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Abstract. We give a lower and an upper bound for the conformal
dimension of the boundaries of certain small cancellation groups.

We apply these bounds to the few relator and density models for
random groups. This gives generic bounds of the following form,
where l is the relator length, going to infinity.

(a) 1 + 1/C < Cdim(∂∞G) < Cl/ log(l), for the few relator
model, and

(b) 1 + l/(C log(l)) < Cdim(∂∞G) < Cl, for the density model,
at densities d < 1/24.

In particular, for the density model at densities d < 1/24, as
the relator length l goes to infinity, the random groups will pass
through infinitely many different quasi-isometry classes.

1. Introduction

1.1. Overview. In the study of random groups, one considers typical
properties of finitely presented groups. There are several ways to make
this idea precise. We will work in two of the most common models for
a random group: the few relator model and the density model, both
due to Gromov. Our goal is to study the large scale geometry of such
groups.

In each of these models, a typical group is (Gromov) hyperbolic [10,
11]. To any hyperbolic group G we can associate a boundary at infinity
∂∞G, which is a metric space where the metric is canonically defined
up to a quasi-symmetric homeomorphism. The boundary captures the
quasi-isometry type of the group: two finitely presented hyperbolic
groups are quasi-isometric if and only if their boundaries are quasi-
symmetric.

A quasi-symmetric invariant of a metric space X is its conformal
dimension: this is the infimal Hausdorff dimension of all quasi-symmet-
rically equivalent metric spaces [18, 16]. Consequently, the conformal
dimension of ∂∞G, denoted by Cdim(∂∞G), is canonically defined and
depends only on the quasi-isometry type of the group.

Date: November 16, 2010.
1

ar
X

iv
:1

01
1.

31
67

v1
  [

m
at

h.
G

T
] 

 1
3 

N
ov

 2
01

0



2 JOHN M. MACKAY

Bourdon found a family of hyperbolic groups whose boundaries are
all homeomorphic to the Menger curve (also called the Menger sponge),
but whose conformal dimensions take a dense set of values in (1,∞) [4].
Therefore, there is an infinite collection of non-quasi-isometric hyper-
bolic groups all of which have a topological Menger curve as a boundary.

This is of particular interest to us here since, in both models, the
boundary of a random group is homeomorphic to the Menger curve.

In this paper we will provide generic estimates for the conformal
dimension of the boundary of a hyperbolic group. As a consequence,
we show that in the density model, as the lengths of the relators tend to
infinity, the conformal dimension of the boundary also tends to infinity,
passing through infinitely many different quasi-isometry types.

1.2. Statement of results. The simplest model of a random group is
given by the few relator model. Throughout this paper we fix a finite
generating set S, |S| = m ≥ 2.

Definition 1.1 (Few relator model). Fix a finite number of relators
n ≥ 1. Consider all cyclically reduced words of length at most l in 〈S〉.
Consider all presentations 〈S | r1, . . . , rn〉 where r1, . . . , rn are chosen
from this set of words uniformly and independently at random.

A property P is generic in the few relator model (for fixed n), if the
proportion of all such presentations at length l which satisfy P goes to
1 as l → ∞. In this case, we say that a random (few relator) group
has property P.

This model was introduced by Gromov [10], who observed that a
random few relator group will satisfy the C ′(1/6) small cancellation
condition, and so be hyperbolic. The algebraic properties of these
groups, such as freeness of subgroups and isomorphism type have been
studied by Arzhantseva, Ol’shanskii, Kapovich, Schupp, and others
[1, 12, 13]. For more discussion, see [17, I.3.c].

The geometry of such groups was considered by Champetier [6]. He
used small cancellation techniques to show that generic few relator
groups have boundaries homeomorphic to a Menger curve (see Theo-
rem 1.7).

The few relator model can be viewed as the “density 0” case of a
more general model, where the number of relators grows as l→∞.

Definition 1.2 (Density model [11, Chapter 9]). Fix a parameter d ∈
(0, 1), called the density. Consider all cyclically reduced words of length
l in 〈S〉. Consider all presentations which choose as relators (2m−1)dl

of these words uniformly and independently at random.
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A property P holds generically in the density model (at fixed density
d), if the proportion of all such presentations at length l which satisfy
P goes to 1 as l→∞.

Gromov showed that the density model has a phase transition: for
densities d < 1/2, a random group will be one ended and hyperbolic,
but for densities d > 1/2, a random group will be trivial or Z/2Z ([11,
Section 9.B], [17, Theorem 11]).

The boundary of a random group at density d < 1/2 is homeo-
morphic to the Menger curve. At densities d < 1/24, this follows
from Champetier’s Theorem 1.7. A proof that applies to all densities
0 < d < 1/2 is given in [8].

Since we know that random groups in both the few relator and den-
sity model are hyperbolic, it makes sense to ask for estimates of the
conformal dimension of their boundaries.

For any hyperbolic group with boundary homeomorphic to the Men-
ger curve, the conformal dimension of the boundary will be strictly
greater than one [15], and finite [7]. In this paper we give explicit
non-trivial bounds for the conformal dimension of a random group.

Theorem 1.3. There exists C > 1 so that, for fixed m ≥ 2, n ≥ 1, the
conformal dimension of a random few relator group satisfies

1 +
1

C log(2m− 1)
≤ Cdim(∂∞G) ≤ C log(2m− 1) · l

log(l)
.

Note that the lower bound is independent of l, and the upper bound
is sub-linear. The conclusion of this theorem involves n implicitly: let
P (m,n, l) be the proportion of all groups with m generators and n
cyclically reduced relators of word length at most l which satisfy the
above estimate. Then for fixed m,n we have P (m,n, l)→ 1 as l→∞,
however the rate of convergence depends on n.

Theorem 1.4. There exists C > 1 so that, for fixed m ≥ 2, 0 < d <
1/24, the conformal dimension of a random group at density d satisfies

1 +
d

C
· l

log(l)
≤ Cdim(∂∞G) ≤ C

| log(d)|
· l.

In particular, as l→∞, generic groups pass through infinitely many
different quasi-isometry classes.

Gromov [11, 9.B, p.276, (g)] and Pansu [17, IV.b., p.70] had asked
whether the conformal dimension of a random group in the density
model can be used to detect the particular density d. Theorem 1.4
gives partial progress towards solving this problem.
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There are several natural questions that remain. For example, does
the conformal dimension of a random few relator group go to infinity
as the relator length goes to infinity? Can one find a function f(d, l) so
that the conformal dimension of a random group at density d satisfies
f(d, l) . Cdim(∂∞G) . f(d, l)? (We write x . y if x ≤ Cy, for some
suitable constant C.)

For more background on random groups we refer the reader to [9]
and [17].

1.3. Outline of proof. The random groups that we consider are all
C ′(1/6) small cancellation groups. In the few relator model this is
straightforward to prove; a more refined estimate is found in Proposi-
tion 2.2, where we show that a generic few relator group will be C ′(λ)

with λ . log(l)
l

. In the density model, we have the following result.

Proposition 1.5 ([11, Section 9.B]). For d > 0, and λ > 2d, a random
group at density d has the C ′(λ) metric small cancellation condition.

For λ > 0 and 2d > λ, a random group at density d does not have
the C ′(λ) metric small cancellation condition.

In particular, at densities d < 1/12, a random group has a C ′(1/6)
small cancellation presentation.

Recall that a group presentation 〈S|R〉 is C ′(λ) if every word u which
appears in two distinct ways in (cyclic conjugates of) relators r1, r2 ∈ R,
or their inverses, satisfies |u| < min{|r1|, |r2|}.

Specifying a finite generating set S for G allows one to define the
Cayley graph Γ = Γ(G,S). The Cayley graph of a C ′(1/6) group is
δ-hyperbolic, with δ equal to twice the maximum relator word length
(Lemma 3.11).

