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A smooth spatial disturbance of the Fermi surface in a Fermi gas inevitably becomes sharp. This
phenomenon, called the gradient catastrophe, causes the breakdown of a Fermi sea to disconnected
parts with multiple Fermi points. We study how the gradient catastrophe effects probing the Fermi
system via a Fermi edge singularity measurement. We show that the gradient catastrophe trans-
forms the single-peaked Fermi-edge singularity of the tunneling (or absorption) spectrum to a set
of multiple asymmetric singular resonances. Also we gave a mathematical formulation of FES as a
matrix Riemann-Hilbert problem.

1. Introduction The FES (Fermi edge singularity [1–
3]) observed in absorption of X-rays in metals more than
70 years ago as a power law peak at the Fermi-surface, is
one of the most prominent and well understood quantum
many-body phenomena caused solely by Fermi statistics.

FES also has been demonstrated in tunneling experi-
ments [4–7]: a sudden switch-on of a contact potential
due to a change in the capacity of the contact in tunnel-
ing causes a power law in tunneling current vs the bias

voltage: I(V ) ∼ V −2a+ka2 [8]. Here δ = πa is a scatter-
ing phase of the ensuing potential and k is the number of
scattering channels. In the case of an attractive potential
(a > 0) the current peaks at the Fermi edge.

The physics of the FES is explained by the phenomena
of Orthogonal Catastrophe [10]: the state of a Fermi gas
〈Ω′| after a suddenly imposed a localized potential is al-
most orthogonal to a state of the unperturbed Fermi gas
|Ω〉. Their overlap vanishes with a level spacing ∆ as a

power law 〈Ω′|Ω〉 ∼ (∆/EF )ka
2

.

FES acquires new features out of equilibrium, where a
gradient catastrophe takes place. A gradient catastrophe
is a hydrodynamic instability observed in many classical
(and, recently, in quantum atomic) systems. In Ref. [9]
it has been shown that a gradient catastrophe also takes
place in a Fermi gas. The ballistic propagation of macro-
scopical packets and fronts in Fermi gases inevitably en-
ters a gradient catastrophe regime, where the initially
smooth fronts develop large gradients and undergo a
shock wave phenomenon: packets overturn as shown in
Fig 1. This phenomena shows up differently in different
quantum observables. Ref. [9] discusses the Orthogo-
nality Catastrophe [10] in a non-staionary regime: the
overlap of the state of a shaken-up Fermi gas with a prop-
agating packet (both before and after the shock). In this
paper we study FES. We show that shock waves cause ad-
ditional resonance peaks (see Fig. 2). Observation may
not be easy since electronic times are too short, but does
not seem impossible. From the theoretical viewpoint FES
in a non-stationary regime reveals important (and new)
aspects of the Orthogonality Catastrophe. Both catas-
trophes are caused solely by Fermi statistics.

In a related work [11] FES has been studied in a steady
out-of-equilibrium settings with a two-steps Fermi distri-
bution (see also [12]). The two steps show up as two FES

FIG. 1: Time progression of the Fermi edge. The front over-
hangs, giving rise to three Fermi (see inset) edges (PF3 >
PF2 > PF1) between the trailing (x−) and leading (x+) edges.

peaks occur - one for each of the Fermi edge. Our setting
is different. We discuss FES in a non-stationary, time
dependent phenomenon.

2. Tunneling in a non-stationary regime. We con-
sider the following situation:
(i) A Fermi gas is in contact with a localized resonant
level (a quantum dot). It is initially uncharged and pro-
vides no scattering to electrons. When an electron tun-
nels to the dot, it suddenly charges the dot, switching-on
a small potential H → H ′ = H + U localized at the dot,
such that |a| < 1/2 [8]. We assume no further interac-
tion, no dissipation, ignore spin and channels.
(ii) A semiclassical electronic front or a packet - a state
with a spatially inhomogeneous density matrix % has been

FIG. 2: A schematic plot of tunneling current for a < 0 (left
panel) and a > 0 (right panel), solid lines show computed
power law asymptotes. Dashed lines interpolate between res-
onances. a < 0 displays a single peak after the shock, while
a > 0 displays two peaks.
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initially created in a Fermi gas as is in Ref.[9] and Fig.
1. The state evolves before the shake-up as eiHt%e−iHt.

