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SOME ADVANCES ON GENERIC PROPERTIES OF

THE OSELEDETS SPLITTING

JANA RODRIGUEZ HERTZ

Dedicated to the memory of Ricardo Mañé,

on occasion of the 15th anniversary of his death.

Abstract. In his foundational paper [19] , Mañé suggested that
some aspects of the Oseledets splitting could be improved if one
worked under C1-generic conditions. He announced some powerful
theorems, and suggested some lines to follow. Here we survey the
state of the art and some recent advances in these directions.

1. Introduction

In his foundational paper [19] , Mañé suggested that some aspects
of the Oseledets splitting could be improved if one worked under C1-
generic conditions. He announced some powerful theorems, and sug-
gested some lines to follow. Here we survey some recent advances in
these directions.
Given a C1 diffeomorphism f ∈ Diff1(M), a point x ∈ M and a

tangent vector v ∈ TxM \ {0}, the Lyapunov exponent of x associated
to v is given by:

(1.1) λ(x, v) = lim
n→±∞

1

n
log ‖Dfn(x)v‖

If this limit exists, we can roughly say that λ(x, v) measures the as-
ymptotic exponential expansion of the norm of v under the action of
the derivative Dfn(x). A point x is called regular if there exists an
invariant splitting TxM = E1(x)⊕ · · · ⊕ Ek(x)(x) such that

(1.2) λ(x, vi) = λi(x) for all vi ∈ Ei(x) \ {0} i = 1, . . . , k(x)

The splitting above is unique and is called the Oseledets splitting. In
the sixties, Oseledets proved [22] that for all C1 diffeomorphism f ,
there is a total probability set R(f) of regular points. Namely, for all
f -invariant measure µ we have µ(R(f)) = 1.
Let us note that the Oseledets splitting, as well as the Lyapunov

exponents, depend only measurably on the base point. This is natural,
1
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on the other hand, since Oseledets theorem holds for any C1 diffeomor-
phism. In [19], Mañé suggested that one could improve the regularity
of the Oseledets splitting by working under C1 generic conditions.
This can be done in different ways. One approach consists in look-

ing at the Oseledets theorem for generic invariant measures for generic
diffeomorphisms. This is dealt with next in Subsection 1.1 and Section
3. Another approach, also mentioned in [19], consists in studying Os-
eledets theorem with respect to a measure coming from a symplectic
form ω, and considering generic diffeomorphisms preserving this form.
We will extend this concept in Subsection 1.2 and Section 4.
Finally, one can deal with the improvement of Oseledets splitting

properties for C1-generic volume preserving diffeomorphisms. This ap-
proach was only suggested in [19], though many advances have been
made in this line in the recent years. We focus on this point of view in
Subsection 1.3 and Section 5.
Let us note that in the conservative setting one aims at a C1-generic

dichotomy: non-uniform hyperbolicity, global domination and ergodic-
ity vs. zero Lyapunov exponents almost everywhere. This was stated
explicitly as a conjecture by Avila and Bochi in [5], based on results
in [19, 8] and [26]. Although many partial results have been obtained,
this has not been achieved (or disproved) yet. See 1.3 and Section 5
and references therein.
On the other hand, in the symplectic setting one has non-removable

zero Lyapunov exponents in the interior of partially hyperbolic dif-
feomorphisms, so the above dichotomy is not expectable. However,
one can aim at the C1-generic dichotomy: partially hyperbolicity and
ergodicity vs. zero Lyapunov exponents almost everywhere (see Sub-
section 1.2, Section 4 and references therein).

1.1. Generic diffeomorphisms. Let us state in this subsection the
lines suggested by Mañé in [19], with respect to the first approach.
Let us denote by M(M) the set of probabilities defined in M , en-

dowed with the weak topology; and consider M(f) the subset of f -
invariant probability measures. This is a compact metric space, and
hence it is a Baire space. As usual we shall call a set residual if it
contains a countable intersection of open and dense sets. Recall that
in a Baire space residual sets are dense. We shall call a set meager if its
complement is residual. Let us denote by Merg(f) the subset of M(f)
consisting in ergodic measures. This set is a Gδ subset of M(f) and
therefore it is a Baire space too. We shall say that a property holds for
a generic element in a Baire space if this property holds for a residual
subset of the Baire space.
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Given a measure µ ∈ M(M), we shall denote by supp(µ) the support
of µ, that is, the set of points such that all of its neighborhoods have
µ-positive measure. Recall that this is a compact set. We have that:

Theorem 1.1. [19] For a generic f ∈ Diff1(M) and a generic ergodic
measure µ ∈ Merg(f), the Oseledets splitting extends to a dominated
splitting over supp(µ).

This in particular implies that the Oseledets splitting varies contin-
uously over µ-almost every point in supp(µ), and has bounded angles.
See precise definition of dominated splitting in Definitions 2.1 and 2.2.
Observe that when the Oseledets splitting is trivial, we have that the
Lyapunov exponents are all zero µ-almost everywhere.
We must warn the reader that, as Mañé noticed in [20], the set of

regular points R(f), over which the Oseledets splitting is defined, is
in general meager. A precise statement and proof of this is given by
Abdenur, Bonatti and Crovisier in [1]. See Section 3.
However, the support of µ could be large from the topological point

of view, and it could be even the whole manifold M .

