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Translation invariant tensor product states in a finite lattice system
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We show that the matrix (or more generally tensor) product states in a finite translation invariant
system can be accurately constructed from the same set of local matrices (or tensors) that are
determined from an infinite lattice system in one or higher dimensions. This provides an efficient
approach for studying translation invariant tensor product states in finite lattice systems. Two
methods are introduced to determine these size-independent local tensors.

I. INTRODUCTION

Periodic boundary conditions are useful for simulat-
ing a large system by modeling a small part that is far
away from its edges. In particular, a periodic system is
free of boundary effects. It is easier to carry out finite
size scaling analysis from the results obtained on peri-
odic systems. This makes the extrapolation to the ther-
modynamic limit more transparent and smaller systems
are needed in the simulations. Moreover, the energy-
momentum dispersion of excitation states can be better
studied in translation invariant periodic systems.

However, many numerical renormalization group
methods, such as the density-matrix renormalization
gropu (DMRG)1, works better in systems with open
boundary conditions than those with periodic bound-
ary conditions. This is because the DMRG wavefunction
does not have the right entanglement structure in a pe-
riodic system. The criterion for the basis truncation in
the DMRG is governed by the the bipartite entanglement
entropy, which is bounded by the logarithm of the basis
number D retained in the truncation2. To calculate the
bipartite entanglement entropy, one needs to split the
system into two parts by cutting one bond in an open
chain, but two bonds in a periodic chain. Thus the en-
tanglement entropy in a one-dimensional (1D) periodic
system is about twice that in the corresponding open
system. In the DMRG calculation with open boundary
condition, the computational cost scales as O(LD3) for a
system of size L. However, to achieve the same accuracy,
a periodic system needs roughlyD2 states per block. The
computational cost scales roughly as O(LD6). In two or
higher dimensions, the entanglement entropy grows faster
with the system size. The number of states needed scales
exponentially with the number of boundary sites if peri-
odic boundary condition is imposed.

The DMRG can be rephrased as a variational method
over a class of matrix product states.3 The matrix prod-
uct states and related algorithms have been actively ex-
plored. In 2004, Verstraete et al. pointed out that the
matrix product wavefunction can also be used to cure
the problem met in the DMRG with periodic boundary
condition.4 They proposed a variational approach to eval-
uate the matrix product state and showed that the local
matrix elements can be determined by solving a general-
ized eigenvalue problem of dimension D2. The computa-

tional cost of their algorithm scales as O(LD5).
Recently, Pippan et al. proposed an approximate

scheme to evaluate the variational matrices used in the
generalized eigenvalue equation in terms of a singular
value decomposition5. Their scheme reduces the compu-
tational effort from O(LD5) to O(LD3), which is compa-
rable to that of DMRG with open boundary condition.
More recently, Pirvu et al. showed that the efficiency for
evaluating matrix product states with periodic bound-
ary condition can be further improved if the system is
translation invariant.6 The cost of this method scales as
O(mD3), where m is a number much smaller than L
and becomes a constant for very large system size. A
O(D3) cost can be also achieved by applying the varia-
tional Monte Carlo to a matrix product state.7

In this work, we further explore physical properties of
translation invariant matrix or tensor product states in
one or higher dimensions. We will show that one can use
a set of size-independent local matrices to approximately
but accurately represent the translation invariant ground
states of all finite periodic systems. The performance
of the algorithms for translational invariant systems ex-
plored in this work is improved over the other algorithms
by dropping the size dependence in the calculation of the
wave function. The ground state wavefunctions of all fi-
nite size systems can be obtained simply from the local
matrices that are determined from an infinity lattice.
To understand this, let us consider the following trans-

lation invariant matrix product state in a 1D bipartite
system

|Ψ〉 = Tr(A[σ1]B[σ2] · · ·A[σL−1]B[σL])|σ1 · · ·σL〉, (1)

where |σi〉 is the local basis state at site i and L is the
lattice size. Given σ, A[σ] and B[σ] are D×D matrices.
The trace in Eq. (1) ensures periodic boundary condition.
In the ground state, if one determines the local matrices
by minimizing the energy, then A and B should in general
be L dependent. However, in many cases, such as in the
valence bond solid state proposed by Affleck et al.8, the
local matrices can be L independent. In the following,
we will show that one can always use matrix product
states with L-independent A and B to approximately
but accurately represent the ground state wavefunctions
in finite periodic systems.
The matrix product wavefunction of the ground state

can be found by applying the projection operator
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exp(−βH) to an arbitrary initial state |Ψ0〉.