E.g., a smooth potential well (namely, of spatial ex-
tent much larger than the Fermi length) centered away
from the dot is applied to the Fermi gas. A large num-
ber of electrons is trapped in the well. Then the well
is suddenly removed. The electronic packet propagates
towards the dot, eventually hits it, facilitating tunneling.
Alternatively, we may consider two conductors with dif-
ferent chemical potentials suddenly brought into contact.
The conductor with smaller chemical potential is in con-
tact with a dot. A front of electronic density propagates
toward the smaller chemical potential of the dot.

This situation is described by a density matrix |Ω〉〈Ω|,
where

|Ω〉 = exp

(
i

~

∫
P0(x)ϕ(x)dx

)
|0〉

is a Fermi coherent state, |0〉 is the ground state of a
Fermi gas with a Fermi momentum PF > 0, and 0 <
P0(x)� PF is an initial momenta of a packet. The field
ϕ is a chiral canonical Bose field related to the chiral part
of electronic density

ϕ(x) = ~
∑
k 6=0

1

k
e

i
~kxρk, ρk =

∑
p>0

c†pcp+k, (1)

where p and p + k are electronic momenta close to the
Fermi momentum PF . We assume that P0(x) is smooth
on the Fermi length scale ~|∇P0|/P0 � PF . This condi-
tion justifies the semiclassical analysis described below.

The tunneling current is given by the golden rule [1, 8].
In units of a tunneling amplitude I(ω)|~ω=eV+EF

reads

I(ω, t) ∝ Re

∫ ∞
0

eiωτG(t+
τ

2
, t− τ

2
)dτ, (2)

G(t1, t2) = 〈Ω|eiHt2ceiH
′(t1−t2)c† e−iHt1 |Ω〉 (3)

Here c =
∑
k e
−ikx0ck and x0 is the position of the dot.

Since all the physics is concentrated at the Fermi edge
a knowledge of the dispersion at the edge is sufficient

εp = EF + vF (p− PF ) +
(p− PF )2

2m
+ . . . . (4)

In the literature the parabolic part of the dispersion is
routinely ignored. In that case our effect disappears [13].

We evaluate G(t1, t2) in the regime when a typical time
of tunneling τ = t2 − t1 > 0 is much less than the time
it takes for a packet to change. This approximation does
not allow us to compute the broadening of the resonance
at a frequency range γ ∼ vF (∇P0/~)1/2, but it captures
the power law shoulders of resonances.

Under this assumption during the short time of tun-
neling the energy dependence of the Fermi velocity and
scattering phase δ caused by potential U can be dropped
in some interval |ε − EF | � Λ at the Fermi edge, where
the cut-off Λ (typically of the Fermi scale) is assumed to

be larger than vFP0 and ~/τ . This amounts a shift of
energy levels after scattering downwards by a constant
amount a (in units of level spacing): εp → εp − a.

In Ref. [14] it has been shown that the vertex op-
erator eaϕ implements a shift of momenta such that a
perturbed Hamiltonian and perturbed states are H ′ =
e−aϕ(x0)Heaϕ(x0) and |Ω′〉 = eaϕ(x0)|Ω〉. Then Green’s
function reads

G(t1, t2) = 〈Ω|c(t2)e−aϕ(x0,t2)eaϕ(x0,t1)c†(t1)|Ω〉. (5)

This formula is standard. The only difference is that the
density matrix does not commute with the Hamiltonian
and therefore the process is not-stationary.
3. Gradient Catastrophe: Riemann equation for Fermi

Gas. We demonstrate the gradient catastrophe on the
evolution of the Wigner function - a simpler object than
(3). The Wigner function describes occupation in phase
space:

nF (x, p, t) =

∫
〈Ω|c†(x+

y

2
, t)c(x− y

2
, t)|Ω〉e

ipy
~ dy (6)

We assume that the front is plane or radial, such that
the dynamics is essentially one dimensional and chiral.

Semiclassically, the Wigner function is equal to 1 in
a bounded domain p < PF (x, t) of the phase space
(p, x) - the Fermi sea - and vanishes outside the Fermi
sea nF (x, p, t) ≈ Θ(PF (x, t) − p). This form is valid
as long as the gradients of the spatial dependence of
the Fermi momentum PF (x, t) are small. The shape of
the initial Fermi surface is given by the density matrix
PF (x, 0) = PF + P0(x).