As a hyperbolic metric space, for any sufficiently small visual param-
eter ε > 0, ∂∞Γ carries a visual metric comparable to e−ε(·,·), where (·, ·)
denotes the Gromov product. A simple upper bound on the conformal
dimension of ∂∞G is given by the Hausdorff dimension of this metric
space, which equals 1

ε
h(G) [7, Corollary 7.6]. Here h(G) is the volume

entropy of the group (with respect to S). In an m-generator group, we
always have h(G) ≤ log(2m− 1). Thus,

(1.6) Cdim(∂∞G) ≤ 1

ε
h(G) ≤ 1

ε
log(2m− 1).

To give a good upper bound for the conformal dimension, then, we
would like to choose ε as large as possible. The standard estimate for
an admissible ε is ε ≤ log(2)/(4δ) [5, III.H.3.21]. Thus, generically we
have Cdim(∂∞G) . δ . l (in the few relator model, or the density
model with d < 1/12).
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We cannot find a significantly better estimate for δ, since the relators
of size l give bigons with sides separated by a distance of order l.
However, work of Bonk and Foertsch [2] lets us find a better estimate
for ε using the concept of “asymptotic upper curvature” (Section 4).

Theorem 4.1. If G = 〈S|R〉 is a C ′(λ) presentation of a group, with
λ ≤ 1

6
, and |r| ≤M for all r ∈ R, then

Cdim(∂∞(G)) ≤ M

log( 1
λ
− 4)

log(2m− 1).

Combining this theorem with Propositions 2.2 and 1.5, we obtain
the upper bounds in Theorems 1.3 and 1.4.

It is more difficult to obtain lower bounds for the conformal dimen-
sion. A key inspiration for our work is the following result of Cham-
petier.

Theorem 1.7 ([6, Theorem 4.18]). Suppose G = 〈S|R〉 is a C ′(1/12)
presentation, with |S| ≥ 2 and |R| ≥ 1. Suppose further that every
reduced word u ∈ 〈S〉 of length 12 appears at least once in some cyclic
conjugate of some r±1, r ∈ R. Then ∂∞G is homeomorphic to the
Menger curve.

Random groups certainly contain every word of length 12 as a sub-
word of some relator. In fact, generic few relator presentations contain
every word of length C log(l) as a subword of some relator (Proposi-
tion 2.6), while generic presentations at density d contain every word
of length Cl, for C < d, as a subword of some relator (Proposition 2.7).

Champetier builds a cone in the Cayley complex of a C ′(1/12) group
that gives an arc in its boundary. We modify his construction to pro-
duce a sub-complex similar to one of Gromov’s “round trees” [11, 3],
giving a Cantor set of curves in the boundary. Finally, a lemma of
Pansu and Bourdon gives the following lower bound for the conformal
dimension.

Theorem 5.1. Suppose G = 〈S|R〉 is a C ′(1/12) presentation, with
|S| ≥ 2 and |R| ≥ 1, where |r| ≤M for all r ∈ R. Suppose further that
for some M∗ ≥ 12, every reduced word u ∈ 〈S〉 of length M∗ appears
at least once in some cyclic conjugate of some relator r ∈ R, or its
inverse. Then for some universal constant C > 0, we have

Cdim(∂∞G) ≥ 1 + C · M∗

log(M)
.

This theorem combines with Propositions 2.6 and 2.7 to complete
the proof of Theorems 1.3 and 1.4.



6 JOHN M. MACKAY

1.4. Outline of paper. In Section 2 we consider random groups in
both models and their small cancellation properties. Standard re-
sults about the geometry of C ′(1/6) groups, including hyperbolicity,
are given in Section 3.

Asymptotic upper curvature bounds are used in Section 4 to give
a generic upper bound for conformal dimension. A round tree sub-
complex is built in Section 5, and the proof of Theorem 5.1 is found in
Section 6.

1.5. Acknowledgments. I would like to thank Ilya Kapovich for in-
troducing me to some of the questions considered in this paper.

2. Random groups and small cancellation

Our goal in this section is to study subwords of random groups in
the few relator model and density model. We find out what lengths
subwords should be to be unique in the presentation, or, on the other
hand, so that every possible subword of that length appears.

These calculations are fairly routine counting and probability argu-
ments; the main technicality arises from counting cyclically reduced
words rather than just reduced words.

First, we recall the definition of the metric small cancellation condi-
tion [14].

Definition 2.1. The presentation G = 〈S | R〉 satisfies the metric
small cancellation condition C ′(λ), for some 0 < λ < 1, if every piece
u which is a subword of some cyclic conjugate of r±1, r ∈ R, satisfies
|u| < λ|r|.

Recall that a piece is a common initial segment of two distinct cyclic
conjugates of r1, r2 ∈ R ∪R−1, where r1 may equal r2.

2.1. Small cancellation in the few relator model. We have m ≥
2, n ≥ 1 fixed. Our goal in this subsection is to show that generic few
relator presentations satisfy strong small cancellation properties.

Proposition 2.2. There exists 0 < C0 <∞, depending only on m,n,
so that generic few relator presentations are C ′(λ0(l)), where λ0(l) =
C0

log l
l

.

This result is essentially sharp, as shown by Proposition 2.6.
We begin with some preliminary observations. In the following, the

notation A � B indicates that A . B . A.
Let Nl be the number of cyclically reduced words of length l in Fm.

It is easy to see that Nl � (2m − 1)l, with multiplicative error of 4
3
.

More precise estimates are in Subsection 2.2 below. Let N≤l be the
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number of cyclic reduced words of length at most l in Fm. Again,
N≤l � (2m− 1)l. The number of presentations where all relators have
length at most l is Nn

≤l = (N≤l)
n.

Let Nn
[0.99l,l] be the number of presentations where all n relators have

length at least 0.99l, but no more than l. This is generic, since

Nn
≤l −Nn

[0.99l,l]

Nn
≤l

≤
n ·N≤0.99l ·Nn−1

≤l

Nn
≤l

. (2m− 1)−0.01l,

which goes to zero as l→∞.
So to show that a property is generic, it suffices to show that it is

generic within the class of presentations where all relators have lengths
between 0.99l and l.

Proof of Proposition 2.2. Let Nn
[0.99l,l],λ2

be the number of presentations

with n relations all of lengths between 0.99l and l, satisfying the C ′(λ0)
condition. We wish to find C0 so that Nn

[0.99l,l] −Nn
[0.99l,l],λ0

= o(Nn
≤l).

It suffices to bound the proportion of presentationsN c
(li),λ0

/N(li) which

are not C ′(λ0), for specified lengths l1, . . . , ln in [0.99l, l]. Here N(li)

is the number of presentations with relators of length |ri| = li, i =
1, . . . , n, N(li),λ0 is the number of those which are C ′(λ0), and N c

(li),λ0
=

N(li) −N(li),λ0 .
If we fail to be C ′(λ0), then there is a word u of length equal to
d0.99lλ0e which appears in two distinct places in the words r1, . . . , rn,
or their inverses.

Case 1: The word u appears in two different words.
There are

(
2n
2

)
≤ 4n2 choices for the words r±1

i and r±1
i′ . Given this

choice, the number of ways u can appear is bounded from above by
the product of the number of choices of (1) the location of u in these
words, (2) the word u, (3) the remainder of the words ri and ri′ , and
(4) the other words. Call these numbers A1, A2, A3 and A4 respectively.
Clearly,

A1 ≤ l2, A2 ≤
4

3
(2m− 1)|u|,

A3 ≤ (2m− 1)li−|u| · (2m− 1)li′−|u|, and A4 =
∏
j 6=i,i′

Nlj .

