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Abstract
Canonical matrices of
(a) bilinear and sesquilinear forms,

(b) pairs of forms, in which every form is symmetric or skew-
symmetric, and

(c¢) pairs of Hermitian forms

are given over finite fields of characteristic # 2 and over p-adic fields
(i.e., finite extensions of the field Q, of p-adic numbers) with p # 2.

These canonical matrices are special cases of the canonical matrices
of (a)—(c) over a field of characteristic not 2 that were obtained by the
author [Math. USSR-Izv. 31 (1988) 481-501] up to classification
of quadratic or Hermitian forms over its finite extensions; we use the
known classification of quadratic and Hermitian forms over finite fields
and p-adic fields.
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1 Introduction

We give canonical matrices of

(a) bilinear and sesquilinear forms,
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(b) pairs of forms in which every form is symmetric or skew-symmetric,
and

(c) pairs of Hermitian forms
over
(i) finite fields of characteristic different from 2, and

(ii) p-adic fields (i.e., finite extensions of the field Q, of p-adic numbers);
for simplicity, we take p # 2.

Our canonical matrices are special cases of the canonical matrices of (a)—
(c) over a field F of characteristic not 2 that were obtained in [I5] up to
classification of quadratic or Hermitian forms over finite extensions of F. We
use the known classification of quadratic and Hermitian forms over finite
extensions of (i) and (ii).

Analogous canonical matrices of (a)—(c) could be obtained over any local
field (which is either a p-adic field or the field of formal power series of one
variable over a finite field) since the classification of quadratic and Hermitian
forms over local fields is known.

In Section 2] we recall canonical forms of (a)—(c) obtained in [15]. In
Sections [B] and [ we give canonical forms of (a)—(c) over (i) and (ii).

2 Canonical matrices over any field of char-
acteristic not 2

In this section [F denotes a field of characteristic different from 2 with a fixed
involution F' — TF; that is, a bijection a + a satisfying

=a for all a,b € F.

ll

atb=a+b, ab=ab,

We recall canonical forms of (a)—(c) obtained in [I5] by the method that was
developed by Roiter and the author in [111, 14} [15]; it reduces the problem of
classifying systems of forms and linear mappings over F to the problems of
classifying

e systems of linear mappings over F, and



e quadratic and Hermitian forms over skew fields that are finite exten-
sions of .

This method was applied to the problem of classifying bilinear and sesquilin-
ear forms in [6 [7, 8] and to the problem of classifying isometric operators
on vector spaces with scalar product given by a nonsingular quadratic or
Hermitian form in [16].

For any matrix A = [a;;] over F, we write A* := AT = [a;;]. Square
matrices A and B are said to be similar if ST*AS = B, congruent if STAS =
B, and *congruent if S*AS = B for a nonsingular S. Pairs of matrices
(A1, Ay) and (By, By) are congruent if STA;S = By and STA,S = By; they
are *congruent if S*A;S = By and S*A3S = Bj for a nonsingular S. The
transformations of congruence (A — ST AS) and *congruence (A — S*AS)
are associated with the bilinear form 27 Ay and the sesquilinear form x* Ay,
respectively.

The involution on I can be the identity. Thus, we consider congruence
as a special case of *congruence.

Every square matrix A over F is similar to a direct sum, uniquely deter-
mined up to permutation of summands, of Frobenius blocks

0 0 —c,,

o= ! , (1)
0 —C9
0 1 —C1

whose characteristic polynomial
X<I>(5C) = pq)(.f(f)l ="+ clxm—l 4t

is an integer power of a polynomial pg(z) that is irreducible over F; this
direct sum is called the Frobenius canonical form or the rational canonical
form of A, see [2 Section 6]. If xo(z) = (x — A)™, then ® is similar to the
Jordan block

A 0
1 A

= (m-by-m). )
0 1 A



For each polynomial
f(z) = apx™ + ayz™ ' + - - + a, € Flz],

we define the polynomials

f(x) i= apx™ + ax" "+ -+ ay, (3)
fY(x) == a, (aya™ + -+ @z +ap) if a, #0. (4)

In particular,
Y (z) = a; (apa™ + - - - + a1 + ay) (5)

if the involution on F is the identity.
The following lemma was proved in [I5, Lemma 6] (or see [8 [16]).

Lemma 2.1. Let F be a field with involution a «— a, let p(x) = p¥(x) be an
wrreducible polynomial over F, and consider the field

F(x) = Flz]/p(x)Flz], &=z + p(e)Fz], (6)

with involution B
f(R)® = f(x71). (7)

Then each element of F(k) on which the involution acts identically is uniquely
representable in the form q(k), in which

q(x) :(LT;UT—FH-—FCLILU—FCLO—'—C_M.Z’_I "‘""i‘drx_ru o) 2607 (8)

r is the integer part of (degp(x))/2, ao,...,a, € F, and if degp(z) is even
then

0 if the involution on T is the identity,
a, = < a, if the involution on T is not the identity and p(0) # 1,
—a, if the involution on F is not the identity and p(0) = 1.

For each square matrix ¢ and

1 or —1, if the involution on F is the identity,
E =
1, if the involution on [ is nonidentity,



denote by v/® and @, fixed nonsingular matrices (if they exist) such that

Vo = (V) e, 9)
P, = 7, PP = £(P.P)*. (10)

We use the notation ¥/® both in the case of nonidentity involution and in
the case of the identity involution on IF, but if we know that the involution
is the identity then we prefer to write v/® instead of V.

It suffices to construct v/® and ®, for canonical matrices ¢ under simi-
larity since if ¥ = S~'®S then we can take

VU =5 VS, . =S59.8.

Existence conditions and explicit forms of ¥/® and @, for all Frobenius blocks
® will be given in Lemmas [2.6] and 2.7
Define the skew sum of two matrices

AN B] = L(‘)l ﬂ

Theorem 2.2 ([15, Theorem 3]; see also [8, Theorem 2.2]). (a) Let F be
a field of characteristic different from 2 with involution (which can be
the identity). Every square matriz A over F is *congruent to a direct
sum of matrices of the following types:

(i) Ju(0);
(i) [®\ I,], where ® is an n X n nonsingular Frobenius block such
that /@ does not exist (see Lemma20); and

(iii) V®q(®), where ® is a nonsingular Frobenius block such that ¥/®
exists and q(x) # 0 has the form (&) from Lemma [21 in which
p(z) = pa(x) is the irreducible divisor of the characteristic poly-
nomial of ®.

(b) The summands are determined to the following extent:

Type (i) uniquely.

Type (ii) up to replacement of ® by the Frobenius block V that is
similar to ®=* (i.e., whose characteristic polynomial is x§(z), see

).



Type (iii) up to replacement of the whole group of summands
Voq(®) & @ Vg, (P)
with the same ® by
Vg () & - @ VD (P)

in which each q.(x) is a nonzero function of the form (8) and the
Hermitian forms

q1 (H)x({yl + e+ QS(H)xzysu
GR)Ty + -+ g ()Y
are equivalent over the field (@) with involution ().

(¢) Frobenius blocks in (a) and (b) can be replaced by arbitrary matrices that

are similar to them (for example, by Jordan blocks if F is algebraically
closed).

Define the (n — 1) X n matrices

1 0 0 0 1 0
F, = ., G, = (11)
0 1 0 0 0 1
for each n = 1,2, ..., and define the direct sum of two matrix pairs:

(A1, B1) ® (A2, By) := (A1 & Ay, By ® Bs).

Theorem 2.3 ([I5, Theorem 4]). (a) Let F be a field of characteristic dif-
ferent from 2 with involution (which can be the identity). Let A and B
be e-Hermitian and 6-Hermitian matrices over F of the same size:

A" =¢A, B* =68,
i which

(e, ) = (1,1), if the involution on F is nonidentity,
1 (1,1) or (1, —1) or (—1,—1), otherwise.