The theorem above is based on the generic denseness of periodic
measures among ergodic ones. This result, also stated in [19], is based
on the Ergodic Closing Lemma [18] and the Birkhoff Theorem, and it is
interesting in itself, since it is the base of many results in this subject.
Given a diffeomorphism f ∈ Diff1(M) and an f -periodic orbit γ, let

us denote by µγ the measure equidistributed along γ, that is, if m is
the period of γ and x ∈ γ, then:

(1.3) µγ =
1

m

m−1∑
j=0

δfj(x)

any such measure will be called periodic measure. Let us denote by
Per(f) ⊂ Merg(f) the set of periodic measures. In [19], Mañé proved
that

Theorem 1.2. [19] For a generic f ∈ Diff1(M), the set of periodic
measures Per(f) is dense in Merg(f).

In fact, as a direct consequence of the Ergodic Closing Lemma [18],
we have that the support of the periodic measures also approach the
support of every ergodic measure in the Hausdorff topology. See defi-
nitions in Section 2. This result has been later improved by Abdenur,
Bonatti and Crovisier in [1], see Section 3 for a precise statement.
With respect to Theorem 1.1, let us observe that there are obvi-

ously some limitations when talking about generic ergodic measures of
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generic diffeomorphisms. One obvious limitation is, as Mañé himself
noticed, that the metric entropy with respect to a generic invariant
measure, is zero. This implies that, the generic set of Merg(f) for
which Theorem 1.1, may fail to reflect the true dynamics of f . See [1]
and Section 3 for more details.
Another possible limitation is that, as Avila and Bochi showed in

[4], C1-generic diffeomorphisms do not admit absolutely continuous in-
variant measures, so it is not expectable, for the set of diffeomorphisms
described in Theorem 1.1 to have a natural measure. Even in the case
it had, it is not expectable that this measure be in the set of generic
ergodic measures described in Theorem 1.1.

1.2. Generic symplectic diffeomorphisms. Let consider now a 2n-
dimensional manifold M , and let ω be a symplectic form on M , that
is, a non-degenerate closed 2-form. If we consider µ = ω∧ n. . . ∧ω,
we obtain a volume form on M . We shall say a diffeomorphism f is
symplectic if f preserves this form ω. We denote by Diff1

ω(M) the set
of such diffeomorphisms.
In [19], Mañé said he would address generic properties of Oseledets

splitting for symplectic diffeomorphisms instead of volume preserving
diffeomorphisms. He adduced the following two technical reasons: first,
partial hyperbolicity follows from domination in the symplectic setting
(see for instance [10] for a proof of this fact), which was what he claimed
to have proven. Second, in the proof, he needed to approximate a C1-
volume preserving diffeomorphism by a C2-volume preserving diffeo-
morphism, a tool that was not available at that time, but was possible
in the symplectic setting [33].
The second obstacle was tackled recently by Avila [3]. The first ob-

stacle has been tackled in dimension 3 by the author in [26], where it is
proved that generically the Oseledets splitting is globally dominated.
This further implies generic ergodicity in the zone where the Oseledets
splitting is not trivial (see Subsection 1.3 and Section 5). However, this
seems difficult yet to obtain in higher dimensions in the conservative
setting, we discuss this topic in the next subsection.

Given f ∈ Diff1
ω(M) and f ∈ R(f), let us define the following sub-

bundles:

E+(x) = ⊕{Ei(x) : λi(x) > 0} E−(x) = ⊕{Ei(x) : λi(x) < 0}

and

E0(x) = ⊕{Ei(x) : λi(x) = 0}.
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For further use, we denote, following Bochi [9], the zipped Oseledets
splitting:

TxM = E+(x)⊕E0(x)⊕ E−(x)

Let us note that for a symplectic f , the Lyapunov exponents have the
following symmetry: if λi(x) is a Lyapunov exponent then −λi(x) is
also a Lyapunov exponent with the same multiplicity as λi(x). There-
fore, we have that dimE+(x) = dimE−(x), and dimE0(x) is even.
Let us divide the set of regular points R(f) into the following dis-
joint regions. The elliptic region is the set Z(f) = {x ∈ R(f) :
TxM = E0(x)}, that is the invariant set of points having all its Lya-
punov exponents zero. The hyperbolic region is the set Nuh(f) = {x ∈
R(f) : TxM = E−(x)⊕ E+(x)}, that is, the Pesin region of f defined
below in equation (2.5). And finally, the partially hyperbolic region
PH(f) = R(f) \ (PR(f)∪Z(f)), the set of points having a non-trivial
center bundle, which is not all TxM .
In [19], Mañé claimed to have proven the following, which was only

proven very recently by Bochi:

Theorem 1.3 ([9]). For a generic f ∈ Diff1
ω(M) only one of the fol-

lowing option holds:

(1) µ-almost every x ∈ M , all Lyapunov exponents are zero.
(2) f is Anosov
(3) M = Z ∪ PH ( mod 0) with µ(PH) > 0. Then we have

PH =
⋃

n>0Dn ( mod 0) where Dn are f -invariant sets over
which f is partially hyperbolic. The Oseledets splitting of f

extends to a dominated splitting over each Dn.

Let us note that this has been achieved by Bochi with techniques that
are very different from those proposed by Mañé. Indeed, he used new
perturbation techniques that involved random walks. Also, in case one
restricts to the open set of partially hyperbolic symplectomorphisms,
Bochi can improve Theorem 1.3 by proving that generically, all center
Lyapunov exponents are zero [9]. See more in Section 4.
Let us note that in item 3, one could have in principle for a symplec-

tomorphism that there is a positive measure set on which all Lyapunov
exponents vanish, coexisting with a positive measure set where f is
partially hyperbolic. We believe this is not the generic case.

Conjecture 1.4. For a generic f ∈ Diff1
ω(M) either all Lyapunov

exponents vanish almost everywhere, or else the Oseledets splitting ex-
tends to a globally dominated (partially hyperbolic) splitting and in this
case f is ergodic.



