Rotation sets of invariant separating continua of annular homeomorphisms

Shigenori Matsumoto

ABSTRACT. Let f be a homeomorphism of the closed annulus A isotopic to the identity, and let $X \subset \text{Int}A$ be an f-invariant continuum which separates A into two domains, the upper domain U_+ and the lower domain U_- . Fixing a lift of f to the universal cover of A, one defines the rotation set $\tilde{\rho}(X)$ of X by means of the invariant probabilities on X. For any rational number $p/q \in \tilde{\rho}(X)$, f is shown to admit a p/q periodic point in X, provided that (1) X consists of nonwandering points or (2) X is an attractor and the frontiers of U_- and U_+ coincides with X. Also the Carathéodory rotation numbers of U_{\pm} are shown to be in $\tilde{\rho}(X)$ for any separating invariant continuum X.

1. Introduction

Let f be a homeomorphism of the closed annulus $A = S^1 \times [-1, 1]$, isotopic to the identity, i. e. f preserves the orientation and each of the boundary components $\partial_{\pm}A = S^1 \times \{\pm 1\}$. Suppose there is an f-invariant partition of A; $A = U_- \cup X \cup U_+$, where U_{\pm} is a connected open set containing the boundary component $\partial_{\pm}A$ and Xis a connected compact set. Let

$$\pi: \tilde{A} = \mathbb{R} \times [-1, 1] \to S^1 \times [-1, 1]$$

be the universal covering map and $T: \tilde{A} \to \tilde{A}$ a generator of the covering transformation group; $T(\xi, \eta) = (\xi + 1, \eta)$. Denote by $p: \tilde{A} \to \mathbb{R}$ the projection onto the first factor.

Fix once and for all a lift $\tilde{f} : \tilde{A} \to \tilde{A}$ of f. Then the function $p \circ \tilde{f} - p$ is *T*-invariant and can be looked upon as a function on the annulus A. Define the *rotation set* $\tilde{\rho}(X)$ as the set of values $\mu(p \circ \tilde{f} - p)$, where μ ranges over the f-invariant probability measures supported on X. The rotation set is a compact interval (maybe one point) in \mathbb{R} , which depends upon the choice of the lift \tilde{f} of f.

The first example of an invariant continuum X such that the frontiers of U_{\pm} satisfy $\operatorname{Fr}(U_{+}) = \operatorname{Fr}(U_{-}) = X$ and that the rotation set $\tilde{\rho}(X)$ is not a singleton is constructed by G. D. Birkhoff in his 1932 year paper [**B**], and is referred to as a *Birkhoff attractor*. It turns out that the Birkhoff attractor is an indecomposable continuum ([**C**, **L2**]). Furthermore it is shown by P. Le Calvez ([**L1**]) that for any

¹⁹⁹¹ Mathematics Subject Classification. Primary 37E30, secondary 37E45.

Key words and phrases. continuum, rotation set, Carathéodory rotation number, Brouwer line, foliations.

The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 20540096.

SHIGENORI MATSUMOTO

rational number p/q between the two Carathéodory rotation numbers (See below for the definition.), there is a point $x \in \pi^{-1}(X)$ such that $\tilde{f}^q(x) = T^p(x)$. However the proof uses strongly the twist map properties of the Birkhoff attractor. This motivates us to consider the same problem for just a homeomorphism without the twist condition.

Theorem 1. Assume that X is an attractor such that $\operatorname{Fr}(U_+) = \operatorname{Fr}(U_-) = X$. Then for any rational number $p/q \in \tilde{\rho}(X)$, there is a point $x \in \pi^{-1}(X)$ such that $\tilde{f}^q(x) = T^p(x)$.

Before starting the proof of this theorem in Sect. 3, we need to establish the following result first of all in Sect. 2.

Theorem 2. Assume X consists of nonwandering points. Then the same conclusion as Theorem 1 holds.

The topological condition in Theorem 1 and the nonwandering condition in Theorem 2 are necessary as can be seen by Example A of [W]. Analogous result has already been obtained for area preserving homeomorphisms (Lemma 5.4, [FL]), or more generally for homeomorphisms without wandering points.