Since we have

A1A2A3A4∏
j=1,...,nNlj

.
l2(2m− 1)|u|(2m− 1)li−|u|(2m− 1)li′−|u|

Nli ·Nli′

. l2(2m− 1)−|u|,
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Case 1 occurs with probability P1 at most P1 . n2l2(2m− 1)−|u|. Ob-
serve that

−|u| = −d0.99lλ0e ≤ −0.99lλ0 = −0.99C0 log(l).

Since l2 = (2m− 1)2 log(l)/ log(2m−1), provided

2− 0.99C0 log(2m− 1) < 0,

the probability P1 will go to zero as l goes to infinity.

Case 2: The word u appears in the same word ri in two distinct ways.
Let P2 be the probability this occurs among presentations of lengths

(li).

Lemma 2.3. There is a subword v of u, of length at least 0.2C0 log(l),
which appears in ri in two non-intersecting locations as either v or v−1.

Proof. Consider ri as a labelling on the oriented circle. Let u1 and u2

be the two words on the boundary ri so that each is labelled by u or
u−1.

If the initial segment of u1 of length d0.2C0 log(l)e does not intersect
u2, then let v be that subword, and we are done.

Otherwise, without loss of generality, up to relabelling u1 and u2, we
can assume that the initial letter of u1 is not in u2 but that the initial
segment of u1 of length d0.2C0 log(l)e does meet u2.

If the word u has opposite orientations in u1 and u2, we let v be the
initial segment of u1 of length d0.2C0 log(l)e. Then v−1 also appears in
the tail segment of u2, disjoint from v.

Finally, if u has the same orientation in both u1 and u2, let w be the
initial segment of u1 disjoint from u2, of length at most 0.2C0 log(l).
Since the words u1 and u2 are both copies of u, u is made up of repeated
copies of w followed by some tail w′. We write u = w2kw′, for some
integer k, and word w′ of length |w′| < 2d0.2C0 log(l)e, thus |wk| ≥
0.2C0 log(l), so v = wk is our required word. (In some of these estimates
we assumed that l was sufficiently large.) �

We can now find, analogous to Case 1, that P2, is bounded from
above by the product of the number of choices of i, the locations of v
in this word, the word v, the remainder of the word ri, all divided by
Nli . Therefore

P2 .
n · l2 · (2m− 1)|v| · (2m− 1)li−2|v|

Nli

. l2(2m− 1)−|v|.

Now

−|v| ≤ −d0.2lλ0e ≤ −0.2C0 log(l),
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and, as before, l2 = (2m− 1)2 log(l)/ log(2m−1), so provided

2− 0.2C0 log(2m− 1) < 0,

the probability P2 will go to zero as l goes to infinity.

Combining the cases:
We have shown that

N c
(li),λ0

N(li)

≤ P1 + P2

goes to zero as l → ∞, independent of the choice of li between 0.99l
and l, provided that C0 is sufficiently large. It suffices to take C0 =
11/ log(2m− 1). �

2.2. Counting cyclically reduced words. In this subsection we give
some lemmas we will use in the remainder of this section. We will
need the following lemma which counts the number of ways to fill in a
cyclically reduced word.

Lemma 2.4. We count all reduced words w of length n + 2 with first
and last letter fixed in 〈s1, s2, . . . , sm〉.

There are essentially three different cases. Let pn, qn and rn count
the number of reduced words of length n+ 2 of the forms s1us1, s1us

−1
1

and s1us2, respectively. Then, for all n ≥ 1, we have:

max{pn, qn, rn}
min{pn, qn, rn}

≤ 1 +
2

(2m− 1)n
.

Proof. Note that p1 = 2m− 1, and q1 = r1 = 2m− 2. Clearly,

pn = pn−1 + (2m− 2)rn−1,

qn = qn−1 + (2m− 2)rn−1, and

rn = pn−1 + qn−1 + (2m− 3)rn−1.

One observes that, by induction, when n is odd, pn = qn + 1 and
rn = qn, while when n is even, pn = rn = qn + 1.

A simple recurrence relation calculation gives that

qn =

{
1

2m

(
(2m− 1)n+1 − 1

)
if n is odd,

1
2m

(
(2m− 1)n+1 − (2m− 1)

)
if n is even.

Therefore

qn ≥
2m− 1

2m

(
(2m− 1)n − 1

)
≥ 1

2
(2m− 1)n,

and
max{pn, qn, rn}
min{pn, qn, rn}

=
qn + 1

qn
= 1 +

1

qn
≤ 1 +

2

(2m− 1)n
. �
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This proof implies that Nl = 2mpl−1 � (2m− 1)l.
The following lemma estimates the probability of omitting a specified

word.

Lemma 2.5. Fix a reduced word r0 of length g(l) < l/4, g(l) > 4. Let
Nr0 be the number of all cyclically reduced words of length l which omit
r0. Then the proportion Nr0/Nl is at most

Nr0

Nl

≤ exp

(
2

(2m− 1)(l/2)−1
− l

9g(l)(2m− 1)g(l)

)
.

Proof. Consider a cyclically reduced relator r1 of length l which omits
r0. Let A = b l

2(g(l)+1)
c. Let us split up r1 into an initial letter, then

words u1, u2, . . . , uA of length g(l) + 1, plus a tail of length t, where t
must be between (l/2)−1 and 3l/4. Each word ui consists of an initial
letter, plus a word of length g(l), which is not r0.

The initial letter of r1 has 2m possibilities. For each i = 1, . . . , A,
either the initial letter of ui matches the inverse of the initial letter
of r0, or it does not. In the former case, the remaining g(l) letters
have (2m − 1)g(l) possibilities, while in the latter case there are only
(2m−1)g(l)−1 possibilities, since the word r0 is excluded. The number
of possibilities for the remaining t letters is bounded by max{pt, qt, rt}
(as defined in Lemma 2.4). Altogether, we have a bound

Nr0

Nl

≤
2m
(
(2m− 1)g(l) + (2m− 2)

[
(2m− 1)g(l) − 1

])A
max{pt, qt, rt}

2m(2m− 1)(g(l)+1)A min{pt, qt, rt}

≤

(
(2m− 1)g(l) + (2m− 2)

[
(2m− 1)g(l) − 1

]
(2m− 1)g(l)+1

)A(
1 +

2

(2m− 1)t

)

=

(
1− (2m− 2)

(2m− 1)g(l)+1

)A(
1 +

2

(2m− 1)t

)
≤ exp

(
2

(2m− 1)t
− A · (2m− 2)

(2m− 1)g(l)+1

)
, using 1 + x ≤ ex.

Observe that A ≥ l
6g(l)

, and 2m−2
2m−1

≥ 2
3
, thus:

Nr0

Nl

≤ exp

(
2

(2m− 1)(l/2)−1
− l

9g(l)(2m− 1)g(l)

)
. �

2.3. Short subwords of generic few relator presentations.

Proposition 2.6. There exists a constant C (depending on m) so that
a generic few relator presentation with relator lengths at most l contains
every word of length dC log(l)e as a subword of some relator.
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Proof. Let Ng(l) be the number of cyclically reduced words in 〈S〉 of
length l which contain every word of length at most g(l). To prove the
proposition, it suffices to show that (Nl − Ng(l))/Nl → 0 as l → ∞,
where g(l) = dC log(l)e.

By Lemma 2.5, the probability of an individual relator omitting a
fixed word r0 of length g(l) is at most

exp

(
1− l

9g(l)(2m− 1)g(l)

)
.

There are at most 4
3
(2m − 1)g(l) choices for r0, so the probability of

missing some word of length g(l) satisfies

Nl −Ng(l)

Nl

≤ 4

3
(2m− 1)g(l) · exp

(
1− l

9g(l)(2m− 1)g(l)

)
≤ 4 exp

(
log(2m− 1)g(l)− l

9g(l)(2m− 1)g(l)

)
.