6 JANA RODRIGUEZ HERTZ

Obviously, the last case includes the case where the symplectomor-
phism is Anosov. Note that generically, partially hyperbolic symplecto-
morphisms are ergodic, as has been proved by Avila, Bochi and Wilkin-
son in [6]. See more in Section 4.
As a corollary of Theorem 1.3, Mañé announced the following cele-

brated result:

Theorem 1.5 (Bochi [8]). For a generic area-preserving diffeomor-
phism f of a surface, either f is Anosov, or else all Lyapunov exponents
vanish almost everywhere.

He left some outline of the proof which was published after his death
in [21]. This was only a sketch, and substantial work had to be done
by Bochi to finish this proof, which appeared in 2002 [8]. We further
develop this topic in Section 4.

1.3. Generic conservative diffeomorphisms. Finally, let us con-
sider the set of diffeomorphisms preserving a smooth volume form m

on M , which we denote by Diff1
m(M). As we stated above, this case

was not addressed by Mañé essentially due to two technical reasons:
first, at that time it was not known whether one could approximate
a diffeomorphism in Diff1

m(M) by a smooth volume preserving diffeo-
morphism. This question has been solved by Avila [3], who proved
that smooth conservative diffeomorphisms are dense in Diff1

m(M). The
second obstacle is even more delicate. In the symplectic setting, domi-
nance implies partial hyperbolicity. This is not true in the conservative
setting, not even generically. See more in Section 5. Moreover, unlike in
the symplectic setting, it is not known if dominance implies generically
some ergodicity.
This does not prevent us from having a conjecture as a leading guide

in trying to establish the overall generic behavior of the Oseledets split-
ting. The following, stated by Avila and Bochi in 2009 seems to be a
good starting point:

Conjecture 1.6. [5] For a generic conservative diffeomorphism f in
Diff1

m(M), one of the following alternatives holds. Either

(1) all Lyapunov exponents of f are zero almost everywhere, or
(2) f is non-uniformly hyperbolic and ergodic, and the zipped Os-

eledets splitting TxM = E+(x) ⊕ E−(x), defined in Subsection
1.2, is globally dominated.

The conjecture above has been inspired by Theorem 4.1 obtained by
Bochi for surfaces, and by the following result, obtained by the author,
for 3-manifolds, where it is proved that:
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Theorem 1.7. [26] For a generic conservative diffeomorphism f in
Diff1

m(M), whereM is a 3-dimensional manifold, the Oseledets splitting
extends to a dominated splitting over the whole manifold. In particular,
either:

(1) all Lyapunov exponents of f are zero almost everywhere, or
(2) f is non-uniformly hyperbolic and ergodic.

Note that in this case, not only the zipped Oseledets splitting is
globally dominated as in item 2 of Conjecture 1.6, but also the finest
Oseledets splitting. See more details in Section 5.
So far, in greater dimensions, the best approximation to Conjecture

1.6 is the following result by Avila and Bochi:

Theorem 1.8. [5] For a generic conservative diffeomorphism f in
Diff1

m(M), only one of the following alternatives holds. Either:

(1) the Pesin region of f has null measure: m(Nuh(f)) = 0; that
is, almost everywhere, there is a zero Lyapunov exponent for f ,
or

(2) the orbit of almost every orbit in Nuh(f) is dense, and f re-
stricted to Nuh(f) is ergodic. Moreover, the zipped Oseledets
splitting TxM = E+(x)⊕E−(x) extends to a globally dominated
splitting.

Let us note that, in fact, the Oseledets splitting over the Pesin
region Nuh(f) extends to a dominated splitting over the manifold.
However, there could be other ergodic components with positive mea-
sure, on which the Oseledets splitting is finer (it cannot be coarser).
Another thing to mention is that possibility (1) does indeed happen
in every manifold: Grin provides in each manifold M an open set
U ⊂ Diff1

m(M), such that the generic diffeomorphism in U has a vanish-
ing Lyapunov exponent almost everywhere. Moreover, in 3-manifolds,
this open set can be chosen so that the generic diffeomorphism in U all
Lyapunov exponents vanish almost everywhere [17].
One of the main obstacles to tackle in Theorem 1.8 is the possibility

of the coexistence of a positive measure set Z of points with all van-
ishing Lyapunov exponents with a positive measure set P of points (in
some Dn defined below) such that the Oseledets splitting has a non-
trivial bundle E0(x) corresponding to zero Lyapunov exponents. In
this case, a global dominated splitting would not exist, and f would be
not ergodic.
We should also take into account a previous result by Bochi and

Viana, which states the following:
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Theorem 1.9. [11] For a generic conservative diffeomorphism f in
Diff1

m(M), m-almost every x in M , either all Lyapunov exponents of f
are zero, or else the Oseledets splitting over the orbit of x is dominated.

As a consequence of Theorem 1.9, the manifold can be written mod-
ulo zero as the countable union of a set Z of points where all the
Lyapunov exponents of f are zero, and sets Dn where the Oseledets
splitting over the orbit of x is n-dominated.
There are some hypotheses under which Conjecture 1.6 could be

established, in fact, a positive answer to the following question, attrib-
uted to Katok by Bochi and Viana in [11], would imply Conjecture 1.6,
as we explain in Section 5:

Question 1.10. Is ergodicity a generic property in Diff1
m(M)?