Then (A, B) is *congruent to a direct sum of matriz pairs of the fol-
lowing types:



(1) ([Fo\eF!], |G\ GL]), in which F,, and G,, are defined in (II);

(i) (L \eln], [P\ 0D*]), in which ® is an n x n Frobenius block
such that ®s (see ([I0) does not exist if e = 1;

(iii) AL = (D5, Ds®)f(D) only if ¢ = 1, in which 0 # f(z) =

f(6z) € Flz] (see @), and deg(f(x)) < deg(pa(x));

(iv) ([Jn(0) N\ eJn(0)*], [In\(—1,)]) only if 6 = —1, in which n is odd
ife=1;

0 0 . 0

in which the matrices are n-by-n, e =1, 04 a=a €F, and n is
even if 6 = —1.

(b) The summands are determined to the following extent:
Type (i) uniquely.
Type (ii) up to replacement of ® by the Frobenius block V with
Yu(7) = (£§)4X® g (e6).
Type (iii) up to replacement of the whole group of summands

fi(z fs(x
AP g ALY
with the same ® by
AL g g A%
such that the Hermitian forms
filw)ziys + -+ fo(w)zlys,
gi(w)ziys + - - + gs(w)ys
are equivalent over the field F(w) = F[x]/ps (x)F[z] with involution
f(w)? = fow).



Type (iv) uniquely.

Type (v) up to replacement of the whole group of summands

B'®---® By (13)
with the same n by
B & @ B (14)

such that the Hermitian forms
Ty + -+ AsTsYs,
biZ1yr + -+ + bsTsys
are equivalent over F.

(¢) Frobenius blocks in (a) and (b) can be replaced by arbitrary matrices that

are similar to them (for example, by Jordan blocks if F is algebraically
closed).

Taking ¢ = 6 = —1 in Theorem 2.3 we obtain the following well-known
canonical form of pairs skew-symmetric matrices; see, for example, [12} [17].

Corollary 2.4. Ouver any field of characteristic not 2, each pair of skew-
symmetric matrices of the same size is congruent to a direct sum, uniquely
determined up to permutation of summands, of pairs of the form:

(i) ([F.\ — FT], [Go\ — GT]), in which F, and G,, are defined in (II));
(i) ([ \ = L], [®\ — ®T)), in which ® is an n x n Frobenius block;
(i) ([a(0)N\ = Ju(0)T], [T\ = 1))

Remark 2.5. If § = —1 then the matrix pair B} defined in (I2)) consists of
n X n matrices and n is even. In this case, the pair

0 1
0 1 0 '
Cr=la a L (15)
" 1 0 ’ -1
0 0
__1 0_




of symmetric and skew-symmetric matrices of size n x n can be used in ([I2])—
(I4) instead of B?. This follows from the proof of Theorem 4 in [I5] since the
pairs BY and C? are equivalent; that is, RB2S = C? for some nonsingular R
and S.

Let
f@) =902 +ma™ 4y €Ffz],  m>1, 9 # 0% Yo
A vector (ay,aq, . ..,a,) over F is called f-recurrent if either n < m, or

Yoar + V1Gi+1 + - -+ YmQigm = 0 foralll=1,2,...,n—m.

Thus, this vector is completely determined by any fragment of length m.
Existence conditions and explicit forms of V® and @, for Frobenius
blocks ® are given in the following two lemmas.

Lemma 2.6 ([15, Theorem 7]; a detailed proof in [8, Lemma 2.3]). Let F be
a field of characteristic not 2 with involution (possibly, the identity). Let ®
be an n x n nonsingular Frobenius block whose characteristic polynomial is
a power of an irreducible polynomial pe(z).

(a) V@ exists if and only if
po(z) = py(x) (see @), and (16)
if the involution on T is the identity, also pe(x) # x + (—1)"*t1. (17)
(b) If ({6 and ([IT) are satisfied and
Xo(r) = 2"+ 4+, (18)

is the characteristic polynomial of ®, then for V® one can take the
Toeplitz matriz

ag G-y - A1y
* a a
\/5 = [ai_j] = ) ! ) 0 . 9 (19)
(an—1 - @ ap |




whose vector of entries (ay_n, Aa_p, - .., an_1) s the xo-recurrent exten-
sion of the vector

v="(a1-m, .- an) =(a,0,...,0,a) (20)
of length
oy — " zfn z:s even, (21)
n+1 ifnis odd,
in which
1 if n is even, except for the case
. pe(z) = x + c with " = —1, (22)

Xo(—1) ifn is odd and pe(x) # =+ 1,
e—eé otherwise, with any fixed € # e € F.

Lemma 2.7 ([I5] Theorem 8|). Let F be a field of characteristic not 2 with
involution (possibly, the identity). Let ® be an n xn Frobenius block ({I) over
F. Existence conditions for the matriz ®. are:

po(x) = "po(ex) (see @), (23)
if e = —1 then also xe(x) ¢ {2* 2 2% ..}, (24)

With these conditions satisfied, one can take
O = [e'aiy,],

in which the sequence (as,as, ..., as,) is x-recurrent, and is defined by the
fragment

(s, aney) = {(1,0, ...,0) if ® is nonsingular, (25)

(0,...,0,1) of ® is singular.

3 Canonical forms over finite fields

In this section we give canonical matrices of bilinear and sesquilinear forms,
pairs of symmetric or skew-symmetric forms, and pairs of Hermitian forms
over a finite field F of characteristic not 2. We use Theorems and [2.3]
in which these canonical matrices are given up to classification of quadratic
and Hermitian forms over finite extensions of F (that is, over finite fields of
characteristic not 2), and the following lemma.

10



Lemma 3.1 ([3, Chap.1, §8]). (a) Each quadratic form of rank r over a
finite field ¥ of characteristic not 2 is equivalent to

either a2 + a5 + - - + 2 or (i 4+ xi 4+ a2,

T
where ¢ is a fixed nonsquare in F.

(b) Each Hermitian form of rank r over a finite field of characteristic not
2 with nonidentity involution is equivalent to X1y, + - - - + Ty Y.

Utv. (b) eshe iz Scharlau ch 10, 1.6, examples (i).

3.1 Canonical matrices for congruence and *congru-
ence

Define the n-by-n matrix

0 .
-1
T, = 11 () =[1]). (26)
1 -1
1 1 0

Theorem 3.2. Every square matriz over a finite field F of characteristic
different from 2 is congruent to a direct sum that is uniquely determined up
to permutation of summands and consists of any number of summands of the
following types:

(1) J.(0);
(i) [@\ 1], in which ® is an n x n nonsingular Frobenius block such that
po(x) # pp(z) (see @) or  palw) =a+(-1)",  (27)

and ® s determined up to replacement by the Frobenius block U with
Xu(z) = xg(7);

(iii) V@, in which ® is a nonsingular Frobenius block such that pe(x) =
py(x) and degpe(z) > 2;

(iv) for eachn=1,2,...:

11



o I'y,

e at most one summand CI',,, in which  is a fived nonsquare of F.

Proof. Let F be a finite field of characteristic not 2 with the identity invo-
lution. By Theorem 2.2/(a), every square matrix A over I is congruent to a
direct sum of matrices of the form

(a) J,(0), (b) [®\ L] if V® does not exist, (c) v Oq(P).

Consider each of these summands.

Summands (a). Theorem [Z2(b) ensures that the summands of the form
J(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2Z6(a), v/® does not exist if and only if (27)
holds. Theorem 2.2(b) ensures that the summands of the form [\ I,] are
uniquely determined by A, up to replacement of ® by ¥ with x¢(z) = x§(z).
This gives the summands (ii).