How does the Fermi surface change in time? It does
not, if one neglects dispersion of the Fermi gas, i.e., treats
the velocity vp = dεp/dp as a constant: the front trans-
lates with the Fermi velocity without changing its shape.
It does change dramatic fashion if the dispersion in (4)
(no matter how small) is taken into account.

The Wigner function (for a dispersion εp = p2/2m)
obeys the equation

(∂t + vp∇)nF (x, p, t) = 0, vp = p/m (7)

The solution of this equation

nF (x, p, t) = nF (x−vpt, p, 0) ≈ Θ (P0(x− vpt)− p) (8)

shows that a moving Fermi momentum PF (x, t) obeys a
hodograph equation

PF (x, t) = P0 (x− PF (x, t)/m · t) (9)

This is Riemann solution of Euler’s equations for hydro-
dynamics of a compressible one-dimensional fluid

∂tPF +∇EF = 0, EF (x, t) = P 2
F (x, t)/2m (10)

Riemann’s equation leads to shock waves: the velocity of
a point with momentum PF (x) is PF (x)/m: higher parts
of the front move faster. The front gets steeper, and
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eventually achieves an infinite gradient – a shock at some
finite time. After this moment the Riemann equation has
at least three real solutions, PF3(t)>PF2(t)>PF1(t), con-
fined between two turning points x−(t), x+(t), the trail-
ing and leading edges respectively (Fig.1).

This phenomena is the gradient catastrophe. Any
smooth disturbance of the Fermi surface eventually ar-
rives to a point when the Fermi surface acquires infinite
gradients, and then becomes multi-valued between mov-
ing turning points x±. We focus on that region.

5. Slowly evolving Fermi edges Away from turning
points we can employ the Whitham averaging method
known in the theory of non-linear waves [15]. The
method has been applied to electronic systems in [9]. It
is based on a separation of scales between slowly vary-
ing Fermi edges and fast oscillations of electronic states.
In short, the Whitham method suggests to treat the
slowly changing Fermi edges as constants while comput-
ing Green’s function (3), and then to include the mo-
tion of the Fermi Edges in the final result. Motion of
the Fermi edges is determined by the Riemann equation
(10). This approach is valid away from turning points
[16]). It can be justified mathematically using an inte-
grable non-linear equation for Green’s function obtained
in [17].

6. Fermi edge resonances In the shock region x− <
x0 < x+ we must evaluate (3) over a state with
three Fermi edges, where electrons occupy states below
EF1 and between EF2 and EF3 (see Fig.3). We com-
puted the current at a frequency close to edges ~γ �
εi (~ω − EFi)� vFP0. In units of cut-offs it reads:

I(ω) ∝ |~ω − EFi|3a
2−2εia

∏
n>m

E 2εnεma
2

nm

∏
j 6=i

E
−2εja
ij ,

where εi = (−1)i+1, i = 1, 2, 3 and Eij = EFi − EFj .
The Fermi energies all depend on time according to (9).

If the potential is attractive a > 0 (a common case)
the current features a peak at EF1 (almost zero bias)
and an additional resonance at EF3 with a power law to
the right of the edges. Current is suppressed at the edge
EF2. If potential is repulsive a < 0 a peak appears at the
edge EF2 with a power law to the left to the edge Fig.2.

Apart from additional resonances, a noticeable dif-
ference with a shock region is the exponent and time-
dependent amplitudes. Outside of the shock region
where there is only one Fermi edge or at a larger energy
|EFi − EFj | � |ω − EF | � Λ where the fine structure of
Fermi edges becomes negligible, the current is given by

a standard formula [1, 2] I(ω) ∝ (ω − EF )
a2−2a

where
only the edge EF depends on time.

7. Bosonic representation The result could be un-
derstood using bosonic formalism. First we separate fast
oscillatory modes at each edge

c(t, x0) =
∑
i

e
i
~PFix(t)ψi(t)

where ψi(t) are slowly changing modes and x(t) = x0 −
vF t. Then we represent slow modes through components

of the Bose field ∂xϕi = iψ†i (t)ψi(t) as

ψi ∝ (εi
∏
j 6=i

E
εj
ij )1/2e−εiϕi . (11)

The Bose field (1) is a sum of its components ϕ =
∑
i ϕi.