However, it is likely that establishing this question could be harder
than answering Conjecture 1.6. Nevertheless, there are intermediate
hypotheses that could give a better global description of the generic
behavior of the Oseledets splitting. This is the case, for instance, of
weak ergodicity. A conservative diffeomorphism is weakly ergodic when
the only compact invariant set with positive measure is the whole man-
ifold, see more details in Definition 4.3. The following question, weaker
than Question 1.10, is also unsolved, see also [12]:

Question 1.11. Is weak ergodicity a generic property in Diff1
m(M)?

Unlike in the previous context of ergodicity, Conjecture 1.6 does not
follow from weak ergodicity, at least not in an immediate way. However,
weak ergodicity would improve our working conditions, for instance, we
do have the following generic dichotomy: either all Lyapunov exponents
vanish almost everywhere, or else the finest Oseledets splitting over
a positive measure set, extends to a global dominated splitting. We
further discuss this topic in Section 5.

2. Preliminaries

LetM be a compact Riemannian manifold. Let us denote by Diff1(M)
the set of C1 diffeomorphisms, endowed with the C1 topology.
As we have stated in the introduction, given a diffeomorphism f ∈

Diff1(M), for a total probability set of points there exists a splitting,
the Oseledets splitting, TxM = E1(x) ⊕ · · · ⊕ Ek(x)(x) and numbers

λ̂1(x) > · · · > λk(x)(x), called the Lyapunov exponents such that for
every non-zero vector v ∈ Ei(x), we have

λ(x, v) = λ̂i(x),
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where λ(x, v), defined in Equation (1.1), is the exponential growth
of the norm of Dfn(x) along the direction of v. The dimension of

each Ei(x) is called the multiplicity of λ̂i(x). Counting each Lyapunov
exponent with its multiplicity, we obtain, for an n-manifold, that

λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x).

One of the generic properties we would like to establish for the Os-
eledets splitting of a C1 generic diffeomorphism its domination. Let us
recall this concept:

Definition 2.1. Given an f -invariant set Λ, and two invariant sub-
bundles of TΛM , E and F , such that TΛM = EΛ ⊕ FΛ, we call this
splitting an l-dominated splitting if for all x ∈ Λ and all unit vectors
vE ∈ Ex and vF ∈ Fx we have:

(2.4) ‖Df l(x)vF‖ ≤
1

2
‖Df l(x)vE‖

we denote EΛ ≻l FΛ or FΛ ≺ EΛ

Note that we do not require Λ to be compact. In particular, we shall
denote Ex ≺l Fx when the inequality (2.4) is satisfied for the orbit of
x. A splitting will be called dominated if there exists l ∈ N such that
it is l-dominated. When a splitting is dominated, a vector not in E or
F will converge to F under forward iterates and to E under backward
iterates.

Definition 2.2. If we have invariant sub-bundles TΛM = E1
Λ⊕· · ·⊕Ek

Λ

over an invariant (not necessarily compact) set Λ, we will say that the
splitting is l-dominated if

E1
Λ ⊕ · · · ⊕ Ei

Λ ≻l E
i+1
Λ ⊕ . . . EkΛ ∀i = 1, . . . , k − 1

As before we will say that the splitting is dominated if it is l-
dominated for some l. A particular case of a dominated splitting is
the following:

Definition 2.3. We shall say that the invariant splitting

TΛ = Es
Λ ⊕ Ec

Λ ⊕Eu
Λ

over the invariant set Λ is l-partially hyperbolic if it is l-dominated
and Df is contracting on Es

Λ and Df−1 is contracting on Eu
Λ.

Analogously, we shall say that the splitting is partially hyperbolic if
it is l-partially hyperbolic for some l ∈ N.

We shall be particularly interested in measures not having zero Lya-
punov exponents. Namely,
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Definition 2.4. Given f ∈ Diff1(M), an ergodic measure µ ∈ Merg(f)
will be called a hyperbolic measure if all Lyapunov exponents are dif-
ferent from zero µ-almost everywhere.

In the conservative setting, we shall identify the region where expo-
nents are different from zero as the Pesin region. That is, the Pesin
region of f ∈ Diff1

m(M) is the set Nuh(f) such that:

(2.5) Nuh(f) = {x ∈ R(f) : λ(x, v) 6= 0 ∀v ∈ TxM \ {0}}

We shall say that a conservative diffeomorphism f is non-uniformly
hyperbolic if Nuh(f) equals the whole manifold modulo a zero measure
set.

3. C1 generic behavior of the Oseledets splitting in

Diff1(M)

In this section we shall consider the advances that have been made
towards describing the generic behavior of the Oseledets splitting in
the dissipative setting. A good account of much of this progress can
be found in the article by Abdenur, Bonatti and Crovisier [1].
Indeed, Theorem 1.1 has been improved with the following informa-

tion:

Theorem 3.1. [1] For a generic diffeomorphism f ∈ Diff1(M) and a
generic measure µ ∈ Merg(f), we have:

(1) µ has zero entropy: hµ(f) = 0.
(2) µ is a hyperbolic measure.

A sketch of the proof of item 1 was already given in [19]. In [1]
this result is re-obtained as a corollary of a more general statement.
This result, as in the case of Theorem 1.1 is based on the following
improvement of Theorem 1.2:

Theorem 3.2. [1] For a generic diffeomorphism f ∈ Diff1(M), and
any ergodic measure µ ∈ Merg(f), there exists a sequence of hyperbolic
periodic measures µn ⊂ Per(f) such that:

(1) µn → µ in the weak topology
(2) supp(µn) → supp(µ) in the Hausdorff topology
(3) λi(µn) → λi(µ) for all i = 1, . . . , n, where λi(µn) and λi(µ) are

the Lyapunov exponents of, respectively, µn and µ, considered
with their multiplicity.

