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ABSTRACT

The Takagi function τ : [0, 1] → [0, 1] is a continuous non-differentiable function constructed
by Takagi in 1903. This paper studies the level sets L(y) = {x : τ(x) = y} of the Takagi
function τ(x). It shows that for a “generic” full Lebesgue measure set of ordinates y, the
level sets are finite sets, and that the expected number of points on such a level is infinite.
Complementing this, it shows that the set of ordinates y on which the level set has positive
Hausdorff dimension has full Hausdorff dimension 1 (but Lebesgue measure zero). The results
are obtained by studying a notion of “local level set” introduced in a previous paper [14], and
using a singular measure parameterizing all such sets.

1. Introduction

The Takagi function τ(x) is a function defined on the unit interval x ∈ [0, 1] which was
introduced by Takagi [20] in 1903 as an example of a continuous nondifferentiable function. It
can be defined by

τ(x) :=
∞∑
n=0

� 2nx�
2n

(1.1)

where� x� is the distance from x to the nearest integer, although Takagi’s original definition
was slightly different.

An alternate interpretation of the Takagi function involves the symmetric tent map T :
[0, 1]→ [0, 1], given by

T (x) =


2x if 0 ≤ x ≤ 1

2 ,

2− 2x if 1
2 ≤ x ≤ 1

(1.2)

(see [10] for further references). Then we have

τ(x) :=
1

2

( ∞∑
n=1

1

2n
T (n)(x)

)
, (1.3)

1This author’s work was supported by NSF Grants DMS-0500555 and DMS-0801029.
2This author’s work was supported by the NSF through a Graduate Research Fellowship.
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Figure 1: Graph of the Takagi function τ(x).

where T (n)(x) denotes the n-th iterate of T (x). The Takagi function can be extended to
a periodic map on the real line having period 1, and its Fourier series coefficients have a
relatively simple form ([12, Sect. 2]). The Takagi function shows up in a surprising number of
different places in mathematics, including Bernoulli convolutions ([12, p. 195]), distribution of
binary digit sums ([18], [21], [5]) and dynamical systems ([22]).

In this paper we consider certain properties of the graph of the Takagi function

G(τ) := {(x, τ(x)) : 0 ≤ x ≤ 1},

which is pictured in Figure 1. It is well known that the values of the Takagi function satisfy
0 ≤ τ(x) ≤ 2

3 . It is also known that this graph has Hausdorff dimension 1 in R2; see Mauldin
and Williams [17, Theorem 7]. They add the remark that they do not know whether the this
graph is σ-finite ([17, p. 800]). Here we study the structure of the level sets of this graph. We
make the following definition, which contains a special convention concerning dyadic rationals
which simplifies theorem statements.

Definition 1.1. For 0 ≤ y ≤ 2
3 the level set L(y) at level y is

L(y) := {x : τ(x) = y, 0 ≤ x ≤ 1}.

By convention the symbol x specifies a particular binary expansion; so each dyadic rational
value x = m

2n in a level set will appear twice, labeled by each of its two possible binary
expansions.

Level sets have a complicated and interesting structure, depending on the value of y. A
good deal is known about them. It is known that there are different levels y where the level set
L(y) is finite, countably infinite, or uncountably infinite, respectively. Concerning the size of
level sets, measured by Hausdorff dimension, in 1984 Baba [3] showed that the level set L(2

3)
has Hausdorff dimension 1

2 , so is uncountable. The second author recently showed ([16]) that
the Hausdorff dimension of any level set is bounded above by 0.668 and conjectured that the
example of Baba achieves the largest possible dimension.

This paper is a sequel to the paper [14], which approached the study of level sets of the
Takagi function via the notion of “local level set”. Local level sets are sets determined locally
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by combinatorial operations on the binary expansion of a real number x; they are closed sets
and each level set decomposes into a disjoint union of local level sets. The structure of local
level sets Llocx is completely analyzable: they are either finite sets or Cantor sets. Information
of the Hausdorff dimension of such sets can be deduced from properties of the binary expansion
of x. That paper introduced a certain subset ΩL ⊂ [0, 1], called the deficient digit set, which
comprises the left endpoints of all local level sets. It therefore parameterizes all local level
sets. We showed [14, Theorem 4.6] that ΩL is a closed set of measure zero. We also introduced
a singular measure dµS which is supported on ΩL, the Takagi singular measure. These were
used to prove in [14] that on almost all levels y there are finitely many local level sets; the
expected number of local level sets, measured with respect to Lebesgue measure on y ∈ [0, 2

3 ],
was shown to be 3

2 . However we showed there also are a dense set of levels in [0, 2
3 ] which have

infinitely many local level sets.
In this paper we will study “generic” level sets in a number of senses. The ordinate (y-axis)

notion of genericity is to draw an ordinate y at random using Lebesgue measure in [0, 2
3 ], and

then to ask what is the nature of the level set L(y). The abscissa (x-axis) notion of genericity
is to draw a number x at random in [0, 1] with respect to Lebesgue measure, and then to ask
what is the nature of the level set L(τ(x)). A weaker notion of “generic set ” is to be generic
in the Hausdorff dimension sense, meaning it is a a set of (full) Hausdorff dimension 1.

It is now known that abscissa generic level sets and ordinate generic level sets have a
quite different structure. In 2008 Buczolich [4] showed that the generic ordinate level set is a
finite set, while in [14, Theorem 1.4] we showed that the “generic” abscissa local level set is
an uncountable Cantor set of Hausdorff dimension 0; it immediately follows that a “generic”
abscissa level set is uncountable. Our first main result in this paper is a new proof of the
finiteness result of Buczolich for generic ordinate level sets, using local level sets and the
Takagi singular measure. Our method gives extra information: it shows that the expected
number of points in a randomly drawn ordinate level set is infinite. Concerning the generic
level sets in the abscissa sense, we formulate a conjecture asserting that such sets will have
Hausdorff dimension 0.

Our second main result concerns the set of levels having a “large” level set, namely one of
positive Hausdorff dimension. We show that the set of ordinate values labelling these levels
is “generic” in the Hausdorff dimension sense, although it has Lebesgue measure 0. In the
process of proving this we show that the deficient digit set ΩL has full Hausdorff dimension 1.
Now we state these results in more detail.

1.1. Generic level sets: Results

In Sect. 2 and 3 of this paper we recall preliminary results on the Takagi function and local
level sets, following the previous paper [14].

The first notion we consider is that of a “generic” ordinate level set, which is a random
L(y) for y ∈ [0, 2

3 ] drawn uniformly with respect to Lebesgue measure. We obtain the following
result.

Theorem 1.2. (Ordinate generic level sets) (1) For a full Lebesgue measure set of ordinate
points y ∈ [0, 2

3 ] the level set L(y) is a finite set.
(2) For a random level set L(y) with level y drawn uniformly from y ∈ [0, 2

3 ], the expected
number of elements in L(y) is infinite.

We prove Theorem 1.2 in Sect. 4 and 5. This result is proved using explicit calculations
of the Takagi singular measure of various subsets of ΩL given in the fine decomposition of the
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deficient digit set ΩL made in Sect. 4 below. These calculations make use of self-similarity
properties of the Takagi singular measure.

As remarked above, part (1) of this result was proved in 2008 by Buczolich [4]. He proves
the almost everywhere finiteness of level sets by a method that directly studies the graph of
the Takagi function. His proof shows the graph G(τ) = GI

⋃
GR (nonconstructively) partitions

into an irregular 1-set GR and a regular 1-set GR, and that the irregular set GI has y-projection
of Lebesgue measure 0 and x-projection of full measure 1. Here an irregular 1-set or purely
unrectifiable 1-set is a set in R2 of Hausdorff dimension 1 that intersects every continuously
differentiable curve in a set of H1-measure zero. By Besicovitch’s theorem such a set has 1-
dimensional projections of measure 0 in almost all directions, see Falconer [7, Theorem 6.1.3].
A regular 1-set is a set that can be covered by countably many rectifiable curves. Our proof
of Theorem 1.2 uses the Takagi singular measure, whose support lies in ΩL, and the part of
the graph G(τ) that lies above ΩL is covered by a single rectifiable curve, the flattened Takagi
function described in Sect. 4. This follows from the BV property of this function [14, Theorem
5.3]). Thus our proof makes use of an explicitly identified set that presumably belongs to the
regular part GR of Buczolich’s partition.