Let $\hat{U}_{\pm} = U_{\pm} \cup \partial_{\infty} U_{\pm}$ be the Carathéodory compactification of U_{\pm} , where $\partial_{\infty} U_{\pm}$ is the space of the prime ends, which is homeomorphic to the circle ([**E**, **M**]). As is well known, the homeomorphism f restricted to U_{\pm} extends to a homeomorphism $\hat{f}_{\pm}: \hat{U}_{\pm} \to \hat{U}_{\pm}$. Denoting $I_{+} = [0, 1]$ and $I_{-} = [-1, 0]$, define a homeomorphism

$$\Psi_{\pm}: \hat{U}_{\pm} \to S^1 \times I_{\pm}$$

such that $\Psi_{\pm}(\partial_{\infty}U_{\pm}) = S^1 \times 0$. By some abuse of notations denote by $\pi : \check{U}_{\pm} \to \hat{U}_{\pm}$ the universal covering map. (Thus $\pi^{-1}(U_{\pm})$ is considered to be a subspace of both \tilde{A} and \check{U}_{\pm} . This is a natural convention since the universal covering space is defined to be the set of homotopy classes of paths starting at a given base point.) Let $\check{\Psi}_{\pm}: \check{U}_{\pm} \to \mathbb{R} \times I_{\pm}$ be a lift of Ψ_{\pm} , and define $\check{p}_{\pm}: \check{U}_{\pm} \to \mathbb{R}$ by $\check{p}_{\pm} = p \circ \check{\Psi}_{\pm}$.

Let $\check{f}_{\pm} : \check{U}_{\pm} \to \check{U}_{\pm}$ be the lift of \hat{f}_{\pm} such that $\check{f}_{\pm} = \check{f}$ on $\pi^{-1}(U_{\pm})$. The rotation number of the restriction of \check{f}_{\pm} to $\pi^{-1}(\partial_{\infty}U_{\pm})$, denoted by $\check{\rho}_{\pm}$, is called the *Carathéodory rotation number* of U_{\pm} .

The second half of this paper is devoted to the following Theorem

Theorem 3. The Carathéodory rotation numbers $\check{\rho}_{\pm}$ belong to $\tilde{\rho}(X)$.

This statement was already known for area preserving homeomorphisms by Lemma 5.4 of [**FL**].

In [Ha] a diffeomorphism of the annulus A admitting a pseudo-circle as a minimal set is given. See also [He]. Another nontrivial example of a minimal set, a Warsaw circle, is constructed in [W]. More examples with various topological properties are constructed in [FK]. In [MN] we have shown that the Carathéodory rotation numbers $\check{\rho}_{\pm}(X)$ of a minimal set X are irrational, but could not prove that they are the same. Theorem 3, together with Theorem 2, yields the following results.

Corollary 4. If X is a minimal set, then $\tilde{\rho}(X)$ is a singleton consisting of an irrational number $\check{\rho}_{-} = \check{\rho}_{+}$.

2. Proof of Theorem 2

First of all let us state a deep and quite useful theorem of P. Le Calvez (**[L3**]) which plays a key role in the whole paper. A fixed point free and orientation preserving homeomorphism F of the plane \mathbb{R}^2 is called a *Brouwer homeomorphism*. A proper oriented simple curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ is called a *Brouwer line* for F if $F(\gamma) \subset R(\gamma)$ and $F^{-1}(\gamma) \subset L(\gamma)$, where $R(\gamma)$ (resp. $L(\gamma)$) is the right (left) side complementary domain of γ , which is decided by the orientation of γ .

Theorem 2.1. Let F be a Brouwer homeomorphism commuting with the elements of a group Γ which acts on \mathbb{R}^2 freely and properly discontinuously. Then there is a Γ -invariant oriented topological foliation of \mathbb{R}^2 whose leaves are Brouwer lines of F.

Let f and \tilde{f} be as in Sect. 1. In order to show Theorem 2, by considering $\tilde{f}^q \circ T^{-p}$ instead of \tilde{f} , it suffices to show the following proposition.

Proposition 2.2. If X consists of nonwandering points and $\tilde{\rho}(X)$ contains 0, then \tilde{f} admits a fixed point in $\pi^{-1}(X)$.

