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Abstract

We introduce an iterative method for computing the first eigenpair (λp, ep) for the p-
Laplacian operator with homogeneous Dirichlet data as the limit of (µq,uq) as q → p−,

where uq is the positive solution of the sublinear Lane-Emden equation −∆puq = µqu
q−1
q

with same boundary data. The method is shown to work for any smooth, bounded domain.
Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-
solution which is derived from the solution to the torsional creep problem. Convergence of
uq to ep is in the C1-norm and the rate of convergence of µq to λp is at least O (p− q).

Keywords: p-Laplacian, first eigenvalue and eigenfunction, inverse iteration, Lane-Emden problem,

torsional creep problem.

1 Introduction

In this paper we develop an iterative method to obtain the first eigenpair (λp, ep) of the eigenvalue
problem

{

−∆pu = λ |u|p−2 u in Ω,
u = 0 on ∂Ω,

(1)

where ∆pu := div |∇u|p−2∇u, p > 1, is the p-Laplacian operator and Ω ⊂ R
N , N > 2, is any

smooth, bounded domain. The p-Laplacian equation appears in several mathematical models
in fluid dynamics, such as in the modelling of non-Newtonian fluids and glaciology [5, 14, 23,
33], turbulent flows [18], climatology [17] nonlinear diffusion (where it is called the N -diffusion
equation; see [34] for the original article and [24] for some current developments), flow through
porous media [35], power law materials [6] and in the study of torsional creep [28].

∗E-mail addresses: rodney@mat.ufmg.br (R. J. Biezuner), grey@mat.ufmg.br (G. Ercole), eder@iceb.ufop.br
(E. Martins).
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The first eigenvalue λp of (1) is variationally characterized by

λp = min
u∈W 1,p

0
(Ω)/{0}

R (u) > 0

where R is the Rayleigh quotient

R (u) =

∫

Ω
|∇u|p dx
∫

Ω
|u|p dx

.

The first eigenfunction ep of (1) is characterized by the fact that the minimum of R is attained
at ep, so that

λp =

∫

Ω
|∇ep|

p dx
∫

Ω
eppdx

.

It is well-known that λp is isolated and simple, and that the corresponding eigenfunction ep ∈
C1,α

(

Ω
)

can be taken positive. Since R is homogeneous, we may assume ‖ep‖∞ = 1, where ‖ ·‖∞
stands for the L∞-norm.

In the one-dimensional case the first eigenpair (λp, ep) is explicitly determined by solving
the corresponding ODE boundary value problem. If Ω = (a, b), then λp = (πp/ (b− a))p−1 and

ep = (p− 1)−1/p sinp (πp (x− a) / (b− a)), where πp := 2(p− 1)1/p
∫ 1

0
(1 − sp)−1/pds and sinp is a

2πp-periodic function that generalizes the classical sine function (see [11, 32]).
When p = 2, we have ∆p = ∆, the Laplacian operator, whose first eigenpair (λp, ep) is well-

known for domains with simple geometry (that is, domains which admit some kind of symmetry);
for more general domains it can be determined by several numerical methods (see [12] and
references therein). However, if p 6= 2 and N > 2, the first eigenpair is not explicitly known even
for simple symmetric domains such as a square or a ball, and there are few available numerical
methods to deal directly with the eigenproblem (1) in these domains (see [10], [30] and [37]).

On the other hand, several numerical methods are available to solve homogeneous Dirichlet
problems for the (Poisson) p-Laplacian equation in the form

−∆pu = f (x)

when f depends only on x ∈ Ω (see [2, 8, 9, 19, 21, 36]). This fact motivated the development of
our recent inverse iterative method for finding the first eigenpair in [10]. If Ω is a N -dimensional
ball, the convergence of the method was established and numerical evidence for its applicability
when Ω is a 2-dimensional square were also presented. In the special case of the Laplacian
operator, the method was proved to work in general domains and can also be used to obtain
other eigenpairs (see [12]). However, since the method was based on the iteration of the nonlinear
p-Laplacian equation in (1), the difficulties in dealing with the nonlinearity on the right-hand
side of the equation prevented us from showing that the method works in any domain and any
p > 1.