Component of the Bose field represent particle-holes ex-
citations close at each edge. At vF /τ � Eij they can be
treated as independent canonical Bose fields. Their vari-
ances Ci(t1, t2) = − 1

2 〈Ω| (ϕi(t2)− ϕi(t1))
2 |Ω〉 are not

difficult to compute. As it follows form (1), C1 and C3

are sums of (cos ετ − 1)/ε over all possible energy of a
particle-hole excitations provided that a particle is taken
out from the first band p < PF1 and the second band
PF2 < p < PF3. Similarly C2 is the sum over momen-
tum of a hole particle excitations provided that a hole is
taken out for the a ”gap” between PF1 and PF2. For ex-

ample C2 =
(∑E21

ε>0−
∑Λ
E32

)
(cos ετ − 1)/ε. Computing

these integrals at τ � ~/|Eij | one obtains

Ci(τ) = − log τ + εi
∑
j 6=i

εj log |Eij | (12)

The time independent term in (12) explains the prefactor

in (11): a correlator 〈ψ†i (t1)ψi(t2)〉 ∝ εi
x(τ) must be also

obtained for the Bose field as (
∏
j 6=iE

−εiεj
ij )eCi .

In the Bose representation, Green’s function (5) is a
sum of edge components

G(t1, t2) =
∑
i

(εi
∏
j 6=i

E
−εiεj
ij )e

i
~EFiτGi(t1, t2), (13)

Gi = 〈e(εi−a)(ϕi(t2)−ϕi(t1))〉
∏
j 6=i

〈e−a(ϕj(t2)−ϕj(t1))〉

Computing, we obtain Green’s function in the form of
two factors: ’closed loops’ where each edge contributes
equally and ’open lines’ corresponding to each edge [1].

G = eC · L, C = a2
∑
i

Ci, L =
∑
i

Li, (14)

Li = εie
i
~EFiτ

∏
j 6=i

E
−εjεi
ij e(1−2εia)Ci (15)

This prompts our main result. Below we substantiate by
formulating Riemann-Hilbert problem for FES.
8. Fredholm Determinants with integrable kernel Fol-

lowing [1], Green’s function can be seen as two multi-
plicative factors G(t1, t2) = eC · L - open lines L and
closed loops eC = 〈Ω|e−aϕ(t2)eaϕ(t1)|Ω〉. Wick’s theorem
gives a representation of these factors through Fredholm
determinants

eC = |〈Ω|Ω′〉|2 det(1 + K), L = tr
[
(1 + K)−1P

]
(16)

with a kernel describing particle-hole excitations [3]

K(p1, p2) =
∑
q∈Ω

Mp1,q(t1)M∗q,p2(t2), (17)

Pp1,p2 = Mp1(t1)M∗p2(t2). (18)
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Here Mp,q(t) = 〈Ω|e−aφ(t)c†pcq|Ω〉 and Mp(t) =

〈Ω|c(t2)e−aφ(t1)c†p|Ω〉 are matrix elements between states
where a particle-hole pair, or just one particle are added
to the state |Ω〉. The sum in (17) runs over occupied
states of |Ω〉 - a set of states denoted by Ω [18].

At τ � ~/EF we may neglect the energy depen-
dence of velocity such that time dependence amounts to
a shift of a coordinate by vF t: x0 → x(t) = x0 − vF t.
Then Mpq(t) = e

i
~ (q−p)x(t)〈Ω′|Ω; p, q〉 is an overlap be-

tween state 〈Ω′| and a particle-hole excitation of the
state |Ω〉 with momenta p /∈ Ω and q ∈ Ω. Similarly

Mp = e−
i
~px(t)〈(p; Ω)′|Ω; p〉 is an overlap of states |Ω〉

and a state |Ω′〉 with an added particle with momenta p.