Note that since g(l) = dC log(l)e, (2m − 1)g(l) behaves like lC log(2m−1)

for large l. Thus, if C log(2m− 1) < 1, then
Nl−Ng(l)

Nl
will go to zero as

l→∞. �

2.4. Short subwords in the density model. The following propo-
sition is a version of [17, Prop. 9]. Ollivier sketches a proof for 0 <
C < d < 1; for completeness we provide a proof in the following special
case.

Proposition 2.7. For any 0 < C < d < 1/2, a generic presentation
at density d contains every word of length dCle as a subword of some
relator.

Proof. This follows a similar proof to Proposition 2.6. There are (2m−
1)dl reduced words chosen independently, so the probability that they
all omit a particular word r0 of length g(l) = dCle is, by Lemma 2.5,
at most [

exp

(
2

(2m− 1)(l/2)−1
− l

9g(l)(2m− 1)g(l)

)](2m−1)dl

= exp

(
2(2m− 1)dl

(2m− 1)(l/2)−1
− l(2m− 1)dl

9g(l)(2m− 1)g(l)

)
. exp

(
−1

10C
(2m− 1)(d−C)l−1

)
,

for sufficiently large l.
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Again, there are at most 4
3
(2m−1)g(l) choices for r0, so the probability

that some word of length g(l) = dCle is omitted is at most

.
4

3
(2m− 1)g(l) · exp

(
−1

10C
(2m− 1)(d−C)l−1

)
. exp

(
2 log(2m− 1)Cl − 1

10C
(2m− 1)(d−C)l−1

)
,

for large l, and this goes to zero as l→∞. �

3. Cayley graphs of small cancellation groups

In C ′(1/6) small cancellation groups, geodesic bigons and triangles
are known to have certain special forms [19, 6]. In this section we recall
these standard facts, and give some extensions to the case of geodesic
n-gons which will be needed in Section 4.

Throughout this section, G = 〈S | R〉, with S = {s1, . . . , sm}, and
R = {r1, . . . , rn}.

Definition 3.1. A diagram for a reduced word w ∈ G is a connected,
contractible, finite, pointed, planar 2-complex D which satisfies the fol-
lowing conditions:

(1) Each edge of D is oriented and labelled with an element of S,
(2) For each face B ⊂ D, reading the edge labels along its boundary

∂B gives a (cyclic conjugate of) a word r±1, r ∈ R.
(3) The base point lies on the boundary ∂D, and reading the edge

labels from this point around ∂D (‘counter-clockwise’) gives w.

We say D is reduced if there are never two distinct faces B1, B2 which
intersect in at least one edge, so that the labellings on ∂B1 and ∂B2,
read from this edge clockwise and counter-clockwise respectively, agree.

Lemma 3.2 (Strebel [19]). Suppose D is a reduced diagram homeo-
morphic to a disc. For a vertex v, let d(v) denote its degree. For a face
B, let |∂B| denote its degree, let e(B) denote the number of exterior
edges of B, and let i(B) denote the number of interior edges. Then

(3.3) 6 = 2
∑
v

(3− d(v)) +
∑
B

(6− 2e(B)− i(B)).



CONFORMAL DIMENSION AND RANDOM GROUPS 13

Proof. Suppose D has V vertices, E edges and F faces. Then

1 + E = V + F =
∑
v

1 +
∑
B

1(3.4)

2E =
∑
v

d(v)(3.5)

2E =

(∑
B

|∂B|
)

+ |∂D| =
∑
B

(2e(B) + i(B)) .(3.6)

Consider 6 · (3.4)− 2 · (3.5)− (3.6). �

Definition 3.7. The Cayley graph Γ(G,S) = Γ1(G,S) of a group G
with finite generating set S is the graph with vertex set G, and an
unoriented edge between {g, gs} for all g ∈ G, s ∈ S ∪ S−1.

Suppose P is a geodesic n-gon in the Cayley graph Γ(G,S), where
G = 〈S | R〉 satisfies C ′(λ), for some λ ∈ (0, 1

6
]. We want to show that

P is slim; that is, any side of P is contained in a suitable neighborhood
of the other sides.

As P is a closed loop, van Kampen’s lemma states that there is a
reduced diagram D for P . We may assume that the boundary word
is cyclically reduced, and that D is homeomorphic to a disc; this only
makes it harder to show that P is slim.

We remove all vertices of degree 2 from D and relabel edges with the
corresponding words in 〈S〉. So now all vertices have degree at least 3.

In this reduced diagram, there are two kinds of faces that have ex-
ternal edges, those where a endpoint of a side of P lies in the interior of
an external edge, and all others. We call the former kind distinguished;
there are at most n of them.

When e(B) = 1 and B is not distinguished, the external edge with
label u is a geodesic in Γ(G,S), and so |u| ≤ 1

2
|∂B|. Now each remain-

ing edge of B is internal, and so a piece of G, and so has length less
than λ|∂B|. Thus

1

2
|∂B| ≤

∑{
|t| : t internal edge of B

}
< i(B)λ|∂B|,

So i(B) > 1
2λ

, thus i(B) ≥ b 1
2λ

+ 1c =: dExt(λ) ≥ 4.
Note also that each edge of an interior face B (e(B) = 0) has length

strictly less than λ|∂B|, so

i(B) >
1

λ
⇒ i(B) ≥

⌊1

λ
+ 1
⌋

=: dInt(λ) ≥ 7.
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Thus (3.3) splits into cases as follows.

6 = 2
∑
v

(3− d(v)) +
∑

B, e(B)=0

(6− i(B)) +
∑

B, e(B)=1
not dist.

(4− i(B))+

∑
B, e(B)=1

dist.

(4− i(B)) +
∑

B, e(B)=k≥2

(6− 2k − i(B))
(3.8)

≤ −(dInt(λ)− 6)FI + 3n,

where FI is the number of interior faces of D. We have shown the
following.

Lemma 3.9. In the above situation,

FI ≤
3n− 6

dInt(λ)− 6
.

Lemma 3.10. Suppose G = 〈S|R〉 is C ′(1
6
), and that the diagram D

has no vertices of degree two. Then any two distinct faces B,B′ ⊂ D
are either disjoint, meet at a single point, or meet along a single edge.

Also, the boundary of any face B is a simple curve, i.e., the face does
not bump into itself.

Proof. If the boundary of a face B is not a simple curve, B encloses
a subdiagram D′ in the interior of D, all of whose vertices (except
perhaps one) have degree at least three, and all of whose faces have
degree at least seven. This contradicts (3.3).

Similarly, if two faces meet at more than a single edge, they enclose
a subdiagram D′ in the interior of D, and this has at most two vertices
of degree two. This again contradicts (3.3). �

Lemma 3.9 immediately implies that reduced diagrams for geodesic
bigons have no internal faces, and that reduced diagrams for geodesic
triangles have at most three internal faces. We can make more precise
statements in these cases. (See [19, Theorem 35] and [6, Proposition
3.6].)

Lemma 3.11. Reduced diagrams for geodesic bigons in a C ′(1/6) group
have a specific form, as illustrated by Figure 1.

Reduced diagrams for geodesic triangles in a C ′(1/6) group have no
interior faces. In particular, the Cayley graph is 2M-hyperbolic, where
M = maxr∈R |R|.

After removing spurs, the reduced diagram for a geodesic triangles
has no more than six connected faces. (If it is C ′(1/8), no more than
three connected faces.)
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Figure 1. A geodesic bigon in a C ′(1/6) group

Recall that if a geodesic triangle has sides γ12, γ13 and γ23 joining
vertices P1, P2 and P3, and D is a reduced diagram for the triangle,
then the spur of D containing P1 is the maximal subdiagram of D
bounded by γ12, γ13 and a vertex or a single internal edge.

Proof. Geodesic bigons are the n = 2 case in (3.8). We assume there
is more than one face in the reduced diagram, and reduce to the case
that the diagram is homeomorphic to a closed disc.

