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Rotation sets of invariant separating continua of annular

homeomorphisms

Shigenori Matsumoto

Abstract. Let f be a homeomorphism of the closed annulus A isotopic to the
identity, and let X ⊂ IntA be an f -invariant continuum which separates A into
two domains, the upper domain U+ and the lower domain U−. Fixing a lift of
f to the universal cover of A, one defines the rotation set ρ̃(X) of X by means
of the invariant probabilities on X. For any rational number p/q ∈ ρ̃(X), f
is shown to admit a p/q periodic point in X, provided that (1) X consists of
nonwandering points or (2) X is an attractor and the frontiers of U− and U+

coincides with X. Also the Carathéodory rotation numbers of U± are shown
to be in ρ̃(X) for any separating invariant continuum X.

1. Introduction

Let f be a homeomorphism of the closed annulus A = S1 × [−1, 1], isotopic to
the identity, i. e. f preserves the orientation and each of the boundary components
∂±A = S1×{±1}. Suppose there is an f -invariant partition of A; A = U−∪X∪U+,
where U± is a connected open set containing the boundary component ∂±A and X
is a connected compact set. Let

π : Ã = R× [−1, 1] → S1 × [−1, 1]

be the universal covering map and T : Ã → Ã a generator of the covering transfor-
mation group; T (ξ, η) = (ξ + 1, η). Denote by p : Ã → R the projection onto the
first factor.

Fix once and for all a lift f̃ : Ã → Ã of f . Then the function p ◦ f̃ − p
is T -invariant and can be looked upon as a function on the annulus A. Define
the rotation set ρ̃(X) as the set of values µ(p ◦ f̃ − p), where µ ranges over the
f -invariant probability measures supported on X . The rotation set is a compact
interval (maybe one point) in R, which depends upon the choice of the lift f̃ of f .

The first example of an invariant continuum X such that the frontiers of U±

satisfy Fr(U+) = Fr(U−) = X and that the rotation set ρ̃(X) is not a singleton is
constructed by G. D. Birkhoff in his 1932 year paper [B], and is refered to as a
Birkhoff attractor. It turns out that the Birkhoff attractor is an indecomposable
continuum ([C, L2]). Furthermore it is shown by P. Le Calvez ([L1]) that for any
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rational number p/q between the two Carathéodory rotation numbers (See below

for the definition.), there is a point x ∈ π−1(X) such that f̃ q(x) = T p(x). However
the proof uses strongly the twist map properties of the Birkhoff attractor. This
motivates us to consider the same problem for just a homeomorphism without the
twist condition.

Theorem 1. Assume that X is an attractor such that Fr(U+) = Fr(U−) = X.
Then for any rational number p/q ∈ ρ̃(X), there is a point x ∈ π−1(X) such that

f̃ q(x) = T p(x).

Before starting the proof of this theorem in Sect. 3, we need to establish the
following result first of all in Sect. 2.

Theorem 2. Assume X consists of nonwandering points. Then the same conclu-
sion as Theorem 1 holds.

The topological condition in Theorem 1 and the nonwandering condition in
Theorem 2 are necessary as can be seen by Example A of [W]. Analogous result
has already been obtained for area preserving homeomorphisms (Lemma 5.4, [FL]),
or more generally for homeomorphisms without wandering points.

Let Û± = U± ∪ ∂∞U± be the Carathéodory compactification of U±, where
∂∞U± is the space of the prime ends, which is homeomorphic to the circle ([E, M]).
As is well known, the homeomorphism f restricted to U± extends to a homeomor-

phism f̂± : Û± → Û±. Denoting I+ = [0, 1] and I− = [−1, 0], define a homeomor-
phism

Ψ± : Û± → S1 × I±

such that Ψ±(∂∞U±) = S1×0. By some abuse of notations denote by π : Ǔ± → Û±

the universal covering map. (Thus π−1(U±) is considered to be a subspace of both

Ã and Ǔ±. This is a natural convention since the universal covering space is defined
to be the set of homotopy classes of paths starting at a given base point.) Let
Ψ̌± : Ǔ± → R× I± be a lift of Ψ±, and define p̌± : Ǔ± → R by p̌± = p ◦ Ψ̌±.

