summands (a). Theorem 2.3(b) ensures that the summands of the form

(a) are uniquely determined by (A,B), which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2.7, Φ−1 does not exist if and only if (73)
is satisfied. Theorem 2.3(b) ensures that the summands of the form (b) are
uniquely determined by (A,B), up to replacement of Φ by Ψ with χΨ(x) =
(−1)detχΦχΦ(−x), which gives the summands (ii).
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Summands (c). By Lemma 2.7, Φ−1 exists if and only if (73) is not
satisfied; that is,

pΦ(x) ∈ F[x2] or Φ = J1(0), J3(0), J5(0), . . . (79)

Consider the whole group of summands of the form A
f(x)
Φ with the same

nonsingular Frobenius block Φ:

A
f1(x)
Φ ⊕ · · · ⊕ A

fs(x)
Φ . (80)

Let first pΦ(x) ∈ F[x2]. Then the involution f(ω)◦ = f(−ω) on F(ω) =
F[x]/pΦ(x)F[x] is nonidentity (since ω◦ = −ω 6= ω). By Lemma 4.2, the
Hermitian form

f1(ω)x
◦

1y1 + · · ·+ fs(ω)x
◦

sys

over F(ω) is equivalent to either x◦

1y1+ · · ·+x◦

sys, or tx
◦

1y1+x◦

2y2+ · · ·+x◦

sys,
in which t is defined in (56). Theorem 2.2(b) ensures that (80) is congruent
to

either A1
Φ ⊕ · · · ⊕A1

Φ, or A1
Φt̃(Φ)⊕ A1

Φ ⊕ · · · ⊕ A1
Φ,

where t̃(x) ∈ F[x, x−1] is the function of the form (8) such that t̃(κ) = t. This
sum is uniquely determined by (A,B), which gives the summands (iii).

Let now Φ = Jn(0) with n = 2m + 1 and m = 1, 2, . . . The equalities
(10) hold for the n× n matrices Φ′ and Φ′

−1 defined in (41) instead of Φ and

Φ−1. Since Φ and Φ′ are similar, by Theorem 2.3(c) we can take C
f(x)
n :=

(Φ′

−1,Φ
′

−1Φ
′)f(Φ′) instead of A

f(x)
Φ and

Cf1(x)
n ⊕ · · · ⊕ Cfs(x)

n (81)

instead of (40).
Since pΦ(x) = x, the field F(ω) = F[x]/pΦ(x)F[x] is F with the identity

involution and all polynomials fi(x) in (42) are some scalars ai ∈ F. By
Lemma 4.1, the quadratic form a1x

2
1 + · · · + asx

2
s over F is equivalent to

exactly one form (53), in which (c1, . . . , ct) is one of the sequences (54).
Theorem 2.3(b) ensures that (81) is congruent to a direct sum of pairs of the
form (iii), and this sum is uniquely determined by (A,B). This gives the
summands (v) with odd n.

Summands (d). Theorem 2.3(b) ensures that the summands of the form
(d) are uniquely determined by (A,B), which gives the summands (iv).
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Summands (e). Consider the whole group of summands of the form Ca
n

with the same n:
Ca1

n ⊕ · · · ⊕ Cas
n . (82)

By Lemma 4.1, the quadratic form a1x
2
1 + · · · + asx

2
s over F is equivalent

to exactly one form (53), in which (c1, . . . , ct) is one of the sequences (54).
Theorem 2.3(b) ensures that (82) is congruent to a direct sum of pairs of the
form (iii), and this sum is uniquely determined by (A,B). This gives the
summands (v) with even n.

4.3 Canonical pairs of Hermitian matrices

Theorem 4.7. Let a field F with nonidentity involution be a finite extension
of Qp, p 6= 2. Let F◦ be the fixed field of F. Each pair of Hermitian matrices of
the same size over F is *congruent to a direct sum that is uniquely determined
up to permutation of summands and consists of any number of summands of
the following types:

(i) ([Fn�F ∗

n ], [Gn �G∗

n]), in which Fn and Gn are defined in (11);

(ii) ([In� In], [Φ�Φ∗]), in which Φ is an n× n Frobenius block such that
pΦ(x) /∈ F◦[x], and Φ is determined up to replacement by the Frobenius
block Ψ with χΨ(x) = χ̄Φ(x) (see (3));

(iii) for each Frobenius block Φ over F such that pΦ(x) ∈ F◦[x]:

• (Φ1,Φ1Φ), in which Φ1 is defined in Lemma 2.7,

• at most one summand of the form
{

(Φ1,Φ1Φ)fπ(Φ) if K = K◦(
√
u),

(Φ1,Φ1Φ)fu(Φ) if K = K◦(
√
π) or K = K◦(

√
uπ),

in which K is the following field with involution:

K := F(ω) = F[x]/pΦ(x)F[x], f(ω)◦ = f̄(ω),

K◦ is its fixed field, π is any prime element of K◦, and u ∈
O(K◦)

× \ K×2
◦

is any unit that is not a square, π̃(x) and ũ(x)
are polynomials over F◦ of degree < deg(pΦ(x)) such that

π̃(ω) = π, ũ(ω) = u;
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(iv) for each n = 1, 2, . . . :

• the pair of n-by-n matrices

Bn :=

















0 1 0

· · · · · ·
1 0
0 0









,









0 1

· · ·
1

1 0

















,

• at most one summand of the form
{

Bnπ if F = F◦(
√
u),

Bnu if F = F◦(
√
π) or F = F◦(

√
uπ),

in which π is a prime element of F◦ and u ∈ O(F◦)
× \ F×2

◦
is a

unit that is not a square.

Proof. Let a field F with nonidentity involution be a finite extension of Qp,
p 6= 2. By Theorem 2.3(a), each pair (A,B) of Hermitian matrices of the
same size over F is *congruent to a direct sum of pairs of the form

(a) ([Fn�F ∗

n ], [Gn �G∗

n]),

(b) ([In� In], [Φ�Φ∗]) if Φ1 does not exist,

(c) A
f(x)
Φ := (Φδ,Φ1Φ)f(Φ), in which 0 6= f(x) = f̄(x) ∈ F[x] and

deg(f(x)) < deg(pΦ(x)).

(d) Ba
n (defined in (12)), in which 0 6= a = ā ∈ F.

Consider each of these summands.
Summands (a). Theorem 2.3(b) ensures that the summands of the form

(a) are uniquely determined by (A,B), which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2.7(a), Φ1 does not exist if and only if pΦ(x) 6=
p̄Φ(x); that is, pΦ(x) /∈ F◦[x]. Theorem 2.3(b) ensures that the summands
of the form (b) are uniquely determined, up to replacement of Φ by Ψ with
χΨ(x) = χ̄Φ(x). This gives the summands (ii).

Summands (c). Consider the whole group of summands of the form A
f(x)
Φ

with the same nonsingular Frobenius block Φ:

A
f1(x)
Φ ⊕ · · · ⊕ A

fs(x)
Φ . (83)
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By Lemma 4.2, the Hermitian form

f1(ω)x
◦

1y1 + · · ·+ fs(ω)x
◦

sys

over F(ω) = F[x]/pΦ(x)F[x] with involution f(ω)◦ = f̄(ω) is equivalent to
either x◦

1y1 + · · ·+ x◦

sys, or tx
◦

1y1 + x◦

2y2 + · · ·+ x◦

sys, in which t is defined in
(56). Theorem 2.2(b) ensures that (80) is *congruent to

either A1
Φ ⊕ · · · ⊕A1

Φ, or A1
Φt̃(Φ)⊕ A1

Φ ⊕ · · · ⊕ A1
Φ,

in which t̃(x) ∈ F[x, x−1] is the function of the form (8) such that t̃(κ) = t.
This sum is uniquely determined by (A,B), which gives the summands (iii).

Summands (d). Consider the whole group of summands of the form Ba
n

with the same n:
Ba1

n ⊕ · · · ⊕ Bas
n . (84)

By Lemma 4.2, the Hermitian form

a1x
◦

1y1 + · · ·+ asx
◦

sys

over F is equivalent either x◦

1y1 + · · ·+ x◦

sys, or tx
◦

1y1 + x◦

2y2 + · · ·+ x◦

sys, in
which t is defined in (56). Theorem 2.2(b) ensures that (84) is *congruent to

either Bn ⊕ · · · ⊕ Bn, or Bnt̃(Φ)⊕ Bn ⊕ · · · ⊕ Bn,

in which t̃(x) ∈ F[x, x−1] is the function of the form (8) such that t̃(κ) =
t. This sum is uniquely determined by (A,B), which gives the summands
(iv).

5 Appendix: Quadratic forms over finite ex-

tensions of p-adic fields

In this section, we recall some known results on quadratic forms over finite
extensions of p-adic fields that are used in the paper.