Equation (3.8) immediately implies that FI = 0, all vertices have
degree 3, the endpoints of the geodesic lie in two faces with one internal
edge, and all other faces have exactly two external and two internal
edges. This implies that the bigon has the specified form.

Geodesic triangles are a little more complicated. Without loss of
generality, we can assume that the diagram is homeomorphic to a disc.
If the endpoint of a geodesic lies in a face with one interior edge, delete
this face from the diagram and relocate the endpoint on to the adjacent
face. Continue this as far as possible for each endpoint, until we are
left with the diagram D.

If what remains has more than one face, then each face containing
an endpoint has at least two interior edges. So, by (3.8), with n = 3,
we have 6 ≤ 0− FI + 0 + 2 · 3 + 0, so FI = 0. Moreover, there must be
three different faces corresponding to each endpoint, with exactly two
interior edges. All other faces with one exterior edge have exactly four
interior edges. There are no faces with exactly two interior and two
exterior faces, as they would be removed with the spurs. All vertices
have degree equal to three.

Thus the dual diagram D∗ has no interior vertices, all faces have
degree three, it has three exterior vertices with degree two, and all
other (exterior) vertices have degree four. It may be the case that D∗
consists of a single triangular face, and so D consists of three faces.
This is the only possibility when the group is C ′(1/8).

Otherwise, the dual of the dual diagram D∗∗ has no faces, three
degree one vertices (corresponding to the endpoints), and all other
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Figure 2. A geodesic triangle in a C ′(1/6) group

vertices of degree three. Thus this diagram has exactly four vertices
in total. This implies that (the relevant parts of) D∗ and D have the
forms shown in Figure 2. �

4. Asymptotic curvature bounds and an upper bound for
conformal dimension

4.1. Outline. If G is hyperbolic, geodesic triangles in Γ(G,S) are uni-
formly slim. Consequently, geodesic n-gons will be (C log(n))-slim, for
some C independent of n. Bonk and Foertsch [2] investigated this fur-
ther and linked the behavior of geodesic n-gons to the optimal visual
parameter ε for visual metrics on the boundary of G. In this section
we will use these ideas to prove the following theorem.

Theorem 4.1. If G = 〈S|R〉 is a C ′(λ) presentation of a group, with
λ ≤ 1

6
, and |r| ≤M for all r ∈ R, then

Cdim(∂∞(G)) ≤ M

log( 1
λ
− 4)

log(2|S| − 1).

We recall one of the equivalent definitions of asymptotic upper cur-
vature, and the result which we will need.

Definition 4.2 (Bonk and Foertsch). A geodesic metric space X has
an asymptotic upper curvature bound κ, written ACu(κ), for κ ∈
[−∞, 0), if there exists some C so that every geodesic (n + 1)-gon in

X, n ∈ N, n ≥ 2, is
(

1√
−κ log(n) + C

)
-slim.

(Recall that a geodesic (n + 1)-gon is ∆-slim if every side is in the
union of the ∆-neighborhoods of the other n sides.)



CONFORMAL DIMENSION AND RANDOM GROUPS 17

Theorem 4.3 ([2, Theorem 1.5]). If a geodesic metric space X is
ACu(κ), for some κ ∈ [−∞, 0), then for every 0 < ε <

√
−κ there is a

visual metric on ∂∞X with parameter ε.

This result, and the bound in (1.6), reduce the proof of Theorem 4.1
to the following statement.

Theorem 4.4. If G = 〈S|R〉 is a C ′(λ) presentation of a group, with
λ ≤ 1

6
, and |r| ≤ M for all r ∈ R, then the Cayley graph Γ(G,S) is

ACu(κ) with κ = − 1
M2 log2

(
1
λ
− 4
)
.

In the following subsection we prove Theorem 4.4.

4.2. Slim n-gons. To prove Theorem 4.4, we show that while a re-
duced diagram for a geodesic n-gon may have interior faces, they cannot
be too far from the boundary of the diagram.

Proposition 4.5. Let P be a geodesic n-gon in the Cayley graph of a
C ′(λ) group G = 〈S|R〉, λ ≤ 1/6, and let D be a reduced diagram for
P.

Then there exists some constant C = C(λ) so that, for any x ∈ ∂D =
P, there is a chain of at most k + 1 faces joining x to another side of
P, with

0 ≤ k ≤ log(n)

log( 1
λ
− 4)

+ C.

This means that there are faces B0, B1, . . . , Bk so that x ∈ ∂B0, Bj ∩
Bj+1 6= ∅ for 0 ≤ j < k, and Bk meets another side of P.

Proof. The point x lies in the boundary of some face B0 ⊂ P . We
may assume that e(B0) = 1 and B0 is not distinguished, else the single
chain B0 suffices.

By Lemma 3.10, B0 is homeomorphic to a closed disc. The exterior
edge of B0, denoted by γ0, is a geodesic in Γ(G,S), and i(B0) ≥ b 1

2λ
+

1c ≥ 4.
Suppose Di is a subdiagram of D homeomorphic to a closed disc.

We can combine faces and delete vertices in D so that Di consists of a
single face, and all vertices still have degree at least three. Let i(Di)
denote the number of interior edges of this disc.

Let D0 = B0. Then D0 has one exterior edge, a geodesic, and i(D0) =
i(B0) ≥ b 1

2λ
+ 1c ≥ 4.

The following lemma shows that number of faces in star neighbor-
hoods of B0 in D grows exponentially, until another side of P is found.
An example of this is shown in Figure 3.

Recall that the star neighborhood of a subcomplex D′ ⊂ D is the
union of all closed cells in D meeting D′, and is denoted by St(D′).
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Figure 3. Star neighborhoods of B0

Lemma 4.6. Suppose a subdiagram Di is homeomorphic to a closed
disc, with one exterior geodesic edge and i(Di) ≥ 4 interior edges. Let
Di+1 = St(Di) be the star neighborhood of Di in D. Then either Di+1

meets another side of P, or it is homeomorphic to a closed disc with
one exterior geodesic edge and

i(Di+1) ≥ i(Di)(dInt(λ)− 4) + 2(dExt(λ)− dInt(λ)) + 3

interior edges.

Proof. Di has exactly one exterior geodesic edge. We assume that
St(Di) does not meet another side of P , so we can extend this edge to
edges on faces B− and B+ adjacent to Di.

Taking a small neighborhood U of Di in St(Di), there is a natural
way to order the faces in St(Di)\Di from B− = B1, B2, . . . to Bl = B+,
so that Bp meets Bq along an edge in U \ Di if and only if |p− q| = 1.

Claim 1: If p 6= q, Bp 6= Bq.
Suppose we haveBp = Bq, p 6= q. We can assume that q ≥ p+2, since

Lemma 3.10 states that faces don’t bump into themselves. Therefore
Di and Bp = Bq enclose a subdiagram D′ entirely in the interior of D,
that is non-empty since it contains Bp+1. Every vertex of D′ except
perhaps two has degree at least three, and so, by the same argument
as Lemma 3.10, we have a contradiction.

Claim 2: A geodesic edge γ cannot meet a face B in a disconnected
set, i.e., it meets B on an edge, at a vertex or not at all.

Suppose otherwise. Then γ and B enclose a non-empty subdiagram
D′, containing B. Consider the equation (3.3). Following the calcula-
tion of (3.8), we see that

6 ≤ (6− 2e(B)− i(B)) ≤ 3,



CONFORMAL DIMENSION AND RANDOM GROUPS 19

a contradiction.

Claim 3: A geodesic edge γ cannot meet two intersecting faces B,B′

in a disconnected set.
Because of Claim 2, it must meet B and B′, and enclose a non-empty

diagram D′, containing both B and B′. If B and B′ meet along an edge,
(3.3) gives

6 ≤ (6−2e(B)−i(B))+(6−2e(B′)−i(B′)) ≤ (6−2−2)+(6−2−2) = 4.