Recall that in [14, Theorem 1.4] we showed that a “generic” local level set Llocx obtained by
drawing x with the uniform distribution on [0, 1] (Lebesgue measure) is with probability one
an uncountable set of Hausdorff dimension 0. This implies that a “generic” level set L(τ(x))
is uncountable with probability one. This contrasts with Theorem 1.2. We may conjecture the
following strengthening of that result.

Conjecture 1.3. (Abscissa generic level sets) For a full Lebesgue measure set of abscissa
points x ∈ [0, 1] the level set L(τ(x)) is a Cantor set of Hausdorff dimension 0

The abscissa and ordinate “generic” results make differing predictions on the size of a
“random” level set, in that sampling a point x on the abscissa favors picking level sets which
are “large”. These results taken together indicate that the Takagi function must have “infinite
slope” over part of its domain. In particular it is not a function of bounded variation.

Our second result reconciles the abscissa and ordinate sampling viewpoints of level sets,
by showing that the set of levels y whose level set L(y) has positive Hausdorff dimension itself
has full Hausdorff dimension. We let dimH(Γ) denote the Hausdorff dimension of a set Γ.

Theorem 1.4. (Positive Hausdorff dimension level sets) Let ΓordH be the set of ordinates
y ∈ [0, 2

3 ] such that the Takagi function level set L(y) has positive Hausdorff dimension, i.e.

ΓordH := {y : dimH(L(y)) > 0}.

Then ΓordH has full Hausdorff dimension, i.e.

dimH(ΓordH ) = 1. (1.4)

The set ΓordH has Lebesgue measure 0 by Theorem 1.2 above. The proof of this result
occupies Sect. 6 and 7. We first study in Sect. 6 the set of abscissas in the deficient digit set
ΩL that give rise to a level set of positive Hausdorff dimension, namely

ΓLH := {x ∈ ΩL : dimH(Llocx ) > 0}.

We show this set has Hausdorff dimension 1 (Theorem 6.1), obtaining from it the fact that the
deficient digit set ΩL itself has Hausdorff dimension 1. We do this by finding some nice Cantor-
like sets Λ2r inside ΓLH , depending on an integer parameter r, which have dimH(Λ2r) → 1 as
r →∞. In Sect. 7 we derive Theorem 1.4 from this fact by showing that the Takagi function
τ(x) restricted to the set Λ2r is a bi-Lipschitz map; such maps preserve Hausdorff dimension.
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1.2. Extensions of Results and Related Work

The results we have found suggest that level sets of the Takagi function should exhibit a
nontrivial multifractal spectrum. We define the multifractal spectrum function for level sets as:

fτ (α) := dimH{y : dimH(L(y) > α). (1.5)

The main result of [16] implies that

fτ (α) = 0 for α ≥ 0.668, (1.6)

and a conjecture made in [16] would imply fτ (α) = 0 for α ≥ 1
2 . Theorem 1.4 of this paper

shows that fτ (0) = 1. It seems reasonable to expect that fτ (α) > 0 might hold for 0 ≤ α < 1
2 .

We leave resolving this question for further work. This problem might be approached using
local level sets, which should also have a multifractal spectrum for such values varying over
x ∈ ΩL, possibly identical to that for level sets in general.

There has been much study of the non-differentiable nature of the Takagi function in various
directions, see for example Allaart and Kawamura [1], [2], and references therein.

Acknowledgments. The first author thanks D. E. Knuth for bringing the Takagi function
to his attention. The authors thank P. Allaart for informing us of the work of Buczolich ([4]) .

2. Preliminaries: Properties of the Takagi Function

2.1. Basic identities

We first derive an alternate formula for the Takagi function, expressed directly in terms of the
binary expansion of x = 0.b1b2b3.... For 0 ≤ x ≤ 1 the distance to the nearest integer function
is

� x� :=


x if 0 ≤ x < 1

2 , i.e. b1 = 0

1− x if 1
2 ≤ x ≤ 1, i.e. b1 = 1.

(2.1)

For n ≥ 0, we have

� 2nx� =


0.bn+1bn+2bn+3... if bn+1 = 0

0.b̄n+1b̄n+2b̄n+3... if bn+1 = 1,
(2.2)

where we use the bar-notation

b̄ = 1− b, for b = 0 or 1, (2.3)

to mean complementing a bit.

Lemma 2.1. (Takagi function formulas) For x = 0.b1b2b3... the Takagi function is given by

τ(x) =

∞∑
m=1

lm
2m

, (2.4)

in which 0 ≤ lm = lm(x) ≤ m− 1 is the integer

lm(x) = #{bi : 1 ≤ i < m, bi 6= bm} (2.5)
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In terms of the digit sum function N1
m(x) = b1 + b2 + ...+ bm,

lm(x) =


N1
m−1(x) if bm = 0,

(m− 1)−N1
m−1(x) if bm = 1.

(2.6)

Proof. From the definition

τ(x) =
∞∑
n=0

� 2nx�
2n

. (2.7)

Now (2.2) gives

� 2nx�
2n

=


∑∞

j=1
bn+j

2n+j if bn+1 = 0,

∑∞
j=1

b̄n+j

2n+j if bn+1 = 1.

(2.8)

We substitute this into the formula for τ(x) and collect all terms having a given denominator
1

2m , coming from m = n + j with 1 ≤ j ≤ m. For m = n + j we get a contribution of 1
2m

whenever bn+j := bm = 1 and bn+1 = 0, and whenever bn+j := bm = 0 and b1+n = 1, otherwise
get 0. Adding up over j, we find the total contribution is lm

2m where lm counts the number of
bj , 1 ≤ j < m having the opposite parity to bm, which is (2.4). The formulas (2.6) follow by
inspection; note that m−N1

m(x) = N1
m(1− x) (making an appropriate convention for dyadic

rationals). 2

We also recall basic functional equations satisfied by the Takagi function [14, Lemma 2.2].

Lemma 2.2. (Takagi functional equations) The Takagi function satisfies two functional equa-
tions, each valid for 0 ≤ x ≤ 1 :

the reflection equation
τ(x) = τ(1− x), (2.9)

and the dyadic self-similarity equation

2τ(
x

2
) = τ(x) + x. (2.10)

The Takagi function is the unique continuous function on [0, 1] that satisfies both these func-
tional equations.

We also will use a self -similarity property of the graph of the Takagi function. To describe
it we require some functions determined by the binary expansion of x.

Definition 2.3. Let x ∈ [0, 1] have a binary expansion

x =
∞∑
j=1

bj
2j

= 0.b1b2b3..., (2.11)

with each bj ∈ {0, 1}. For each j ≥ 1 we define the following integer-valued functions.
(1) The digit sum function N1

j (x) is

N1
j (x) := b1 + b2 + · · ·+ bj . (2.12)
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We also set
N0
j (x) := j −N1

j (x). (2.13)

These functions count the number of 1’s (resp. 0’s) in the first j binary digits of x.

(2) The deficient digit function Dj(x) is given by

Dj(x) := N0
j (x)−N1

j (x) = j − 2N1
j (x) = j − 2(b1 + b2 + · · ·+ bj). (2.14)

The name “deficient digit function” reflects the fact that Dj(x) counts the excess of binary
digits bk = 0 over those with bk = 1 in the first j digits, i.e. it is positive if there are more 0’s
than 1’s. We use here the convention that x means the binary expansion, noting that dyadic
rationals have two different binary expansions, and the functions N0

j (x), N1
j (x), and Dj(x)

depend on which binary expansion is used.