|Ψg〉 = lim
β→∞

exp(−βH)|Ψ0〉. (2)

This projection, which is equivalent to taking an imagi-
nary time evolution, can be done iteratively. To do this,
we divide β into N steps with a small incremental time
τ = β/N and decompose the projection operator at each
step using the Trotter-Suzuki formula

e−τH = e−τHodde−τHeven + o(τ2), (3)

where

H = Hodd +Heven,

Hodd =
∑

i

h2i−1,2i,

Heven =
∑

i

h2i,2i+1.

At each iteration, the projection can be done in
two successive steps, using the projection operators
exp(−τHodd) and exp(−τHeven), respectively. Since all
the terms in Hodd or Heven commute with each other,
these projections can be done by performing only local

operations. For example, by applying exp(−τHodd) to
Eq. (1), the matrix product wavefunction will become

|Ψ′〉 = e−τHodd |Ψ〉

= Tr (M [σ1, σ2] · · ·M [σL−1, σL]) |σ1 · · ·σL〉, (4)

where M [σ1, σ2] is a local matrix defined by

Mαβ [σ1, σ2] = Mασ1,βσ2

=
∑

σ′

1
σ′

2
γ

Aαγ [σ
′
1]Bγβ[σ

′
2]〈σ1, σ2|e

−τh1,2|σ′
1, σ

′
2〉. (5)

By singular value decomposition, one can decompose M
to

Mασ1,βσ2
=

∑

l

UM
ασ1,lλ

M
l V M

l,βσ2
, (6)

where UM and VM are unitary matrices, λM is a semi-
positive vector. From this we can rewrite M as a product
of two matrices

M [σ1, σ2] = A′[σ1]B
′[σ2], (7)

A′
α,l[σ1] = UM

ασ1,l

(

λM
l

)1/2
, (8)

B′
l,β[σ2] =

(

λM
l

)1/2
V M
l,βσ2

. (9)

A′[σ1] is D1 × dD2 matrix and B′[σ2] is a dD2 × D1

matrix. Thus the wavefunction after the projection has
the same matrix-product form as |Ψ〉. The only difference
is that A and B in Eq. (1) are now replaced by A′ and
B′, respectively. Given A and B, clearly the values of A′

and B′ are determined purely by the local Hamiltonian
h12 no matter how many sites in the system.
In the limit τ → 0 and β = Nτ → ∞, the matrix

product state obtained through above projection should

approach the exact ground state. If there is no truncation
to the matrix dimension, then the final site matrices A
and B such obtained should be size independent. This
means at least in the limit the bond dimension being
infinity, the matrix product wavefunction of the ground
state can be represented by the same local matrices, A
and B, no matter how large the system size is.
Of course, in practical calculation, one has to truncate

the matrix dimension in order to carry out the projec-
tion for sufficiently many times. Otherwise, the matrix
dimension will blow up exponentially with the projec-
tion steps. Upon truncation, the matrix product state
(1) with size-independent A and B will generally not be
the rigorous ground state wavefunction. Nevertheless, it
should still be a good approximation to the true ground
state wavefunction. In particular, in the limit that the
bond dimension approaches infinity, it should approach
to the exact result. In the projection methods, the ac-
curacy is limited only by the Trotter error controlled by
τ and the truncation error controlled by the matrix di-
mension.
The above argument can be readily extended to

the tensor-network states in two or higher dimensions.
Tensor-network wavefunctions, for example, can be de-
termined using the entanglement mean-field projection
approach introduced in Refs. [9] and [10]. Thus accurate
ground state wave functions for all finite systems can be
constructed by a few size independent local tensors. In
higher dimensional systems, the lattice sizes that can be
treated are generally very small due to the rapid growth
of Hilbert space with the system size. The simplification
of the problems to find a few tensors as suggested in this
study is a big step towards solving the problems in two
or higher dimensions.
Besides the projection method, the matrix product

state in one dimension can be also obtained using several
other methods4,6. In an infinite lattice system, the local
matrices obtained with different methods are equivalent.
They can be gauged into a canonical form11 by certain
unitary transformations.