On the other hand, if B and B′ meet only at a vertex v, we have

6 ≤ (3−d(v))+(6−2e(B)−i(B))+(6−2e(B′)−i(B′)) ≤ −1+3+3 = 5.

In both cases we obtain a contradiction.

Claim 4: The geodesic edge γ0 of P which meets Di only meets B1 ∪
· · · ∪Bl along a single edge of B1 and a single edge of Bl.

This follows from claims 2 and 3, viewing Di as a single face.

Now, l ≥ i(Di). We calculate the number of interior edges of Di+1.
The faces B1 and Bl have one external and at least dExt(λ) ≥ 4 internal
edges, at least dExt(λ)− 2 of which will contribute to i(Di+1).

The faces B2, . . . , Bl−1 have at least dInt(λ) ≥ 7 internal edges, at
least dInt(λ)− 3 of which will contribute to i(Di+1).

Finally, we may have to combine (l−1) of these edges together when
we make Di+1 into a single face and remove vertices of degree two. So

i(Di+1) ≥ 2(dExt(λ)− 2) + (l − 2)(dInt(λ)− 3)− (l − 1)

= 2(dExt(λ)− 2) + l(dInt(λ)− 4)− 2dInt(λ) + 7

≥ i(Di)(dInt(λ)− 4) + 2(dExt(λ)− dInt(λ)) + 3. �

We continue the proof of Proposition 4.5.
Note that dExt(λ)− dInt(λ) > 1

2λ
− ( 1

λ
+ 1) = −1

2λ
− 1, so

i(Di+1) ≥ ( 1
λ
− 4)i(Di)− ( 1

λ
− 1) = ( 1

λ
− 4)

(
i(Di)−

1
λ
− 1

1
λ
− 4

)
≥ ( 1

λ
− 4)(i(Di)− 5

2
).(4.7)

Since i(Di) ≥ 9 for i = 2, by induction i(Di) ≥ 9 for all i ≥ 2.
We now return to bounding the number of faces in a chain joining

B0 to one of the other sides of P .
If there is no (k + 1)-chain of faces, then every face in Dk \ Dk−1,

with the exception of two, is an interior face of D. On the one hand,
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by (4.7) i(Dk) grows exponentially fast:

FI ≥ i(Dk)
≥ ( 1

λ
− 4)k−2i(D2)− 5

2
( 1
λ
− 4)− 5

2
( 1
λ
− 4)2 − · · · 5

2
( 1
λ
− 4)k−2

≥ ( 1
λ
− 4)k−2 · 9− 5

2
( 1
λ
− 4)

(
( 1
λ
− 4)k−2 − 1

( 1
λ
− 4)− 1

)
≥ 9( 1

λ
− 4)k−2 − 5( 1

λ
− 4)k−2 = 4( 1

λ
− 4)k−2.

On the other hand, by Lemma 3.9,

FI ≤
3n− 6

dInt(λ)− 1
≤ 3n,

thus for some C = C(λ), we have

k log( 1
λ
− 4) ≤ log(n) + C. �

Proof of Theorem 4.4. Proposition 4.5 shows that geodesic n-gon P is
∆-slim, with

∆ =
M

log( 1
λ
− 4)

· log(n) + C,

where M = max{|r| | r ∈ R} is the maximum diameter of a face, and
C is independent of n. So the Cayley graph Γ(G,S) is ACu(κ) with

κ = − 1

M2
log2( 1

λ
− 4). �

5. Building a round tree in the Cayley complex

Our final goal is to prove the following result.

Theorem 5.1. Suppose G = 〈S|R〉 is a C ′(1/12) presentation, with
|S| ≥ 2 and |R| ≥ 1, where |r| ≤ M for all r ∈ R. Suppose further
that for some M∗ ≥ 12, every word u ∈ 〈S〉 of length M∗ appears at
least once in some cyclic conjugate of some r±1, r ∈ R. Then for some
universal constant C > 0, we have

Cdim(∂∞G) ≥ 1 + C · M∗

log(M)
.

In this section, we will build a round tree in the Cayley complex
Γ2 = Γ2(G,S,R). The branching of this tree is controlled by the size
of M∗ relative to M , and in Section 6 we use a lemma of Bourdon to
give the lower bound for the conformal dimension of the boundary.



CONFORMAL DIMENSION AND RANDOM GROUPS 21

Definition 5.2. The Cayley complex Γ2(G,S,R) of a finitely presented
group G = 〈S|R〉 is the universal cover of the complex X, where X has
a bouquet of |S| oriented circles as a 1-skeleton, each labelled with a
generator from S, and there are |R| discs glued in with boundary labels
from the corresponding relators in R.

Note that the 1-skeleton of Γ2(G,S,R) is the Cayley graph Γ1(G,S).

5.1. Preliminary lemmas. As we are modifying Champetier’s tech-
nique, we need two of his lemmas. Proofs are given for completeness.

Lemma 5.3 (Champetier [6, Lemma 4.19]). Consider a C ′(1/6) pre-
sentation of a group G = 〈S|R〉 with Cayley graph Γ = Γ(G,S).

For every point a ∈ Γ, there are at most two distinct s ∈ S∪S−1 that
satisfy d(1, as) ≤ d(1, a). In other words, any geodesic from 1 to a can
be extended to any of the neighbors of a, with at most two exceptions.

Of course, for a ∈ G, a 6= 1, there exists s ∈ S∪S−1 so that d(1, as) =
d(1, a)− 1. We denote a geodesic between p and q by [p, q].

Proof. Let γ1 = [a, 1], and let b ∈ γ1 satisfy d(a, b) = 1. Suppose there
is some c ∈ Γ, c 6= b, so that d(a, c) = 1 and d(1, c) ≤ d(1, a). Let
γ2 = [c, 1]. Note that a, b do not lie in γ2.

Let D be a reduced diagram for the geodesic triangle γ1, [a, c], γ2.
By Lemma 3.11, and its proof, this diagram has a face labelled r1

with at most one interior edge, containing a, b, c in its boundary. Let
wi = γi∩ ∂r1, for i = 1, 2. Since wi are geodesics, and the interior edge
has length at most |r1|/6, we have |wi| ≥ |r1|/2 − |r1|/6 − 1 > |r1|/6,
for i = 1, 2.

Suppose now that there is another point c′ satisfying the same con-
ditions as c. Then, as before one builds a geodesic triangle from a, b, c′,
and finds a relator r2 so that the initial segment of γ1 which overlaps
r2 has length at least |r2|/6. Thus, by the C ′(1/6) condition, r1 and r2

are the same relator, and so c = c′. �

Lemma 5.4 (Champetier [6, Lemma 4.20]). Consider a C ′(1/12) pre-
sentation of a group G = 〈S|R〉 with Cayley graph Γ = Γ(G,S).

For every u′ ∈ Γ, there is at most one u ∈ Γ so that d(1, u) =
d(1, u′)+d(u′, u) = d(1, u′)+3, and so that a geodesic γu = [1, u] starts
with a subword of a relator r1 ∈ R of length greater than |r1|/6 + 3.

Proof. Suppose u ∈ Γ is such a point, and γu is such a geodesic.

Case 1: u′ /∈ γu.
Then the two geodesics γu and γu′ = [u, u′] ∪ [u′, 1] form a geodesic

bigon that splits at a vertex of [u, u′], and so by Lemma 3.11 there is a
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relator r2 ∈ R whose boundary meets both γu and γu′ from the point
they split in a segment of length at least |r2|/6. Thus r1 and r2 are the
same relators, and so the only possibility is that γu and γu′ split at u
and each begin with |r1|/6 + 3 of r1 and its inverse respectively.