We call a dyadic rational B = k
2n = 0.b1b2...bn0∞ balanced if Dn(B) = 0; if this holds then

n = 2m is necessarily even. The Takagi function graph has the following local self-similarity
property ([14, Lemma 2.5]), which easily follows from Lemmas 2.1 and 2.2.

Lemma 2.4. (Takagi exact self-similarity)
Let B′ = 0.b1b2 . . . b2m0∞ = k

22m be a balanced dyadic rational; that is, it has D2m(B′) = 0, so

that Dj(B
′) = j − 2m for all j ≥ 2m. Then for x = B′ + x′

2m with any x′ ∈ [0, 1], there holds

τ(x) = τ(B′) +
τ(x′)

22m
. (2.15)

That is, on the dyadic interval [ k
22m ,

k+1
22m ] the graph of the function τ(x) is a miniature version

of its full graph, vertically shifted by τ(B) and shrunk by a factor 1
22m .

2.2. Local level sets

The notion of local level set Llocx is attached to the binary expansion of an abscissa point
x ∈ [0, 1]. We show that certain combinatorial flipping operations applied to the binary
expansion of x yield new points x′ in the same level set. The totality of points reachable from
x by these combinatorial operations will comprise the local level set Llocx associated to x.

Let a binary expansion of x ∈ [0, 1] be given:

x :=
∞∑
j=1

bj
2j

= 0.b1b2b3..., each bj ∈ {0, 1}. (2.16)

The flip operation (or complementing operation) on a single binary digit b is

b̄ := 1− b. (2.17)

For a given x we call a balance point any digit position j at which the deficient digit function
Dj(x) defined by (2.14) has a tie-value Dj(x) = 0; note that all such j are even. We now
associate to x its balance-set Z(x),

Z(x) := {ck : Dck(x) = 0}. (2.18)

where we define c0 = c0(x) = 0 and set c0(x) < c1(x) < c2(x) < .... This sequence of tie-values
may be finite or infinite. If it is finite, ending in cn(x), we make the convention to adjoin a
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final “balance point” cn+1(x) = +∞. We define a block to be an indexed set of digits between
two consecutive balance points,

Bk(x) := {bj : ck(x) < j ≤ ck+1(x)}, (2.19)

where we include the second balance point but not the first. Next, we define an equivalence
relation on blocks, written Bk(x) ∼ Bk′(x′), to mean the block endpoints agree (ck(x) = ck′(x

′)
and ck+1(x) = ck′+1(x′)) and either Bk(x) = Bk′(x

′) or Bk(x) = B̄k′(x
′), where the bar

operation flips all the digits in the block, i.e.

bj 7→ b̄j := 1− bj , ck < j ≤ ck+1. (2.20)

Finally, we let the equivalence relation x ∼ x′ mean that these points have identical balance-
sets Z(x) ≡ Z(x′), and furthermore every block Bk(x) ∼ Bk(x′) for k ≥ 0. Note that x ∼ 1−x;
this corresponds to a flipping operation being applied to every binary digit. In [14] we showed
that the equivalence relation x ∼ x′ implies that τ(x) = τ(x′), so that x and x′ are in the same
level set of the Takagi function, cf. Theorem 2.6 below.

Definition 2.5. The local level set Llocx associated to x is the set of equivalent points,

Llocx := {x′ : x′ ∼ x}. (2.21)

We use again the convention that x and x′ denote binary expansions, so that dyadic rationals
require special treatment.

We recall basic properties of local level sets, as follows ([14, Theorem 3.1, Corollary 3.2]).

Theorem 2.6. (1) Local level sets Llocx are closed sets. Two local level sets either coincide
or are disjoint.

(2) Each local level set Llocx is contained in a level set: Llocx ⊆ L(τ(x)). That is, if x1 ∼ x2

then τ(x1) = τ(x2).
(3) Each level set L(y) partitions into local level sets

L(y) =
⋃
x∈ΩL

τ(x)=y

Llocx (2.22)

Here ΩL denotes the collection of leftmost endpoints of all local level sets.
(4) A local level set Llocx is a finite set if the balance-set Z(x) is finite; otherwise it is a

Cantor set (uncountable perfect set).

2.3. Deficient digit set ΩL

In [14] we studied the set of leftmost endpoints ΩL of local level sets; this set parametrizes
the complete collection of all local level sets. The leftmost endpoints all lie in [0, 1

3) . Here
we start with a alternative definition of ΩL given directly in terms of the binary expansion.
Theorem 2.10 below states that this combinatorial definition coincides with the one above, and
gives basic properties of this set.
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Definition 2.7. The deficient digit set ΩL consists of all points

ΩL := {x =
∞∑
j=1

bj
2j

: Dj(x) ≥ 0 for all j ≥ 1}.

where the deficient digit function Dj(x) = N0
j (x)−N1

j (x) = j − 2N1
j (x) counts the number of

binary digits 0 minus that of binary digits 1 in the first n digits.

The deficient digit set is a Cantor-type set obtained by removing a certain countable collec-
tion of open intervals from the unit interval, which we describe using the following definitions.

Definition 2.8. (1) The breakpoint set B′ consists of B∅
′ = 0 together with the collection of

all dyadic rationals B′ = n
22m that have binary expansions of the form

B′ = 0.b1b2...b2m−1b2m for some m ≥ 1,

that satisfy the condition

Dj(B
′) ≥ 0 for 1 ≤ j ≤ 2m− 1, and N2m(B′) = 0, (2.23)

This condition implies b2m = 1.

(2) The small breakpoint set B is the subset of B′ consisting of B∅ = 0 plus all dyadic
rationals in B′ that satisfy the extra condition that the last two binary digits b2m−1 = b2m = 1.

We may rewrite a dyadic rational in the restricted breakpoint set as

B = 0.b1b2...bl01k, with k ≥ 2, (2.24)

and here 2m = k + l + 1.

In [14] we used the small breakpoint set B to label the intervals removed from [0, 1] to
create the deficient digit set ΩL. Here the breakpoint set B′ will be used in Sect. 4.1 to label
a decomposition of ΩL into finer pieces.

Definition 2.9. For each dyadic rational B = 0.b1b2...bl01k, k ≥ 2 in the small breakpoint set
B (B 6= B∅) we associate the open interval

IB := (x(B)−, x(B)+) (2.25)

having the endpoints

x(B)− := 0.b1b2...bl01k(01)∞

x(B)+ := 0.b1b2...bl10k(00)∞,

necessarily with k ≥ 2. We also set

IB∅ := (x(B∅)
−, x(B∅)

+) := (0.(01)∞, 1.(00)∞) = (
1

3
, 1). (2.26)

The following result gives properties of the deficient digit set ΩL ( [14, Theorem 4.6].)
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Theorem 2.10. (Properties of the Deficient Digit Set)
(1) The deficient digit set ΩL comprises the set of leftmost endpoints of all local level sets.

It satisfies ΩL ⊂ [0, 1
3 ].

(2) The deficient digit sum set ΩL is a closed, perfect set (Cantor set). It is given by

ΩL = [0, 1)\
⋃
B∈B

IB. (2.27)

where the omitted open intervals IB, for B in the small breakpoint set, have right endpoint a
dyadic rational and left endpoint a rational number with denominator 3 · 2k for some k ≥ 1.

(3) The deficient digit set ΩL has Lebesgue measure zero.

In [14, Lemma 4.5] it is shown that the value of the endpoints of the removed intervals
satisfies

x+
B − x

−
B = τ(x(B)−)− τ(x(B)+) =

1

2k+l · 3
, (2.28)

so that linear interpolation of a function across the a removed interval always has slope −1.