II. DETERMINATION OF LOCAL MATRICES

In this section, we introduce two approaches to eval-
uate the local matrices. One is an entanglement mean
field projection approach. This is an approach that was
first proposed for evaluating a matrix product state in
an infinite lattice via the imaginary time evolution in 1D
(Ref. [12]) and 2D (Refs. [9 and 10]). The other is the
standard DMRG method with open boundary condition.
This approach is applicable only in 1D.
For the discussion below, we will take the Heisenberg

spin chain as an example to show how accurate a transla-
tion invariant matrix product state with size independent
local matrices can be. It is straightforward to extend the
qualitative results to other quantum lattice models with
short range interactions. The Hamiltonian of the Heisen-
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berg model is defined by

H =
∑

i

hi,i+1, hi,i+1 = Si · Si+1, (10)

where Si is the SU(2) spin operator.

A. By projection

Since the local matrices A and B are size independent,
we can always use the methods that have been developed
for studying a matrix product state in an infinite lattice
to evaluate these matrices. In an infinite lattice, open
boundary condition can be imposed without breaking the
translation invariance of the matrix product state. In this
case the two ends of the lattice are always disentangled
and it is sufficient to perform just local transformation
to convert a matrix product state into its canonical form.
This can dramatically reduce the computational cost in
the determination of local matrices.
In this regards, a commonly adopted approach is to

take all matrix elements of A and B as variational param-
eters and determine them by minimizing the ground state
energy. This, as discussed in Refs. [4–6], can be achieved
by solving a generalized eigenvalue problem. Since there
is no entanglement between the two ends of the lattice,
the dimension of the boundary matrix reduces to 1 and
the cost of this algorithm5,6 will scale as D3.
Another kind of approach is to find the local matrices

by performing the imaginary time evolution as defined
by Eqs. (2-7). These equations set a general framework
for evaluating a matrix product state if no truncation
is needed. However, in practical calculation, we have to
truncate the matrix dimension at each step of projection.
If we truncate the matrix dimension just using the singu-
lar value decomposition of M -matrix defined by Eq. (7),
the matrix product state will generally not converge to
the true ground state. This is becauseM is purely a local
matrix and the contribution from the environment ma-
trix has not been considered in the basis truncation10,13.
The interplay between M and the environment matrix

can be properly and accurately handled by performing a
number of transformations to enable A and B to satisfy
the following canonical conditions

∑

σ

A[σ]A†[σ] = I, (11)

∑

σ

B[σ]B†[σ] = I, (12)

∑

σ

A†[σ]λ2
bA[σ] = λ2

a, (13)

∑

σ

B†[σ]λ2
aB[σ] = λ2

b , (14)

where λa and λb are semipositive diagonal matrices. The
square of the diagonal matrix element of λa or λb is the
eigenvalue of the reduced density matrix for the two semi-
infinity blocks separated by AB or BA bond. It measures

the entanglement between these two blocks and is equal
to the possibility of the corresponding basis vector in the
matrix product state. The truncation can be done by just
keeping the largest D eigenvalues of λa,b and the corre-
sponding basis vectors. This can minimize the truncation
error at each project step14, same as in the DMRG. The
matrix product state such obtained is believed to be the
most accurate one within the Trotter error. The cost
of this algorithm also scales as D3. But this method is
not applicable to a tensor-network state in two or higher
dimensions.
A more efficient and easy to implement approach,