In this work we consider a different inverse iterative approach, also based on the solution
of the Poisson p-Laplacian equation, but built around an eigenproblem which has a sublinear
nonlinearity on its right-hand side. This type on nonlinearity is more manageable and we are
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able to prove that the iterative method works for any smooth, bounded domain. It is based on
obtaining positive solutions vµ,q for the Lane-Emden type problem

{

−∆pv = µ |v|q−2 v in Ω,
v = 0 on ∂Ω.

(2)

After rescaling, µ and vµ,q produce a family of pairs {(µq, uq)}1<q<p converging to the first eigen-

pair (λp, ep) when q → p−, the convergence uq → ep being in C1
(

Ω
)

. We will now describe the
method in more detail.

It is well known that for each fixed µ > 0, problem (2) has a unique solution vµ,q, if 1 < q < p
(see [27]). If q = p, we have the p-Laplacian eigenvalue problem. If q > p, positive solutions of
(2) usually are not unique. A nonuniqueness result for ring-shaped domains is given in [22] when
q is close to the Sobolev critical exponent p∗ (p∗ = Np/ (N − p), if 1 < p < N , and p∗ = ∞,
if p > N). On the other hand, as proved in [1], positive solutions are unique when Ω is a ball,
while for general bounded domains the uniqueness of positive solutions that reach the minimum
energy (ground states) was established in [20] under the conditions 1 < p < N and 1 < q < p∗.

Now, in order to construct the approximating sequence to the first eigenpair, first choose any
µ > 0 and a sequence (qn), 1 < qn < p, such that qn → p−. It is important to notice that µ
need not to be taken close to λp. This point is crucial, since good a priori estimates for λp are
hard to obtain. For each qn we need to solve the Lane-Emden problem (2) in order to find vµ,qn,
which is a degenerate nonlinear problem almost as hard to solve as the eigenvalue problem for
the p-Laplacian (1) itself. In order to obtain the solutions vµ,qn we first solve the much easier
torsional creep problem

{

−∆pφ = 1 in Ω,
u = 0 on ∂Ω.

(3)

For example, if Ω is a ball centered at x0 ∈ R
N with radius R > 0, it is easy to verify that the

torsion function φ is the radial function

φ (r) =
p− 1

pN
1

p−1

(

R
p

p−1 − |r|
p

p−1

)

, r = |x− x0| 6 R. (4)

Then compute kp = ‖φ‖1−p
∞ and set

φ0 =

(

µ

kp

)
1

p−qn φ

‖φ‖∞
.

φ0 is a supersolution to (2). One immediately sees that the easiest choice is µ = kp, so that
φ0 = φ/‖φ‖∞. Now apply inverse iteration to φ0, finding a sequence of iterates (φm) which
satisfy

{

−∆pφm+1 = µφqn−1
m in Ω,

φm+1 = 0 on ∂Ω.

This can be done by a number of numerical methods. Finite volume based methods are presented
in [4, 21]; finite element based methods are also available (see [26] and the references therein).
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After a preestablished tolerance limit has been reached at some φm, where m is a function of µ
and qn, set

vµ,qn = φm

and define uqn and µqn as

µqn :=
µ

‖vµ,qn‖
p−qn
∞

and uqn :=
vµ,qn

‖vµ,qn‖∞
.

In Theorem 7 we show that µqn → λp and uqn → ep in C1
(

Ω
)

when qn → p−. Stopping at any
point q in the sequence (qn) will give an approximation for the first eigenpair of the p-Laplacian,
as shown in Algorithm 1 below.

Algorithm 1 Inverse iteration for the first p-Laplacian eigenpair (λp, ep)

1: set µ (an arbitrary positive number)
2: set q (q should be chosen close to p)
3: solve −∆pφp = 1 in Ω, φp = 0 on ∂Ω (torsion function)

4: set φ0 = (µ/kp)
1

p−q φp/ ‖φp‖∞ (supersolution)
5: for n = 0, 1, 2, . . . do
6: solve −∆pφm+1 = µφq−1

m in Ω, φm+1 = 0 on ∂Ω (Inverse iterative sequence)
7: end for

8: return µ/ ‖φm+1‖
p−q
∞ (first eigenvalue λp)

9: return φm+1/ ‖φm+1‖∞ (first eigenfunction ep)

The outline of the paper is as follows. In Section 2 we present some preliminary results that
will be used in the sequel. The sequence of approximates is built in Section 3 and the proof of its
convergence to the first eigenpair is given in Section 4. In Section 5 we present some numerical
results for the unit ball of dimensions N = 2, 3 and 4. These results compare very well with the
ones presented in [10].