3. Takagi Singular Function and Singular Measure

We recall from [14] the definition and properties of the Takagi singular function and Takagi
singular measure. We deduce one new result (Theorem 3.3) which states that the Takagi
function τ(x) is nondecreasing on the set 1

2ΩL.

3.1. Flattened Takagi function and Takagi singular function

We define the flattened Takagi function τL(x) to agree with the Takagi function on the deficient
digit set ΩL and to be defined by linear interpolation on all the intervals IB for B in the small
breakpoint set B. As mentioned above, it has slope −1 on these intervals. We showed in [14,
Theorem 5.3] the following result.

Theorem 3.1. (Flattened Takagi function) The flattened Takagi function τL(x) is of bounded
variation. It has a minimal monotone decomposition (Jordan decomposition) given by

τL(x) = fu(x) + fd(x), (3.29)

with upward part fu(x) = τL(x) + x and downward part fd(x) = −x both being continuous
functions. Its total variation V 1

0 (τL) = 2.

The flattened Takagi function is pictured in Figure 2.
The Takagi singular function τS(x) is the upward part of the Jordan decomposition of

τL(x), e.g.
τS(x) := fu(x) = τL(x) + x.

In [14, Theorem 5.5] we established the following properties of this function.

Theorem 3.2. (Takagi singular function properties) The Takagi singular function τS(x) has
the following properties.

(1) The Takagi singular function τS(x) is a Cantor function. That is, it is a nondecreasing
function having τS(0) = 0, τS(1) = 1, which has derivative zero at almost all points of [0, 1].
The support of its points of increase is contained in ΩL.
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Figure 2: Graph of flattened Takagi Function τL(x).

(2) The Takagi singular function τS(x) is the integral of a nonnegative Radon measure µS
that is singular continuous with respect to Lebesgue measure, i.e. τS(x) =

∫ x
0 dµS . The measure

µS has support contained in the deficient digit set ΩL, so that∫ 1

0
dµS =

∫
ΩL
dµS = 1. (3.30)

Furthermore, for every Borel set K in [0, 1],

µS(K) = meas(τS(K)), (3.31)

where meas denotes Lebesgue measure.

(3) The support of the measure µS is exactly the deficient digit set. That is, it is the closure
of the set of points of increase of the Takagi singular function.

We call dµS the Takagi singular measure. It is a probability measure on [0, 1], and τS(x)
is its cumulative distribution function. The Takagi singular function is pictured in Figure 3.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Graph of Takagi singular function τS(x).

We deduce from Theorem 3.2 a nondecreasing property of the Takagi function on 1
2ΩL.

This result later will be important in establishing the bi-Lipschitz property in Theorem 7.1.

11



Theorem 3.3. (Increasing Property of Takagi function on 1
2ΩL) Let 1

2ΩL := {1
2x : x ∈ ΩL},

which is
1

2
ΩL = {x : Dj(x) ≥ 1 for all j ≥ 1}. (3.32)

The Takagi function τ(x) restricted to the domain 1
2ΩL is a nondecreasing function. That is,

if x1, x2 ∈ 1
2ΩL with x1 ≥ x2, then τ(x1) ≥ τ(x2). Furthermore, it is strictly increasing on

1
2ΩL, except at a certain countable set of points x.

Proof. We have
1

2
ΩL = {x = 0.0b1b2b3... : x′ = 0.b1b2b3... ∈ ΩL}.

Now the digit sum function N1
j (x) = N1

j−1(x′) for j ≥ 1 (here N1
0 (x′) = 0) so that, for j ≥ 1,

Dj(x) = j − 2N1
j (x) = 1 + (j − 1)− 2N1

j−1(x′) = 1 +Dj−1(x′) ≥ 1.

This verifies (3.32) and also that 1
2ΩL ⊂ ΩL. Lemma 2.2 gives for x ∈ [0, 1

2 ],

2τ(x) = τ(2x) + 2x.

This applies if x ∈ 1
2ΩL ⊂ [0, 1

6 ], the point being that 2x ∈ ΩL gives τ(2x) = τL(2x). Thus

2τ(x) = τ(2x) + 2x = τL(2x) + 2x = τS(2x).

By Theorem 3.2 the singular Takagi function is monotone nondecreasing on [0, 1], giving the
nondecreasing property.

We now show that τ(x) is strictly increasing on 1
2ΩL, except at certain rational values.

The strict increasing property holds for all x ∈ 1
2ΩL that are not rational numbers with

binary expansions ending in either 0∞ or (01)∞, using [14, Theorem 4.8] . We need here the
additional fact that the proofs of both parts of Theorem 4.8 show that if x ∈ 1

2ΩL then all
the approximants xk constructed belong to 1

2ΩL as well. The exceptional rational values are
not strictly increasing; they group into pairs of tie values τ(1

2x(B)−) = τ(1
2x(B)+) for B ∈ B,

where IB = (x(B)−, x(B)+) is given in Definition 2.9. 2

3.2. Expected number of local level sets

In [14, Theorem 5.8] we proved the following result.

Theorem 3.4. (Expected number of local level sets) For a full Lebesgue measure set of ordi-
nate points y ∈ [0, 2

3 ] the number N loc(y) of local level sets at level y is finite. Furthermore∫ 2
3

0
N loc(y)dy = 1. (3.33)

That is, the expected number of local level sets on a randomly drawn ordinate level y is 3
2 .

The proof uses the Coarea formula for functions of bounded variation ([6, Sec. 5.5]), applied
to the flattened Takagi function τL.

4. Structure of Takagi Singular Measure

We now compute values of the Takagi singular measure on various subsets of ΩL.

12



4.1. Fine partition of deficient digit set

We partition the set ΩL of left endpoints of local level sets into finer pieces, as follows:

ΩL = ΩL
∞
⋃

ΩL
fin (4.1)

in which
ΩL
∞ := {x ∈ ΩL : Dj(x) = 0 for infinitely many j ≥ 1}. (4.2)

and ΩL
fin is its complement,

ΩL
fin := {x ∈ ΩL : Dj(x) ≥ 1 for all sufficiently large j}. (4.3)

The latter set can be further partitioned into subsets labelled by elements of the breakpoint
set B′ in Definition 2.8. To each B′ ∈ B′ we associate the set

ΩL(B′) := {x = B′ +
x′

22m
: x′ ∈ 1

2
ΩL}. (4.4)

In particular for m = 0 we have one set B′ = B0 = 0 with ΩL(B0) = 1
2ΩL.

Lemma 4.1. (Fine Partition of Deficient Digit Set) The set ΩL
fin has a partition

ΩL
fin =

⋃
B′∈B′

ΩL(B′), (4.5)

with union over the breakpoint set B′. Each set ΩL(B′) is a closed set.

Proof. Elements x ∈ ΩL(B′) have Dj(x) ≥ 0 for all j ≥ 1, D2m(x) = D2m(B′) = 0, and
Dj(x) > 0 for j ≥ 2m + 1. In particular ΩL(B′) ⊂ ΩL

fin. The sets are disjoint for different

B′ because the value 2m is uniquely determined for each element of the set ΩL(B′), and this
determines the initial digits B′ uniquely. Finally we see that each element x ∈ ΩL

fin has asso-
ciated to it a unique maximal value 2m of j such that Dj(x) = 0, (j is necessarily even) and
this assigns it to a particular ΩL(B′). 2

4.2. Singular measure calculations

The Takagi singular measure dµS is not translation-invariant. In Theorem 4.2 below we use
its self-similarity properties to compute the µS-measure of certain sets inside ΩL, namely the
sets ΩL

∞ and the sets ΩL(B′) in the fine partition of ΩL in Lemma 4.1.