which will be used in the calculation below, is to evaluate
the environment contribution by taking a mean field ap-
proximation. This is a generalization of the poor-man’s
approach of second renormalization of tensor-network
states introduced in Ref. [10]. The mean field parame-
ters are the bond vectors that are introduced to approx-
imately measure the entanglement between the matrix
to be decomposed and rest of other matrices. No canoni-
cal transformation needs to be done in this algorithm. At
each step of projection, the truncation error is larger than
that obtained by the canonical transformation. However,
the truncation error is not accumulated in the process
of iterations. The results obtained with this approach
can reach the same accuracy as those obtained by the
canonical transformation.10 This approach converges fast
and is highly reliable, provided that the short imaginary
time evolution operator is sufficiently close to a unitary
operator.12 It can be used not just for studying matrix-
product states in one dimension12, but also for studying
tensor-network states in two or higher dimensions9,10,13.
A detailed introduction to this method can be found from
Ref. [12] for one-dimensional and Refs. [9 and 10] for two-
dimensional systems, respectively.
To consider the renormalization effect of environment

on M -matrix, let us redefine A and B as

A[σ] = Γa[σ]λa, (15)

B[σ] = Γb[σ]λb, (16)

where λa and λb are positive diagonal matrices (also
called bond vectors) defined on the bonds connecting two
neighboring sites. λa,b do not depend on σ. In the canon-
ical representation of the matrix product state, they are
just the diagonal matrices defined in Eqs. (13) and (14).
In general, they can be considered as an approximation to
the diagonal matrices in the canonical form. They mea-
sure the entanglement between the left and right blocks
connected by λa or λb in an infinite system. The gauge
degrees of freedom of the matrix product are also par-
tially fixed by these bond vectors.
If the basis states of the left and right blocks connected

to theM -matrix defined by Eq. (7) are orthonormal, as in
a canonical form, then the environmental contribution to
M is proportional to λb from left side of the environment
and 1 from the right side of the environment. Thus the
entanglement field on the bond for M is given by the
singular values of the following environment modified M -
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FIG. 1. The relative error of the ground state energy
(E − E0)/E0 as a function of the matrix dimension D for
the spin half Heisenberg model with L = 30 and L = 100
sites, respectively. E0 is the exact ground state energy. The
results for other system sizes are similar.

matrix

M̃ [σ1, σ2] = λbM [σ1, σ2]

= λbΓ
a[σ1]λaΓ

b[σ2]λb. (17)

In the mean-field calculation, however, the basis states
on both the left and right blocks are not orthogonalized.
In this case, λa,b is just an approximate measure of the
entanglement. Nevertheless, it still provides an efficient
and good account of the renormalization effect of the
environment. The reason for this is that in the projec-
tion method, the truncation error is not accumulated and
there is no need to minimize the truncation error at every
step of iteration.
By SVD, we can decompose M̃ as a product of matrices

M̃α,β[σ1, σ2] ≡ M̃ασ1,βσ2
= Uασ,lΛlVl,βσ2

, (18)

where U and V are unitary matrices and Λ is a semi-
positive diagonal matrix. If M̃ [σ1, σ2] is D × D matrix
for given σ1 and σ2, then U , Λ and V are all dD × dD
matrices. To proceed the iteration, the matrix dimen-
sion needs to be truncated. This can be done by keeping
the largest D singular values of Λ and the corresponding
vectors. After this one can rewrite the matrix-product
wavefunction back to the form defined by Eq. (1) by up-
dating Γa,b and λa with the formula

Γa
α,l[σ] = λ−1

b,ααUασ,l,

Γb
l,α[σ] = Vl,α,σλ

−1
b,αα,

λa,ll = Λl,l.

λb remains unchanged. This completes one step of imag-
inary time evolution with Hodd. Similarly one can carry
out the imaginary time evolution with Heven and update

10 20 30
1E-5

1E-4

1E-3 D = 50  = 8*10-2   =2*10-2  
                 4*10-2        1*10-2

(E
-E

0)/E
0

 

 

L

FIG. 2. The size dependence of the relative error of the ground
state energy for the S=1/2 Heisenberg spin chain obtained
with the matrix product state of bond dimension D = 50.

all site matrices and bond vectors. The converged ma-
trices from the iterated projections are used to construct
ground state wavefunctions for all system sizes.

The error comes from two sources: one is the trun-
cation error and the other is the Trotter error arisen
from the Trotter-Suzuki decomposition. The Trotter er-
ror does not depend on the system size and can be re-
duced by using a smaller τ or using higher order Trotter-
Suzuki decomposition formula. The truncation error is
controlled by the matrix dimension D. It can be reduced
by increasing the matrix dimension.

