
RIGIDITY OF GRAPH JOINS AND HENDRICKSON’S CONJECTURE

TIMOTHY SUN AND CHUN YE

Abstract. Whiteley [9] gives a complete characterization of the infinitesimal flexes of complete
bipartite frameworks. Our work generalizes a specific infinitesimal flex to include joined graphs, a
family of graphs that contain the complete bipartite graphs. We use this characterization to iden-
tify new families of counterexamples, including infinite families, in R5 and above to Hendrickson’s
conjecture on generic global rigidity.

1. Introduction

A d-dimensional framework of a graph is a mapping from the vertices of the graph to points in
Euclidean d-space. A natural question to ask is whether a graph is locally rigid, i.e. can we
can move the vertices of the framework while preserving distances between adjacent vertices in
the graph? Furthermore, when a framework is locally rigid, another question to ask is whether
the graph is globally rigid, i.e. do the edge lengths uniquely define a framework up to Euclidean
motions?

Hendrickson [8] found two necessary conditions for a graph to be generically globally rigid and
conjectured that they were also sufficient. Connelly [4] discovered a family of complete bipartite
graphs in R3 and higher that satisfied Hendrickson’s two conditions but were not generically globally
rigid:

Theorem 1.1 (Connelly [4]). If a, b ≥ d + 2 and a + b =
(
d+2
2

)
, then Ka,b is generically almost-

globally rigid in Rd.

Work has been done on identifying counterexamples that are subgraphs of Connelly’s family in [6].
Our work extends Theorem 1.1 in the opposite direction, exhibiting a family of counterexamples
that have Connelly’s graphs as subgraphs. Connelly and Whiteley [5] showed that an operation
known as coning preserves local and global rigidity. In particular, coning can be used to construct
new counterexamples in higher dimensions from known counterexamples. We identify a family of
counterexamples that are subgraphs of coned graphs.

Frank and Jiang [6] found a graph in R5 that could be “attached” to graphs that are sufficiently
rigid to form an infinite number of counterexamples to Hendrickson’s conjecture. However, one step
of the proof was aided by a computer program, so the result could not be generalized using solely
their methods. We follow the same direction of their argument, giving a conceptual proof of generic
local rigidity for the graph attachment in order to exhibit graph attachments in higher dimensions.

In this paper, we introduce the notion of the quadric rigidity matrix, which generalizes one of
Whiteley’s [9] conditions for infinitesimal rigidity. We use the quadric rigidity matrix to characterize
all infinitesimal flexes of joined graphs and for the construction of the aforementioned families of
graphs.

Thanks to Dylan Thurston, Andrew Fanoe, and Kiril Ratmanski for their support and suggestions throughout this
project. This paper was partially supported by NSF RTG Grant DMS 07-39392.
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Figure 1. A complete graph.

Figure 2. The complete bipartite graph K4,3 and the joined graph (K3 ∪ K1) +
(K2 ∪K1), respectively.

2. Graph Theory Preliminaries

A graph G = (V,E) is a 2-tuple consisting of a set V = {v1, v2, ..., v|V |} of vertices and a set
E ⊆ V × V of edges between the vertices. In this paper, all graphs are assumed to be simple: the
set of edges has no selfloops, multiple edges between the same two vertices, or any directed edges.
We denote an edge connecting vertices vi and vj as vivj . Vertices vi and vj are adjacent if vivj ∈ E.
A subgraph G′ = (V ′, E′) of a graph G = (V,E) is a graph with vertex set V ′ ⊆ V and edge set
E′ ⊆ (V ′ × V ′) ∩ E. That is, a subgraph cannot contain an edge that connects vertices outside of
the vertex subset or an edge not in the original graph. A subgraph is called a factor if it has the
same vertex set. An induced subgraph is a subgraph whose edge set is precisely (V ′ × V ′)∩E. The
edge complement of a graph G = (V,E), denoted G = (V,E′), where uv ∈ E′ ⇔ uv 6∈ E.

A graph is connected if, for all pairs of vertices vi and vj , there exists a path of vertices starting
from vi and ending at vj . A graph is k-(vertex)-connected if all induced subgraphs with v − k + 1
vertices are connected. Equivalently, a graph is k-connected if deleting any subset of k − 1 vertices
(and edges incident on those vertices) leaves the resulting graph connected.

The disjoint union of two graphs G and H, denoted G ∪ H, is the graph formed by the disjoint
union of the vertex sets and edge sets. The graph join of graphs G and H, denoted G + H, is
the graph whose vertex set is the disjoint union VG ∪ VH and whose edge set is the disjoint union
EG ∪EH ∪{vgvh|vg ∈ VG, vh ∈ VH}. We call such a graph a joined graph, and any edge in EG ∪EH

is extraneous. We will call a joined graph G+H balanced if |VG|, |VH | ≥ d+ 1.