Case 2: u′ ∈ γu.
Suppose we have two such points u, v with corresponding geodesics

γu, γv, and relators r1, r2. By Case 1, we can assume that these geodes-
ics both pass through u′, and so ∂r1 and ∂r2 will meet along a subword
w of γu∩ γv that includes u′, before γu, γv split at some point p around
a relator r3. As γu, γv are both geodesics, after p they have to include
at least 5|r3|/12 of the relator r3.

If |w| < |ri|/12 for both i = 1, 2, then r1 and r2 will both meet r3

along at least |ri|/12 of ri, and so r1, r2, r3 are all the same relator, and
thus d(u, 1) < d(u′, 1), a contradiction. Thus |w| ≥ |ri|/12 for i = 1 or
i = 2, and so r1 and r2 are the same relator, and u = v as desired. �

5.2. Building a round tree. Suppose Y is a two dimensional complex
with a negatively curved metric, and there is an S1 action on Y that
has a unique fixed point. If, additionally, there is a tree embedded in
Y that meets every S1 orbit in a single point, then we say Y is a round
tree [11, 7.C3].

Our goal in this section is to build a 2-complex A which is topolog-
ically embedded in the Cayley complex Γ2, and whose one skeleton is
a quasi-convex subset of the Cayley graph Γ1. The complex A will be
quasi-isometric to a sector of a round tree; we abuse terminology and
simply refer to A as a round tree.

The ideas in this section are inspired by the arguments of Cham-
petier [6] and Bourdon [3]. However, unlike Champetier, we build more
than just a single (or finite number) of arcs in the boundary. Unlike
Bourdon, we do not have a particular nice hyperbolic building to work
in.

We build the round tree inductively. The round tree at step n is
denoted by An. Its branching is controlled by the index set T =
{1, . . . , 3 · 2K−3}, where K = bM∗/2− 3c.

Each complex An is a union of complexes Aan indexed by an ∈ T n,
homeomorphic to a closed disc, which can each be thought of as a
triangular region with left edge a geodesic Lan from 1, right edge a
geodesic Ran from 1, and outer edge a path Ean , where an ∈ T n. The
left tree is Ln =

⋃
Lan , and the right tree is Rn =

⋃
Ran , where the

unions are over all an as above.
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5.2.1. Initial step. Let L∅ = [1, s1], R∅ = [1, s2] be two distinct edges
from the identity in Γ. Combined, L∅ and R∅ give the reduced word
w = s−1

1 s2 of length 2. Choose some relator r ∈ R which contains w
as a subword, and let A0 be the face corresponding to r in Γ2 which
contains w as a sub-word in its boundary. Let E∅ be the path of length
|r| − 2 joining s1 to s2 along ∂A0.

5.2.2. Inductive step. Assume we have built An. Let us fix an =
(a1, . . . , an) ∈ T n, and use the notation E = Ean ⊂ ∂Aan for the
peripheral path joining the endpoints of L = Lan and R = Ran .

Consider the function d(1, ·) along E. By induction, this distance is
always at least n, and strict local minima are separated by a path of
length at least 50. At points p ∈ E that are not strict local minima
for d(1, ·), there is at least one generator s ∈ S that leaves E and
extends the distance to the identity by one, i.e., d(1, ps) = d(1, p) + 1,
by Lemma 5.3.

We can split the path E into segments of length 6 centered on local
minima, and of length 3 or 4 in-between. For each endpoint z of the
segments we have an edge that leaves E and extends the distance to
the identity by one. This can be further extended two more steps to
give four points at a distance d(1, z) + 3 from the identity. Lemma 5.4
rules out at most one of these, but we can still use three of them.
We then extend from each point K − 3 times using Lemma 5.3 to give
|T | = 3 ·2K−3 distinct points at a distance d(1, z)+K from the identity.

Now for each an+1 ∈ T , we have a corresponding geodesic of length
K leaving the endpoints of each segment in E. Adjacent paths, and
the segment between them, concatenate to give a path of length at
most K + 6 +K ≤M∗, so there is some relator having this word as a
subpath. Add these faces to Aan to define Aan+1 , and assign the left,
right and outer edges to Lan+1 , Ran+1 , and Ean+1 respectively, where
an+1 = (a1, . . . , an, an+1).

We show that Ean+1 does not get closer than n+ 1 to the identity in
Γ. To be precise:

Lemma 5.5. Suppose u′, v′ ∈ Ean are consecutive endpoints of seg-
ments, u, v ∈ Ean+1 are the corresponding points in Ean+1 (after sim-
plifying the path), and γuv ⊂ Ean+1 the path joining them, coming from
a relator r1 ∈ R. We show that any geodesic from p ∈ γuv to the iden-
tity must pass through u or v, and include the corresponding sub-path
of γuv.
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Proof. Suppose some geodesic γ1p joins p to the identity without pass-
ing through u or v. We can assume that the edge of γ1p adjacent to p
is not in γuv. Let γ1v be the geodesic path joining v to 1 (through v′).

Consider the closed path formed by γ1p, γ1v, [p, v]γuv , and the associ-
ated reduced diagram. One can glue on a face to this diagram, labelled
with the relator r1, along [p, v]γuv and part of γ1v. Notice that in this
diagram, the r1 face and the face containing 1 are the only two with
exterior edges that are not geodesics. Therefore, by the argument of
Lemma 3.11, they each have one interior edge, and the diagram is in
the form of a standard bigon, as described in Lemma 3.11.

The face adjacent to r1 is labelled by a relator r2, which contains
[p, v]γuv in its boundary, and also the edge of γ1p adjacent to p, unlike
r1. So the relators r1, r2 must be distinct. Thus their overlap is at
most |r2|/12, and includes [v′, v]γ1v ∪ [p, v]γuv . Since γ1p and γ1v are
both geodesics, [1, v′]γ1v must contain at least |r2|/2−2|r2|/12 = |r2|/3
of the relator r2, which contradicts the choice of the paths [v′, v]. �

5.2.3. Properties of A. We have built an infinite polygonal complex
A =

⋃
n∈NAn. It is the union of planar complexes Aa ⊂ A indexed by

a = (a1, a2, . . .) ∈ TN, given by Aa =
⋃
n∈NA(a1,...,an).

Each Aa will carry a CAT(−1) metric, however A may not since the
links of the vertices v′ as above have simple closed paths of length two
(created by the |T | different faces all joined along their edges at v′).
Before we consider different metrics on A, we need to understand how
it sits inside Γ2.

The complex A was built abstractly, but with an obvious natural
polygonal immersion i : A→ Γ2. Denote the 1-skeleton of A by A1.

Lemma 5.6. The map i : A→ Γ2 is a topological embedding.
More precisely, for every p ∈ A, every geodesic joining i(p) to i(1) =

1 in Γ1 is the image under i of a geodesic joining p to 1 in A1.

Proof. By construction, there is at least one geodesic γ joining i(p) to 1
in A1. Suppose there is some geodesic γ′ ⊂ Γ1 joining i(p) to 1, whose
first edge is not in i(St(p)). Then there is some relation r1 ∈ R so that
the first 5|r1|/12 of γ after i(p) is a subword of r1.

The geodesic γ is made up of segments in the boundary of relators
in A, and special length three extensions that, by Lemma 5.4, do not
have any geodesic to the identity which begins with a subword of length
|r|/6 + 3 of any relator r ∈ R.

Thus no such length three subword appears in the first 5|r1|/12 −
(|r1|/6 + 3) = |r1|/4 − 3 vertices of γ. Therefore, |r1|/4 − 3 ≥ |r1|/12
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of r1 bounds a relator in A, so r1 is in A, contradicting the hypothesis
that γ′ left i(St(p)). �

Lemma 5.7. Consider A1 and Γ1 with their path metrics dA and dΓ.
Then the map i : A1 → Γ1 is a quasi-isometric embedding.