Summands (c). Let ® be a nonsingular n x n Frobenius block for which
V/® exists. Then by Lemma [2.6/(a)

po(z) =pp(z),  palw) #x+ (-1)"* (28)
Consider the whole group of summands of the form v/®¢(®) with the same
d:

Vg (0) @ - & Vg,(P). (29)

Let first deg pg(z) > 1. Then the involution f(x)° := f(k') on the field

F(k) = F[z]/ps(x)F[z] (see (@) and () is nonidentity; otherwise K = k° =

k1 Kk2—1 =0, (22—1)|ps(z), and hence pg(x) = r+1 since it is irreducible.
By Lemma B.|(b), the Hermitian form

q(F)xSys + -+ + qs(K) T2y,

over F(k) is equivalent to z5y; + - - - + 22y,. By Theorem 22(b), the matrix
[@9) is congruent to v® @ --- @ V/® and the summands of the form /@
with deg pe(z) > 1 are uniquely determined by A. This gives the summands
(ii).

Let now pg(x) = x+c. Then by @8) and @) z+c¢ = c ez +1), c = ¢,
¢ = £1. The inequality in (28)) implies

po(r) =2+ (=1)" (30)



By [8, Eq.(70)],

1 2 *

LT, =1, o= (—1)+ | ! (31)
.
0 1

Hence T, = /Y, and T, is similar to .J,((—1)""), which is similar to ®
due to (B0). By Theorem 2.2(c) we can take Y, instead of ® with pe(x) =
x4+ (—1)" in Theorem 2Z2(a,b). The field F(x) = F|x]/pe(x)F|x] is F with
the identity involution; all polynomials ¢;(z) in (29) are some scalars a; € F.
By Lemma B.)(a), the quadratic form

Q(R)2 + -+ qo(k)2? = ayr? + - - + a2’

over I is equivalent to
either 2?4 --- + 22, or (x?+a54 -+ 12

in which ( is a fixed nonsquare of F. Theorem [Z2(b) ensures that [29) is
congruent to

either I'y ®--- 1T, or (I'yol',d---,,
and this sum is uniquely determined by A. This gives the summands (iv). O

Note that if V/® exists, then degpe(z) is even or pe(z) = x + (=1)™
Indeed, pe(z) = py(x) by ([@6). Let ps(z) = 2" + 2™ ' + -+ + ¢,. Then

2" e e =0 (e 4 e + 1),
cn=c;l,and 0 := ¢, = £1. If n = 2m + 1, then
po(r) = 2" + ™ 4 e ™ O™ A - Oei" T 0,

and so pe(—0) = 0. Since pe(x) is irreducible, pg(z) = = + 6. By the
inequality (IT), ps(z) = + (—1)™.

JaJa Example: Fs/(2? +z + 1).
Theorem 3.3. Let F be a finite field of characteristic not 2 with noniden-
tity involution. Every square matriz over F is *congruent to a direct sum,

uniquely determined up to permutation of summands, of matrices of the fol-
lowing types:

13



(i) Jn(0);

(i) [®\ I,], in which ® is an n X n nonsingular Frobenius block such that
pa(z) # py(x) (see @) and O is determined up to replacement by the
Frobenius block U with xy(x) = x$();

(iii) V@, in which ® is a nonsingular Frobenius block such that pe(x) =
Ps ().

Proof. Let F be a finite field of characteristic not 2 with nonidentity involu-
tion. By Theorem [2.2(a), every square matrix A over F is *congruent to a
direct sum of matrices of the form

(a) J,(0), (b) [P\ I,] if V® does not exist, (c) >I\</5c_1(<1>).

Consider each of these summands.

Summands (a). Theorem [2.2(b) ensures that the summands of the form
J,(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 2:6(a), v/® does not exist if and only if
po(z) # py(x). Theorem 22Ab) ensures that the summands of the form
[®\ I,] are uniquely determined by A, up to replacement of ® by ¥ with
Xw(x) = x$(x). This gives the summands (ii).

Summands (c). Let ® be a nonsingular n x n Frobenius block for which
V/® exists; this means that pe(z) = pY(z). Consider the whole group of
summands of the form V/®q(®) with the same ®:

Vo (D) @ & Vg (P). (32)
The involution f(x)° := f(k™') on the field F(x) = F[z]/ps(z)F|x] (see (@)

and (7)) is nonidentity since it extends the nonidentity involution on F. By
Lemma B.I(b), the Hermitian form

G (k)xiy + -+ g5 (k)2 oys

over F(k) is equivalent to z5y; + - -+ + 22ys, and so by Theorem 2.2(b) the
matrix ([B2) is *congruent to vV® & ---@® v/® and this direct sum is uniquely
determined by A. This gives the summands (iii). O

14



3.2 Canonical pairs of symmetric or skew-symmetric
matrices

In this section, we give canonical matrices of pairs consisting of symmetric or
skew-symmetric forms. Canonical matrices of pairs of skew-symmetric forms
are given in Corollary 2.4} it remains to consider pairs, in which the first
form is symmetric and the second is symmetric or skew-symmetric.

For square matrices A, B, C, D of the same size, we write

(A,B)® (C,D)=(A®C,B® D), (A B)C = (AC, BC).

Theorem 3.4. Fach pair of symmetric matrices of the same size over a finite
field F of characteristic not 2 is congruent to a direct sum that is uniquely
determined up to permutation of summands and consists of any number of
summands of the following types:

(1) ([E.\FT], [G.\GT]), where F,, and G,, are defined in (II);
(ii) for each nonsingular Frobenius block ®:

o (O, P1D), in which ®q is defined in ([I0),

e at most one summand (®1, P1P) fo(P), in which fo(x) € Flz] is
a fized (for each ®) polynomial of degree < deg(pe(x)) such that

fo(w) € F(w) := Flz]/pe(2)F|z]
1S not a square;
(iii) for eachn =1,2,...:

e the pair of n X n matrices

0 1 0 0 1
0 0 1 0

e at most one summand (B, in which C is a fixed nonsquare of .

15



Proof. Let T be a finite field of characteristic not 2 with the identity invo-
lution. By Lemma 2.7 the matrix ®; exists for each nonsingular Frobenius
block ® over F. By Theorem 2:3(a), each pair (A, B) of symmetric matrices
of the same size is congruent to a direct sum of pairs of the form

(a) ([F N\ FT], [Ga\GT]),  (b) ALY = (@1, 0,0)f(®), (c) B,

in which f(x) € F[z] is a nonzero polynomial of degree < deg(ps(z)) and
0#ach.

Consider each of these summands.

Summands (a). Theorem [23|b) ensures that the summands of the form
(a) are uniquely determined by (A, B), which gives the summands (i) of the
theorem.

Summands (b). Consider the whole group of summands of the form A‘Z]I)(x)
with the same nonsingular Frobenius block ®:

AP e AL, (34)

By Lemma B.I|(a), the quadratic form

QL (w)r? + - 4 go(w)a?

over F(w) = F[x]/pe(x)F|x] is equivalent to
either 22 4 --- + 22, or fe(w)z?+x2+-- -4 22

in which fg(z) € Flz] is a fixed nonzero polynomial of degree < deg(pe(x))
such that fe(w) € F(w) is not a square. Theorem 22(b) ensures that ([34) is
congruent to

cither AL ®---® AL, or AP oAl e oA,
and this sum is uniquely determined by (A, B). This gives the summands
(ii).
Summands (c). Consider the whole group of summands of the form B¢

with the same n:
B*@---® B (35)

By Lemma [3.j(a), the quadratic form a;z% + - - - + a,x? over F is equivalent
to either 7 +- -+ a2, or (&} + x5 +- -+ 22, in which ( is a fixed nonsquare
of F. Theorem 2.2(b) ensures that (33]) is congruent to

either B! @ ... @ B!, or BSeB'@- @B,

16



and this sum is uniquely determined by (A, B). This gives the summands
(ii). O
Theorem 3.5. Fach pair consisting of a symmetric matriz and a skew-
symmetric matriz of the same size over a finite field F of characteristic not 2

is congruent to a direct sum that is uniquely determined up to permutation of
summands and consists of any number of summands of the following types:

(i) ([F.\FT], [G.\ — GL]), in which F,, and G, are defined in (II));

(i) ([[a\ L), [®\ — ®T)), in which ® is an n x n Frobenius block such
that

pa(z) & F[$2]> ¢ # J1(0), J3(0), J5(0), ... (36)

(see @), and ® is determined up to replacement by the Frobenius block
U with xg(x) = (—1)%Xeyg(—1);

(iii) (®_y,P_1®), in which ® is a Frobenius block such that ps(z) € Flz?];
(1V> ([']n(o)\ Jn(())T]v [In\ - [n])f in which n is Odd;
(v) for eachn=1,2,3,...:

e the pair of n-by-n symmetric and skew-symmetric matrices defined

as follows:
[0 1 0]
0 1 1 0
Cp = : -1 0 (37)
1 0 0
1
- 0 0_
if n s odd, and
"0 1
0 1 0 .
"0 ’ -1
0 0
__1 0_

if n s even,

17



e at most one summand of the form (C,, in which { is a fized non-
square of FF.