Theorem 4.2. (Takagi singular measure: fine partition) For each balanced dyadic rational
B′ = 0.b1b2...b2m = k

22m in the deficient digit set ΩL the fine partition set ΩL(B′) is a closed
set, and its Takagi singular measure is

µS(ΩL(B′)) :=

∫
ΩL(B′)

dµS =
1

22m+1
. (4.6)

Proof. We already know that µS(ΩL) = 1 via Theorem 3.2(2).

13



Claim 1. The Takagi singular measure of 1
2ΩL is given by

µS(ΩL(B0)) := µS(
1

2
ΩL) =

1

2
µS(ΩL) =

1

2
. (4.7)

To prove the claim, we use the self-similarity relation in Lemma 2.2(1),

2τ(
1

2
x) = x+ τ(x), for 0 ≤ x ≤ 1.

It x ∈ ΩL then τ(x) = τL(x) so that we obtain

2τ(
1

2
x) = x+ τ(x) = x+ τL(x) = τS(x). (4.8)

Thus if x1 < x2 with both xi ∈ ΩL, then∫ 1
2
x2

1
2
x1

µS = τS(
1

2
x2)− τS(

1

2
x1)

=

(
τ(

1

2
x2) +

1

2
x2

)
−
(
τ(

1

2
x1) +

1

2
x1

)
=

1

2

(
τS(x2)− τS(x1)

)
+

1

2
(x2 − x1)

=
1

2

∫ x2

x1

µS +
1

2
(x2 − x1) . (4.9)

We may rewrite this as

|
∫ 1

2
x2

1
2
x1

µS −
1

2

∫ x2

x1

µS | ≤
1

2
meas([x1, x2]) (4.10)

where the last term denotes the Lebesgue measure of the interval [x1, x2].
Now by (2.27) for each m ≥ 1 we obtain a covering of ΩL using

ΩL ⊂ P2m := [0, 1) r
⋃
B∈B
|B|≤2m

IB. (4.11)

in which we remove only a finite number of the “flattened” open intervals IB corresponding
to those B ∈ B (the small breakpoint set) having dyadic length at most 2m. The set P2m

is a closed set comprised of a finite number of intervals, [xj , x
′
j ], say, having both endpoints

xj , x
′
j ∈ ΩL. Adding up the relations (4.10) over these intervals yields

|
∫

1
2
P2m

µS −
1

2

∫
P2m

µS | ≤
1

2
meas(P2m), (4.12)

in which meas(P2m) denotes the Lebesgue measure of the set P2m. Next we note that the P2m

form a nested family P2 ⊃ P4 ⊃ P6 ⊃ · · · of closed sets, with

ΩL =

∞⋂
m=1

P2m.
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Since these sets are Borel measurable and this Radon measure µS is outer regular (using [11,
Theorem E, Sect. 52]), we have

lim
m→∞

∫
P2m

µS =

∫
ΩL
µS ,

lim
m→∞

∫
1
2
P2m

µS =

∫
1
2

ΩL
µS ,

cf. Evans and Gariepy [6, Theorem 1, p. 2]. Now Theorem 2.10 (2), (3) ([14, Theorem 4.6])
together establish that

meas(P2m)→ 0 as m→∞.
Thus letting m→∞ in (4.12) yields∫

1
2

ΩL
µS =

1

2

∫
ΩL
µS ,

which with
∫

ΩL µS = 1 proves Claim 1.

Claim 2. Let B′ = k
22m ∈ B

′
and suppose that xi = B′ +

x′i
22m for i = 1, 2, with both x

′
i ∈ ΩL.

Then ∫ x2

x1

µS =
1

22m

(∫ x
′
2

x
′
1

µS + (x
′
2 − x

′
1)

)
. (4.13)

SinceB′ is a balanced dyadic rational, we may deduce (4.13) using the formula of Lemma 2.4,
in analogous fashion to (4.9). This proves Claim 2.

Now we complete the proof. Claim 2 yields the formula

|22m

∫ x2

x1

µS −
∫ x

′
2

x
′
1

µS | ≤ meas([x
′
1, x

′
2]). (4.14)

For any B′ ∈ B′ we have

ΩL(B′) := {x : x = B′ +
x′

22m
with x

′ ∈ 1

2
ΩL}.

Now we may cover the set 1
2ΩL with 1

2P2n. We apply the approximation bound (4.14) summed
up over all the intervals in P2n, to obtain

|22m

∫
B′+ 1

22m ( 1
2
P2n)

µS −
∫

1
2
P2n

µS | ≤
1

2
meas(P2n).

Letting n→∞ we deduce, using meas(P2n)→ 0, that

22m

∫
B′+ 1

22m ( 1
2

ΩL)
µS =

∫
1
2

ΩL
µS =

1

2
.

This yields, since ΩL(B′) := B′ + 1
22m (1

2ΩL), that∫
ΩL(B′)

µS =
1

22m+1
,

as asserted. 2.

15



4.3. Singular measure of ΩL
∞

The calculations of the last section yield the following consequence.

Theorem 4.3. Let µS denote the Takagi singular measure. The sets ΩL
fin and ΩL

∞ are Borel
sets, hence measurable. We have

µS(ΩL
fin) = 1, (4.15)

which shows that
µS(ΩL

∞) = 0. (4.16)

Consequently the image of this set under the Takagi singular function τS satisfies

meas(τS(ΩL
∞)) = 0, (4.17)

where meas denotes Lebesgue measure.

Proof. Each set ΩL(B′) is closed, hence their disjoint union ΩL
fin is a Borel set, hence is

µS-measurable. The set ΩL is closed, hence ΩL
∞ = ΩL r ΩL

fin is also a Borel set, hence is
µS-measurable, and

µS(ΩL
∞) = µS(ΩL)− µS(ΩL

fin).

(In fact one can easily show that the closure of ΩL
fin is ΩL.)

Since µS(ΩL) = 1 the theorem will follow on showing µS(ΩL
fin) = 1. We have

µS(ΩL
fin) =

∑
B∈B′

µS(ΩL(B)),

where B′ is the breakpoint set. Theorem 4.2 now gives µS(ΩL(B)) = 1
22m+1 , where B =

0.b1 · · · b2m = k
22m , with k odd. Recall from [14, Lemma 4.2] that the number of balanced dyadic

rationals in ΩL having the form k
22m for an odd k is the m-th Catalan number Cm = 1

m

(
2m
m

)
.

Here for m = 0 we have C0 = 1 corresponding to the element B0 = 0.
The Catalan numbers are well known to have the generating function

∞∑
j=0

Cmz
2m =

1−
√

1− 4z2

2z2
. (4.18)

In consequence, taking z = 1
2 , we obtain

∑∞
j=0

Cm
22m = 2. Therefore we obtain, using Theorem

4.2, that

µS(ΩL
fin) =

∞∑
m=0

Cm
1

22m+1
=

1

2

( ∞∑
m=0

Cm
22m

)
= 1,

which proves (4.15). Now (4.16) follows, and (4.17) follows from Theorem 3.2 on taking
K = ΩL

∞ in (3.31). 2

5. Cardinality of Global Level Sets

In this section we prove Theorem 1.2, which asserts that for a full measure set of ordinates y
the level set L(y) is a finite set, and that the expected number of elements in this set, with
respect to Lebesgue measure on 0 ≤ y ≤ 2

3 , is infinite.
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Proof of Theorem 1.2. (1) Let Γord∞ be the set of infinite levels, i.e.