Let f̌± : Ǔ± → Ǔ± be the lift of f̂± such that f̌± = f̃ on π−1(U±). The
rotation number of the restriction of f̌± to π−1(∂∞U±), denoted by ρ̌±, is called
the Carathéodory rotation number of U±.

The second half of this paper is devoted to the following Theorem

Theorem 3. The Carathéodory rotation numbers ρ̌± belong to ρ̃(X).

This statement was already known for area preserving homeomorphisms by
Lemma 5.4 of [FL].

In [Ha] a diffeomorphism of the annulus A admitting a pseudo-circle as a
minimal set is given. See also [He]. Another nontrivial example of a minimal set,
a Warsaw circle, is constructed in [W]. More examples with various topological
properties are constructed in [FK]. In [MN] we have shown that the Carathéodory
rotation numbers ρ̌±(X) of a minimal set X are irrational, but could not prove
that they are the same. Theorem 3, together with Theorem 2, yields the following
results.

Corollary 4. If X is a minimal set, then ρ̃(X) is a singleton consisting of an
irrational number ρ̌− = ρ̌+.
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2. Proof of Theorem 2

First of all let us state a deep and quite useful theorem of P. Le Calvez ([L3])
which plays a key role in the whole paper. A fixed point free and orientation
preserving homeomorphism F of the plane R2 is called a Brouwer homeomorphism.
A proper oriented simple curve γ : R → R

2 is called a Brouwer line for F if
F (γ) ⊂ R(γ) and F−1(γ) ⊂ L(γ), where R(γ) (resp. L(γ)) is the right (left) side
complementary domain of γ, which is decided by the orientation of γ.

Theorem 2.1. Let F be a Brouwer homeomorphism commuting with the elements
of a group Γ which acts on R

2 freely and properly discontinuously. Then there is
a Γ-invariant oriented topological foliation of R2 whose leaves are Brouwer lines of
F .

Let f and f̃ be as in Sect. 1. In order to show Theorem 2, by considering
f̃ q ◦ T−p instead of f̃ , it suffices to show the following proposition.

Proposition 2.2. If X consists of nonwandering points and ρ̃(X) contains 0, then

f̃ admits a fixed point in π−1(X).

We shall prove the proposition by the absurdity. So let us assume that the lift
f̃ does not have a fixed point in π−1(X). Then the distance of a point x ∈ π−1(X)

and f̃(x) has a positive lower bound since it is T -invariant. Therefore there is an

open annular neighbourhood V of the attractor X such that f̃ does not admit a
fixed point in π−1(V ).

The overall strategy of the proof is to modify the homeomorphism f to a new
one g without creating new fixed points such that the restrictions of g̃ to the lifts of
the both boundary circles π−1(∂±A) are nontrivial rigid translations by the same
translation number. Then by glueing the two boundary circles we obtain a torus
T 2 and a homeomorphism on T 2. Now we can apply Theorem 2.1 to the lift of the
homeomorphism to the universal covering space. This yields a topological foliation
on T 2, which has long been well understood. Analyzing the foliation, we shall
show Proposition 2.2. We first prepare a lemma which is necessary for the desired
modification.

Lemma 2.3. Assume f̃ does not admit a fixed point in the lift π−1(V ) of an annular
neighbourhood V of X. Then the Carathéodory rotation number ρ̌± is nonzero.

Proof: Consider the mapping f̃−Id defined on π−1(V ). Since it is T -invariant,
it yields a mapping from V , still denoted by

f̃ − Id : V → R
2 \ {0}.

Clearly for any positively oriented essential simple closed curve γ in V , the degree
of the map

f̃ − Id : γ → R
2 \ {0}

must be the same. If the curve γ is contained in U±, then the degree can be
studied by considering the map f̌± defined on the lift Ǔ± of the Carathéodory

compactification Û±. If the Carathéodory rotation number ρ̌± is nonzero, the
degree is clearly 0.