Proof. Let F be a finite field of characteristic not 2 with the identity invo-
lution. By Theorem [2.3(a) and Remark 2.5 each pair (A, B) consisting of
a symmetric matrix A and a skew-symmetric matrix B of the same size is
congruent to a direct sum of pairs of the form

(a) ([Fa\NET] G\ = GLl),
(b) ([I\ L], [®\ — ®T]) if ®_; does not exist,

(c) AL® = (©_,,®_,®)f(®), in which 0 # f(z) = f(—z) € Fla] and
deg(f(z)) < deg(pa(2)),

(d) ([J.(0)\ Jn(0)T], [I,\. — I,,]), in which n is odd,
(e) C% (defined in (IH))), in which n is even and 0 # a € F.

Consider each of these summands.

Summands (a). Theorem 23(b) ensures that the summands (a) are
uniquely determined by (A, B), which gives the summands (i) of the the-
orem.

Summands (b). By Lemma 27 ®_; does not exist if and only if
[B6) is satisfied. Theorem 2.3(b) ensures that the summands (b) are
uniquely determined by (A, B), up to replacement of ® by ¥ with yg¢(z) =
(—1)detxey g (—x), which gives the summands (ii).

Summands (c). By Lemma 27 ®_; exists if and only if (B6]) is not
satisfied; that is,

po(z) €F[2?] or & = J(0), J5(0), J5(0),... (39)

Consider the whole group of summands of the form Aé(x) with the same
nonsingular Frobenius block ®:

AP e @ AL, (40)

Let first pg(z) € F[z?]. Then the involution f(w)® = f(—w) on F(w) =
F[x]/pe(z)F[x] is nonidentity (since w® = —w # w). By Lemma BI(b), the
Hermitian form

filw)ziyy + -+ + fo(w)ays
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over F(w) is equivalent to xjy; + --- + 20y,. Theorem 2.2(b) ensures that
(40) is congruent to AL @ --- @ AL, which gives the summands (iii).

Let now ® = J,(0) with n = 2m + 1 and m = 1,2,.... The equalities
(I0) hold for the n x n matrices

0 0
~1
/ 0 0 0 / 0 1
o= -1 0 0 ;o L= (41)
0 1 0 1 0
0 1 0]

instead of ® and ®_;. Since ® and ¢’ are similar, by Theorem [23](c) we can
take C1™) = (@', &' @) f(®') instead of AL™ and

07{1(50) DD Cris(x) (42)

instead of (40).

Since pe(z) = x, the field F(w) = Flz]/pe(x)F[z] is F with the identity
involution and all polynomials f;(x) in (42)) are some scalars a; € F. By
Lemma [B.I)(a), the quadratic form a;z? + - - - + asx? over F is equivalent to
either 27 + -+ + 22, or (2% + 23 + - - - + z2, in which ( is a fixed nonsquare
of F. Theorem 2.2(b) ensures that (40) is congruent to

either C'@---C, or CSHC @®---dCL, (43)

and this sum is uniquely determined by (A, B). This gives the summands
(v) with odd n.
Summands (d). Theorem Z3(b) ensures that the summands of the form
(d) are uniquely determined by (A, B), which gives the summands (iv).
Summands (e). Consider the whole group of summands of the form C?
with the same n:
Chrd--- ol (44)

By Lemma Bl(a), the quadratic form a;z? + - - - + a,2? over F is equivalent

to either 7 +---+12, or (af + x5 +- -+ 22, in which ( is a fixed nonsquare
of F. Theorem 22(b) and Remark 25 ensure that (d4]) is congruent to

either C' @ --- @ C, or CSeCle---aCl,
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and this sum is uniquely determined by (A, B), which gives the summands
(v) with even n. O

3.3 Canonical pairs of Hermitian matrices

Theorem 3.6. Let F be a finite field of characteristic not 2 with nonidentity
involution. Let F, be the fized field of F. Each pair of Hermitian matrices of
the same size over F is *congruent to a direct sum, uniquely determined up
to permutation of summands, of pairs of the following types:

(1) ([Fn\E}], [Gn\\GL]), in which F,, and G,, are defined in (II);

(i) ([Ln \1n), [\ D@*]), in which ® is an n X n Frobenius block over F
such that pe(z) ¢ Fo[x], and ® is determined up to replacement by the
Frobenius block U with xy(x) = xo(z) (see @));

(iii) (P1, P1P), in which ® is a Frobenius block over F,;

(iv) the pair of n x n matrices

0 1 0] [o 1
Bu= ||, g - S . on=1,2... (45
0 ol |1 0

Proof. Let F be a finite field of characteristic not 2 with nonidentity involu-
tion. By Theorem 2.3|(a), each pair (A, B) of Hermitian matrices over F of
the same size is *congruent to a direct sum of pairs of the form

(a) ([Fn\ER], [Ga \NGL),

(b) ([Ln \ L], [@\ @*]) if ®; does not exist,

(c) AW = (05,®,®)f(®), in which 0 # f(z) = f(z) € Flz] and
deg(f(x)) < deg(pa(z)),

(d) B (defined in (I2)), in which 0 # a =a € F.

Consider each of these summands.

Summands (a). Theorem [23[b) ensures that the summands of the form
(a) are uniquely determined by (A, B), which gives the summands (i) of the
theorem.
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Summands (b). By Lemma2.7|(a), ®; does not exist if and only if pg(x) #
po(x); that is, pe(z) ¢ Fo[z]. Theorem 23[(b) ensures that the summands
of the form (b) are uniquely determined, up to replacement of ® by ¥ with
Xw(x) = Xo(z). This gives the summands (ii).

Summands (c). Consider the whole group of summands of the form Aé(m)
with the same nonsingular Frobenius block ®:

AP @ ALY, (46)
By Lemma B.I|(b), the Hermitian form

filw)ziyn + -+ fi(w)zlys
over F(w) = Flx]/ps(x)F[z] with involution f(w)® = f(w) is equivalent to
297y + -+ - + 2525, Theorem 23(b) ensures that (@) is *congruent to AL &
-+ @ AL and this sum is uniquely determined by (A, B). This gives the
summands (iii).
Summands (d). Consider the whole group of summands of the form B?
with the same n:
By ®---® By, (47)
By Lemma B.I(b), the Hermitian form a;Z1y; + - - - + asZsys over F is equiv-
alent to Ziy; + -+ + Zsys. Theorem 22(b) ensures that ([@T) is *congruent
to BL @ ---® B! and this sum is uniquely determined by (A, B). This gives
the summands (iv).
U

4 Canonical forms over p-adic fields

In this section K is a finite extension of Q, with p # 2.
Let us recall the classification of quadratic and Hermitian forms over K.
Each nonzero element of @, can be represented in the form

a=a.p°+ o p 2€Z, a,#0, (48)
in which all a;; € {0,1,...,p — 1}. The exponential variation on K is the
following mapping v : K — R U {4o00}:

400, if a =0,
z, if 0 # a € Q,, is represented in the form (8],
v(ay,)/m, if a ¢ Q, and its minimum polynomial of over Q, is

2™ 4 a ™ e+ .

v(a) =
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The ring
O(K) :={a € K|v(a) > 0} (49)

is called the ring of integers of K; it is a principal ideal ring, whose unique
maximal ideal is

m:= {a € K|v(a) > 0} = 71O(K). (50)
Each generator m of m is called a prime element. The set
O(K)* :={a e K|v(a) =0} (51)

is the group of all invertible elements of O(K); they are called the units of
K.