Let F be a field and let ν be an exponential variation on F; that is, a map
ν : F → R ∪ {+∞} with the properties

ν(x) = +∞ ⇐⇒ x = 0, (85)

min{ν(x), ν(y)} 6 ν(x+ y), (86)

ν(x) + ν(y) = ν(xy) (87)

35



for all x, y ∈ F.
For example, the field Qp of p-adic numbers possesses an exponential

variation that is defined on each nonzero p-adic number as follows:

v(azp
z + az+1p

z+1 + . . . ) = z, (88)

where ai ∈ {0, 1, . . . , p− 1}, az 6= 0, and z ∈ Z.
In this section F denotes a finite extension of Qp, p 6= 2. In this case the

exponential variation (20) can be extended to an exponential variation of F.
This variation is unique and is given by the formula:

ν(a) =
1

n
v(N(a)) for all a ∈ F, (89)

in which n := (F : Qp) = dimQp
F is the degree of F over Qp and N(a) is

the norm of a in F over Qp; that is, the determinant of the linear mapping
x 7→ xa on F as a vector space over Qp. If xm + α1x

m−1 + · · · + αm is the
minimum polynomial of a ∈ F over Qp then the variation (89) can be also
given by the formula:

ν(a) =
1

m
v(αm) for all a ∈ F. (90)

Note that there exists a natural number e such that eν(F×) = Z. The
ring

O := {x ∈ F | ν(x) > 0} (91)

is called the ring of integers (with respect to ν);

m := {x ∈ F | ν(x) > 0} = πR (92)

is the unique maximal ideal of R and its generator π is called a prime element
(it is any element of F with the smallest positive ν(π); that is, ν(π) = 1/e);
the factor ring

O/m (93)

is a field, which is called the residue field ; and the set

O× := {x ∈ F | ν(x) = 0} (94)

is the group of all invertible elements of O (which are called units).
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The residue field O/m is an extension of the residue field Fp of Qp and

e(O/m : Fp) = n = (F : Qp) (95)

By [9, Section VI, Theorem 2.2] or [13, Ch. 6, Facts 4.1] F×/F×2 consists
of 4 cosets, represented by 1, u, π, uπ, where u ∈ O× is a unit with u /∈ F×2

(or, which is equivalent, with u+m /∈ (O/m)×2; see [4, Example 3.11], recall
that p 6= 2).

The Hilbert symbol is defined for a, b ∈ F× by

(a, b)F :=

{

1 if ax2 + by2 represents 1,

−1 otherwise.
(96)

The Hasse invariant of a form q ∼ a1x
2
1+a2x

2
2+· · ·+arx

2
r with a1, . . . , ar ∈ F×

is
c(q) :=

∏

i<j

(ai, aj)F (97)

(see [10, Ch. VIII, p. 210]).
By [10, Ch. VIII, Theorem 4.10], two quadratic forms over F are equiv-

alent if and only if they have the same rank n, the same discriminant d (in
F×/F×2), and the same Hasse invariant. By [10, Ch. VIII, Proposition 4.11],
if q is a quadratic form of rank r, then

• If r = 1 then c(q) = 1.

• If r = 2 and c(q) = −1 then d(q) 6= −1 (mod squares).

Apart from these constraints, every triple r > 1, d ∈ {1, u, π, uπ} (mod
squares), c = ±1 occurs as the set of invariants of a quadratic form over F.

Theorem 5.1. Let F be a finite extension of Qp with p 6= 2. Let its residue
field O/m consist of pm elements. Let u ∈ O× \ F×2 be a unit that is not a
square, and π be a prime element. Then each quadratic form of rank r > 1
over F is equivalent to exactly one form

a1x
2
1 + a2x

2
2 + · · ·+ atx

2
t + x2

t+1 + · · ·+ x2
r , (98)

in which (a1, . . . , at) is one of the sequences:

(1), (u), (π), (uπ), (u, π), (u, uπ), (99)
{

(π, uπ), (u, π, uπ) if pm ≡ 1 mod 4,

(π, π), (u, π, π) if pm ≡ 3 mod 4.
(100)
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Proof. Let us show that the forms (98) give all possible invariant triples
(r, d, c).

The forms (98) with t = 1 and a1 ∈ {1, u, π, uπ} give all possible triples
(r, d, c) with c = 1; in particular, all possible triples with r = 1.