Fig. 1 shows the relative error of the ground state en-
ergy as a function of the matrix dimension D for the
spin-1/2 Heisenberg model on finite lattice systems ob-
tained from the matrix product wavefunction with size-
independent A and B. We only show the results of rel-
atively small system sizes, as the success of this method
in the large system size limit is well documented. In the
regime of small D, the truncation error dominates, the
error drops quickly with increasing D. The error stops
dropping when D becomes larger than certain critical
bond dimension Dc, beyond which the truncation error
becomes smaller than the Trotter error. The value of Dc

depends on the small time interval τ and the order of
Trotter-Suzuki decomposition formula used in the imag-
inary time evolution. But it does not depend much on
the system size. This is probably because the same local
matrices are used in the calculation of the ground state
energy no matter how large the system size is. In ob-
taining the results in Fig. 1, we have used the first order
Trotter-Suzuki decomposition formula. In this case, the
Trotter error scales approximately as τ2. This is consis-
tent with the numerical results shown in Fig. 1.

Fig. 2 shows the lattice size dependence of the relative
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FIG. 3. The relative error of the ground state energy, (E −

E0)/E0, as a function of matrix dimension D for the spin one
Heisenberg model. E0 is the exact ground state energy.

error of the ground state of the S=1/2 Heisenberg model
with D = 50. The values of E0 are from the exact diag-
onalization results published in Ref. [15]. For the given
τ , D = 50 are larger than the critical Dc, the errors are
controlled by the Trotter error and almost do not depend
on the system size.
The matrix dimension dependence of the relative er-

rors of the ground state energy behaves similarly for the
S=1 Heisenberg spin chain, as shown in Fig. 3. Unlike
the S=1/2 Heisenberg model whose excitation spectrum
is critical, the S=1 Heisenberg model has a finite excita-
tion gap and its ground state energy converges quickly
with increasing D. Again the error is dominated by the
truncation error in the smallD regime and by the Trotter
error when D is larger than a τ -dependent critical Dc.
The above results show unambiguously that the ma-

trix product states constructed with size-independent lo-
cal matrices provide accurate and unified description of
ground states irrespective of the system size. The accu-
racy of the wavefunction can be systematically and re-
liably improved by increasing the matrix dimension D
to reduce the truncation error and by using a smaller τ
or higher order Trotter-Suzuki decomposition formula to
reduce the Trotter error.

B. By the DMRG

In a translation invariant system, one can also use the
DMRG method for open boundary systems to find the
local matrices A and B defined by Eq. (1). To understand
this, let us consider the ground state generated by the
DMRG with open boundary condition

|Ψ〉 =
∑

σ1σ2

∑

s0e2

Ψ(s0, σ1, σ2, e2)|s0σ1σ2e2〉, (19)

where we have used 1 and 2 to denote the coordinates
of two middle sites of the chain, |s0〉 and |e2〉 are the
basis states of the system and environment blocks, re-
spectively. By singular value decomposition, we can de-
compose Ψ(s0, σ1, σ2, e2) as

Ψ(s0, σ1, σ2, e2) =
∑

l

U
(1)
s0σ1,l

λ
(1)
l V

(2)
l,σ2e2

=
∑

l

U
(1)
s0,l

[σ1]λ
(1)
l V

(2)
l,e2

[σ2]. (20)

In the above expression, the singular value λ(1) is noth-
ing but the square root of the eigenvalue of the reduced
density matrix. U and V are the unitary (or isometric af-
ter truncation) basis transformation matrices. The basis
states of system and environment blocks are transformed
according to the following equations

|si〉 =
∑

si−1σi

U (i)
si−1,si [σi]|si−1σi〉, (21)

|ei〉 =
∑

ei+1σi+1

V (i)
ei,ei+1

[σi+1]|σi+1ei+1〉. (22)

Substituting Eq. (20) into Eq. (19), we obtain

|Ψ〉 =
∑

σ1σ2

∑

s0,e2,l

U
(1)
s0,l

[σ1]λ
(1)
l V

(2)
l,e2

[σ2]|s0σ1σ2e2〉. (23)