We shall prove the proposition by the absurdity. So let us assume that the lift \tilde{f} does not have a fixed point in $\pi^{-1}(X)$. Then the distance of a point $x \in \pi^{-1}(X)$ and $\tilde{f}(x)$ has a positive lower bound since it is *T*-invariant. Therefore there is an open annular neighbourhood *V* of the attractor *X* such that \tilde{f} does not admit a fixed point in $\pi^{-1}(V)$.

The overall strategy of the proof is to modify the homeomorphism f to a new one g without creating new fixed points such that the restrictions of \tilde{g} to the lifts of the both boundary circles $\pi^{-1}(\partial_{\pm}A)$ are nontrivial rigid translations by the same translation number. Then by glueing the two boundary circles we obtain a torus T^2 and a homeomorphism on T^2 . Now we can apply Theorem 2.1 to the lift of the homeomorphism to the universal covering space. This yields a topological foliation on T^2 , which has long been well understood. Analyzing the foliation, we shall show Proposition 2.2. We first prepare a lemma which is necessary for the desired modification.

Lemma 2.3. Assume \tilde{f} does not admit a fixed point in the lift $\pi^{-1}(V)$ of an annular neighbourhood V of X. Then the Carathéodory rotation number $\check{\rho}_{\pm}$ is nonzero.

PROOF: Consider the mapping \tilde{f} -Id defined on $\pi^{-1}(V)$. Since it is *T*-invariant, it yields a mapping from *V*, still denoted by

$$\tilde{f} - \mathrm{Id} : V \to \mathbb{R}^2 \setminus \{0\}.$$

Clearly for any positively oriented essential simple closed curve γ in V, the degree of the map

$$\tilde{f} - \mathrm{Id} : \gamma \to \mathbb{R}^2 \setminus \{0\}$$

must be the same. If the curve γ is contained in U_{\pm} , then the degree can be studied by considering the map \check{f}_{\pm} defined on the lift \check{U}_{\pm} of the Carathéodory compactification \hat{U}_{\pm} . If the Carathéodory rotation number $\check{\rho}_{\pm}$ is nonzero, the degree is clearly 0.

To analyze the case $\check{\rho}_{\pm} = 0$, we need the following form of the Cartwright-Littlewood theorem [**CL**].

Theorem 2.4. If $\check{\rho}_+ = 0$ and if $\operatorname{Fix}(\tilde{f}) \cap \pi^{-1}(X) = \emptyset$, then the map \hat{f}_+ on $\partial_{\infty}U_+$ is Morse Smale and the attractors (resp. repellors) of $\hat{f}_+|_{\partial_{\infty}U_+}$ are attractors (resp. repellors) of the whole map \hat{f}_+ .

This is slightly stronger than the usual version in which it is assumed that $Fix(f) \cap X = \emptyset$. However the proof works under the assumption of Theorem 2.4. See e. g. Sect. 3 of [**MN**].

Let us complete the proof of Lemma 2.3. Theorem 2.4 enables us to compute the degree of the curve δ in U_{\pm} when $\check{\rho}_{\pm} = 0$. The degree is n if $\delta \subset U_{-}$ and -nif $\delta \subset U_{+}$, where n is the number of the attractors. Since the degree must be the same in U_{-} and U_{+} , the conclusion follows.

We shall make the following assumption.

Assumption 2.5. The Carathéodory rotation number $\check{\rho}_{-}$ is negative.

Now let us start the modification of f. Condition (4) below will be used in Sect. 4.

Lemma 2.6. Under the assumption of Lemma 2.3 and Assumption 2.5, there exists a homeomorphism g of A such that

(1) g = f in some neighbourhood of X,

(2) \tilde{g} does not admit a fixed point in \tilde{A} , where \tilde{g} is the lift of g such that $\tilde{g} = \tilde{f}$ on $\pi^{-1}(X)$,

(3) \tilde{g} is a negative rigid translation by the same translation number on $\pi^{-1}(\partial_{\pm}A)$, and

(4) $\check{p}_{-} \circ \check{g}_{-} - \check{p}_{-} \leq -c \text{ on } \hat{U}_{-} \text{ for some positive number } c.$