To analyze the case ρ̌± = 0, we need the following form of the Cartwright-
Littlewood theorem [CL].



4 SHIGENORI MATSUMOTO

Theorem 2.4. If ρ̌+ = 0 and if Fix(f̃) ∩ π−1(X) = ∅, then the map f̂+ on ∂∞U+

is Morse Smale and the attractors (resp. repellors) of f̂+|∂∞U+
are attractors (resp.

repellors) of the whole map f̂+.

This is slightly stronger than the usual version in which it is assumed that
Fix(f) ∩ X = ∅. However the proof works under the assumption of Theorem 2.4.
See e. g. Sect. 3 of [MN].

Let us complete the proof of Lemma 2.3. Theorem 2.4 enables us to compute
the degree of the curve δ in U± when ρ̌± = 0. The degree is n if δ ⊂ U− and −n
if δ ⊂ U+, where n is the number of the attractors. Since the degree must be the
same in U− and U+, the conclusion follows. �

We shall make the following assumption.

Assumption 2.5. The Carathéodory rotation number ρ̌− is negative.

Now let us start the modification of f . Condition (4) below will be used in
Sect. 4.

Lemma 2.6. Under the assumption of Lemma 2.3 and Assumption 2.5, there exists
a homeomorphism g of A such that
(1) g = f in some neighbourhood of X,

(2) g̃ does not admit a fixed point in Ã, where g̃ is the lift of g such that g̃ = f̃ on
π−1(X),
(3) g̃ is a negative rigid translation by the same translation number on π−1(∂±A),
and
(4) p̌− ◦ ǧ− − p̌− ≤ −c on Û− for some positive number c.

Proof: The modification in U− will be done in the following way. We identify

Û− with S1 × [−1, 0] by the homeomorphism Ψ− and the universal covering space
Ǔ− with R×[−1, 0]. Thus p̌− is just the projection onto the first factor; p̌−(ξ, η) = ξ.
Now Assumption 2.5 implies that the lift

f̌− : R× [−1, 0] → R× [−1, 0]

of f̂− satisfies that p̌− ◦ f̌−(ξ, 0) < ξ − 2c for some c > 0. Therefore changing the

coordinates of [−1, 0] if necessary, one may assume that p̌− ◦ f̌−(ξ, η) ≤ ξ − c if
(ξ, η) ∈ R× [−1/2, 0]. Define a homeomorphism h of S1 × [−1, 0] by

h(ξ, η) = (ξ + ϕ(η)mod1, η),

where ϕ : [−1, 0] → (−∞, 0] is a continuous function such that ϕ([−1/2, 0]) = 0
and

ϕ(η) ≤ − sup{(p̌− ◦ f̌− − p̌−)(ξ, η) | ξ ∈ S1} − c.

Define g = f ◦ h. Then its lift ǧ− satisfies

p̌− ◦ ǧ− − p̌− ≤ −c

on Ǔ− = R × [−1, 0]. Clearly condition (3) for π−1(∂−A) can be established by a
further obvious modification.

Now to modify f in U+, we do the same thing as in U−. If the Carathéodory
rotation number ρ̌+ is negative, then with an auxiliary modification we are done.
If it is positive insert a time one map of the Reeb flow. �

The rest of this section is devoted to the proof that the rotation set ρ̃(X) for g in
Lemma 2.6 does not contain 0. Consider the torus T 2 which is obtained from A by
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glueing the two boundary curves ∂−A and ∂+A. Then the condition (3) above shows
that g induces a homeomorphism of T 2, again denoted by g. The universal cover of
T 2 is R2 and Ã = R× [−1, 1] is a subset of R2. The lift g̃ : Ã → Ã can be extended
uniquely to a lift g̃ : R2 → R

2 of g : T 2 → T 2. The covering transformation group
Γ is isomorphic to Z

2, generated by the horizontal translation T and the vertical
translation by 2, denoted by S. Since g̃ is a Brouwer homeomorphism, there is
a Γ-invariant oriented foliation on R

2 whose leaves are Brouwer lines for g̃. This
yields an oritented foliation F on the torus T 2. The proof is divided into several
cases.