The complete graph on i vertices, denoted Ki, is defined recursively, where K1 is a single vertex, and
Ki = K1 +Ki−1. In other words, a complete graph is a graph in which all vertices are connected to
one another. Figure 1 is the graph K6. The complete bipartite graph on a and b vertices, denoted
Ka,b, is Ka + Kb. We can think of a complete bipartite graph as taking two sets of vertices and
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Figure 3. The graph amalgamation (G;u) ∗ (H; v).

adding an edge for each possible pair of vertices. VKa
and VKb

are referred to as the two bipartite
classes. Figure 2 contains examples of a complete bipartite graph and a joined graph.

A vertex amalgamation (G;u1, u2, ..., ui) ∗ (H; v1, v2, ..., vi) is the graph (G ∪H)/R, where R is the
equivalence relation {u1 = v1, u2 = v2, ..., ui = vi}. Intuitively, a vertex amalgamation takes vertices
of two graphs and pastes them together to get the resulting graph, as in Figure 3.

Two graphs G and H are isomorphic if there exists a bijective function φ : VG → VH such that
uv ∈ EG if and only if φ(u)φ(v) ∈ EH .

3. Frameworks

A d-dimensional framework is a 2-tuple (G, p) where G is a graph and p is a mapping, known as
a configuration, that takes elements of VG to Rd. We can imagine each vertex in G placed into
d-dimensional Euclidean space connected by straight rods that represent each edge of G. Two
frameworks (G, p) = (G; p1, p2, ..., pv) and (G, q) = (G; q1, q2, ..., qv) are equivalent if for all pairs of
adjacent vertices vi and vj , ||pi−pj || = ||qi−qj ||. They are congruent if all pairwise distances between
points are equal. A generic configuration is a mapping in which the coordinates of the vertices are
algebraically independent over Z; that is, no non-trivial polynomial with integer coeffients over the
coordinates is 0. A generic framework is a framework whose configuration is generic.

A framework (G, p) is said to be globally rigid if any equivalent framework (G, q) is also congruent.
Alternatively, any equivalent configuration can be reached by some Euclidean motion. A framework
(G, p) is said to be locally flexible if there exists a parametric curve in the space of configurations
C : [0, 1] → Rvd such that C(0) = p, (G,C(1)) is not congruent to (G, p), and for all x ∈ [0, 1],
(G,C(x)) is equivalent to (G, p). Otherwise, it is said to be locally rigid. From these definitions, we
see that Kn is locally and globally rigid for any framework.

A graph is generically locally rigid (GLR) if any generic framework is locally rigid. Similarly, a
graph is generically globally rigid (GGR) if any generic framework is globally rigid. A graph is
generically redundantly rigid (GRR) if deleting any edge from the graph leaves a GLR graph.

Proposition 3.1. If G = (V,E) is a graph that is not generically globally rigid, then any factor G′

is also not generically globally rigid.

Proof. Suppose we had two equivalent, non-congruent frameworks (G, p) and (G, q) for generic p
and q. Then (G′, p) and (G′, q) are equivalent, non-congruent frameworks. �

The following theorems demonstrate that GLR and GGR are properties of the underlying graph,
and not the framework.
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Theorem 3.2. If any generic framework of a graph G is locally rigid, then all generic frameworks
of G are locally rigid.

The above result is a corollary of Theorem 4.2.

Theorem 3.3 (Connelly [3], Gortler, Healy, Thurston [7]). If any generic framework of a graph G
is globally rigid, then all generic frameworks of G are globally rigid.

For non-generic frameworks, we have problems like all points lying on a hyperplane that might
yield unexpected rigidity properties. Thus, we consider only generic configurations because we
can give characterizations of rigidity based on the underlying graph alone. An example of such
a characterization comes from Hendrickson [8], who found necessary conditions for a graph to be
GGR and conjectured that they were also sufficient.

Theorem 3.4 (Hendrickson [8]). If a non-complete graph G is generically globally rigid in Rd, then
it is (d+ 1)-connected and generically redundantly rigid.

Intuitively, a graph that is GGR requires (d + 1)-connectivity because if we could disconnect the
graph into two components by deleting d vertices, we would be able to reflect one component across
the hyperplane defined by the coordinates of those d vertices and obtain an equivalent, but not
congruent framework. A graph that is GGR requires redundant rigidity because otherwise, we can
delete some non-redundant edge, flex the graph, and replace the edge with the same length to get
a non-congruent framework. There exist frameworks in which this is not possible, but Hendrickson
argues that they are not generic since they lie on critical points of a manifold.

Connelly [4] and Frank and Jiang [6] found families of counterexamples to Hendrickson’s conjecture.
Such a counterexample is said to be generically almost-globally rigid1. We will generalize the results
of Connelly [4] and Frank and Jiang [6] in the remainder of this paper.