The factor ring
O(K)/m (52)

is a field, which is called the residue field of K; it is a finite extension of the
residue field F, = Q,/pQ, of Q,.

Lemma 4.1. Let K be a finite extension of Q, with p # 2. Let its residue
field O(K)/m consist of p™ elements. Let u € O(K)* \ K*? be a unit that is
not a square, and w be a prime element. Then each quadratic form of rank
r > 1 over K is equivalent to exactly one form

Y + oty - ] + Ty (53)
in which (c1,...,¢) is one of the sequences:
(1), (u), (m), (um), (u,m), (u,un), (w,rr), (u, 7, rr), (54)

where
_ {u if pP" =1 mod 4, (55)

1 ifp™ =3 mod 4.

Lemma 4.2. Let a field K with nonidentity involution be a finite extension
of Qp, p # 2. Let K, be the fized field with respect to this involution. Let
u € O(K,)*\KX2 be a unit that is not a square, and T be a prime element of
K,. Then each Hermitian form with nonzero determinant over K s classified
by dimension and determinant; moreover, it is equivalent to

either Tiyp + -+ + TpYn, or tTiyy + Toyo + - + Ty,
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i which
— Q ZfK = KO(\/H);
b {u if K =K, (y/m) or Ko(y/um). (56)

Proof. By [13, Ch. 10, Example 1.6(ii)], regular Hermitian forms over K are
classified by dimension and determinant. O

4.1 Canonical matrices for congruence and *congru-
ence

Theorem 4.3. Let a field F be a finite extension of Q, with p # 2. Every

square matriz over F is congruent to a direct sum that is uniquely determined

up to permutation of summands and consists of any number of summands of
the following types:

(i) Jn(0);

(ii) [@\ I,], in which ® is an n x n nonsingular Frobenius block over F
such that

pe(r) # py(x) (see @)  or  pa(z) =z +(-1)" (57
and ® 1s determined up to replacement by the Frobenius block VW with
Xu () = Xg(2);

(iii) for each nonsingular Frobenius block ® over F such that ps(z) = pg(z)
and deg pe(x) = 2:

o VO,
e at most one summand of the form
VBr(®) if K = Ko(va),
UTa(®) if K = Ko(v/7) or K = Ko(v/am),
in which K is the following field with involution:
K :=F(x) = Flz]/ps(2)Flz],  f(r)°:= f(x7")

(see @) and (@), K, is its fived field, m is a prime element of
Ko, u € O(K,)* \ KX? is a unit that is not a square, 7(z), a(x) €
Flx,z~'] are the functions of the form (&) such that 7#(k) = m and

]
(k) = u;
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(iv) for eachn=1,2,...:
e ', (defined in (20))),

e at most one summand from the list

ul'y, nl,, urly,, ul'y, & «wl,, ul', & url,,

al'y, & rrl,, ul’', & al', & rrl,,
mn which
fpm =1 d4
P P ot S, (58)
1 ifpm™ =3 mod 4,

p™ is the number of elements of the residue field O(F)/m of F,
u € O(F)* \ F*2 is a unit that is not a square, and 7 is a prime
element of IF.

Proof. Let a field F be a finite extension of QQ, with p # 2. By Theorem
2.2(a), every square matrix A over F is congruent to a direct sum of matrices
of the form

(a) J,(0), (b) [®\ L] if V® does not exist, (c) vV ®q(P).

Consider each of these summands.

Summands (a). Theorem [Z2(b) ensures that the summands of the form
J,(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma Z6(a), v/® does not exist if and only if (57)
holds. Theorem 2.2(b) ensures that the summands of the form [\ I,] are
uniquely determined by A, up to replacement of ® by ¥ with xg(x) = x§(z).
This gives the summands (ii).

Summands (c). Let ® be a nonsingular n x n Frobenius block for which
V/® exists. Then by Lemma [2.6](a)

pa(x) =pg(z),  palw) #x+ (-1)"" (59)

Consider the whole group of summands of the form v/®¢(®) with the same
O:

Voq (@) @ - & Vg, (0). (60)

Let first degpg(x) > 1. Then the involution f(k)° := f(k~!) on the field

F(k) = Flz]/ps(x)F[z] (see (@) and (7)) is nonidentity; otherwise k = k° =
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k71 k2 —1 =0, 22 — 1 divides pg(z), and hence pg(x) = x £ 1 since it is

irreducible. By Lemma [£.2] the Hermitian form
@ (R)ziyr + - + g5 (K) 75y,

over F(k) is equivalent to either x{y; + - - - + 23y, or txly; +25ya + - - - + T2ys,
in which ¢ is defined in (B6). Theorem 2.2(b) ensures that the matrix (60) is
congruent to

cither VO @ - @ VO, or Voi(®)® Voa---a VO,

in which #(z) € F[z,271] is the function of the form (§) such that #(k) = t.
This sum is uniquely determined by A, which gives the summands (iii).

Let now pg(z) = z+c. Then by (B9) and @), z+c = ¢ Hcx+1), c =,
¢ = £1. The inequality in (B9) implies

po(x) =z + (—1)". (61)

By @I), I, = YT, and T, is similar to J,((—1)""), which is similar
to ® due to (B0). By Theorem 2.2(c) we can take T, instead of ® with
po(x) =z + (—1)" in Theorem 22(a,b). The field F(r) = Flz]/pe(x)F[z] is
F with the identity involution; all polynomials ¢;(x) in (60) are some scalars
a; € F, by Lemma [£.I] with K = F, the quadratic form

@ (KT + -+ qo(r)2? = ayzt + - - + a2’
over IF is equivalent to exactly one form (B3]), in which (cq,...,¢) is one of
the sequences (54]). Theorem 2.2(b) ensures that (60) is congruent to a direct
sum of matrices of the form (iv), and this sum is uniquely determined by A.
This gives the summands (iv). O

Theorem 4.4. Let a field F with nonidentity involution be a finite extension
of Q, with p # 2. Every square matriz A over F is *congruent to a direct
sum that is uniquely determined up to permutation of summands and consists
of any number of summands of the following types:

(i) Jn(0);

(i) [®\ 1], in which ® is an nxn nonsingular Frobenius block over F such
that pe(z) # pe(x) (see @) and D is determined up to replacement by
the Frobenius block U with xy(x) = x4 (),
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(iii) for each nonsingular Frobenius block ® over F such that pe(z) = p§(x):

e at most one summand of the form

Vor(®) if K =K.(Va),
Vou(®) if K =K.(v/7) or K =K, (y/ar),

in which K is the following field with involution:
K:=F(k) = Fla]/ps(x)Flz],  f(k)°:= f(x7")

(see @), @) and [@)), K, is its fized field, 7 is a prime element of
Ko, u € O(K,)* \ KX? is a unit that is not a square, 7(z),a(z) €
Flz, 7] are the functions of the form (8) such that (k) = 7 and
(k) = u.

Proof. Let a field F with nonidentity involution be a finite extension of Q,
with p # 2. By Theorem [Z2](a), every square matrix A over I is *congruent
to a direct sum of matrices of the form

(a) Jo(0), (b) [®\ L,] if ¥V does not exist, (c) vPq(P).

Consider each of these summands.

Summands (a). Theorem Z2(b) ensures that the summands of the form
J(0) are uniquely determined by A, which gives the summands (i) of the
theorem.

Summands (b). By Lemma 26(a), V® does not exist if and only if
po(z) # pg(x). Theorem 2.2A(b) ensures that the summands of the form
[®\ I,] are uniquely determined by A, up to replacement of ® by ¥ with
Xw(x) = x$(x). This gives the summands (ii).