Case 1. The foliation F does not admit a compact leaf. Then F is conjugate
either to a linear foliation or to a Denjoy foliation, both of irrational slope. The
lift of F to the open annulus R

2/〈T 〉 is conjugate to a foliation by vertical lines.
There is defined a projection from R

2/〈T 〉 to S1 along the leaves of the foliation.

This lifts to a projection q : R2 → R. Clearly q restricted to Ã is within a bounded
error of the first factor projection p : Ã → R that we have used for the definition
of the rotation set ρ̃(X). The asymptotic property of the rotation number;

µ(p ◦ g̃ − p) =
1

n
µ(p ◦ g̃n − p),

shows that one can use the projection q instead of p in the definition of ρ̃(X).
Assume the foliation is oriented upward. Then the Brouwer property of F , the

compactness of X and the equivariance of q shows that there is a > 0 such that
q ◦ g̃ − q ≥ a on X , showing that ρ̃(X) is contained in [a,∞).

Case 2.1. The foliation F admits a compact leaf L of nonzero slope and does
not admit a Reeb component. In this case the argument of Case 1 applies.

Case 2.2. The foliation F admits a Reeb component R of nonzero slope. The
Brouwer property of leaves implies that g(R) ⊂ Int(R) or g−1(R) ⊂ Int(R). On
the other hand X must intersect the boundary of R since the slope of R is nonzero,
contradicting the assumption that any point of X is nonwandering.

Case 2.3. The foliation F admits a compact leaf of slope 0. First notice that
X cannot intersect a compact leaf since any point on the closed leaf of the lifted
foliation F̃ of F to the covering space R2/〈T 〉 of T 2 is a wandering point of g. Thus
X is contained in the interior of a foliated I bundle or a Reeb component, say R.
Then one can define a projection q : π−1(Int(R)) → R just as in Case 1, and show
that the rotation set does not contain 0. This completes the proof of Theorem 2.

3. Proof of Theorem 1

The proof is again by the absurdity. So assume there is no fixed point in
π−1(V ), where V is an open annular neighbourhood of the attractor X . One may
further assume that f(V ) ⊂ V and

⋂
i≥0

f i(V ) = X . Here we modify f to a
new homeomorphism g in a bit different way from the previous setion, using the
attracting property of X . As can easily be shown there exists a homeomorphsim g
such that
(1) g = f on V ,
(2)

⋂
i≥0 g

−i(A \ V ) = ∂−A ∪ ∂+A, and

(3) g̃ restricted to π−1(∂±A) is a nontrivial translation by the same translation

number, where g̃ is the lift of g such that g̃ = f̃ on π−1(X).
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Our goal is to show that the rotation set ρ̃(X) of g does not contain 0. We can
also apply Theorem 2.1 to get a foliation F on T 2.

Case 1 The foliation F does not admit a compact leaf.

Case 2.1 The foliation F admits a compact leaf of nonzero slope and does not
admit a Reeb component.

In these cases the argument in Sect. 2 works since it does not use the nonwan-
dering condition.

Case 2.2 The foliation F admits a Reeb component R of nonzero slope.
The boundary ∂±A are identified in T 2 to form a simple closed curve ∂A. The

curve ∂A is a repellor of g consisting of nonwandering points. Hence it cannot
intersect a boundary leaf of R. But this is impossible since ∂A is of slope 0.

Case 2.3 The foliation F admits a compact leaf of slope zero.
Consider the covering space R

2/〈T 〉, and the lift F̃ of F . The argument of the
previous section shows that ∂−A is contained in the interior of a Reeb component or
a foliated I bundle R and therefore ∂+A in SR, where S is the vertical translation
by 2. (In fact we can show easily that R is a repelling Reeb component. But we do
not use it.) Using the attracting property of X , one can construct a foliation H on
Int(A) \X consisting of curves

λ : R → Int(A) \X

such that gλ(t) = λ(t+ 1).