4. Infinitesimal Flexes and Equilibrium Stresses

Let fG : Rvd → Re be the mapping where we take the coordinates of the configuration and output
the edge-length squared of each edge. That is, fG(p = (p1, p2, ..., pv)) = (..., ||pi − pj ||2, ...). The
rigidity matrix of a framework is the Jacobian dfG(p) and has dimensions e × vd. For example,
the rigidity matrix for the graph K3 with coordinates p1 = (0, 2), p2 = (2,−2), p3 = (1, 3) could be
written as

2 ∗


p1,x p1,y p2,x p2,y p3,x p3,y

v1v2 −2 4 2 −4 0 0
v1v3 −1 −1 0 0 1 1
v2v3 0 0 1 −5 −1 5

.
An infinitesimal motion is an element of the kernel of dfG(p). Equivalently, an infinitesimal motion
p′ = (p′1, p

′
2, ..., p

′
v) satisfies, for any edge vivj , (pi−pj)·(p′i−p′j) = 0. Infinitesimal motions generalize

the notion of Euclidean motions and local flexes. To see this, consider the time derivative of fG.
Since Euclidean motions and local flexes preserve edge lengths, we wish to have that derivative be
equal to 0. More explicitly, for any edge vivj ,

1Frank and Jiang [6] refer to these graphs as generically partially rigid.



RIGIDITY OF GRAPH JOINS AND HENDRICKSON’S CONJECTURE 5

d

dt
(pi − pj)2 =

d

dt
(pi − pj) · (pi − pj)

= 2(pi − pj) ·
d

dt
(pi − pj)

= 2[(pi − pj) · (p′i − p′j)],

which is zero if it is an infinitesimal motion. Any infinitesimal motion that is not a Euclidean
motion is an infinitesimal flex. A graph with no infinitesimal flex is infinitesimally rigid. Using the
equivalence of the two definitions of an infinitesimal flex, Asimow and Roth [1] proved the following
theorems that demonstrate the connection between the local rigidity and the rigidity matrix.

Theorem 4.1 (Asimow and Roth [1]). A framework (G, p) is infinitesimally rigid if and only if

rank dfG(p) = vd−
(
d+1
2

)
⇔ dim ker dfG(p) =

(
d+1
2

)
.

Since the Euclidean motions are infinitesimal motions and have dimension
(
d+1
2

)
,
(
d+1
2

)
is the small-

est possible dimension for the kernel, which is the best possible.

Theorem 4.2 (Asimow and Roth [1]). A graph with at least d + 1 vertices is generically locally
rigid if and only if a generic framework of it is infinitesimally rigid.

Proposition 4.3. If G = (V,E) is a graph that is generically locally rigid, then adding an edge
yields a generically locally rigid graph.

Proof. Adding a row to the rigidity matrix cannot decrease the dimension of the image, but since
the image already has dimension vd −

(
d+1
2

)
, the resulting graph’s image also has dimension vd −(

d+1
2

)
. �

Proposition 4.4. Given a graph G that is generically locally rigid in Rd, adding a vertex v to G
and at least d edges connected to that vertex yields a generically locally rigid graph.

Proof. We only need to consider the case where we add d edges, since adding more follows from
Proposition 4.3. Consider the rigidity matrix of G. Adding v increases both the column and row
size by d. The resulting matrix is block triangular, so consider the submatrix formed by the newly
added rows and columns. For generic configurations, the determinant of the submatrix forms an
algebraic equation and hence must be non-zero. Thus, the submatrix is of maximal rank and the
resulting graph is also GLR. �

An (equilibrium) stress is a vector ω = (..., ωij , ...) ∈ Re such that for all vertices vi ∈ V ,

∑
j|vivj∈E

ωij(pi − pj) = 0.

By multiplying out (dfG)Tω, we find that this definition is equivalent to saying that ω ∈ ker(dfG)T .
We denote the vector space of stresses as Ω(G, p).

From these definitions, we find that dim ker dfG(p) = vd − e + dim Ω(G, p). This yields a crucial
characterization of redundant edges.

Proposition 4.5 (Frank and Jiang [6]). Removing an edge e of a generically locally rigid graph G
preserves local rigidity if and only if for any r ∈ R, there exists a stress with value r on e.
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Proof. Since both G and G−{e} are GLR, the space of flexes is
(
d+1
2

)
, so adding edge e to G−{e}

increases dim Ω(G, p). Thus, a stress with non-zero value on e must exist. Conversely, deleting
an edge with non-zero stress decreases the space of stresses by at least 1 because scaling that
stress creates a one-dimensional subspace, so

(
d+1
2

)
= dim ker dfG(p) ≥ dim ker dfG−{e}(p). Because

the Euclidean motions are infinitesimal flexes of all frameworks and has dimension
(
d+1
2

)
, we have

equality. �

If we restrict ourselves to only balanced complete bipartite graphs, we obtain a tidy characterization
of the stresses and flexes. The following theorem is a formula for the dimension of the stresses.