PROOF: The modification in U_{-} will be done in the following way. We identify \hat{U}_{-} with $S^{1} \times [-1,0]$ by the homeomorphism Ψ_{-} and the universal covering space \check{U}_{-} with $\mathbb{R} \times [-1,0]$. Thus \check{p}_{-} is just the projection onto the first factor; $\check{p}_{-}(\xi,\eta) = \xi$. Now Assumption 2.5 implies that the lift

$$\dot{f}_{-}: \mathbb{R} \times [-1,0] \to \mathbb{R} \times [-1,0]$$

of \hat{f}_{-} satisfies that $\check{p}_{-} \circ \check{f}_{-}(\xi, 0) < \xi - 2c$ for some c > 0. Therefore changing the coordinates of [-1,0] if necessary, one may assume that $\check{p}_{-} \circ \check{f}_{-}(\xi,\eta) \leq \xi - c$ if $(\xi,\eta) \in \mathbb{R} \times [-1/2,0]$. Define a homeomorphism h of $S^1 \times [-1,0]$ by

$$h(\xi,\eta) = (\xi + \varphi(\eta) \mod 1, \eta),$$

where $\varphi : [-1,0] \to (-\infty,0]$ is a continuous function such that $\varphi([-1/2,0]) = 0$ and

$$\varphi(\eta) \le -\sup\{(\check{p}_- \circ \check{f}_- - \check{p}_-)(\xi, \eta) \mid \xi \in S^1\} - c.$$

Define $g = f \circ h$. Then its lift \check{g}_{-} satisfies

$$\check{p}_{-}\circ\check{g}_{-}-\check{p}_{-}\leq -c$$

on $\check{U}_{-} = \mathbb{R} \times [-1, 0]$. Clearly condition (3) for $\pi^{-1}(\partial_{-}A)$ can be established by a further obvious modification.

Now to modify f in U_+ , we do the same thing as in U_- . If the Carathéodory rotation number $\check{\rho}_+$ is negative, then with an auxiliary modification we are done. If it is positive insert a time one map of the Reeb flow.

The rest of this section is devoted to the proof that the rotation set $\tilde{\rho}(X)$ for g in Lemma 2.6 does not contain 0. Consider the torus T^2 which is obtained from A by glueing the two boundary curves $\partial_{-}A$ and $\partial_{+}A$. Then the condition (3) above shows that g induces a homeomorphism of T^2 , again denoted by g. The universal cover of T^2 is \mathbb{R}^2 and $\tilde{A} = \mathbb{R} \times [-1, 1]$ is a subset of \mathbb{R}^2 . The lift $\tilde{g} : \tilde{A} \to \tilde{A}$ can be extended uniquely to a lift $\tilde{g} : \mathbb{R}^2 \to \mathbb{R}^2$ of $g : T^2 \to T^2$. The covering transformation group Γ is isomorphic to \mathbb{Z}^2 , generated by the horizontal translation T and the vertical translation by 2, denoted by S. Since \tilde{g} is a Brouwer homeomorphism, there is a Γ -invariant oriented foliation on \mathbb{R}^2 whose leaves are Brouwer lines for \tilde{g} . This yields an oritented foliation \mathcal{F} on the torus T^2 . The proof is divided into several cases.

CASE 1. The foliation \mathcal{F} does not admit a compact leaf. Then \mathcal{F} is conjugate either to a linear foliation or to a Denjoy foliation, both of irrational slope. The lift of \mathcal{F} to the open annulus $\mathbb{R}^2/\langle T \rangle$ is conjugate to a foliation by vertical lines. There is defined a projection from $\mathbb{R}^2/\langle T \rangle$ to S^1 along the leaves of the foliation. This lifts to a projection $q: \mathbb{R}^2 \to \mathbb{R}$. Clearly q restricted to \tilde{A} is within a bounded error of the first factor projection $p: \tilde{A} \to \mathbb{R}$ that we have used for the definition of the rotation set $\tilde{\rho}(X)$. The asymptotic property of the rotation number;

$$\mu(p \circ \tilde{g} - p) = \frac{1}{n}\mu(p \circ \tilde{g}^n - p),$$

shows that one can use the projection q instead of p in the definition of $\tilde{\rho}(X)$.