Summands (c). Let ® be a nonsingular n x n Frobenius block for which
V/® exists; this means that pe(z) = p¥(z). Consider the whole group of
summands of the form V/®¢(®) with the same ®:

Vo (0) @ & V(D). (62)

The involution f(x)° := f(k™') on the field F(x) = F[z]/ps(z)F|x] (see (@)
and (7)) is nonidentity since it extends the nonidentity involution on F. By
Lemma [A.2] with K := F(x), the Hermitian form

G (k)xiy + -+ gs(K)2oys
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over F(r) is equivalent to either oSy, +- - -+x2ys, or tajy; +a5y2+- - - +25ys, in
which ¢ is defined in (B6). By Theorem [2Z.2(b), the matrix (62)) is *congruent

to
either %@-“@%, or %E(@)@ Voo o %,

where #(x) € Flx, 27! is the function of the form (8) such that #(k) = ¢. This
sum is uniquely determined by A, which gives the summands (iii). O

4.2 Canonical pairs of symmetric or skew-symmetric
matrices

For each Frobenius block ®, denote by +/® and ®, (¢ = +1) fixed nonsingular
matrices satisfying, respectively, the conditions

Vo = (Vo) 4, (63)
b, =" D.A=¢(d.A)T, (64)

in which A is similar to . Each of these matrices may not exist for some ®;

existence conditions and explicit forms of these matrices were established in
[15].

Theorem 4.5. Let a field F be a finite extension of Q, with p # 2. Each pair
of symmetric matrices of the same size over F is congruent to a direct sum
that is uniquely determined up to permutation of summands and consists of
any number of summands of the following types:

(1) ([F,\FT], [G.\GTL]), in which F, and G,, are defined in (II));
(ii) for each nonsingular Frobenius block ® over F:

o (O, P1D), in which ®q is defined in (I0),
e at most one summand of the form
(1, 212) f1(P) ® - - - & (D1, P1D) fe(D),
in which (f1(x),..., fi(x)) is a sequence of polynomials over F of
degree < deg(pe(x)) such that the sequence (fi(w),..., fi(w)) of
elements of the field
K :=F(w) =Flz]/pe(z)F|z]
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1s one of the sequences
(1), (), (7), (ur), (u,7), (w,um), (7, rx), (u,mrr), (65)
where

fpm =1 d4
. {u if p mod 4, (66)

1 ifpm™ =3 mod 4,

p™ is the number of elements of the residue field O(K)/m of K,
u € O(K)* \ K*2 is a unit that is not a square, and 7 is a prime
element of K;

(iii) for eachn =1,2,...:

e the pair of n-by-n matrices

0 1 0] o 1
Bn:= {11 N ) (67)
0 ol |1 0

e at most one summand of the form
Bucr @ -+ @ Buay, (68)
in which (cq, ..., ¢;) is one of the sequences

(1), (u), (7), (un), (u,m), (u,ur), (w,rr), (u,m rr), (69)
where

) (70)
1 ifpm™ =3 mod 4,

p™ is the number of elements of the residue field O(F)/m of F,

u € O(F)* \ F*2 is a unit that is not a square, and 7 is a prime

element of IF.

{u if P =1 mod 4,
ro=

Proof. Let a field F with the identity involution be a finite extension of Q,,
p # 2. By Lemma 27 the matrix ®; exists for each nonsingular Frobenius
block ® over F. By Theorem 2:3(a), each pair (A, B) of symmetric matrices
of the same size is congruent to a direct sum of pairs of the form

(a) ([Fu \FT], [Ga\GL]),  (b) AS = (@1, 0,0)f(®), (c) B,
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in which f(x) € F[z] is a nonzero polynomial of degree < deg(ps(z)) and
0#ackh.

Consider each of these summands.

Summands (a). Theorem [Z3[b) ensures that the summands of the form
(a) are uniquely determined by (A, B), which gives the summands (i) of the
theorem.

Summands (b). Consider the whole group of summands of the form A‘Z]I)(x)
with the same nonsingular Frobenius block ®:

AP e AL, (71)
By Lemma 1] the quadratic form
Q(w)rt + -+ g(w)as

over F(w) = F[z]/ps(x)F[z] is equivalent to exactly one form (53), in which
(a1, ...,a;) is one of the sequences (B54]). Theorem 23(b) ensures that (71 is
congruent to a direct sum of pairs of the form (ii) and this sum is uniquely
determined by (A, B), which gives the summands (ii).

Summands (c). For each n, consider the whole group of summands of the
form B¢ with the same n:

BY@®---@ B (72)

By Lemma [T}, the quadratic form ayz? + - - - + a,x? over F is equivalent to
to exactly one form (B3)), in which (¢y,...,¢) is one of the sequences (B4)).
Theorem [2.3[(b) ensures that (2)) is congruent to a direct sum of pairs of the
form (iii) and this sum is uniquely determined by (A, B), which gives the
summands (iii). O

Theorem 4.6. Let a field F be a finite extension of Q, with p # 2. FEach
pair consisting of a symmetric matriz and a skew-symmetric matrixz of the
same size over I is congruent to a direct sum that is uniquely determined up
to permutation of summands and consists of any number of summands of the
following types:

(1) ([F.\FT], [G.\ — GT]), in which F, and G,, are defined in (II));

(i) ([, \ L), [®\ — ®T]), in which ® is an n x n Frobenius block over F
such that

pa(z) & F[I2]> ¢ # J1(0), J3(0), J5(0), ... (73)
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(see @), and P is determined up to replacement by the Frobenius block
U with xy(x) = (—1)% X2y g (—x);

(iii) for each Frobenius block ® over F such that ps(x) € Fla?]:
L ((I)—luq)—lq)))

e at most one summand of the form

(P_1, 01 9)7(P) if K =Ko(Vu),

(P_1, P 1P)u(P) f K=K,(y/7) or K=K,(y/ur),
in which K is the following field with involution:

K:=F(w) =Flz]/pe(x)F[z],  f(w)® = f(-w),

K, is its fixed field, ™ is any prime element of K., and u €
O(K,)* \ KX? is any unit that is not a square; 7(x) and u(x)
are polynomials over F of degree < deg(ps(z)) such that

7(x) = 7(—x), 7T(w) =, u(r) = u(—2), u(lw) = u;
(i) ([J(0) N Ju(O)T], (L, \ — L,]), in which n is odd;
(v) for eachn=1,23,...:

e the pair of n-by-n symmetric and skew-symmetric matrices defined

as follows:
[0 1 0]
0 1 1 0
Cp = , -1 0 (74)
1 0 0
1
. 0 0_
if n s odd, and
"0 .
0 1 0 .
=] L (75)
"1 0 ’ -1
0 0
__1 0_

30



if n is even, and

e at most one summand of the form
Cher @ -+ @ Crey, (76)
in which (c1,...,¢) is one of the sequences
(1), (uw), (n), (un), (u,m), (w,ur), (w,rn), (u,mrr), (77)

where

) (78)
1 ifpm™ =3 mod 4,

p™ is the number of elements of the residue field O(F)/m of F,

u € O(F)* \ F*? is a unit that is not a square, and T is a prime

element of .

{u if P =1 mod 4,
ro=

Proof. Let a field F with the identity involution be a finite extension of Q,,
p # 2. By Theorem 2.3(a) and Remark 2.5 each pair (A, B) consisting of
a symmetric matrix A and a skew-symmetric matrix B of the same size is
congruent to a direct sum of pairs of the form

(a) ([Fa\ET] G\ = GLl),
(b) ([[n\ L], [®\ — ®T]) if ®_; does not exist,

(c) AL® = (®_;,®_,®)f(®), in which 0 £ f(z) = f(—=z) € Fla] and
deg(f(z)) < deg(pa(z)),

(d) ([J.(0)\ Jn(0)T], [I,\. — I,,]), in which n is odd,
(e) C% (defined in (IH))), in which n is even and 0 # a € F.