The main advantage of the method presented here, besides its applicability to general domains,
is that approximations to both λp and ep are obtained with the desired precision by an iteration
process which is numerically simple and, in the case of a ball, also explicit.

2 Preliminary results

In this section we state simple versions of some results on the p-Laplacian. We begin with the
following comparison principle (see [16] for a more general version).

Lemma 1 For i ∈ {1, 2}, let hi ∈ C
(

Ω
)

and ui ∈ W 1,p (Ω) be such that −∆pui = hi in Ω. If
h1 ≤ h2 in Ω and u1 6 u2 on ∂Ω, then u1 6 u2 in Ω.

The following result is a simple version of a general result proved in the classical paper [31]
of Lieberman.
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Theorem 2 [31, Thm 1] Suppose that u ∈ W 1,p (Ω) is a weak solution of the Dirichlet problem

{

−∆pu = f(x, u) in Ω,
u = 0 on ∂Ω

where f is a continuous function such that

|f(x, ξ)| 6 Λ fol all (x, ξ) ∈ Ω× [−M,M ]

for positive constants Λ and M.
If ‖u‖∞ 6 M , then there exists 0 < α < 1, depending only on Λ, p and N , such that

u ∈ C1,α
(

Ω
)

; moreover we have
‖u‖C1,α(Ω) 6 C,

where C is a positive constant that depends only on Λ, p, N and M.

Thus, denoting by φ is the solution of the torsional creep problem (3) in the domain Ω, one
can easily verify using (4) and the comparison principle in balls that 0 < φ 6 M in Ω for some
positive constant M . Hence, Theorem 2 implies that φ ∈ C1,α

(

Ω
)

for some 0 < α < 1.
For the next lemma set

kp := ‖φ‖1−p
∞ > 0. (5)

Lemma 3 kp 6 λp.

Proof. Let ep be the first eigenfuncion associated with λp satisfying ‖ep‖∞ = 1 in Ω. Since











−∆pep = λpe
p−1
p 6 λp = −∆p

(

λ
1

p−1

p φ

)

in Ω,

ep = 0 = λ
1

p−1

p φ on ∂Ω,

it follows from the comparison principle that

0 < ep 6 λ
1

p−1

p φ in Ω.

Hence,

1 = ‖ep‖∞ 6 λ
1

p−1

p ‖φ‖∞ ,

from what follows our claim.

Remark 4 It follows from Picone’s identity (see [3]) that, in fact, the inequality is strict, that
is, kp < λp (for details, see [15, Lemma 8.1]).

The following result is well-known and follows from Theorem 2.
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Theorem 5 Let −∆−1
p : C1

(

Ω
)

→ W 1,p
0 (Ω) be the operator defined as follows: for each v ∈

C1
(

Ω
)

let −∆−1
p v := u ∈ W 1,p

0 (Ω) be the unique solution of the Dirichlet problem

{

−∆pu = v in Ω,
u = 0 on ∂Ω.

Then −∆−1
p is continuous and compact. Moreover, −∆−1

p v ∈ C1,α
(

Ω
)

for each v ∈ C1
(

Ω
)

.

In the remainder of the paper (λp, ep) denotes the first eigenpair of (1), φ denotes the torsion
function of Ω and kp := ‖φ‖1−p

∞ .

3 Construction of the sequence of approximates

As mentioned before, if q < p, then for each µ > 0 the Lane-Emden problem
{

−∆pv = µ |v|q−2 v in Ω,
v = 0 on ∂Ω,

(6)

has a unique positive solution vµ,q, which can be obtained via standard variational, and therefore
non-constructive, arguments. The existence and uniqueness of solutions of (6) in the case 1 <
q < p implies that the map µ 7→ vµ,q is well-defined and monotone, in the sense that µ1 < µ2

implies vµ1,q < vµ2,q in Ω, since vµ1,q = (µ1/µ2)
1/(p−q) vµ2,q for any µ1, µ2 > 0.