These results can be improved if one works under additional hy-
potheses. We shall consider transitivity and isolation.
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3.1. Properties of measures supported on an isolated transitive

set. Let Λ be an f -invariant set for a diffeomorphism f ∈ Diff1(M).
We shall say that Λ is transitive if it contains a dense orbit, and we
shall say that it is isolated if it has an isolating neighborhood V ⊂ M

such that ⋂
n∈Z

fn(V ) = Λ.

For further use, given any f -invariant set Λ, let us denote byMf(Λ) the
set of f -invariant measures supported in Λ, denote also by Merg

f (Λ) the
set Merg(f) ∩Mf(Λ) and finally, let us call Pf (Λ) the set of periodic
measures supported in Λ, that is Per(f) ∩Mf(Λ).
In many ways, the dynamic behavior of isolated transitive sets re-

semble that of basic sets for Axiom A diffeomorphisms. This is the
particular case of invariant measures. Let us recall that in the seven-
ties, Sigmund proved the following for the space of invariant measures
of a basic set of an Axiom A diffeomorphism:

Theorem 3.3. [31] Let Λ be a basic set of an Axiom A diffeomorphism
f . Denote by M = Mf(Λ) the set of invariant probabilities supported
in Λ. Then we have:

(1) Every µ ∈ M is approximated by hyperbolic periodic measures
µn ∈ Pf(Λ).

(2) The generic measure µ ∈ M is ergodic.
(3) The generic measure µ ∈ M has entropy zero: hµ(f) = 0.

As noted by Sigmund, item 2 follows from item 1, and the fact that
ergodic measures are a Gδ set. Item 1, in turn, follows essentially from
Bowen’s specification property valid for basic sets. In [1], Abdenur,
Bonatti and Crovisier obtained the following generalization of Theorem
3.3 and Theorem 1.1:

Theorem 3.4. [1] Let Λ be an isolated transitive set of a C1-generic
diffeomorphism f ∈ Diff1(M). Then we have:

(1) Every µ ∈ Mf(Λ) is approximated by hyperbolic periodic mea-
sures µn ∈ Pf (Λ).

(2) The generic measure µ ∈ Mf(Λ) is ergodic and satisfies supp(µ) =
Λ.

(3) The generic measure µ ∈ Mf(Λ) has entropy zero: hµ(f) = 0.
(4) The generic measure µ ∈ Mf(Λ) is hyperbolic.
(5) For a generic measure µ ∈ Mf(Λ) its Oseledets splitting can be

extended to a dominated splitting over Λ.

Here item 1 is not deduced from the specification property but from
a weaker feature of periodic points in an isolated transitive set of a
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generic diffeomorphism called the barycenter property. Indeed, for a
residual set of diffeomorphisms, the set Perf (Λ) of periodic points of
Λ satisfies the following: given p and q in Perf (Λ), and ε > 0 there
exists an integer N > 0 such that for any pair of positive integers n1

and n2 there is a periodic point z ∈ Perf (Λ) such that

d(fk(z), fk(p)) < ε for k = 1, . . . , n1

and

d(fk(z), fk(q)) < ε for k = n1 +N, . . . , n1 +N + n2.

3.2. Abundance of non-regular points. Finally, let us remark, as
in the introduction, that in general, the set of regular points is meager.
Let us say that a point x ∈ M is regular for f ∈ Diff1(M) if for every
continuous function ϕ : M → R, the following limit exists. A complete
proof of this can be found in [1]:

ϕ̃(x) = lim
|n|→∞

1

n

n−1∑
k=0

ϕ ◦ fk(x)

As mentioned in [20] without proof, regular points are in general few
from the topological point of view:

Theorem 3.5. [1] For a generic diffeomorphism f ∈ Diff1(M), the set
of regular points is meager.

4. C1 generic behavior of the Oseledets splitting in

Diff1
ω(M)

In this section we review some advances and tools available for
generic symplectic diffeomorphisms. There are many authors that have
worked in this area, hence we shall only choose some results that we
think that are relevant to the line of the generic behavior of the Os-
eledets splitting in Diff1

ω(M).
For the rest of this section let us consider M a symplectic manifold

and ω a symplectic form. The volume form coming from ω will be
denoted by µ. As we have mentioned in Subsection 1.2, it was only
recently that Theorem 1.3 was proved by Bochi. In other words, we
have the following:

Theorem 4.1. [9] For a generic diffeomorphism f ∈ Diff1
ω(M), only

one of the following options holds:

(1) f is Anosov, or
(2) µ-almost every x either all Lyapunov exponents are zero, or the

Oseledets splitting is partially hyperbolic over the orbit of x.



SOME ADVANCES ON GENERIC PROPERTIES OF THE OSELEDETS SPLITTING13

We remark once again that the techniques involved in the theorem
above are somehow different from those in the rest of this review. The
general strategy, as we shall briefly explain below is as in Bochi and
Viana’s work [11], but the difference the perturbation method in one
of the cases. Let us explain a little more, without pretending to get
into too much detail.
Given f ∈ Diff1

ω(M) and a regular point x ∈ M , consider the Lya-
punov exponents counted with multiplicity:

λ1(f, x) ≥ . . . λ2n(f, x)

Just as we will do in the conservative case (Section 5) let us consider,
for each p = 1, . . . , n the integrated p-exponent of f :

(4.6) LEp(f) =

∫
M

(λ1(f, x) + · · ·+ λp(f, x)) dµ

In the symplectic setting, it suffices to consider only the first n (in-
tegrated) exponents, since the other ones are symmetric, as we have
mentioned in Subsection 1.2. Again, just as in the conservative setting,
we have that the map LEp : Diff1

ω(M) → R is upper-semicontinuous;
hence, its points of continuity form a residual subset of Diff1

ω(M). The
idea of the proof is, as in [11], to show that:

Theorem 4.2. [9] If f ∈ Diff1
ω(M) is a point of continuity of LEp for

p = 1, . . . , n, then µ-almost every x in M , the Oseledets splitting is
either trivial or dominated along the orbit of x.