If we show that X cannot intersect a closed leaf L of F̃ , the rest of the argument
is the same as before. So let us assume there is a point x ∈ X ∩ L. To fix the idea
assume L is oriented from left to right. Then g−1(x) lies on the upper side of L.
Since X = Fr(U−), there is a leaf λ of H such that λ(t) → ∂−A as t → −∞ which
intersects L. Any point of L is wandering and thus ∂−A does not intersect L, and
clearly ∂−A lies on the lower side of L. Let t0 be the minimal value such that λ(t0)
lies on L. But then λ(t0 − 1) = f−1λ(t0) lies on the upper side. A contradiction.
The opposite case where L is oriented reversely can be dealt with similarly by
considering a leaf of H lying in U+. This completes the proof of Theorem 1.

Remark 3.1. The case where X is an attractor from the side of U− and a repellor
from U+ cannot be handled by the above argument. But the author does not know
such an example with the property Fr(U−) = Fr(U+) = X and with nontrivial
rotation set.

4. Proof of Theorem 3

Assume in way of contradiction that

ρ̌− < 0 < inf ρ̃(X).

Notice that since inf ρ̃(X) > 0, there is no fixed point of f̃ in π−1(X), and therefore
we obtain the modification g of f just as in Lemma 2.6.

Lemma 4.1. For any C > 0 there is n > 0 such that p ◦ g̃n − p ≥ C on X.

Proof: If not, there would be sequences xi ∈ X and ni → ∞ such that

(p ◦ g̃ni − p)(xi) =

ni−1∑

j=0

(p ◦ g̃ − p)(gj(xi)) < C,
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and the accumulation point µ of the sequence of averages of Dirac masses 1

ni

∑ni−1

j=0
gj∗δxi

would satisfy µ(p ◦ g̃ − p) ≤ 0, contradicting the assumption inf ρ̃(X) > 0. �

Let F be the foliation on the 2-torus T 2 that we have constructed in Sect. 2.
The argument here again follows the classification of the foliation F in Sect. 2 and
3.

Case 1 and Case 2.1: Just as in Sect. 2, let q : R2 → R be the lift of the
projection along the leaves of the foliation F̃ , the lift of F to R

2/〈T 〉. Lemma 4.1
shows that q◦ g̃n(x) → ∞ (n → ∞) for x ∈ π−1(X), since q is within bounded error

of the canonical projection p in π−1(X). Thus the foliation F̃ is oriented upward.
But this shows that q ◦ g̃n(x) → ∞ (n → ∞) for any point x ∈ π−1(∂−A), since
∂−A is compact. On the other hand by condition (3) of Lemma 2.6, g̃ is a negative
translation on π−1(∂−A). A contradiction.

Case 2.2: In this case the bondary ∂−A ⊂ R
2/〈T 〉 cannot intersect a Reeb

component since it consists of nonwandering points. So this case cannot happen.

Case 2.3 The foliation F̃ admits a compact leaf. The foliation F̃ yields a
partition P of R/〈T 〉 into compact leaves, interiors of Reeb components and foliated
I-bundles. The set P is totally ordered by the height. The minimal element which
intersect X cannot be a compact leaf by the Brouwer line property. Let R be the
closure of the minimal element. Thus R is either a Reeb component or a foliated
I-bundle such that Int(R) ∩ X 6= ∅ and ∂−R ∩ X = ∅, where ∂−R is the lower
boundary curve of R.

Assume, to fix the idea, that ∂−R is oriented from the right to the left. Thus
the homeomorphism g carries ∂−R into the upper complement of ∂−R.

Case 2.3.1 R is a Reeb component. First notice that the interior leaves of R
are oriented upwards by the assumption inf ρ̃(X) > 0 and the fact that g(X ∩R) ⊂
X ∩R. Choose a simple arc

α : [0, 1] → π−1(R)

such that α(0) ∈ π−1(∂−R), α(1) = g̃(α(0)), and α((0, 1)) ⊂ Int(π−1(R)) \
g̃(π−1(R)). Notice that α is contained in π−1(U−).