If 〈p′| is a single particle state of the perturbed Hamil-
tonian and |p〉 is likewise an unperturbed state then their

overlap (in units of level spacing) is sin(πa)
π(p−p′) . The for-

mula extends to many particle states 〈p| and |p′〉, where
p = p1, . . . , pN and p′ = p′1, . . . , p

′
N is a Cauchy determi-

nant ( π
sin(πa) )N 〈p|p′〉 = det 1

pi−p′j
=

∏
i>j(pi−pj)(p′i−p

′
j)∏

i,j(p′i−pj) .

With the help of this formula, the matrix elements in
(17) can be computed in a manner similar to Ref. [3]:

Mqp = e
i
~ (q−p)x(t) r(p)s(q)

p− q
, Mp = e−

i
~px(t)r(p), (19)

r(p) =
∏
i

(p− PFi)εia , s(q) =
sinπa

π

∏
i

(PFi − q)−εia .

where p /∈ Ω, q ∈ Ω are momenta of particles and holes.
Also, a general Orthogonality Catastrophe formula reads

〈Ω|Ω′〉 =
∏
i>j

E
εiεja

2

ij . (20)

These formulas extend the result in [1–3] to multiple
edges.

9. Fredholm equation The next step is to invert the
Fredholm kernel K. It can be done in a straightforward
manner similar to [3] employing the Wiener-Hopf method
at every edge. However, calculations become more struc-
tured if we use the integrable property of the kernel, a
general property (see [19–21]) which derives from the in-
tegrable nature of free fermion correlators [17]. An inte-
grable kernel has the form

Kp,p′ =

∑N
α=1 fα(p)gα(p′)

p− p′
,

N∑
α=1

fα(p)gα(p) = 0.

In our case N = 2, and as follows from (17,19):

f1(p) = e−
i
~px(t1)r(p), f2(p) = Q(p, τ)f1(p), (21)

g2(p) = e
i
~px(t2)r(p), g1(p) = −Q(p, τ)g2(p),

Q(p, τ) =

∫
q∈Ω

e−
i
~ vF qτ

s2(q)dq

p− q
. (22)

Let ~F = (1 + K)−1 ~f be the solution of the singular in-
tegral equation

~F (p) +

∫
p′ /∈Ω

Kp,p′
~F (p′)dp′ = ~f(p), p /∈ Ω. (23)

Then the closed loops and open lines (16) are

1

vF

dC

dτ
= tr

(
(1 + K)−1 dK

dτ

)
= i

∫
p/∈Ω

(g1F1 − g2F2) dp

L =

∫
p/∈Ω

(g2F1) dp,

10. Matrix Riemann-Hilbert problem The Fredholm
equation (23) is sufficient to obtain the singular behavior
at Fermi edges. However, it is instructive to cast the
FES problem into the matrix RH problem along the lines
described in [21]. In that form FES problem falls in the
general scheme of integrable problems. Also the RH-
problem is the most suitable for analysis near edges [22].

A central object of the RH problem is a matrix-valued
functions m(p) analytic in a complex p-plane cut along
the unoccupied intervals PF1 < p < PF2 or p > PF3

Fig. 3, defined such that at infinity m approaches the
unit matrix, and that its boundary value on the cuts

m± = m(p+ i0) connects vector the ~F to the vector ~f as

~F (p) = m+(p)~f(p), p ∈ Ω. (24)

In Ref. [21] it has been shown that the matrix is a solu-
tion of the RH-problem:

m+v = m−, vαβ = δαβ − 2πifαgβ . (25)

In the case of FES

v(p) = 1 + 2πie
i
~ vF pτr2(p)

(
−Q −1
Q2 Q

)
. (26)

Asymptotes at edges can be found by the steepest-

FIG. 3: Matrix m jumps on segments of real axis correspond-
ing to unoccupied states of |Ω〉 (solid line). Steepest descent
contour goes vertically (dashed line) in the upper half plane.

descent method described in [22]. The steepest-descent
contour starts from Fermi edges and extends to i∞ in
the upper half-plane as is in Fig. 3. Along this con-

tour the rapidly falling exponential factor e
i
~pvF τ in (26)

suppresses the jump of the matrix m except at small
segments near the Fermi edges. Each edge equally con-
tributes to closed loops as is in (14). The contribution
of each edge to open lines comes with its own oscillatory
factor and its own amplitude in accordance with (13-12).
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