Γord∞ := {y : L(y) is an infinite set}. (5.1)

To show a full measure set of ordinates having finite level sets, we show that the complementary
set Γord∞ has Lebesgue measure 0. We have

Γord∞ ⊂ τ(ΩL
∞)
⋃

Λloc∞ ,

in which τ(ΩL
∞) := {y = τ(x) : x ∈ ΩL

∞} detects all levels that contain at least one infinite
local level set, and

Λloc∞ := {y : L(y) contains infinitely many different local level sets}. (5.2)

Theorem 6.2 (1) of our previous paper [14] shows that Λloc∞ has Lebesgue measure 0. Thus it
suffices to prove that τ(ΩL

∞) has Lebesgue measure 0.
We have the identity

τS(x) = τL(x) + x = τ(x) + x, for x ∈ ΩL,

with the first equality holding for general x and the second equality only for x ∈ ΩL. Now
consider τS(x) restricted to x ∈ ΩL(B) for a particular B ∈ B′ , the breakpoint set. We write
B = 0.b1b2 · · · b2m = k

22m where k is necessarily odd. Then x ∈ ΩL(B) if and only if

x = B +
1
2x
′

22m
, with

1

2
x′ ∈ 1

2
ΩL.

Lemma 2.4 then gives

τ(x) = τ(B) +
1

22m
τ(

1

2
x′), with x′ ∈ ΩL.

We recall from Lemma 2.2 that 2τ(1
2(x)) = τ(x) + x if x ∈ ΩL, whence

22m+1 (τ(x)− τ(B)) = τ(x′) + x′ = τL(x′) + x′ = τS(x′), for x′ ∈ ΩL. (5.3)

Now the linear map
y 7→ y′ := 22m+1 (y − τ(B))

sends the interval [τ(B), τ(B) + 1
22m+1 ] onto [0, 1] and it follows from the above that it sends

τ(ΩL(B)) ⊂ [τ(B), τ(B) + 1
22m+1 ] onto the range τS(ΩL) = [0, 1]. We conclude from the

linearity of the map that

τ(ΩL(B)) = [τ(B), τ(B) +
1

22m+1
].

Furthermore the subset of τ(ΩL(B)) that maps to τS(ΩL
∞) necessarily has Lebesgue measure

0, because the map is linear and meas(τS(ΩL
∞)) = 0 by Theorem 4.3. We conclude that the

total Lebesgue measure (allowing overlaps) covered by elements

meas
(
{y = τ(x) : x ∈ ΩL(B), x 6∈ ΩL

∞}
)

= meas
(
τ(ΩL(B))

)
=

1

22m+1
.
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Adding up these contributions, the summation in Theorem 4.3 gives that the total Lebesgue
measure in y ∈ [0, 2

3 ] covered by images of these sets (counting overlaps with multiplicity) is∑
B∈B′

meas(τ(ΩL(B))) =
∑
B∈B′

µS(ΩL(B)) = 1.

(The images have some overlap, allowing their total measure to exceed the length of the interval
[0, 2

3 ].) Viewing these points x ∈ ΩL(B) as labelling left endpoints of local level sets, this says
that a lower bound of the total number of local level set endpoints Lebesgue-integrated over
0 ≤ y ≤ 2

3 , counted with multiplicity, is 1. Here we did not count any local level set endpoints

in τ(ΩL
∞) := τ

(
ΩL r ΩL

fin

)
, coming from the image of ΩL

∞. Now Theorem 3.4 says that

∫ 2
3

0
N loc(y)dy = 1.

where N loc(y) counts the number of all local level set endpoints. We have already accounted
for the full mass of this integral above, and any omitted contribution to N loc(y) coming from

τ(ΩL
∞) := τ

(
ΩL r ΩL

fin

)
necessarily contributes an additional nonnegative amount. Thus we

may conclude that
meas(τ(ΩL

∞) = 0.

as asserted.

(2) We aim to show that the expected size of a global level set is infinite, i.e. to show that∫ 2
3

0
|L(y)|dy = +∞,

where |L(y)| counts the number of elements in L(y). By the discussion above we have∫ 2
3

0
|L(y)|dy =

∫ 1

0
|L(τ(x))|µS(x) ≥

∑
B∈B′

1

22m+1
2r(B), (5.4)

in which
r(B) := |{1 ≤ j <∞ : Nj(B) = 0}|.

Here each r(B) is finite and bounded above by m if B = 0.b1b2 · · · b2m. We rewrite this as∫ 2
3

0
|L(y)|dy =

∞∑
m=0

Lm
22m+1

, (5.5)

in which
Lm :=

∑
B∈B′,|B|=2m

2r(B).

Now we observe that Lm, the total number of binary sequences of length 2m having N2m(B) =
0, has a combinatorial interpretation as counting the number the two-dimensional lattice paths
of length 2m starting at the origin (0, 0), taking steps either (1, 1) or (1,−1), and ending at
(2m, 0). These paths groups into collections of paths of size 2r under the “flipping” (reflection)

18



operation, with each group containing exactly one path in B′. (See the discussion and proof
in Feller [9, Theorem 4, p. 90] and also [14, Lemma 4.2].) It follows that

Lm =

(
2m

m

)
∼ 1√

πm
22m.

Thus the terms in the series on the right side of (5.5) decay like Ω( 1√
m

), so the series (5.5)

diverges, giving the result. 2.

6. Level Sets of Positive Hausdorff Dimension: Abscissa View

We study level sets having positive Hausdorff dimension. In [14, Sect. 3.3]) we classified those
local level sets containing a rational number x that are of positive Hausdorff dimension: this
result gives explicitly determinable rational ordinates y having this property. Here we show
that the set ΓLH of abscissa points in ΩL that give local level sets having positive Hausdorff
dimension has full Hausdorff dimension 1.

Theorem 6.1. (Local level sets of positive Hausdorff dimension) Let ΛLH denote the set of
x ∈ ΩL such that the Hausdorff dimension of Llocx is positive, i.e.

ΛLH := {x ∈ ΩL : dimH(Llocx ) > 0}. (6.1)

This set has full Hausdorff dimension, i.e.

dimH(ΛLH) = 1. (6.2)

In particular, the deficient digit set ΩL has Hausdorff dimension 1.

Proof. It clearly suffices to prove the first assertion. We set

ΓLH := {x ∈ ΩL : dimH(τ(x)) > 0} ⊂ ΩL,

and aim to prove dimH(ΓLH) = 1. For integer r ≥ 1 let Γ2r consist of all abscissas x ∈ [0, 1]
that satisfy:

(i) Dj(x) > 0 for j 6≡ 0 (mod 2r).
(ii) D2kr(x) = 0 for k = 1, 2, 3, ...

These conditions are equivalent to requiring Γ2r ⊂ ΩL, and that all x ∈ Γ2r have the same
balance-set Z(x) = {2kr : k ≥ 0} := 2rN. We will show later in (7.4) that membership in Γ2r

implies that
τ(x1) 6= τ(x2) for distinct x1, x2 ∈ Γ2r

so that each point in Γ2r picks out a different level set.

Claim 1. All members of Γ2r have local level sets of positive Hausdorff dimension, satisfying

dimH(L(τ(x))) ≥ log 2

log(22r)
=

1

2r
.
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Claim 1 will follow from the spacing of the balance points being an arithmetic progression.
This makes each local level set Llocx a Cantor-like set, which has a standard tree construction
covered by 2k intervals of length 2−2rk, so that dimH(Llocx ) = 1

2r . Note that the particular
subintervals are chosen differently at each step so this is generally not a self-similar construc-
tion, but the Hausdorff dimension lower bound proof for the Cantor set given in Falconer [8,
Sect. 2.3] remains valid here, establishing Claim 1.

Claim 1 shows that Γ2r ⊂ ΓLH , so that

∞⋃
r=1

Γ2r ⊂ ΓLH .

To complete the proof it suffices to show the sets Γ2r each have positive Hausdorff dimension,
which approaches 1 as r →∞.

Claim 2. For all large enough r, the set Γ2r has Hausdorff dimension greater than 1− 2 log r
r .