Consider each of these summands.

Summands (a). Theorem [23|b) ensures that the summands of the form
(a) are uniquely determined by (A, B), which gives the summands (i) of the
theorem.

Summands (b). By Lemma 27, ®_; does not exist if and only if (73)
is satisfied. Theorem 2.3|(b) ensures that the summands of the form (b) are
uniquely determined by (A, B), up to replacement of ® by ¥ with yg¢(z) =
(—1)detxeyg(—x), which gives the summands (ii).

31



Summands (c). By Lemma 2.7, ®_; exists if and only if (73) is not
satisfied; that is,

po(z) € F[2?] or @& = Jy(0), J5(0), J5(0),. .. (79)

Consider the whole group of summands of the form Aé(x) with the same
nonsingular Frobenius block ®:

A g ARG, (80)

Let first pg(z) € F[z?]. Then the involution f(w)° = f(—w) on F(w) =
F|x]/pe(x)F[x] is nonidentity (since w® = —w # w). By Lemma [£.2] the
Hermitian form

filw)ziys + - + fo(w)ziys
over F(w) is equivalent to either x{y; +- - -+ 23y, or ta§ys +25ya+ - - -+ 23ys,
in which ¢ is defined in (B6]). Theorem 2.2(b) ensures that (80]) is congruent
to
either Ay @-- DAL,  or ALH(®) @A, & - & AL,

where #(z) € Flx, z7!] is the function of the form (8) such that (k) = ¢. This
sum is uniquely determined by (A, B), which gives the summands (iii).

Let now ® = J,(0) with n = 2m + 1 and m = 1,2,... The equalities
(IQ) hold for the n x n matrices ®" and ¥’ ; defined in (A1) instead of ¢ and
®_;. Since ® and &’ are similar, by Theorem 2Z3|(c) we can take ci® .=
(P, @, &) f(P') instead of AL and

CTJLH(I) DD q{s(r) (81)

instead of ({40).

Since pe(x) = x, the field F(w) = Flz]/pe(x)F[z] is F with the identity
involution and all polynomials f;(x) in (42)) are some scalars a; € F. By
Lemma 1] the quadratic form ayz? + -+ + a,2? over F is equivalent to
exactly one form (B3], in which (¢q,...,¢) is one of the sequences (B4)).
Theorem 2.3(b) ensures that (&1) is congruent to a direct sum of pairs of the
form (iii), and this sum is uniquely determined by (A, B). This gives the
summands (v) with odd n.

Summands (d). Theorem 2.3(b) ensures that the summands of the form
(d) are uniquely determined by (A, B), which gives the summands (iv).
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Summands (e). Consider the whole group of summands of the form C?
with the same n:

Chq-- @ C». (82)

By Lemma 1] the quadratic form a;z? + -+ + a,2? over F is equivalent

to exactly one form (G3)), in which (¢q,...,¢) is one of the sequences (54)).
Theorem [2.3[(b) ensures that (82)) is congruent to a direct sum of pairs of the
form (iii), and this sum is uniquely determined by (A, B). This gives the
summands (v) with even n. O

4.3 Canonical pairs of Hermitian matrices

Theorem 4.7. Let a field F with nonidentity involution be a finite extension
of Qp, p # 2. LetF, be the fized field of F. Each pair of Hermitian matrices of
the same size over F is *congruent to a direct sum that is uniquely determined
up to permutation of summands and consists of any number of summands of
the following types:

(1) ([F\Fr], [Gn\GZ]), in which F,, and G,, are defined in (L)),

(i) (Lo \ 1), [\ D)), in which @ is an n x n Frobenius block such that
po(x) ¢ Folz], and ® is determined up to replacement by the Frobenius
block U with xy(x) = xo(z) (see @));

(iii) for each Frobenius block ® over F such that pe(x) € Folz]:
o (D1, D1P), in which Oy is defined in Lemma[2.7,
e at most one summand of the form
(1, 219) f(®) if K =Ko(Vu),
(©1, 19) fu(®) if K=Ko(vm) or K =Ko (y/ur),
in which K is the following field with involution:
K:=F(w) =Fla]/ps(2)F[z],  f(w)” = f(w),

K, is its fized field, ™ is any prime element of K., and u €
O(K.)* \ KX2 is any unit that is not a square, 7(x) and u(x)
are polynomials over F, of degree < deg(pe(x)) such that

7(w) =, (w) = u;
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(iv) for eachn=1,2,...:

e the pair of n-by-n matrices

0 1 0 0 1
Bn = 1 0 ' ’ 1 ' ’
0 0 1 0

e at most one summand of the form

{Bm if F =TF. (),
Buu ZfF:FO(ﬁ) OT’F:FO(\/ﬁ),

in which 7 is a prime element of Fo and u € O(F,)* \ FX? is a
unit that is not a square.

Proof. Let a field F with nonidentity involution be a finite extension of Q,,
p # 2. By Theorem 2.3(a), each pair (A, B) of Hermitian matrices of the
same size over F is *congruent to a direct sum of pairs of the form

(a) ([Fn\ER], [Ga \NGL),
(b) ([Ln \ 1], [@\ @*]) if ®; does not exist,

(c) AL™ = (05,®,®)f(®), in which 0 # f(z) = f(z) € Flz] and
deg(f(z)) < deg(pa(z)).

(d) B (defined in (I2)), in which 0 # a =a € F.

Consider each of these summands.

Summands (a). Theorem [23|b) ensures that the summands of the form
(a) are uniquely determined by (A, B), which gives the summands (i) of the
theorem.

Summands (b). By Lemmal[2T(a), ®; does not exist if and only if pe () #
Po(x); that is, pe(x) ¢ Fo[z]. Theorem [Z3[(b) ensures that the summands
of the form (b) are uniquely determined, up to replacement of ® by ¥ with
Xv () = Xo(x). This gives the summands (ii).

Summands (c). Consider the whole group of summands of the form A{I,(x)
with the same nonsingular Frobenius block ®:

AP @ ALY, (83)
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By Lemma [4.2] the Hermitian form

filw)aiys + -+ folw)zys

over F(w) = Flx]/pe(x)F[z] with involution f(w)® = f(w) is equivalent to
either x{y; + - - - + x%ys, or txjy; + 25y2 + - - - + T2y, in which ¢ is defined in
(B6). Theorem 2.2(b) ensures that ([80) is *congruent to

either AL @ - @Ay,  or ALH(®) DAL @D Ay,

in which #(x) € Flx,27!] is the function of the form (8) such that #(x) = t.
This sum is uniquely determined by (A, B), which gives the summands (iii).
Summands (d). Consider the whole group of summands of the form B¢

with the same n:
B*®---® B (84)

By Lemma 2] the Hermitian form
G Y1+t asTys

over F is equivalent either x5y, + - -+ + 27y, or txjy; + x5ys + - - - + 25ys, In
which ¢ is defined in (56). Theorem 2.2(b) ensures that (84)) is *congruent to

either B, ®---® B, or Bt(®)® B, @ - @ By,

in which #(x) € Flz,27!] is the function of the form (8) such that (k) =
t. This sum is uniquely determined by (A, B), which gives the summands
(iv). O

5 Appendix: Quadratic forms over finite ex-
tensions of p-adic fields

In this section, we recall some known results on quadratic forms over finite
extensions of p-adic fields that are used in the paper.

Let IF be a field and let v be an exponential variation on IF; that is, a map
v:F — RU{+oo} with the properties

v(z) =400 <= x=0, (85)
min{v(z), v(y)} < v(z +y), (86)
v(z) +v(y) = v(zy) (87)
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for all z,y € F.
For example, the field Q, of p-adic numbers possesses an exponential
variation that is defined on each nonzero p-adic number as follows:

v(ap® +a,qp”t ) = 2, (88)

where a; € {0,1,...,p—1}, a, #0, and z € Z.