Theorem 4.6 (Bolker and Roth [2]). Given some balanced complete bipartite graph Ka,b where

a+ b ≤
(
d+2
2

)
, the space of stresses dim Ω(Ka,b) for a generic configuration is (a− d− 1)(b− d− 1).

Corollary 4.7. If Ka,b is generically locally rigid and a, b ≥ d+ 2, then Ka,b is generically redun-
dantly rigid.

Proof. Since dim Ω(Ka,b) > 0, there must exist a stress which is non-zero on some edge. That edge
is then redundant by Proposition 4.5, so by symmetry, all the edges of Ka,b are redundant. �

Whiteley [9] explicitly describes the infinitesimal flexes that arise from the stresses of a complete

bipartite framework. When v <
(
d+2
2

)
, there exists at least one quadric surface that passes through

all v points. A quadric surface is a (d − 1)-dimensional surface in Rd whose space is the locus of
zeroes of some quadratic polynomial in d variables. That is, a quadric surface can be viewed as the
set of all points p = (p1, p2, ..., pd) that satisfy the equation

d∑
i=1

Aip
2
i +

∑
1≤j<k≤d

2Bj,k(pjpk) +

d∑
l=1

Clpl +D = 0

for some real coefficients Ai, Bj,k, Cl, D not all zero. A quadric surface can also be defined as the

set {p ∈ Rd | (p, 1)TQ(p, 1) = 0} for some symmetric (d + 1) × (d + 1) matrix. To see that this
definition is equivalent to the polynomial equation counterpart, we let Ai := [Q]i,i, Bj,k := 2[Q]j,k,

Cl := 2[Q]d+1,l, D := [Q]d+1,d+1. Expanding out (p, 1)TQ(p, 1) yields the polynomial equation
definition.

Let the quadric flex be the flex Qxi for all vertices xi of one bipartite class, and −Qyi for all vertices
yi of the other bipartite class. Intuitively, this flex pushes one bipartite class into the quadric surface
and the other class outwards from the surface, as seen in Figure 4. To see that this is in fact an
infinitesimal flex, for any pair of adjacent vertices va, vb,

(pa − pb) · (Qpa − (−Qpb)) = pa ·Qpa + pb ·Qpb + pa ·Qpb − pb ·Qpa
= pa ·Qpb − pTb Qpa,

but since Q is symmetric, pa ·Qpb = pTaQpb = pTb Qpa = pb ·Qpa, so (pa − pb) · (Qpa − (−Qpb)) = 0.

Proposition 4.8 (Whiteley [9]). For generic d-dimensional frameworks of balanced complete bi-

partite graphs with fewer than
(
d+2
2

)
vertices, the quadric flexes spans the space of all infinitesimal

flexes modulo Euclidean motions.
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Figure 4. K3,3 on a circle and its corresponding quadric flex. The bipartite classes
are shown in different colors.

Sketch of Proof. The space of flexes is

vd− e+ dim Ω(G, p) = (a+ b)d− ab+ (a− d− 1)(b− d− 1)

= −a− b+ d2 + 2d+ 1

=

(
d+ 1

2

)
+

(
d+ 2

2

)
− a− b

However, the dimension of the space of quadric surfaces passing through those points is
(
d+2
2

)
−a−b,

so all the non-trivial infinitesimal flexes can be written as a linear combination of Euclidean motions
and quadric flexes. �

From here on, we will only consider balanced joined graphs.

5. Quadric Rigidity Matrix

Specifying the coordinates of a single point pi forces any quadric surface Q containing pi to satisfy
the linear constraint pTi Qpi = 0. We find a similar constraint by adding extraneous edges to vertices
within the same bipartite class.

Proposition 5.1. Given a complete bipartite framework, if xi and xj are vertices in the same
bipartite class, then adding the edge xixj imposes the linear constraint pTi Qpj = pTj Qpi = 0 on the
space of quadric surfaces Q whose quadric flex preserves the length of xixj.

Proof. We wish to find a quadric surface Q such that the quadric flex satisfies the infinitesimal flex
condition (pi − pj) · (p′i − p′j) = 0. Then

(pi − pj) · (p′i − p′j) = (pi − pj) · (Qpi −Qpj)
= pi ·Qpi + pj ·Qpj − pi ·Qpj − pj ·Qpi
= −pi ·Qpj − pj ·Qpi.

However, since Q is symmetric, pi ·Qpj = pTi Qpj = pTj Qpi = pj ·Qpi, so pTi Qpj = pTj Qpi = 0. �

To see that both the constraints from vertices and edges are in fact linear, we look at the polynomial
form for a quadric. Suppose we have a configuration that maps vertices x and y to p and q in Rd,
respectively. For the vertex constraint of the vertex x, we obtain
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d∑
i=1

Aip
2
i +

∑
1≤j<k≤d

2Bj,k(pjpk) +
d∑

l=1

2Clpl + 1 = 0.