The remaining forms (98) have the Hasse invariant c = −1 since:
• (u, π)F = −1 by [4, p. 53, Case 2].
• (u, uπ)F = (u, u)F(u, π)F = −1 since (u, u)F = 1 by [4, p. 53, Case 1].
• (π, π)F = (−1)(q−1)/2 by [4, p. 53, Case 3]. Thus, (π, π)F = −1 if pm ≡ 3

mod 4 and (π, uπ)F = (π, u)F(π, π)F = −1 if pm ≡ 1 mod 4.
• If pm ≡ 3 mod 4 then the Hasse invariant of the form with triple

(u, π, π) is (u, π)F(u, π)F(π, π)F = (π, π)F = −1. If pm ≡ 1 mod 4 then the
Hasse invariant of the form with triple (u, π, uπ) is (u, π)F(u, uπ)F(π, uπ)F =
(u, u)F(u, π)

3
F(π, π)F = (u, π)F(π, π)F = −1.

In particular, we have 3 invariant triples with r = 2, c = −1, and

d ∈
{

{uπ, π, u} (mod squares) if pm ≡ 1 mod 4,

{uπ, π, 1} (mod squares) if pm ≡ 3 mod 4.

But if r = 2 and c = −1 then d can have only 3 values (mod squares) since
d 6= −1 (mod squares); thus, we have all possible invariant triples with r = 2.

We have all possible invariant triples with r > 3 and c = −1, since then
d ∈ {1, u, π, uπ} (mod squares).

5.1 Irreducible polynomials over Qp

Let f(x) ∈ Zp[x] be a monic polynomial whose reduction modulo p is irre-
ducible in Fp[x]. Then f(x) is irreducible over Qp. [5, Corollary 5.3.8]

The Eisenstein criterion. Suppose that the polynomial f(x) = xn +
a1x

n−1 + · · · + an ∈ Zp[x] satisfies the conditions p|ai for all i and p2 ∤ an.
Then f(x) is irreducible over Qp. [1, Theorem 5.5].

Let n and m be coprime natural numbers. Then the polynomial xn − pm

is irreducible over Qp. [1, Theorem 5.3].

5.2 Hermitian forms over local rings

Theorem 5.2. Let F be a finite extension of Qp, p 6= 2, with a fixed non-
identity involution. Let F◦ be the fixed field with respect to this involution.
Let u ∈ O(F◦)

×\F×2
◦

be a unit that is not a square, and π be a prime element
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of F◦. Then each regular (=with nonzero determinant) Hermitian form over
F is equivalent to either

x̄1y1 + · · ·+ x̄nyn,

or
{

πx̄1y1 + x̄2y2 + · · ·+ x̄nyn if F = F◦(
√
u),

ux̄1y1 + x̄2y2 + · · ·+ x̄nyn if F = F◦(
√
π) or F◦(

√
uπ).

Proof. Since (F : F◦) = 2, we have F = F◦(α), where α is a root of f(x) =
x2 + 2ax + b ∈ F◦[x]. Write λ := α + a, then (λ − a)2 + 2a(λ − a) + b =
λ2 − a2 + b = 0.

Therefore, we can take α such that α2 = β ∈ F◦. Moreover, (αa)2 = βa2

for each a ∈ F◦. But F
×

◦
/F×2

◦
consists of 4 cosets, represented by 1, u, π, uπ.

Hence, we can take α such that

α2 = β ∈ {1, u, π, uπ},

then F is F◦(
√
u), or F◦(

√
π), or F◦(

√
uπ). Since ᾱ2 = β, the involution on

F is c+ dα 7→ a− dα, c, d ∈ F◦. The element

N(c + dα) = (c + dα)(c− dα) = c2 − d2β ∈ F◦

is the norm of c + dα. The set N(F×) of norms of all nonzero elements is a
group. By [13, Ch. 6, Fact 4.3], the norm residue group F×

◦
/N(F×) consists

of 2 elements.

• Let F = F◦(
√
u). Then α2 = u, N(c+dα) = c2−d2u. If π ∈ N(F×) then

there is c+ dα such that N(c+ dα) = c2− d2u = π. Then c2 − d2u = 0
mod π; i.e. u = (c/d)2 mod π. A contradiction. Therefore, the cosets
of F×

◦
/N(F×) are represented by 1, π.

• Let F = F◦(
√
π). Then α2 = π, N(α) = −π. But −π is a prime

element too, so 1, u, −π, −uπ represent 4 cosets of F×

◦
/F×2

◦
. Thus,

the cosets of F×

◦
/N(F×) are represented by 1, u.

• Let F = F◦(
√
uπ). Then α2 = uπ, N(α) = −uπ. But −uπ is a prime

element too. Thus, the cosets of F×

◦
/N(F×) are represented by 1, u.

Let φ(x, y) = α1x̄1y1 + · · · + αnx̄nyn be a regular (all αi are nonzero)
Hermitian form over F. Then the determinant det(φ) := a1 . . . anN(F×) ∈
F×

◦
/N(F×) is an invariant of φ(x). By [13, Ch. 10, Example 1.6(ii)], regular

Hermitian forms over F are classified by dimension and determinant.
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