Concatenating nonnegative iterates of α, we obtain a simple path γ : [0,∞) →
π−1(R ∩ U−) such that g̃ ◦ γ(t) = γ(t+ 1) for any t ≥ 0. Let q : π−1(Int(R)) → R

be the lift of the projection along the leaves. Since γ([1,∞)) is contained in the
lift of a compact subset g̃(R) ⊂ Int(R), the map q is within bounded error of p
on γ([1,∞)). Therefore by Lemma 4.1 we have q ◦ γ(t) → ∞ as t → ∞. On the
other hand by condition (4) of Lemma 2.6, we have p̌ ◦ γ(t) → −∞ as t → ∞. In
particular the curve γ is proper both in π−1(R) and in Ǔ−. By joining the point
γ(0) to an appropriate point in π−1(∂−A), we obtain a simple curve δ in π−1(U−)
starting at a point on π−1(∂−A) which extends γ.

Let x be a point in π−1(∂−A) left to the initial point of δ. Notice that there is a
point of π−1(X) on the left of δ since a high iterate of T−1 carries a point in π−1(X)
to the left of δ. (There may also be a point of π−1(X) on the right of δ.) Then there
is a simple path β : [0,∞) → π−1(U−) such that β(0) = x, limt→∞ β(t) ∈ π−1(X),
and β is disjoint from δ. The path β, extendable in π−1(A) is also extendable in Ǔ−,
the lift of the Carathéodory compactification. (See e. g. Lemma 2.5 of [MN].) This
implies that β defines a simple path in Ǔ− joining x to a prime end in π−1(∂∞U−)
without intersecting δ, which is impossible since π−1(∂∞U−) is contained in the



8 SHIGENORI MATSUMOTO

right side of the proper path δ because p̌−δ(t) → −∞, while x is on the left side.
A contradiction.

Case 2.3.2 R is a foliated I-bundle. Thus the upper boundary curve ∂+R of
R is also oriented from the right to the left, and its image by g lies on the upper
complement of R. The interior leaves of R are oriented upward.

Recall that the boundary component ∂−A consisting of nonwandering points
cannot intersect a compact leaf. Notice that ∂−A lies in a Reeb component or a
foliated I-bundle whose interior leaves are oriented downward since pg̃n(x) → −∞
as t → ∞ for x ∈ π−1(∂−A). Let C be the annulus in R

2/〈T 〉 bounded by ∂−A
and ∂+R, the upper boundary curve of R.

Case 2.3.2.1 The intersection X ∩ C has a component which separates ∂−A
from ∂+A. One can derive a contradiction by the same argument as in Case 2.3.1,
since the path δ cannot evade R.

Case 2.3.2.2 There is a simple path in U− joining a point in ∂−A with a point
in ∂+R. Notice first of all that g−1(C) ⊂ C. Let Y be the family of the connected
components of π−1(X ∩ C). Then any element Y ∈ Y is compact, and intersects
π−1(∂+R) since otherwise Y would be a connected component of π−1(X) itself.

Choose a simple curve γ : [0, 1] → π−1(C) such that
(1) γ(0) ∈ π−1(∂−A),
(2) γ(1) ∈ π−1(X ∩ C), and
(3) γ([0, 1)) ⊂ π−1(U− ∩ C).

Let Y be an element of Y which contains γ(1). Then there are two unbounded
connected components of the complement π−1(C) \ (Y ∪ γ), one L(Y ∪ γ) on the
left, and the other R(Y ∪ γ) on the right.

Notice that for any n > 0, g̃−nγ is a path in C, and that pg̃−n(γ(1)) → −∞
and pg̃−n(γ(0)) → ∞ as n → ∞. That is, for any large n, g̃−n(γ(1)) ∈ L(Y ∪ γ)
and g̃−n(γ(0)) ∈ R(Y ∪ γ), showing that g̃−n(γ) intersects γ. On the other hand
in Ǔ−, γ defines a curve from a point in π−1(∂−A) to a prime end in π−1(∂∞U−).
But by condition (4) of Lemma 2.6, γ cannot intersect g̃−n(γ) for any large n. A
contradiction.
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