Similarly, the edge constraint of the edge xy yields

d∑
i=1

Ai(piqi) +
∑

1≤j<k≤d
Bj,k(pjqk + pkqj) +

d∑
l=1

Cl(pl + ql) + 1 = 0,

where Ai, Bi, and Ci are variables representing the coefficients of the quadric polynomial. We define

the (d-dimensional) constraint mapping m : R2d → R(d+2
2 ) where (p, q) is mapped to

(p1q1, p2q2, ... , pdqd,

p1q2 + p2q1,p1q3 + p3q1, ... , pd−1qd + pdqd−1,

p1 + q1, p2 + q2, ... , pd + qd, 1).

These are the coefficients of the Ai, Bi, and Ci variables in the edge constraint. For a single point,
the constraint mapping is m(p, p). Since the vertex and edge constraints form a system of linear
equations, it is natural to define the quadric rigidity matrix.

Definition 5.2. Let G+H be a joined graph with vertex set V and extraneous edge set E′. The
quadric rigidity matrix of G+H is the (|V |+ |E′|)× (

(
d+2
2

)
) matrix whose rows are the constraint

mappings m(v, v) for all v ∈ V and m(vi, vj) for all vivj ∈ E′.

Since the quadric flex automatically preserves non-extraneous edge lengths, those edges do not
impose any constraint on the quadric rigidity matrix. Suppose we have the joined graph (K2∪K1)+
K3 with configuration p1 = (4,−5), p2 = (2, 4), p3 = (−1, 3), p4 = (−4,−1), p5 = (−9, 0), p6 = (5, 7)
such that the extraneous edge connects v1 and v2. We can write the quadric rigidity matrix of this
joined framework as



x2 y2 xy x y 1

v1 16 25 −40 8 −10 1
v2 4 16 16 4 8 1
v3 1 9 −6 −2 6 1
v4 16 1 8 −8 −2 1
v5 81 0 0 −18 0 1
v6 25 49 24 10 14 1
v1v2 8 −20 6 6 −1 1


The following results are crucial for the main results of this paper.

Proposition 5.3. The quadric rigidity matrix of a joined framework (G, p) has rank
(
d+2
2

)
if and

only if (G, p) is infinitesimally rigid.

Proof. The rank is less than
(
d+2
2

)
if and only if a quadric surface satisfying those constraints exists,

which is equivalent to infinitesimal flexibility by Proposition 4.8. �
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Figure 5. Since the quadric rigidity matrix is the same for all three graphs, they
are either all rigid, or all flexible in R3.

Proposition 5.4. Let G1 = G+H and G2 = G′ +H ′ be two balanced joined graphs where G ∪H
is isomorphic to G′ ∪H ′. That is, the resulting graphs from deleting all non-extraneous edges are
isomorphic. Then G+H is generically locally rigid if and only if G′+H ′ is generically locally rigid.

Proof. G1 and G2 have the same quadric rigidity matrix, since the matrix is only dependent on the
extraneous edges and the vertices, and not on the edges between G and H. �

Figure 5 shows three graphs that satisfy the conditions in Proposition 5.4. In particular, all three
graphs are generically locally rigid because ten generic points do not lie on a quadric surface in R3.

The quadric rigidity matrix presents a faster method of deciding local rigidity for balanced joined
graphs. The dimensions of the quadric rigidity matrix is strictly smaller than that of the rigidity
matrix. Let e′ be the number of extraneous edges. Then, the number of rows in the quadric rigidity
matrix is |VG|+ |VH |+e′, which is less than |VG||VH |+e′, the number of rows in the rigidity matrix.

The number of columns in the quadric rigidity matrix is
(
d+2
2

)
< 2(d + 1)d ≤ vd, so the quadric

rigidity matrix is overall smaller. If we fix the dimension parameter, the complexity of determining
local rigidity is reduced from O(v2e) to O(v + e′).

Recognizing a balanced joined graph takes exponential time by the naive algorithm of checking all
balanced partitions of the vertices. However, there is an O(|V |2) algorithm. The complete bipartite
graph Ka,bhas edge complement is the graph Ka ∪ Kb, which has two connected components. A
connected component is an equivalence class of the relation “u is connected to v.” For a balanced
joined graph, its edge complement has at least two connected components, which can be partitioned
into two sets of size at least d + 1. Our algorithm uses dynamic programming and runs as follows
for a graph G:

(1) If |VG| < 2d+ 2, reject.
(2) Compute the edge-complement of G.
(3) Using a depth-first search, find the vertex-sets V1, V2..., Vn of the connected components of

G.
(4) Initialize a string array A indexed from 1 to |V |.
(5) For each vertex-set Vi, do the following. Set A[|Vi|] := “Vi”. For each j such that A[j] is

nonempty, set A[|Vi|+ j] := A[j] + “Vi”.
(6) If there is an i such that d+ 1 ≤ i ≤ |VG| − (d+ 1) and A[i] is not an empty string, return

A[i].