Claim 2 follows by observing that Γ2r is itself a self-similar Cantor set in which each block
of 2r symbols is drawn from the set

X2r := {x =
m

22r
= 0.b1b2...b2r : Dj(x) > 0 for 1 ≤ x < 2r, D2r(x) = 0, }

whose Hausdorff dimension is computable by the method of Falconer [8, Sect. 2.3]. It is well
known that

|X2r| = Cr =
1

r + 1

(
2r

r

)
,

is a Catalan number. Thus we obtain

dimH(Γ2r) =
logCr
log 22r

=
logCr
2r log 2

.

However it is well known that Cr = 22r

πr
3
2

(1 + o(1)) , as the integer r → ∞. We conclude that

for large enough r there holds

dimH(Γ2r) > 1− 2 log r

r

Claim 2 now follows, so the theorem is proved. 2.

7. Level Sets of Positive Hausdorff Dimension: Ordinate View

Our object is to prove Theorem 1.4, which asserts that the set of ordinate levels y having
dimH(L(y)) > 0 has Hausdorff dimension 1. We use the result on abscissas proved in the last
section (Theorem 6.1), together with a property showing that the Takagi function restricted
to certain small domains in [0, 1] is quite well behaved, i.e. it is bi-Lipschitz map. This allows
the transfer of Hausdorff dimension lower bounds from the abscissa case treated in Sect. 6.
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7.1. Bi-Lipschitz property of Takagi function on Γ2r

We use the result on abscissas proved in Theorem 6.1 together with the following result.

Theorem 7.1. Let X(x) = {j : Dj(x) = 0} be the balance-set of x ∈ [0, 1]. For r ≥ 1 the
Takagi function τ(x) restricted to the (compact) domain

Γ2r := {x ∈ ΩL : Z(x) = 2rN},

is a bi-Lipschitz map.

Proof. If 1 ≤ r ≤ 2, then Γ2r contains one element and the statement is trivial. Assume the
integer r ≥ 3, in which case Γ2r is a Cantor set. Using Lemma 2.1 we have

τ(x) =

∞∑
m=0

lm
2m

with integers 0 ≤ lm ≤ m, given by

lm = lm(x) := #{bi : 1 ≤ i < m, bi 6= bm}.

Now for all x ∈ Γ2r we have at balance points ck = 2kr that l2kr+1 = kr. Now suppose
x1, x2 ∈ Γ2r with x1 = 0.b1b2b3..., x2 = 0.b

′
1b
′
2b
′
3... agree at their first 2kr bits, and disagree

somewhere between the (2kr + 2)-th bit and the (2k + 1)r-th bit.
Now set lm = lm(x1) and l

′
m = lm(x2). Note that the value lm − l

′
m can change by at

most 2 as m increases to m + 1. Also note that for x1, x2 ∈ Γ2r we have |lm − l
′
m| = 0

whenever m = 2jr + i for i = −1, 0, 1, 2, the equalities coming from the definition of Γ2r and
the assumption that r > 1, which moreover imply that the digits in x1 and x2 for m = 2jr− 1
and m = 2jr must all be 1, and the digits for m = 2jr + 1 and m = 2jr + 2 must all be 0.

We now show that
2−2kr−1 ≥ |x1 − x2| ≥ 2−(2k+2)r+1. (7.1)

Here the upper bound in (7.1) holds by an absolute value estimate, the maximum occurring
if the two numbers disagree at all binary digits at and after the 2kr + 2-nd digit. The lower
bound holds because they must have a disagreeing digit in the block from the (2kr + 1)-th
digit and the (2k+ 2)r-th digit, however they also have a matching digit in the (2k+ 2)r−1-st
place, which prevents too much cancellation.

We next deduce that τ(x) is a Lipschitz function on this domain Γ2r with Lipschitz constant
2p2r, via:

|τ(x1)− τ(x2)| = |
∞∑
m=1

lm − l
′
m

2m
|

≤
∞∑
m=1

|lm − l
′
m|

2m

≤
∞∑

m=2kr+1

2r

2m

= 2r2−2kr ≤ r22r|x1 − x2|. (7.2)
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The inequality on the second to last line follows from the remarks on |lm− l
′
m| above, and that

on the last line uses (7.1).

To show the other direction of the bi-Lipschitz property, we will establish the lower bound

|τ(x1)− τ(x2)| ≥ 1

22r−1
|x1 − x2|, for x1, x2 ∈ Γ2r. (7.3)

This would follow from the assertion that, for x1, x2 ∈ Γ2r disagreeing first somewhere between
the (2kr + 2)-th bit and the (2k + 1)r-th bit,

|τ(x1)− τ(x2)| ≥ 1

2(2k+2)r
, (7.4)

by using the upper bound in (7.1). To show the assertion (7.4) , we start from

|τ(x1)− τ(x2)| ≥

∣∣∣∣∣∣
2r∑
j=1

l2kr+j − l
′
2kr+j

22kr+j

∣∣∣∣∣∣−
 ∞∑
m=(2k+2)r+1

|lm − l
′
m|

2m

 . (7.5)

First, we upper bound second term on the right in (7.5) by

∞∑
m=(2k+2)r+1

|lm − l′m|
2m

≤
∞∑
j=1

2j

2(2k+2)r+2+j
=

1

2(2k+2)r
. (7.6)

Here we used the fact that the difference |lm − l
′
m| = 0 for m = (2k + 2)r + i with i = 1, 2,

and the difference can increase by at most 2 at each step thereafter. To complete the proof it
suffices to lower bound the first term on the right in (7.5) by∣∣∣∣∣∣

2r∑
j=1

l2kr+j − l
′
2kr+j

22kr+j

∣∣∣∣∣∣ ≥ 1

2(2k+2)r−1
. (7.7)

Indeed, combining in (7.5) this estimate with the second term estimate (7.6), will yield (7.4),
which yields (7.3). Thus it remains to establish the lower bound (7.7), which is complicated.

To proceed, we construct from x1, x2 the dyadic rationals

x̄1 = 0.b2kr+1b2kr+2...b(2k+2)r−1 =
m1

22r−1
,

x̄2 = 0.b
′
2kr+1b

′
2kr+2...b

′

(2k+2)r−1 =
m2

22r−1
,

Claim 1. We have x̄1, x̄2 ∈ Σ2r−1 where

Σ2r−1 := {x̄ =
m

22r−1
: x̄ ∈ 1

2
ΩL, with N2r−1(x̄) = 1}. (7.8)

For x1, x2 there holds

2r∑
j=1

l2kr+j − l
′
2kr+j

22kr+j
=

1

22kr
(τ(x̄1)− τ(x̄2)) . (7.9)
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The membership of x̄1, x̄2 in Σ2r−1 follows since x1, x2 ∈ ΩL both have consecutive balance
points at 2kr and (2k + 2)r. (This implies that b2kr+1 = b

′
2kr+1 = b2kr+2 = b

′
2kr+2 = 0 and

that D(2k+2)r−1(xj) = D2r−1(x̄j) = 1 for j = 1, 2.)
To show (7.9) holds, we first write

τ(x̄1) =

∞∑
j=1

l̄j
2j
, τ(x̄2) =

∞∑
j=1

l̄
′
j

2j
.

Now l̄j = l̄
′
j for j ≥ 2r because x̄1 and x̄2 each have r zeros and r − 1 1’s in their first 2r − 1

digits, and all digits thereafter agree. Thus we get

τ(x̄1)− τ(x̄2) =

2r−1∑
j=1

l̄j − l̄
′
j

2j
.

However for 1 ≤ j ≤ 2r − 1 we have

l2kr+j = l̄j+2r, l
′
2kr+j = l̄

′
j+2r,

while for j = 2r we have
l(2k+2)r − l

′

(2k+2)r = l̄2r − l̄
′
2r = 0

since l(2k+2)r = l
′

(2k+2)r = (k + 1)r. Substituting these expressions into both sides of (7.9)

establishes (7.9) and Claim 1.