Assume there is a point at which the Oseledets splitting is not trivial
nor dominated, that is, the Oseledets splitting admits the invariant
decomposition Tx = E ⊕ F , but E does not dominate F . Let p =
dimE. There is some iteratem such thatDfm(x)|Ex is “mixable” with
Dfm(x)|Fx. Then the idea is to produce a perturbation g supported in
the tower U ⊔ · · ·⊔ fm−1U , where U is a small neighborhood of x, such
that Dgm(y) sends E(y) into F (y) for “many” points y in U . Many
here means a large amount in the sense of measure.
This perturbation is performed all over the manifold, so that the

expansion rates of E and F get mixed, and this causes LEp fall down
abruptly, so a discontinuity point is created. Up to here this is also the
same general strategy followed in [11] for the conservative case.
The novelty here is that in one of the cases, the perturbation meth-

ods in [11] do not apply to the symplectic setting. In this case, the
perturbation is supported in a domain f(D) = g(D). The domain is
then mostly covered with small disjoint boxes, in which one assumes
that the direction of Dg(x)vE is constant, where vE is a vector in E.
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One wants to perturb the angles so that vE falls in F for “many” y in
D, from the point of view of measure. The idea is to look at the angles
as random variables, which are independent and identically distributed.
He produces a construction by successively subdividing the boxes Di

that gives a random walk on the real line. This random walk eventually
gets close to the angle ±π

2
(the angle he needs to get an E-vector into

F in that particular case). When this happens, he produces a further
perturbation so that the angle becomes ±π

2
, and then this orbit is no

longer perturbed. That is, he produces a random walk with absorbing
barriers at ±π

2
. Eventually, for the majority of orbits the vector vE will

fall in F , and the procedure follows as in the previous case.

In short, what Theorem 4.2 says is that we can decompose the man-
ifold M , modulo a zero-measure set, into a countable collection of sets
Z ∪

⋃
n≥1Dn, where Z is the set where all Lyapunov exponents vanish,

and Dn is the set of point where the Oseledets splitting is n-dominated.
One would like to obtain a generic dichotomy such as the one stated in
Conjecture 1.4, that is generically, either m(Z) = 1 or else, f is ergodic
and m(Dn) = 1 for some n. In that case we have that f is partially
hyperbolic.
There are some situations where this conjecture can be answered.

For instance, in case f is ergodic. Indeed, all these sets are invariant
and, being countable, one of them has to have positive measure. In this
case, we would obtain either all Lyapunov exponents are zero almost
everywhere, or else f is partially hyperbolic.
Other situation is when a generic f has some Dn with non-empty

interior. Indeed, by a result of Arnaud, Bonatti and Crovisier [2],
the generic symplectomorphism is transitive; hence, the presence of
a Dn with non-empty interior will imply the existence of a global n-
dominated splitting, which in the symplectic setting implies global par-
tial hyperbolicity.
An intermediate situation is when a generic f is weakly ergodic. Weak

ergodicity is stronger than transitivity and weaker than ergodicity.

Definition 4.3. A volume preserving diffeomorphism is weakly ergodic
if almost every orbit is dense. Equivalently, if any invariant set with
positive measure is dense. It is also equivalent to the fact that every
non-empty open invariant set has total measure.

In the case of a generic weakly ergodic symplectomorphism, if it ex-
ists, either m(Z) = 1 or else one of the Dn is dense, hence we have
partial hyperbolicity, and, as we shall see below, ergodicity.
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Now, as stated above, in case that the generic symplectomorphism
is partially hyperbolic, we can say more. Note that the subset PH1

ω(M)
of partially hyperbolic diffeomorphisms in Diff1

ω(M), is an open set.
Indeed, in the set of volume preserving partially hyperbolic diffeomor-
phisms, the hypothesis of accessibility together with some smoothness
implies weak ergodicity. A partially hyperbolic diffeomorphism has the
accessibility property if the only set that is simultaneously saturated by
stable leaves and unstable leaves is the whole manifold. We have the
following, proved by Brin in the seventies:

Theorem 4.4. [15] Any volume preserving diffeomorphism in Diff1+α
m (M)

having the accessibility property is weakly ergodic.

Note that there is no symplectic assumptions here. But as Dolgopyat
and Wilkinson showed, the set of partially hyperbolic diffeomorphisms
having the accessibility property are abundant both in the conservative
and in the symplectic setting:

Theorem 4.5. [16] The set of partially hyperbolic diffeomorphisms,
either conservative or symplectic contains an open and dense set of
diffeomorphisms having the accessibility property.

On the other hand, as we can see for instance in [9], weak ergodicity
forms a Gδ set of diffeomorphisms, either in Diff1

m(M) or in Diff1
ω(M).

In fact, it is not difficult to check this, it suffices to see the set of weakly
ergodic diffeomorphisms as the countable intersection of the open sets.
See also [9]:

Proposition 4.6. Weakly ergodic diffeomorphisms form a Gδ set of
Diff1

ω(M) (and Diff1
m(M))

Proof. For each open set V , let us denote by V f the set
⋃

n∈Z f
n(V ).