Each step takes at most O(|V |2) time, so the overall algorithm runs in O(|V |2) time. At the end
of step 5, A[i] is nonempty if and only if there exists a partition of the connected components such
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Figure 6. A graph and its coning, respectively.

that the size of one subset is i. Step 6 ensures that i is chosen such that the size of both subsets is
at least d+ 1. Note that if we did not require the joined graph to be balanced, we would only need
to test connectivity on G.

6. Partial Coning of Connelly’s Graphs

Connelly [4] provided the first known counterexamples to Hendrickson’s conjecture by Theorem 1.1.
Let the coning of a graph G be the graph G′ = G+K1. That is, we add a new vertex and connect it
to every other vertex. Connelly and Whiteley [5] demonstrate that the coning operation preserves
all the forms of rigidity.

Theorem 6.1 (Connelly and Whiteley [5]). The cone of a graph G is generically [locally, redun-
dantly, globally] rigid in Rd if and only if G is generically [locally, redundantly, globally] rigid in
Rd−1.

Proposition 6.2. The cone of a graph G is (k + 1)-connected if G is k-connected.

Proof. In the cone of G, there are two different ways to delete k vertices. If the cone vertex is
deleted, then the result follows immediately from the k-connectivity of G. If the cone vertex is not
deleted, then the resulting graph is still connected because the cone vertex is adjacent to all other
vertices. �

In particular, the cone of a graph in Theorem 1.1 is also GAGR in the next-highest dimension. It
turns out that for those graphs in R5 and above, only a partial coning is necessary. A partial coning
is where the cone vertex is joined to only a subset V ′ ( VG. We provide a specific type of partial
coning that yields a family of GAGR graphs. A partial coning of K9,6 as shown in Figure 7 is the
smallest graph in this family.

Theorem 6.3. If a > b ≥ d+1 and a+b =
(
d+1
2

)
+1, then the partial coning (K1,d+1∪K(a−d−2))+Kb

is generically almost-globally rigid in Rd for d > 3.

Proof. First, (K1,d+1 ∪ K(a−d−2)) + Kb is in fact a partial coning of a GAGR complete bipartite
graph. All extraneous edges are connected to the same vertex. Removal of that vertex leaves Ka−1,b.

Since a > b ≥ d+ 1, a− 1 ≥ d+ 1, so we have a GAGR graph in Rd−1.

(K1,d+1 ∪K(a−d−2)) +Kb is not GGR, since it is a subgraph of a complete cone of a GAGR graph.

The only vertices we need to consider for (d+ 1)-connectivity are the vertices u1, u2, ..., ua−d+2 not
connected to the cone vertex c. Since b ≥ d + 2, we cannot delete all the vertices of the second
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Figure 7. A partial coning reimagined as a joined graph. This graph is GAGR in
R5 by Theorem 6.3.

bipartite class, leaving at least one vertex v intact. Then the path ui − v − c connects vertex ui to
the rest of the graph.

When a = d + 2, we have the coned graph of a GLR graph, which is itself GLR. By Proposition
5.4, (K1,d+1 ∪K(a−d−2)) +Kb is GLR since it has the same quadric rigidity matrix. Since there is a
linear dependency in the quadric rigidity matrix created by adding the (d+ 1)-th edge, that edge is
redundant. By symmetry, all the extraneous edges are redundant. By Corollary 4.7, the bipartite
edges are redundant because a, b ≥ d+ 2. Therefore, the entire graph is GRR. �

This idea can be generalized for multiple partial cones of the same graph. However, this requires
more technical methods that we will encounter in the next section. We conclude this section with
an extension that covers weaker partial conings and other classes of GAGR graphs.

Proposition 6.4. Let G and G′ be generically almost-globally rigid graphs in Rd such that G′ is a
factor of G. Then any graph G′′ such that G′ ⊆ G′′ ⊆ G is also generically almost-globally rigid in
Rd.

Proof. G′ ⊂ G′′ implies (d + 1)-connectivity and the other conditions follow immediately from
Propositions 3.1 and 4.3. �

7. Graph Attachments in Rn

Frank and Jiang [6] found a graph that could be “attached” to other graphs in R5 to create GAGR
graphs. We generalize the result to higher dimensions. For some x1, x2, x3, x4 ∈ N, we can construct
the graphs Gi := Kxi for i ∈ {1, 2, 3, 4}. The 4-chain Cx1,x2,x3,x4 is the graph with vertex set V =⋃4

i=1 VGi and edge set E =
⋃3

i=1EGi+Gi+1 . Formally, we may think of a 4-chain as G1+G2+G3+G4.
Frank and Jiang demonstrated that the 4-chain C2,3,5,4 could be attached to certain graphs in R5

to yield GAGR graphs. Attaching a 4-chain to an arbitrary graph G, denoted Cw,x,y,z � G, is the
result of the vertex amalgamation