Claim 2. Suppose r ≥ 2. If x̄1, x̄2 ∈ Σ2r−1 with x̄1 > x̄2, then

τ(x̄1)− τ(x̄2) ≥ 1

22r−1
. (7.10)

To prove Claim 2, since x̄1, x̄2 ∈ 1
2ΩL, Theorem 3.3 shows x̄1 > x̄2 implies τ(x̄1) ≥ τ(x̄2).

This monotonicity property shows that it suffices to prove the inequality (7.10) for consecutive
members of the set Σ2r−1 (ordering them by size). We assert that two consecutive members
necessarily have the form

x̄1 := 0.b1b2...bs−110t+11k+t−1

x̄2 := 0.b1b2...bs−101k(01)t,

where s + k + 2t = 2r − 1, with k ≥ 2, t ≥ 0. Here we let the s-th digit be the first place of
disagreement of the two expansions, it must have s ≥ 3 (they both start with 00) and it must
switch a 1 in x1 to a 0 in x2. Now, since x̄1 are x̄2 are adjacent elements in Σ2p−1, treating
their first s − 1 binary digits as fixed, we have that x̄1 is the smallest such element of Σ2r−1

beginning with a 1 in the s-th position, and x̄2 is the largest such element having a 0 in the s-th
position. This requires that the remaining binary expansion of x̄2 have a string of consecutive
1’s, say k of them, until Ds+k(x̄2) = 1, followed by alternating (01)’s, say t ≥ 0 of them; we
then must have s+ k + 2t = 2r − 1. and D2r−1(x̄2) = 1. We necessarily have k ≥ 2, otherwise
there is no element x̄1 in Σ2r−1 of the given form. The minimal x̄1 must have all its zeros in
leading position, from position s+ 1 onward, and there will be t+ 1 leading digits 0, and the
remaining k + t− 1 digits 1. This proves the assertion.
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In order that Ds+k(x̄2) = 1, we must have u+ 1 digits 0 and u digits 1 in x̄2 to this point,
which implies that s+ k = 2u+ 1, and also that the first s− 1 digits of x̄1 and x̄2 necessarily
consist of u digits 0 and u − k digits 1. Furthermore the 2r − 1 digits of both numbers will
consist of exactly u+ t+ 1 digits 0 and u+ t digits 1.

We now have

τ(x̄1)− τ(x̄2) =
2r−1∑
j=1

l̄j − l̄
′
j

2j
,

because D2r−1(x̄1) = D2r−1(x̄2) so that l̄j = l̄
′
j on all subsequent digits. We also have l̄j = l̄

′
j

for 1 ≤ j ≤ s− 1 and also for j = 2r − 1. We next compute,

l̄s − l̄
′
s = u− (u− k) = k.

l̄s+j − l̄
′
s+j = (u− k + 1)− (u+ 1) = −k, 1 ≤ j ≤ min(k, t+ 1)

We also have, for j ≥ t+ 2, that
l̄s+j − l̄

′
s+j ≥ 0, (7.11)

because in this range l̄s+j = u+ t+1 ≥ maxk(l̄k, l̄
′
k). We now have two cases. First, if t+1 ≤ k

we obtain, using (7.11)

τ(x̄1)− τ(x̄2) ≥ k

2s
−

t+1∑
j=1

k

2s+j

=
k

2s+t+1
≥ 1

22r−1
.

Secondly, if k < t+ 1, then we have

τ(x̄1)− τ(x̄2) ≥ k

2s
−

k∑
j=1

k

2s+j
+

t+1∑
j=k+1

l̄s+j − l̄
′
s+j

2s+j

=
k

2s+k
+

t+1∑
j=k+1

l̄s+j − l̄
′
s+j

2s+j
.

In the final sum we have, for i ≥ 1 and 1 ≤ i ≤ t+1−k
2 , that

l̄s+k+2i−1 − l̄
′
s+k+2i−1 = (u− k + 1)− (u+ i− 1) = −k − i+ 2

l̄s+k+2i − l̄
′
s+k+2i = (u− k + 1)− (u+ i+ 1) = −k − i

Thus we obtain, for L = b t+1−k
2 c,

τ(x̄1)− τ(x̄2) =
k

2s
−

 k∑
j=1

k

2s+j

+

(
L∑
i=1

−k − i+ 2

2s+k+2i−1
+
−k − i
2s+k+2i

)

≥ k

2s+t+1
+

1

2s+k

( ∞∑
i=1

−i+ 2

22i−1
+
−i
22i

)

=
k

2s+t+1
≥ 1

22r−1
.
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Here we used the identity ( ∞∑
i=1

2− i
22i−1

+
−i
22i

)
= 0.

This proves Claim 2.
Finally, Claims 1 and 2 together establish (7.7), which completes the proof. 2

Remark. The Takagi function τ(x) is not a Lipschitz map on its full domain [0, 1], nor is it
a Lipschitz function even when restricted to the domain ΩL. This is because it has arbitrarily
steep slopes on ΩL, as is implicit in the singular function property.

7.2. Hausdorff dimension of ΓordH

To conclude the paper we prove Theorem 1.4.

Proof of Theorem 1.4. Let

ΓordH := {y : 0 ≤ y ≤ 2

3
with dimH L(y) > 0.}

It is well known that bi-Lipschitz maps preserve Hausdorff dimension. By Theorem 7.1 the
bi-Lipschitz property holds for the Takagi function τ restricted to the compact domain Γ2r.
The range of this map is

Γ̃2r := {y : y = τ(x), x ∈ Γ2r},

which therefore satisfies

dimH(Γ̃2r) = dimH(Γ2r) ≥ 1− 2 log r

2r
.

for large enough r, as shown in Claim 2 of the proof of Theorem 6.1.
We also have the inclusion

Γ̃2r ⊂ ΓordH ,

because for each x ∈ Γ2r the local level set Llocx ⊂ L(τ(x)) has positive Hausdorff dimension,
which is at least 1

2r , by Claim 1 of the proof of Theorem 6.1. This shows that, for all large
enough p,

dimH(ΓordH ) ≥ 1− 2 log r

r
.

Letting r →∞ gives dimH(ΓordH ) ≥ 1, which gives the equality. 2
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71–72.

[20] T. Takagi, A simple example of the continuous function without derivative, Proceedings
of the Physico-Mathematical Society of Japan, ser II, Vol 1. 1903, pp 176-177. [Also:
Collected Papers of Teiji Takagi (S. Iyanaga, Ed), Springer Verlag, New York 1990].

[21] J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1968),
21–25.

26

http://arxiv.org/abs/1009.0855


[22] M. Yamaguti, M. Hata and J. Kigami, Mathematics of Fractals, Translations of Math-
ematical Monographs, No. 167, American Mathematical Society: Providence, RI 1997.
(Translation from Japanese of 1993 original.)

Jeffrey C. Lagarias
Dept. of Mathematics
The University of Michigan
Ann Arbor, MI 48109-1043
email: lagarias@umich.edu

Zachary Maddock
Dept. of Mathematics
Columbia University
New York, NY 10027
email: maddockz@math.columbia.edu

27


	1 Introduction
	1.1 Generic level sets: Results
	1.2 Extensions of Results and Related Work

	2 Preliminaries: Properties of the Takagi Function
	2.1 Basic identities
	2.2 Local level sets
	2.3 Deficient digit set L

	3 Takagi Singular Function and Singular Measure
	3.1 Flattened Takagi function and Takagi singular function
	3.2 Expected number of local level sets

	4 Structure of Takagi Singular Measure
	4.1 Fine partition of deficient digit set
	4.2 Singular measure calculations
	4.3 Singular measure of L

	5 Cardinality of Global Level Sets
	6 Level Sets of Positive Hausdorff Dimension: Abscissa View
	7 Level Sets of Positive Hausdorff Dimension: Ordinate View
	7.1 Bi-Lipschitz property of Takagi function on 2r
	7.2 Hausdorff dimension of Hord