Assume the foliation is oriented upward. Then the Brouwer property of \mathcal{F} , the compactness of X and the equivariance of q shows that there is a > 0 such that $q \circ \tilde{g} - q \geq a$ on X, showing that $\tilde{\rho}(X)$ is contained in $[a, \infty)$.

CASE 2.1. The foliation \mathcal{F} admits a compact leaf L of nonzero slope and does not admit a Reeb component. In this case the argument of Case 1 applies.

CASE 2.2. The foliation \mathcal{F} admits a Reeb component R of nonzero slope. The Brouwer property of leaves implies that $g(R) \subset \operatorname{Int}(R)$ or $g^{-1}(R) \subset \operatorname{Int}(R)$. On the other hand X must intersect the boundary of R since the slope of R is nonzero, contradicting the assumption that any point of X is nonwandering.

CASE 2.3. The foliation \mathcal{F} admits a compact leaf of slope 0. First notice that X cannot intersect a compact leaf since any point on the closed leaf of the lifted foliation $\tilde{\mathcal{F}}$ of \mathcal{F} to the covering space $\mathbb{R}^2/\langle T \rangle$ of T^2 is a wandering point of g. Thus X is contained in the interior of a foliated I bundle or a Reeb component, say R. Then one can define a projection $q: \pi^{-1}(\operatorname{Int}(R)) \to \mathbb{R}$ just as in Case 1, and show that the rotation set does not contain 0. This completes the proof of Theorem 2.

3. Proof of Theorem 1

The proof is again by the absurdity. So assume there is no fixed point in $\pi^{-1}(V)$, where V is an open annular neighbourhood of the attractor X. One may further assume that $f(\overline{V}) \subset V$ and $\bigcap_{i\geq 0} f^i(V) = X$. Here we modify f to a new homeomorphism g in a bit different way from the previous setion, using the attracting property of X. As can easily be shown there exists a homeomorphism g such that

(1) g = f on V,

(2)
$$\bigcap_{i>0} g^{-i}(A \setminus V) = \partial_{-}A \cup \partial_{+}A$$
, and

(3) \tilde{g} restricted to $\pi^{-1}(\partial_{\pm}A)$ is a nontrivial translation by the same translation number, where \tilde{g} is the lift of g such that $\tilde{g} = \tilde{f}$ on $\pi^{-1}(X)$.

SHIGENORI MATSUMOTO

Our goal is to show that the rotation set $\tilde{\rho}(X)$ of g does not contain 0. We can also apply Theorem 2.1 to get a foliation \mathcal{F} on T^2 .

CASE 1 The foliation \mathcal{F} does not admit a compact leaf.

CASE 2.1 The foliation \mathcal{F} admits a compact leaf of nonzero slope and does not admit a Reeb component.

In these cases the argument in Sect. 2 works since it does not use the nonwandering condition.

CASE 2.2 The foliation \mathcal{F} admits a Reeb component R of nonzero slope.

The boundary $\partial_{\pm} A$ are identified in T^2 to form a simple closed curve ∂A . The curve ∂A is a repellor of g consisting of nonwandering points. Hence it cannot intersect a boundary leaf of R. But this is impossible since ∂A is of slope 0.

CASE 2.3 The foliation \mathcal{F} admits a compact leaf of slope zero.

Consider the covering space $\mathbb{R}^2/\langle T \rangle$, and the lift $\tilde{\mathcal{F}}$ of \mathcal{F} . The argument of the previous section shows that $\partial_- A$ is contained in the interior of a Reeb component or a foliated I bundle R and therefore $\partial_+ A$ in SR, where S is the vertical translation by 2. (In fact we can show easily that R is a repelling Reeb component. But we do not use it.) Using the attracting property of X, one can construct a foliation \mathcal{H} on $Int(A) \setminus X$ consisting of curves

$$\lambda : \mathbb{R} \to \operatorname{Int}(A) \setminus X$$

such that $g\lambda(t) = \lambda(t+1)$.