(Cw,x,y,z;w1, w2, ..., wx1 , z1, z2, ..., zx4) ∗ (G; v1, v2, ..., vx1+x4)

for some vertices v1, v2, ..., vx1+x4 in VG. The vertex amalgamation attaches the vertices of the two
ends of the chain to some vertices in G. As demonstrated in the proof, the choice of vertices is
irrelevant. We can now state the result of Frank and Jiang.
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Figure 8. The graph attachment C2,3,5,4 �K6. A circle of vertices represents each
independent set of the 4-chain, and a dashed line between independent sets represents
a graph join. K6 is highlighted by the bolded edges.

Theorem 7.1 (Frank and Jiang [6]). Let G be a generically redundantly rigid, 6-connected graph.
Then C2,3,5,4 �G is generically almost-globally rigid in R5.

We present the following generalization for higher dimensions.

Theorem 7.2. Let G be a generically redundantly rigid, (d+ 1)-connected graph. Then

C2,i,2d−2−i,d−1 �G,

where 2 < i < d− 1, is generically almost-globally rigid in Rd.

For simplicity, let C(i, d) := C2,i,2d−2−i,d−1. Then C(3, 5) is C2,3,5,4. The one part of their proof that
does not immediately generalize in higher dimensions involves demonstrating that C2,3,5,4 �K6 is
GLR, in which they provide only a computer-aided proof.

The graph C(3, 5) �K6 can be rewritten as the joined graph (K2 ∪K5) + (K4 ∪K3). In general,
C(i, d) �Kd+1 is the joined graph (K2 ∪K(2d−2−i)) + (Kd−1 ∪Ki). Reinterpreting the attachment
as a joined graph allows us to apply the quadric rigidity matrix.

Lemma 7.3. For d ≥ 3, the joined graph (K2 ∪K(2d−4)) + (Kd−1 ∪K2) is generically locally rigid.

Proof. For simplicity, let Hd = (K2 ∪K(2d−4)) + (Kd−1 ∪K2). Hd has 3d− 1 vertices and 1 +
(
d−1
2

)
extraneous edges, so there are

(
d+2
2

)
rows in the quadric rigidity matrix. It suffices to show that

the quadric rigidity matrix is of maximal rank.

In R2, H2 is achieved by applying Proposition 4.4 on K2, so it is generically locally rigid. Thus, it
has no quadric flex, so its quadric rigidity matrix is of maximal rank. Although H2 does not have
d+ 1 vertices in each bipartite class, we can begin induction from the d = 2 case because of its lack
of quadric flexes.

Assume Hd−1 is generically locally rigid in Rd−1. Then consider the graph Hd in Rd. We can achieve
this graph from the graph Hd−1 by adding one vertex in the first bipartite class, adding two vertices
in the second bipartite class, and adding d−2 extraneous edges to one of the two vertices. In terms
of the quadric rigidity matrix, we take a

(
d+1
2

)
×
(
d+1
2

)
matrix and expand to a

(
d+2
2

)
×
(
d+2
2

)
matrix.

We add d+1 columns, namely the d quadratic terms, denoted Q1, Q2, ..., Qd (where Qi corresponds
to the product of the i-th coordinate and the d-th coordinate), and 1 linear term, denoted Ld. We
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Figure 9. The induction step as applied to H5 to get H6. The new vertices are
shown in a different color and the new extraneous edges are bolded.

also add d+ 1 rows, formed by adding the three new vertices and d− 2 extraneous edges. We only
need to show that there exists some framework whose quadric rigidity matrix has maximal rank2.

Select a generic framework for Hd−1 in Rd−1. We include that framework into Rd such that a vertex
v = (v1, v2, ..., vd−1) is mapped to (v1, v2, ..., vd−1, 0). We add three new vertices with coordinates

a = (0, 0, ..., 0, ad−1, ad)

b = (0, 0, ..., 0, bd−1, bd)

c = (0, 0, ..., 0, cd−1, cd)

and edges e1, e2, ..., ed−2 all connected to c. Since the original vertices and extraneous edges have 0
in the last coordinate, their values in Qi and Ld are necessarily 0. It suffices to show that the matrix
formed by the new rows and columns are of maximal rank, because the matrix is block triangular.

Since we chose all but the last two coordinates to be 0 for vertices a, b, and c, their constraint
mappings must have 0’s in the Q2, Q2, ..., Qd−1 columns. Once again, this is a block triangular
matrix, so we need to show that the edges are independent in those d − 2 columns, and then the
vertices in the remaining 3 columns.