In this section F denotes a finite extension of Q,, p # 2. In this case the
exponential variation (20) can be extended to an exponential variation of F.
This variation is unique and is given by the formula:

1
v(a) = gv(N(a)) for all a € F, (89)
in which n := (F : Q,) = dimg, IF is the degree of F over Q, and N(a) is
the norm of a in F over Q,; that is, the determinant of the linear mapping
x +— xa on [ as a vector space over Q,. If 2™ + ar ™t 4+ o+, is the
minimum polynomial of a € F over Q, then the variation (89) can be also
given by the formula:

1
v(a) = Ev(am) for all a € F. (90)

Note that there exists a natural number e such that ev(F*) = Z. The
ring
O :={xeF|v(x) >0} (91)

is called the ring of integers (with respect to v);
m:={zx eF|v(z) >0} =7nR (92)

is the unique maximal ideal of R and its generator = is called a prime element
(it is any element of F with the smallest positive v(7); that is, v(7) = 1/e);
the factor ring

O/m (93)
is a field, which is called the residue field; and the set

O* :={zxelF|v(z) =0} (94)

is the group of all invertible elements of O (which are called units).
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The residue field O/m is an extension of the residue field F, of Q, and
e(O/m:F,)=n=(F:Q,) (95)

By [9, Section VI, Theorem 2.2] or [I3, Ch. 6, Facts 4.1] F* /F*? consists
of 4 cosets, represented by 1, u, 7, um, where u € O* is a unit with u ¢ F*?
(or, which is equivalent, with u+m ¢ (O/m)*?; see [4, Example 3.11], recall
that p # 2).

The Hilbert symbol is defined for a,b € F* by

1 if ax? + by? represents 1,
(a,b)p := ) (96)
—1 otherwise.
The Hasse invariant of a form ¢ ~ a1z3+asx3+- - -+a,x? with ay, ..., a, € F*
is
c(q) = [[(ai, a;)s (97)

i<j
(see [10, Ch. VIII, p. 210]).

By [10, Ch. VIII, Theorem 4.10], two quadratic forms over F are equiv-
alent if and only if they have the same rank n, the same discriminant d (in
F* /F*?), and the same Hasse invariant. By [10, Ch. VIII, Proposition 4.11],
if ¢ is a quadratic form of rank r, then

o If r =1 then ¢(q) = 1.
e If r =2 and ¢(q) = —1 then d(q) # —1 (mod squares).

Apart from these constraints, every triple r > 1, d € {1, w, m, ur} (mod
squares), ¢ = 1 occurs as the set of invariants of a quadratic form over F.

Theorem 5.1. Let IF be a finite extension of Q, with p # 2. Let its residue
field O/m consist of p™ elements. Let u € O* \ F*? be a unit that is not a
square, and 7w be a prime element. Then each quadratic form of rank r > 1
over F is equivalent to exactly one form

125 + AT + -+ @I + TP+t 2, (98)
in which (aq,...,a;) is one of the sequences:
(1), (u), (m), (ur), (u,m), (u,um), (99)

{(ﬂ',Uﬂ'), (u,m,ur) if P =1 mod 4,

(ﬂ-a 7T), (U, T, 7T) prm =3 mod 4. (100)
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Proof. Let us show that the forms (Of)) give all possible invariant triples
(r,d,c).

The forms (Of)) with t = 1 and ay € {1, u, 7, urn} give all possible triples
(r,d,c) with ¢ = 1; in particular, all possible triples with r = 1.

The remaining forms (@8]) have the Hasse invariant ¢ = —1 since:

o (u,m)p = —1 by [, p.53, Case 2].

o (u,um)p = (u,u)p(u, 7)p = —1 since (u,u)r =1 by [4, p.53, Case 1].

o (m,m)p = (—1)@V/2 by [4, p.53, Case 3]. Thus, (7, 7)p = —1if p™ =3
mod 4 and (7, un)r = (7w, u)p(m,7)p = —1 if p =1 mod 4.

e If p* = 3 mod 4 then the Hasse invariant of the form with triple
(u,m,m) is (u, m)p(u, 7)p(m, m)r = (7, m)p = —1. If p» =1 mod 4 then the
Hasse invariant of the form with triple (u, 7, um) is (u, 7)g(u, um)p(7w, un)p =
(u, w)p(u, 7)2(m, 7)p = (u, 7)p(m, T)p = —1.

In particular, we have 3 invariant triples with r =2, ¢ = —1, and

e {urm, 7, u} (mod squares) if p™ =1 mod 4,
{ur, m, 1} (mod squares) if p™ =3 mod 4.

But if r = 2 and ¢ = —1 then d can have only 3 values (mod squares) since
d # —1 (mod squares); thus, we have all possible invariant triples with r = 2.

We have all possible invariant triples with » > 3 and ¢ = —1, since then
d e {l, u, m, ur} (mod squares). O

5.1 Irreducible polynomials over Q,

Let f(z) € Z,[x] be a monic polynomial whose reduction modulo p is irre-
ducible in F,[z]. Then f(z) is irreducible over Q,. [5, Corollary 5.3.8]

The Eisenstein criterion. Suppose that the polynomial f(z) = 2" +
ay ™t + -+ + a, € Z,[z] satisfies the conditions pla; for all i and p? { a,,.
Then f(z) is irreducible over Q,. [I, Theorem 5.5].

Let n and m be coprime natural numbers. Then the polynomial z" — p™
is irreducible over Q,. [I, Theorem 5.3].

5.2 Hermitian forms over local rings

Theorem 5.2. Let F be a finite extension of Q,, p # 2, with a fized non-
identity involution. Let F, be the fized field with respect to this involution.
Let u € O(F,)* \FX? be a unit that is not a square, and w be a prime element
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of Fy. Then each regular (=with nonzero determinant) Hermitian form over
F is equivalent to either
jlyl +oo 4+ jnyna

or
TT1Y1 + ToYo + - + Tpln ZfF = Fo(ﬁ%
U1y + ToYo + - + Tpyn  if F =Fo(\/7) or Fo(y/um).

Proof. Since (F : F,) = 2, we have F = F,(«), where « is a root of f(x)
2? + 2ax + b € Fo[z]. Write A := a + a, then (A — a)? + 2a(\ —a) + b
AN —a?+b=0.

Therefore, we can take o such that o® = 8 € F,. Moreover, (aa)? = Sa?
for each a € F,. But FX /FX? consists of 4 cosets, represented by 1, u, 7, um.
Hence, we can take « such that

o =pef{l, u, 7, ur},

then F is F,(y/u), or Fo(y/7), or Fo(y/ur). Since a? = (3, the involution on
Fis ¢+ da — a —da, ¢,d € F,. The element

N(c+da) = (c+da)(c —da) = * —d*B € F,

is the norm of ¢ + da. The set N(F*) of norms of all nonzero elements is a
group. By [13, Ch. 6, Fact 4.3], the norm residue group FX/N(F*) consists
of 2 elements.

o Let F =F,(y/u). Then a® = u, N(c+da) = *—d?u. If 7 € N(F*) then
there is ¢+ da such that N(c+da) = ¢ — d?u = 7. Then ¢ — d*u =0
mod 7; i.e. u = (¢/d)?* mod 7. A contradiction. Therefore, the cosets
of FX/N(F*) are represented by 1, .

o Let F = F,(y/7). Then o = 7, N(a) = —7. But —7 is a prime
element too, so 1, u, —m, —um represent 4 cosets of FX/FX2. Thus,
the cosets of FX /N (F*) are represented by 1, wu.

o Let F =F,(y/ur). Then a? = ur, N(a) = —ur. But —ur is a prime
element too. Thus, the cosets of FX /N (F*) are represented by 1, u.

Let ¢(z,y) = anT1y1 + -+ + @, Tpy, be a regular (all «; are nonzero)
Hermitian form over F. Then the determinant det(¢) := a;...a,N(F*) €
FX/N(F*) is an invariant of ¢(x). By [13, Ch. 10, Example 1.6(ii)], regular
Hermitian forms over F are classified by dimension and determinant. O
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