If we show that X cannot intersect a closed leaf L of \mathcal{F} , the rest of the argument is the same as before. So let us assume there is a point $x \in X \cap L$. To fix the idea assume L is oriented from left to right. Then $g^{-1}(x)$ lies on the upper side of L. Since $X = \operatorname{Fr}(U_{-})$, there is a leaf λ of \mathcal{H} such that $\lambda(t) \to \partial_{-}A$ as $t \to -\infty$ which intersects L. Any point of L is wandering and thus $\partial_{-}A$ does not intersect L, and clearly $\partial_{-}A$ lies on the lower side of L. Let t_0 be the minimal value such that $\lambda(t_0)$ lies on L. But then $\lambda(t_0 - 1) = f^{-1}\lambda(t_0)$ lies on the upper side. A contradiction. The opposite case where L is oriented reversely can be dealt with similarly by considering a leaf of \mathcal{H} lying in U_+ . This completes the proof of Theorem 1.

Remark 3.1. The case where X is an attractor from the side of U_{-} and a repellor from U_{+} cannot be handled by the above argument. But the author does not know such an example with the property $Fr(U_{-}) = Fr(U_{+}) = X$ and with nontrivial rotation set.

4. Proof of Theorem 3

Assume in way of contradiction that

$$\check{\rho}_{-} < 0 < \inf \tilde{\rho}(X).$$

Notice that since $\inf \tilde{\rho}(X) > 0$, there is no fixed point of \tilde{f} in $\pi^{-1}(X)$, and therefore we obtain the modification g of f just as in Lemma 2.6.

Lemma 4.1. For any C > 0 there is n > 0 such that $p \circ \tilde{g}^n - p \ge C$ on X.

PROOF: If not, there would be sequences $x_i \in X$ and $n_i \to \infty$ such that

$$(p \circ \tilde{g}^{n_i} - p)(x_i) = \sum_{j=0}^{n_i-1} (p \circ \tilde{g} - p)(g^j(x_i)) < C,$$

 $\mathbf{6}$

and the accumulation point μ of the sequence of averages of Dirac masses $\frac{1}{n_i} \sum_{j=0}^{n_i-1} g_*^j \delta_{x_i}$ would satisfy $\mu(p \circ \tilde{g} - p) \leq 0$, contradicting the assumption $\inf \tilde{\rho}(X) > 0$.

Let \mathcal{F} be the foliation on the 2-torus T^2 that we have constructed in Sect. 2. The argument here again follows the classification of the foliation \mathcal{F} in Sect. 2 and 3.

CASE 1 and CASE 2.1: Just as in Sect. 2, let $q : \mathbb{R}^2 \to \mathbb{R}$ be the lift of the projection along the leaves of the foliation $\tilde{\mathcal{F}}$, the lift of \mathcal{F} to $\mathbb{R}^2/\langle T \rangle$. Lemma 4.1 shows that $q \circ \tilde{g}^n(x) \to \infty$ $(n \to \infty)$ for $x \in \pi^{-1}(X)$, since q is within bounded error of the canonical projection p in $\pi^{-1}(X)$. Thus the foliation $\tilde{\mathcal{F}}$ is oriented upward. But this shows that $q \circ \tilde{g}^n(x) \to \infty$ $(n \to \infty)$ for any point $x \in \pi^{-1}(\partial_- A)$, since $\partial_- A$ is compact. On the other hand by condition (3) of Lemma 2.6, \tilde{g} is a negative translation on $\pi^{-1}(\partial_- A)$. A contradiction.

CASE 2.2: In this case the bondary $\partial_{-}A \subset \mathbb{R}^2/\langle T \rangle$ cannot intersect a Reeb component since it consists of nonwandering points. So this case cannot happen.

CASE 2.3 The foliation $\tilde{\mathcal{F}}$ admits a compact leaf. The foliation $\tilde{\mathcal{F}}$ yields a partition \mathcal{P} of $\mathbb{R}/\langle T \rangle$ into compact leaves, interiors of Reeb components and foliated *I*-bundles. The set \mathcal{P} is totally ordered by the height. The minimal element which intersect X cannot be a compact leaf by the Brouwer line property. Let R be the closure of the minimal element. Thus R is either a Reeb component or a foliated *I*-bundle such that $\operatorname{Int}(R) \cap X \neq \emptyset$ and $\partial_{-}R \cap X = \emptyset$, where $\partial_{-}R$ is the lower boundary curve of R.

Assume, to fix the idea, that $\partial_{-}R$ is oriented from the right to the left. Thus the homeomorphism g carries $\partial_{-}R$ into the upper complement of $\partial_{-}R$.