Note that the assignment f 7→ m(V f) is lower-semicontinuous, since
m(V f ) is the supremum of the continuous functions f 7→ m(

⋃
|n|≤N fn(V )).

This implies that the sets of diffeomorphisms OV,n formed by all the
diffeomorphisms for which m(V f ) > 1− 1

n
are open for each fixed open

set V and positive integer n. Now it is easy to see that the set of
weakly ergodic diffeomorphisms coincides with the countable intersec-
tion of OV,n, where V varies over a countable base of open sets, and n

over the positive integers. �

Note that this, together with Theorems 4.4 and 4.5, implies that:

Proposition 4.7. Weak ergodicity is generic among conservative and
symplectic partially hyperbolic diffeomorphisms.

This fact was used by Bochi to prove that:
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Theorem 4.8. [9] For a generic symplectomorphism in PH1
ω(M), there

is a partially hyperbolic splitting TM = Eu ⊕ Ec ⊕ Es, such that all
Lyapunov exponents in the center bundle are zero almost everywhere.

That is, the Oseledets splitting E+ ⊕E0 ⊕E− defined in Subsection
1.2 extends globally to a dominated (partially hyperbolic) splitting. In
particular, this implies that generically partially hyperbolic symplecto-
morphisms satisfy a property called non-uniform center bunching con-
dition. This property has been shown by Avila, Bochi and Wilkinson
to be enough to obtain ergodicity in this context:

Theorem 4.9. [6] A generic partially hyperbolic symplectomorphism
in PH1

ω(M) is ergodic.

Finally, let us mention another result in the direction of Conjecture
1.4, obtained by Saghin and Xia:

Theorem 4.10. [30] For a residual set of diffeomorphisms f in Diff1
ω(M),

either one of the following holds:

(1) f is partially hyperbolic
(2) the set of elliptic f -periodic points is dense in M .

5. C1 generic behavior of the Oseledets splitting in

Diff1
m(M)

Finally, let us study the generic behavior of the Oseledets splitting in
Diff1

m(M), the set diffeomorphisms preserving a smooth volume form
m. As we have mentioned in Subsection 1.3, our leading goal in this
setting is establishing Conjecture 1.6, proposing that generically, only
one of the following alternatives hold:
Either

(1) all Lyapunov exponents vanish almost everywhere, or
(2) f is non-uniformly hyperbolic and ergodic, and the Oseledets

splitting extends to a globally dominated splitting.

This Conjecture has already been proved in dimension 2 [8] and dimen-
sion 3 [26]. Even though setting these results has not been a trivial
task, there are some particularities that helped in their proofs. Let
us discuss them to see the new difficulties that could arise in higher
dimensions:
In the conservative setting, for any dimension, the Lyapunov expo-

nents λ1(x) ≥ · · · ≥ λn(x) satisfy:

λ1(x) + · · ·+ λn(x) = 0 m− almost every x

Hence, in dimension 2, the presence of a non-vanishing Lyapunov ex-
ponent in a set of positive measure, readily implies the existence of
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a non-trivial Pesin region Nuh(f). If, furthermore, one can establish
some kind of dominance over Nuh(f), (the most difficult part in this

case) one obtains that its closure Nuh(f) is a hyperbolic set with pos-
itive measure. But C1-generically, a hyperbolic set has either zero
measure or it is the whole manifold. We include below a new proof of
this fact using a criterion in [28], and techniques in [26]. Note that the
result holds for manifolds of any dimension:

Proposition 5.1. For a generic conservative or symplectic diffeomor-
phism f in Diff1

m(M) or Diff1
ω(M), M with any dimension, only one

of the following holds. Either

(1) f is Anosov, or
(2) all hyperbolic sets have zero measure.

Let us observe that in [10], the authors prove that for every C1+α

non-Anosov conservative diffeomorphism, all hyperbolic sets (not only
the isolated ones) have measure zero. We provide here a much simpler
proof of this fact based in [28]. Also, since C1+α symplectomorphisms
are dense in Diff1

ω(M), the authors state the result immediately follows
for generic f ∈ Diff1

ω(M). However, since the measure of the hyper-
bolic sets varies only upper-semicontinuous, and we are not necessarily
dealing with isolated hyperbolic sets, the conclusion is not so apparent.
We also provide here a complete proof.

Proof. First of all, let us prove any C1+α conservative diffeomorphisms,
having a hyperbolic set with positive measure is Anosov. Let f ∈
Diff1

m(M) and Λ a hyperbolic set with positive measure. It follows
from [28, Lemma 2.3] applied to the characteristic function of Λ, that
Λ contains all its stable and unstable leaves. Therefore, it is both a
hyperbolic attractor and repeller. Hence, Λ = M .
Now, let Hl,n the set of diffeomorphisms having a hyperbolic set Λ

of measure greater or equal than 1
n
such that ‖Df l|Es

Λ
‖ ≤ 1

2
. Since

Lebesgue measure is upper-semicontinuous with respect to Hausdorff
distance, it is easy to see that the sets Hl,n are closed. Indeed, if fk has
a hyperbolic set Λk with measure greater or equal than 1

n
, over which

‖Df l
k|Es

Λ
‖ ≤ 1

2
, it is obvious that the limit f of the sequence fk will

belong to Hl,n.
Now, due to [3], and the result in the first paragraph of this proof,

we have that l-Anosov diffeomorphisms are dense in the interior of each
Hl,n. Hence the closure of the interior of each Hl,n consists of Anosov
diffeomorphisms. Now, generically in Diff1

m(M) or Diff1
ω(M), if f has

a hyperbolic set with positive measure, then it belongs to the closure
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of the interior of some Hl,n, and hence it is Anosov. This proves the
claim. �

For 3 dimensional manifolds, the possibilities are more. But after [5]
and [11] we can group them into three situations. Namely, generically
in Diff3

m(M), we have one of the following situations:

(1) all Lyapunov exponents vanish almost everywhere,
(2) Nuh(f) ⊜ M , f is ergodic and the zipped Oseledets splitting

extends to a global dominated splitting, or
(3) there is a partially hyperbolic set Λ with m(Λ) > 0

A partially hyperbolic set is a set over which there is a partially hyper-
bolic splitting, see Definition 2.3. Now, in [26] the work of the author
consists in showing an analogous to Proposition 5.1 for partially hy-
perbolic sets, namely:

Theorem 5.2. [26] Given r ∈ [1,∞], for a generic conservative dif-
feomorphism f in Diffr

m(M
3), either:

(1) f is partially hyperbolic, or
(2) all partially hyperbolic sets have measure zero.

The proof of Theorem 5.2 involves delicate arguments that are spe-
cific for 3-dimensional manifolds. Indeed, the geometry of the inter-
sticial zones of the complement of a lamination is involved, as well as
the fact that the accessibility classes are manifolds, something that,
so far, it is only known for partially hyperbolic dynamics with one-
dimensional center [27].

The general case involves many possible difficulties. For instance,
in higher dimensions, one can have (stable) non-uniform hyperbolic
examples that are not hyperbolic nor partially hyperbolic [14]. These
examples can be even stably ergodic [32].
Let us consider some special cases that could be interesting ap-

proaches to Conjecture 1.6, and are still unsolved. As Proposition
5.3 below shows, under the assumption of ergodicity, the conjecture
easily follows:

Proposition 5.3. For a generic ergodic diffeomorphisms f in Diff1
m(M),

either:

(1) all Lyapunov exponents vanish almost everywhere, or
(2) the Oseledets splitting extends to a global dominated splitting

and Nuh(f) ⊜ M .

Proof. If there is a set Z over which all Lyapunov exponents vanish,
then by ergodicity, either m(Z) = 1 or m(Z) = 0. In the first case,
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the conjecture is proved, so let us assume m(Z) = 0. Then [11] implies
that the Oseledets splitting over almost every orbit is dominated. Since
almost every orbit is dense, the finest Oseledets splitting extends to a
globally dominated splitting. Note that, since f is ergodic, we have
that m-almost every x:

kλ̂i(x) =

∫
M

log J if(x) dm

where J if(x) is the Jacobian corresponding to f |Ei, and k is the mul-

tiplicity of λ̂i(x). Also, the amount in the right term is continuous with
respect to f . Hence, if Nuh(f) ⊜ M , then for a generic ergodic diffeo-
morphism we have the claim. Otherwise, there is one (and only one,

due to domination) λ̂i(x) = 0. Now Baraviera and Bonatti [7] state
that a little perturbation makes

∫
M
log J if(x) dm 6= 0. Proposition 5.3

is then proved. �

It makes sense to talk about generic ergodic diffeomorphism, since
ergodic diffeomorphisms are a Gδ set in Diff1

m(M), see for instance [23].
However, we do not know if this Gδ set is dense.
As we have mentioned in the introduction, it is not even known if

weak ergodicity (Definition 4.3) is generic among Diff1
m(M), though it

seems easier to satisfy this hypothesis. Here the technique in [7] cannot
be immediately applied. In any case, we have the following:

Proposition 5.4. For a generic weakly ergodic diffeomorphism f in
Diff1

m(M), one of the following holds. Either:

(1) all Lyapunov exponents vanish almost everywhere, or
(2) the finest Oseledets splitting extends to a global dominated split-

ting.

There is a specific case where the result is still unsolved and satis-
fies hypotheses above: Indeed, as we stated in Proposition 4.7, weak
ergodicity is generic among partially hyperbolic diffeomorphisms. This
is a consequence of the fact proved by Brin that accessibility implies
weak ergodicity for conservative smooth diffeomorphisms [15], and that
accessibility contains an open and dense set of conservative diffeomor-
phisms [16], as it has been shown by Dolgopyat and Wilkinson. How-
ever, even in this simpler case, the following question is still unsolved:

Question 5.5. Are non-uniform hyperbolicity and ergodicity generic
among partially hyperbolic diffeomorphisms in Diff1

m(M)?

Note that solving Conjecture 5.6 below would give a positive answer
to Question 5.5:
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Question 5.6 (Pugh-Shub [24, 25]). Stable ergodicity is dense in Diffr
m(M).

A diffeomorphism f ∈ Diff1
m(M) is stably ergodic if all C1-nearby

diffeomorphisms g ∈ Diff1+α are ergodic. This conjecture was proven
true for r = ∞ in the case that the center bundle is one-dimensional,
by F. Rodriguez Hertz, J. Rodriguez Hertz and Ures in [27]. It is also
known for r = 1 and two-dimensional center bundle, as it has been
shown by F. Rodriguez Hertz, J. Rodriguez Hertz, Tahzibi and Ures
[28].
In [28] we arrive to a situation as described in Proposition 5.4. Now,

a perturbation like in [7] not necessarily makes m(Nuh(f)) > 0, since
the diffeomorphism is not known to be ergodic. However, using [29],
one can “blend” the zone where there is at least one positive center
Lyapunov exponent, with the zone where there is at least one negative
center Lyapunov exponent. We believe that a similar procedure could
be used to prove Conjecture 1.6 under the hypothesis of generic weak
ergodicity, what would solve, for instance, Question 5.5.
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