The basis of our constructive method is given by

Theorem 6 Suppose 1 < q < p. For each µ > 0 the unique positive solution vµ,q ∈ C1,α
(

Ω
)

∩

W 1,p
0 (Ω) of (6) satisfies

0 <

(

µ

λp

)
1

p−q

ep 6 vµ,q 6

(

µ

kp

)
1

p−q φ

‖φ‖∞
in Ω. (7)

Moreover, vµ,q is the limit, in the C1
(

Ω
)

norm, of the sequence {vn} ⊂ C1,α
(

Ω
)

∩W 1,p
0 (Ω)

iteratively defined by

v0 :=

(

µ

kp

)
1

p−q φ

‖φ‖∞
(8)

and, for n ≥ 1 :
{

−∆pvn+1 = µvq−1
n in Ω,

vn+1 = 0 on ∂Ω.
(9)

Proof. Define vµ,q := mep and vµ,q :=
Mφ

‖φ‖∞
where

m :=

(

µ

λp

)
1

p−q

and M :=

(

µ

kp

)
1

p−q

.
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We have
−∆pvµ,q 6 µvq−1

µ,q and −∆pvµ,q > µvq−1
µ,q in Ω. (10)

Indeed, in Ω in we have

−∆pvµ,q = λpv
p−1
µ,q = λpv

p−q
µ,q v

q−1
µ,q = λp (mep)

p−q vq−1
µ,q 6 λpm

p−qvq−1
µ,q = µvq−1

µ,q

and

−∆pvµ,q = kpM
p−1 = kpM

p−qM q−1
> kpM

p−q

(

Mφ

‖φ‖∞

)q−1

= µvq−1
µ,q .

Since vµ,q = 0 = vµ,q on Ω the inequalities in (10) mean that vµ,q and vµ,q are, respectively, sub-
and supersolutions for (6).

Moreover, vµ,q and vµ,q are ordered, that is vµ,q 6 vµ,q in Ω. For, since kp 6 λp, we have

λpm
p−1 = λp

(

µ

λp

)
p−1

p−q

= µ
p−1

p−q

(

1

λp

)
q−1

p−q

6 µ
p−1

p−q

(

1

kp

)
q−1

p−q

= kp

(

µ

kp

)
p−1

p−q

= kpM
p−1,

whence
−∆pvµ,q = λpv

p−1
µ,q 6 λpm

p−1 ≤ kpM
p−1 = −∆pvµ,q

in Ω. Thus, since vµ,q = vµ,q = 0 on ∂Ω, we obtain vµ,q 6 vµ,q in Ω by applying the comparison
principle.

Since u 7→ µuq−1 is increasing and vµ,q 6 vµ,q in Ω, the comparison principle also implies
that the sequence {vn} defined by the iteration process (9) starting with the supersolution vµ,q
satisfies

vµ,q 6 vn+1 6 vn 6 vµ,q in Ω.

Hence, vn converges to a function vµ,q a.e. in Ω. Since ‖vn‖∞ 6 ‖vµ,q‖∞ = M , it follows from
Theorem 2 that {vn} ⊂ C1,α

(

Ω
)

for some 0 < α < 1 (which does not depend on n) and that

‖vn‖C1,α(Ω) 6 C

for some positive constant C which is independent of n.
Thus, from Arzela-Ascoli theorem we conclude that vn → v in the C1 norm.
Now, the continuity of the operator −∆−1

p : C1
(

Ω
)

→ W 1,p
0 (Ω) permits passing to the limit

in (9), which yields that vµ,q ∈ C1
(

Ω
)

∩W 1,p
0 (Ω) is a solution of (6) satisfying

0 < vµ,q 6 vµ,q 6 vµ,q in Ω,

proving (7). The regularity vµ,q ∈ C1,α
(

Ω
)

follows from Theorem 2.

This iteration process also is known as inverse iteration since vn+1 = −∆−1
p (µvq−1

n ). It is
essentially the sub- and supersolution method starting with the supersolution vµ,q; the solution
vµ,q that it produces is characterized as the maximal solution between vµ,q and vµ,q.
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If one starts the iteration with the subsolution then one obtains an increasing sequence con-
verging to the minimal solution between vµ,q and vµ,q. Because of the uniqueness this minimal
solution coincides with vµ,q. However, in order to compute the minimal solution from this itera-
tion process, it is necessary to know a priori a subsolution, which is exactly one of the unknowns
that we wish to find by applying the method.