CASE 2.3.1 *R* is a Reeb component. First notice that the interior leaves of *R* are oriented upwards by the assumption $\inf \tilde{\rho}(X) > 0$ and the fact that $g(X \cap R) \subset X \cap R$. Choose a simple arc

$$\alpha: [0,1] \to \pi^{-1}(R)$$

such that $\alpha(0) \in \pi^{-1}(\partial_{-}R)$, $\alpha(1) = \tilde{g}(\alpha(0))$, and $\alpha((0,1)) \subset \operatorname{Int}(\pi^{-1}(R)) \setminus \tilde{g}(\pi^{-1}(R))$. Notice that α is contained in $\pi^{-1}(U_{-})$.

Concatenating nonnegative iterates of α , we obtain a simple path $\gamma : [0, \infty) \rightarrow \pi^{-1}(R \cap U_{-})$ such that $\tilde{g} \circ \gamma(t) = \gamma(t+1)$ for any $t \geq 0$. Let $q : \pi^{-1}(\operatorname{Int}(R)) \rightarrow \mathbb{R}$ be the lift of the projection along the leaves. Since $\gamma([1,\infty))$ is contained in the lift of a compact subset $\tilde{g}(R) \subset \operatorname{Int}(R)$, the map q is within bounded error of p on $\gamma([1,\infty))$. Therefore by Lemma 4.1 we have $q \circ \gamma(t) \rightarrow \infty$ as $t \rightarrow \infty$. On the other hand by condition (4) of Lemma 2.6, we have $\check{p} \circ \gamma(t) \rightarrow -\infty$ as $t \rightarrow \infty$. In particular the curve γ is proper both in $\pi^{-1}(R)$ and in \check{U}_{-} . By joining the point $\gamma(0)$ to an appropriate point in $\pi^{-1}(\partial_{-}A)$, we obtain a simple curve δ in $\pi^{-1}(U_{-})$ starting at a point on $\pi^{-1}(\partial_{-}A)$ which extends γ .

Let x be a point in $\pi^{-1}(\partial_{-}A)$ left to the initial point of δ . Notice that there is a point of $\pi^{-1}(X)$ on the left of δ since a high iterate of T^{-1} carries a point in $\pi^{-1}(X)$ to the left of δ . (There may also be a point of $\pi^{-1}(X)$ on the right of δ .) Then there is a simple path $\beta : [0, \infty) \to \pi^{-1}(U_{-})$ such that $\beta(0) = x$, $\lim_{t\to\infty} \beta(t) \in \pi^{-1}(X)$, and β is disjoint from δ . The path β , extendable in $\pi^{-1}(A)$ is also extendable in \check{U}_{-} , the lift of the Carathéodory compactification. (See e. g. Lemma 2.5 of [**MN**].) This implies that β defines a simple path in \check{U}_{-} joining x to a prime end in $\pi^{-1}(\partial_{\infty}U_{-})$ without intersecting δ , which is impossible since $\pi^{-1}(\partial_{\infty}U_{-})$ is contained in the

right side of the proper path δ because $\check{p}_{-}\delta(t) \to -\infty$, while x is on the left side. A contradiction.

CASE 2.3.2 *R* is a foliated *I*-bundle. Thus the upper boundary curve $\partial_+ R$ of *R* is also oriented from the right to the left, and its image by *g* lies on the upper complement of *R*. The interior leaves of *R* are oriented upward.

Recall that the boundary component $\partial_{-}A$ consisting of nonwandering points cannot intersect a compact leaf. Notice that $\partial_{-}A$ lies in a Reeb component or a foliated *I*-bundle whose interior leaves are oriented downward since $p\tilde{g}^{n}(x) \to -\infty$ as $t \to \infty$ for $x \in \pi^{-1}(\partial_{-}A)$. Let *C* be the annulus in $\mathbb{R}^{2}/\langle T \rangle$ bounded by $\partial_{-}A$ and $\partial_{+}R$, the upper boundary curve of *R*.

CASE 2.3.2.1 The intersection $X \cap C$ has a component which separates $\partial_{-}A$ from $\partial_{+}A$. One can derive a contradiction by the same argument as in Case 2.3.1, since the path δ cannot evade R.