The edges connect vertex c to a vertex in the original graph, so the submatrix formed by the
Q2, Q3, ..., Qd−1 columns and the e1, e2, ..., ed−2 rows are coordinates from the original framework
all multiplied by cd. Since the determinant is an algebraic equation on the coordinates, it must
be non-zero since we selected a generic framework in Rd−1. We conclude that the submatrix is of
maximal rank as long as cd 6= 0.

We are left with the submatrix formed by the Q1, Qd, Ld columns and the a, b, c rows. More
explicitly, the matrix

 a2d 2ad−1ad 2ad

b2d 2bd−1bd 2bd

c2d 2cd−1cd 2cd

 .

2While the proof uses a framework that would have additional infinitesimal flexes (see Whiteley [9]), we are only
interested in showing that the graph has no quadric flexes as the other flexes are not possible in generic frameworks.
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Figure 10. The induction step on H3 to H4, where non-empty entries are marked.
The matrix columns are rearranged to illustrate the block triangular form.

We may choose any coordinates that makes the submatrix invertible and has cd 6= 0. Since the
(d + 1) × (d + 1) submatrix is of maximal rank, the entire quadric rigidity matrix is of maximal
rank, as well. �

By applying Proposition 5.4, we obtain generic local rigidity for the graph attachments in consid-
eration. The remainder of the proof is almost identical to the specific case of C(3, 5) in R5.3

Sketch of Proof. We must show that the attached graph is (d+1)-connected, generically redundantly
rigid, and not generically globally rigid.

Since G is (d+ 1)-connected, the only possibility for disconnecting the graph is deleting the vertices
from C(i, d). However, we would have to delete all the vertices of X1 and X4, X1 and X3, or X2 and
X4, and each of those pairs has at least d+1 vertices. Thus, the attached graph is (d+1)-connected.

When G = Kj , where j ≥ d+1, we have generic local rigidity by repeated application of Proposition
4.4. For the general case, |VG| ≥ d+ 1, so we can compare the flexes of C(i, d)�G to C(i, d)�K|VG|.
Suppose a non-trivial flex of C(i, d)�G exists. Since G is assumed to be generically locally rigid, that
flex must be a Euclidean motion on G. However, this same flex could be applied to C(i, d) �K|VG|
and still be non-trivial, so no such flex exists.

By Proposition 5.4, C(i, d) �Kd+1 is GLR in Rd by moving vertices with no extraneous edges to a
different bipartite class. The space of stresses for C(i, d) �Kd+1 has dimension

Ω(C(i, d) �Kd+1, p) = e− vd+

(
d+ 1

2

)
= (2d− i)(d+ i− 1) +

(
d− 1

2

)
+ 1− (3d− 1)d+

(
d+ 1

2

)
= (i− 2)(d− i− 1).

However, from Theorem 4.6, the space of stresses for the complete bipartite graph K2d−i,d−i−1 is
also (i− 2)(d− i− 1). That implies that any non-zero stress on C(i, d)�Kd+1 is zero on extraneous
edges and non-zero on bipartite edges. By Proposition 4.5, the extraneous edges are not redundant,
while the bipartite edges are. The edge set of C(i, d) � G is the disjoint union of the edge sets of
C(i, d) and G. Removing an edge from G leaves the graph locally rigid since G is redundantly rigid.
Every edge e of C(i, d) is redundant in the graph C(i, d) �Kj , so C(i, d) − {e} �Kj is generically

3See Frank and Jiang [6] for a complete proof.
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locally rigid. By the same argument, any flex of C(i, d)−{e}�G is a flex of C(i, d)−{e}�K|VG|, so
C(i, d)−{e}�G is generically locally rigid. Thus, we have generic redundant rigidity for C(i, d)�G.

Since not all edges of C(i, d) �Kd+1 are redundant, the graph is not generically globally rigid by
Theorem 3.4. In general, for any two equivalent frameworks of G, the two subframeworks of a
globally rigid subgraph are congruent. Adding a vertex to a graph and attaching it to vertices of
a globally rigid subgraph then preserves global non-rigidity, so C(i, d) �Kj where j ≥ d+ 1 is not
generically globally rigid either. Since G is a factor of K|VG|, C(i, d) �G is not generically globally
rigid either. �

We can also exhibit more graph attachments based on different families of 4-chains. In general, we
found that the sum of the middle two arguments of the 4-chain must be x(d − x + 1), which we
denote v(d, x). The following generalization can be proven using the same techniques.

Theorem 7.4. Let G be a generically redundantly rigid, (d+ 1)-connected graph. Then

Cx,i,v(d,x)−i,(d+1)−x �G,

where x < i < v(d, x) + x− d− 1, is generically almost-globally rigid in Rd.

However, there are still 4-chain graph attachments that escape this characterization, namely those
that attach to d + 2 or more vertices (there cannot exist any that attach to only d vertices since
this violates (d+ 1)-connectivity). The smallest such outlier we found was C3,3,5,5 in R6.

Problem 7.5. Characterize all 4-chain graph attachments.
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