By using the basis transformation formula (21) and (22),
we can further express this wavefunction as

|Ψ〉 =
∑

σ0σ1σ2σ3

∑

s−1s0e2e3,l

U (0)
s−1,s0 [σ0]U

(1)
s0,l

[σ1]λ
(1)
l

V
(2)
l,e2

[σ2]V
(3)
e2,e3 [σ3]|s−1σ0σ1σ2σ3e3〉. (24)

If the system is reflection symmetric with respect to the
middle bond of the chain, V (2) and V (3) should be the
Hermitian conjugate of U (1) and U (0), respectively. In
the DMRG iteration, the two local unitary matrices on
the system block besides the middle bond, U (0) and U (1),
will converge alternatively in a bipartite lattice model
when the system size becomes sufficiently large16. If
we use these two converged isometric matrices to form
a translation invariant matrix product state, i.e.

A[σ] = U (0)[σ], (25)

B[σ] = U (1)[σ], (26)

we expect that it will be a good approximation to the
ground state of the Hamiltonian with periodic boundary
condition. This is because in an infinite system, the wave-
function in the middle of the chain should be the same
no matter what kind of boundary condition is used.
The local matrices such obtained are Trotter-Suzuki

decomposition error free. Fig. 4 compares the relative er-
ror of the ground state energy for the S = 1/2 Heisenberg
model obtained by the DMRG method to that obtained
by the entanglement mean-field projection method. In
the entanglement mean-field projection calculation, we
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FIG. 4. Comparison of the relative error of the ground state
energy of the spin-half Heisenberg model as a function of D
obtained using the matrix product states whose local matrices
are determined by the DMRG with those determined by the
poor-man’s projection.

have chosen a small τ so that the Trotter error is much
smaller than the truncation error. We find that the er-
rors obtained with these two methods are of the same
order.

To construct the translation invariant matrix product
states using the DMRG is generally less efficient than
the entanglement mean-field projection method. But the
DMRG calculation can be combined with the conven-
tional DMRG study with open boundary condition. No
extra cost is needed in order to calculate the local matri-
ces used by the matrix product state.

In the above discussion, we have assumed that the iso-
metric matrices U (0) and U (1) would converge for suffi-
ciently large chain. This is literally correct. However, if
there are degeneracy or nearly degeneracy within com-
puter machine error in the singular values λ in Eq. (20),

U -matrices may not be uniquely fixed since the ground
state is unchanged by swapping any pair of these degener-
ate states. Consequently the column index of B[σ] may
not perfectly match the row index of A[σ] (there is no
mismatch between the row index of B[σ] and the column
index of A[σ]). In this case, the local matrices defined by
Eqs. (25-26) may not be a good description of the ground
state.

III. SUMMARY

We have shown that the local matrices (tensors) ob-
tained from an infinite lattice can be also used to ac-
curately represent the matrix product states (or tensor-
network states) in finite translation invariant lattice sys-
tems. This provides an efficient way to determine the
matrix product states or tensor-network states in one- or
higher-dimensional periodic systems.
The size-independent local matrices can be determined

by the approximate entanglement projection with a poor-
man’s treatment to the environment lattice. This method
can be applied not only in 1D, but also in two- or
higher dimensions. The accuracy of the wavefunction
such obtained is controlled by both the truncation and
the Trotter-Suzuki decomposition errors. For small D,
the truncation error dominates. This error, however,
can be reduced below the Trotter-Suzuki decomposition
error simply by increasing the bond dimension D. In
that case, the accuracy of the matrix product wavefunc-
tion is purely determined by the Trotter-Suzuki decom-
position error. This error can be reduced by using a
small Trotter-Suzuki parameter τ or using a higher or-
der Trotter-Suzuki decomposition formula. One can also
find the size-independent local matrices using the DMRG
with open boundary conditions. The matrix product
states such obtained do not have the Trotter-Suzuki de-
composition error.
We acknowledge the support of NSF-China and the

National Program for Basic Research of the Ministry of
Science and Technology of China.
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