CASE 2.3.2.2 There is a simple path in U_{-} joining a point in $\partial_{-}A$ with a point in $\partial_{+}R$. Notice first of all that $g^{-1}(C) \subset C$. Let \mathcal{Y} be the family of the connected components of $\pi^{-1}(X \cap C)$. Then any element $Y \in \mathcal{Y}$ is compact, and intersects $\pi^{-1}(\partial_{+}R)$ since otherwise Y would be a connected component of $\pi^{-1}(X)$ itself.

Choose a simple curve $\gamma: [0,1] \to \pi^{-1}(C)$ such that

- (1) $\gamma(0) \in \pi^{-1}(\partial_{-}A),$
- (2) $\gamma(1) \in \pi^{-1}(X \cap C)$, and
- (3) $\gamma([0,1)) \subset \pi^{-1}(U_{-} \cap C).$

Let Y be an element of \mathcal{Y} which contains $\gamma(1)$. Then there are two unbounded connected components of the complement $\pi^{-1}(C) \setminus (Y \cup \gamma)$, one $L(Y \cup \gamma)$ on the left, and the other $R(Y \cup \gamma)$ on the right.

Notice that for any n > 0, $\tilde{g}^{-n}\gamma$ is a path in C, and that $p\tilde{g}^{-n}(\gamma(1)) \to -\infty$ and $p\tilde{g}^{-n}(\gamma(0)) \to \infty$ as $n \to \infty$. That is, for any large n, $\tilde{g}^{-n}(\gamma(1)) \in L(Y \cup \gamma)$ and $\tilde{g}^{-n}(\gamma(0)) \in R(Y \cup \gamma)$, showing that $\tilde{g}^{-n}(\gamma)$ intersects γ . On the other hand in \check{U}_{-} , γ defines a curve from a point in $\pi^{-1}(\partial_{-}A)$ to a prime end in $\pi^{-1}(\partial_{\infty}U_{-})$. But by condition (4) of Lemma 2.6, γ cannot intersect $\tilde{g}^{-n}(\gamma)$ for any large n. A contradiction.

References

- [B] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60(1932)
 1-26; also in Collected Mathematical Papers of G. D. Birkhof, vol. II, pp. 444-461
- [C] M. Charpentier, Sur quelques propriétés des courbes de M. Birkhoff, Bull. Soc. Math. France 62(1934) 193-224.
- [CL] M. L. Cartwright and J. E. Littlewood, Some fixed point theorems, Ann. Math. 54(1951) 1-37.
- [E] D. B. A. Epstein, Prime ends, Proc. London Math. Soc. 42(1981) 385-414.
- [FK] B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergod. Th. Dyn. Sys. 24, Volume dedicated to the memory of Michael Herman, (2004) 1477-1520.
- [FL] J. Franks and P. Le Calvez, Regions of instability for non-twist maps, Ergod. Th. Dyn. Sys. 23(2003), 111–141.
- [Ha] M. Handel, A pathological area preserving C^{∞} diffeomorphism of the plane, Proc. A. M. S. **86**(1982) 163–168.
- [He] M. R. Herman, Construction of some curious diffeomorphisms of the Riemann sphere, J. London Math. Soc. 34(1986) 375–384.
- [L1] P. Le Calvez, Existence d'orbits quasi-periodiques dans les attracteurs de Birkhoff, Commun. Math. Phys. 106(1986) 383-39.
- [L2] P. Le Calvez, Propriétés des attracteurs de Birkhoff, Ergod. Th. Dyn. Sys. 8(1987) 241-310

8

- [L3] P. Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. I. H. E. S. 102(2005) 1–98.
- [M] J. Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, In: Th. M. Rassias, G. M. Rassias, eds., Selected Studies, North-Holland, (1982) 225–255.
- [MN] S. Matsumoto and H. Nakayama, Continua as minimal sets of homeomorphisms of S^2 , Preprints in Arxiv.
- [W] R. B. Walker, Periodicity and decomposability of basin boundaries with irrational maps on prime ends, Trans. A. M. S. 324(1991), 303–317.

Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan

E-mail address: matsumo@math.cst.nihon-u.ac.jp