On the other hand the supersolution vµ,q is easily obtainable since it involves the solution of
the simpler problem (3).

For example, if Ω = BR(x0), the ball centered at x0 ∈ R
N with radius R > 0, we obtain from

(4) that

kp = ‖φ‖1−p
∞ = N

(

p

p− 1

)p−1

and

vµ,q (r) =

(

µ

kp

)
1

p−q
(

1− |r|
p

p−1

)

= µ
1

p−q

(

p− 1

pN
1

p−1

)
p−1

p−q
(

1− |r|
p

p−1

)

where r = |x− x0| .
In this case it is easy to verify that the sequence vn converging to vµ,q is given recursively by

the formula

vn+1 (r) =

∫ R

r

(
∫ θ

0

(s

θ

)N−1

µvn(s)
q−1ds

)

1

p−1

dθ

where v0 (r) = vµ,q (r).
In our method, in order to compute the first eigenpair (λp, ep), we chose any positive value

µ > 0 and any sequence qn → p−. Then, for each qn, we apply the inverse iteration of Theorem
6 starting with the supersolution

vµ,qn =

(

µ

kp

)
1

p−qn φ

‖φ‖∞

to obtain approximations for the function vµ,qn. Hence,

µ

‖vµ,qn‖
p−qn
∞

→ λp and
vµ,qn

‖vµ,qn‖∞
→ ep (in the C1 norm)

a result that we prove in the next section.

4 Convergence of the method

Theorem 7 For µ > 0 and for each 1 < q < p set

uq :=
vµ,q

‖vµ,q‖∞
, (11)
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where vµ,q ∈ C1,α
(

Ω
)

is the unique positive solution of (6), and

µq :=
µ

‖vµ,q‖
p−q
∞

. (12)

Then µq → λp and uq → ep in C1
(

Ω
)

as q → p−.

Proof. Since ‖uq‖∞ = 1 and

−∆puq =
µ

‖vµ,q‖
p−1
∞

vq−1
µ,q =

µ

‖vµ,q‖
p−q
∞

uq−1
q = µqu

q−1
q ,

we have that uq is the unique solution of the problem
{

−∆puq = µqu
q−1
q in Ω,

uq = 0 on ∂Ω.
(13)

As a consequence of (7) we have
µ

λp
6 ‖vµ,q‖

p−q
∞ 6

µ

kp
,

0 <

(

kp
λp

)
1

p−q

ep 6 uq 6

(

λp

kp

)
1

p−q φ

‖φ‖∞
in Ω (14)

and
kp 6 µq 6 λp. (15)

Since
0 6 µqu

q−1
q 6 λp,

it follows from Theorem 2 the existence of constants 0 < α < 1 and C > 0 independent of q such
that uq ∈ C1,α

(

Ω
)

and
‖uq‖C1,α(Ω) 6 C for all 1 < q < p.

Using the compactness of the immersion C1,α
(

Ω
)

→֒ C1
(

Ω
)

, letting qn → p we get, up to a

subsequence, µqn → λ ∈ [kp, λp] and uqn → u in C1
(

Ω
)

. Taking the limit in (13), we conclude
from Theorem 5 that u must satisfy

{

−∆pu = λup−1 in Ω,
u = 0 on ∂Ω,

and ‖u‖∞ = 1, whence λ = λp and u = ep because λ is an eigenvalue and u 6= 0 is a corresponding
eigenfuntion that does not change the signal in Ω (note from (14) that u > 0 in Ω). Since these
limits are always the same, that is, do not depend on particular subsequences, we are done.

Next we prove an error estimate in the approximation of λp by µq or, alternatively, by the
scaled quotient

Λq := µ
‖vµ,q‖

q
q

‖vµ,q‖
p
p

,

9



where ‖·‖r denotes the norm of the Lr (Ω) , that is, ‖w‖r =
(∫

Ω
|w|r dx

)
1

r .
The upper bound Λq together with the lower bound µq allows one to better control the

accuracy of the approximation to λp.

Theorem 8 There holds:

(i) λp 6 Λq.