In other words, (A1, dA) is quasi-isometric to (A1, dΓ), where dΓ is
the pullback dΓ(x, y) = dΓ(i(x), i(y)).

Proof. Take any x, y ∈ A1. Since i is a topological embedding, clearly
dA(x, y) ≥ dΓ(x, y).

Consider the geodesic triangle between 1, x and y with edges γ1x, γ1y

and γxy. In light of Lemma 3.11, consider the structure of a reduced
diagram D for this triangle.

The geodesics γxy and γ1x form a spur starting at x that ends at an
interior edge of D joining p ∈ γxy to p′ ∈ γ1x.

Likewise, γxy and γ1y form a spur starting at y that ends at an
interior edge of D joining q ∈ γxy to q′ ∈ γ1y. Also, γ1x and γ1y form a
spur starting at 1 that ends at an interior edge of D joining p′′ ∈ γ1x

to q′′ ∈ γ1y.
Take a face labelled with some relator r1 in any one of these spurs.

The exterior edges of this face are geodesics, and the interior edges
have length at most |r1|/12. Thus the two exterior edges of the face
have lengths between |r1|/2 and |r1|/2−2|r1|/12 = |r1|/3. So the same
argument as in Lemma 5.6 shows that the relators in these spurs lie in
A.

Since we chose p, p′, p′′, q, q′, q′′ to make the spurs as long as possible,
the analysis of Lemma 3.11 shows that [p, q]γxy is adjacent to at most
three faces in D, thus dΓ(p, q) ≤ 3M/2.

Similarly, dΓ(p′, p′′) = dA(p′, p′′) ≤ 3M/2 and dΓ(q′, q′′) = dA(q′, q′′) ≤
3M/2. Since p′′, q′′ lie on the boundary of a single face in A, part of
the spur containing 1, dA(p′′, q′′) ≤M/12.

Likewise, dΓ(p, p′), dΓ(q, q′) ≤M/12, so

dA(x, p′) = dΓ(x, p′) ≤ dΓ(x, p) +M/12, and

dA(y, q′) = dΓ(y, q′) ≤ dΓ(y, q) +M/12.

Combining all these results, we see that

dA(x, y) ≤ dA(x, p′) + dA(p′, p′′) + dA(p′′, q′′) + dA(q′′, q′) + dA(q′, y)

≤
(
dΓ(x, p) +

M

12

)
+

3M

2
+
M

12
+

3M

2
+

(
dΓ(q, y) +

M

12

)
≤ dΓ(x, y) +

13M

4
. �
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6. A lower bound for conformal dimension

In this section, we will build a model space X quasi-isometric to
A1, and show that Cdim(∂∞X) has the desired lower bound. Since we
have a quasi-symmetric inclusion of ∂∞A into ∂∞Γ = ∂∞G, this will
complete the proof of Theorem 5.1.

Let X be the graph with a vertex for each face in A, and an edge
between two vertices if the boundaries of the corresponding faces have
non-empty intersection.

Lemma 6.1. (A1, dA)
q.i.
' (X, dX)

Proof. Let f : X → A1 be a map that sends each vertex x ∈ X to some
vertex in A on the edge of the corresponding face. Clearly, every point
in A1 is within a dA-distance of M/2 from some point in f(X).

If dX(x, y) = 1 for x, y ∈ X, then dA(f(x), f(y)) ≤ M , where
M is the maximum perimeter of a face. Thus for any x, y ∈ X,
dA(f(x), f(y)) ≤MdX(x, y).

Each edge in a geodesic [f(x), f(y)] ⊂ A1 is the edge of some face
in A, and adjacent edges will give intersecting faces (by definition).
Adding the faces for x and y to this chain, shows that dX(x, y) ≤
dA(f(x), f(y)) + 2. �

We recall the relevant lemma of Pansu and Bourdon.

Lemma 6.2 ([3, Lemma 1.6]). Suppose Z is a compact metric space
containing a family of curves C = {γi : i ∈ I}, with diameters uniformly
bounded away from zero.

Suppose further that there is a probability measure µ on C and con-
stants C > 0, σ > 0 such that for all balls B(z, r) in Z

µ({γ ∈ C|γ ∩B(z, r) 6= ∅}) ≤ Crσ.

Then the conformal dimension of Z is at least 1 + σ
τ−σ , where τ is the

packing dimension of Z, and in fact τ − σ ≥ 1.

We need to estimate σ and τ for Z = ∂∞X.
By Lemma 5.7, any geodesic in (A1, dA) is within a uniformly bound-

ed Hausdorff distance from a geodesic with the same endpoints in Γ1.
Thus (A1, dA) is also Gromov hyperbolic. Since X is quasi-isometric
to A1, it too is Gromov hyperbolic. The boundary ∂∞X of X carries
a visual metric ρ with parameter ε, for some ε > 0.

In other words, for all points u, v ∈ ∂∞X, connected by a bi-infinite
geodesic γuv ⊂ X,

ρ(u, v) � e−ε(u·v),
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where (u · v) = d(1, γuv), and � indicates a multiplicative error of
Cρ ≥ 1.

Let C = {∂∞Aa : a ∈ TN}. There is a natural probability measure µ
on TN so that, for fixed b1, . . . , bn ∈ T , n ∈ N,

µ({(a1, a2, . . .) ∈ TN : ai = bi, 1 ≤ i ≤ n}) = |T |−n.

Lemma 6.3. For this choice of C, ρ, µ, we can take σ = (log |T |)/ε.

Proof. Fix some z ∈ ∂∞X. Then z lies in the boundary of some Aa,
a = (a1, a2, . . .) ∈ TN.

Suppose w ∈ B(z, r) ⊂ ∂∞X. Then w lies in the boundary of some
Ab, b = (b1, b2, . . .) ∈ TN, and

1

Cρ
e−ε(z·w) ≤ ρ(z, w) ≤ r,

so

(z · w) ≥ (−1/ε) log(Cρr).

Suppose an 6= bn, and n is the smallest such n. Then deleting all vertices
in X at distance n from the root face will disconnect the boundaries
of Aa and Ab, and so γzw must pass within n of the root face. Thus
(z · w) ≤ n, so if w ∈ B(z, r), am = bm for all

m < (−1/ε) log(Cρr).

Therefore,

µ(B(z, r)) ≤ |T |(1/ε) log(Cρr)+1 ≤ |T |1+log(Cρ)/ε · r(log |T |)/ε. �

It remains to bound τ . When we built An+1 from An, we added |T |
faces to each segment along En. So each face in An that bordered En
could have at most M |T | faces joined on to it. This gives a way to
label every point in ∂∞X by an element of

W = {1, 2, . . . ,M |T |}N,

and we denote that labelling by f : ∂∞X → W , which is an injection.
Put the metric ρW on W , where

ρW ((a1, a2, . . .), (b1, b2, . . .)) = exp(−εmin{n : an 6= bn}).

Then f−1 : f(∂∞X)→ ∂∞X is a Lipschitz bijection, so

τ = dimP(∂∞X) ≤ dimP(f(∂∞X)) ≤ dimP(W ) = log(M |T |)/ε.
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Thus, by Lemma 6.2,

Cdim(∂∞X) ≥ 1 +
σ

τ − σ
≥ 1 +

log(|T |)/ε
log(M |T |)/ε− log(|T |)/ε

= 1 +
log |T |
log(M)

.

Since |T | = 3 · 2K−3, and K = bM∗/2− 3c, and M∗ ≥ 12,

log |T | = log(3/8) +K log(2) ≥ CM∗,

for C = 1/100, say.
Finally,

∂∞X
q.s.
' ∂∞A

q.s.
⊂ ∂∞Γ = ∂∞G,

so we have

Cdim(∂∞G) ≥ Cdim(∂∞X) ≥ 1 + C · M∗

log(M)
.
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