(ii) Λq → λp as q → p−.

(iii) There exists a positive constant K which does not depend on q such that

0 6 max {(λp − µq) , (Λq − λp)} 6 K (p− q) (16)

for all q sufficiently close to p, q < p.

Proof. (i) follows directly from the variational characterization of λp and (2), since

λp 6
‖∇vµ,q‖

p
p

‖vµ,q‖
p
p

=
µ ‖vµ,q‖

q
q

‖vµ,q‖
p
p

= Λq.

In order to prove (ii) we note from Theorem 7 that

lim
q→p−

‖uq‖
q
q = lim

q→p−
‖uq‖

p
p = ‖ep‖

p
p , (17)

since uq converges uniformly to ep when q → p−. Thus, since

Λq = µ
‖vµ,q‖

q
q

‖vµ,q‖
p
p

=
µ

‖vµ,q‖
p−q
∞

‖uq‖
q
q

‖uq‖
p
p

= µq

‖uq‖
q
q

‖uq‖
p
p

, (18)

we obtain

lim
q→p−

Λq =

(

lim
q→p−

µq

)

(

lim
q→p−

‖uq‖
q
q

‖uq‖
p
p

)

= λp.

Now we prove error estimate (16). It follows from (i) and (15) that

µq 6 λp 6 Λq.

Hence,
0 6 max {(λp − µq) , (Λq − λp)} 6 Λq − µq.

Thus, in order to prove (iii) we need only to bound Λq − µq. It follows from (18) that

Λq − µq = µq

(

‖uq‖
q
q

‖uq‖
p
p

− 1

)

= µq

∫

Ω

(

uq
q − up

q

)

dx
∫

Ω
up
qdx

.
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Therefore,

Λq − µq 6 λp

∫

Ω

(

uq
q − up

q

)

dx
∫

Ω
up
qdx

6
λp

∫

Ω
up
qdx

∫

Ω

[

max
06t61

(tq − tp)

]

dx

=
λp |Ω|
∫

Ω
up
qdx

(

q

p

)
q

p−q p− q

p

6
λp |Ω|
∫

Ω
up
qdx

(p− q) .

Taking into account (17), there exists R > 0 such that
∫

Ω
up
qdx > R for all q near to p−. Thus,

0 6 µ
‖vµ,q‖

q
q

‖vµ,q‖
p
p

− µq 6
λp |Ω|

R
(p− q) = K (p− q) .

5 Some numerical results

In this section we present some numerical results in the unit ball of dimensions N = 2, 3, 4. The
table of numerical approximations for the first eigenvalue below was obtained choosing µ = kp
and taking q = p− 0.01. The results compare very well with the ones presented in [10] up to the
second decimal digit.

Table 1: First eigenvalue for p-Laplacian in the unit ball.

p N = 2 N = 3 N = 4
1.1 2.5666 3.86653 5.17607
1.2 2.9601 4.50265 6.0797
1.3 3.3182 5.10982 6.97306
1.4 3.6637 5.71889 7.89478
1.5 4.0053 6.3419 8.86046
1.6 4.3477 6.98495 9.87865
1.7 4.6932 7.65165 10.955
1.8 5.0434 8.34438 12.094
1.9 5.3993 9.06487 13.2991
2.0 5.76161 9.81443 14.5735
2.1 6.13078 10.5942 15.9202
2.2 6.50713 11.405 17.3421
2.3 6.89092 12.2478 18.8418
2.4 7.28234 13.1232 20.422
2.5 7.68152 14.0319 22.0854

p N = 2 N = 3 N = 4
2.6 8.08856 14.9747 23.8345
2.7 8.50354 15.9521 25.672
2.8 8.92654 16.9646 27.6004
2.9 9.35759 18.013 29.6225
3.0 9.79673 19.0977 31.7409
3.1 10.244 20.2194 33.9581
3.2 10.6994 21.3785 36.2769
3.3 11.163 22.5755 38.6999
3.4 11.6347 23.8111 41.2298
3.5 12.1146 25.0856 43.8694
3.6 12.6027 26.3997 46.6213
3.7 13.099 27.7539 49.4884
3.8 13.6034 29.1486 52.4734
3.9 14.1161 30.5844 55.5792
4.0 14.6369 32.0618 58.8085
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